US20100332609A1 - System and method for controlling the transport of articles - Google Patents

System and method for controlling the transport of articles Download PDF

Info

Publication number
US20100332609A1
US20100332609A1 US12/849,282 US84928210A US2010332609A1 US 20100332609 A1 US20100332609 A1 US 20100332609A1 US 84928210 A US84928210 A US 84928210A US 2010332609 A1 US2010332609 A1 US 2010332609A1
Authority
US
United States
Prior art keywords
server
method according
controlling method
courier
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/849,282
Inventor
Jay Philip Bregman
Thomas Edward Michael Allason
Andrea L. Attanasio
Gianluca Fiorita
Gianpaolo Ghiani
Massimo Guccione
Roberto Musmanno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Courier (UK) Ltd
Original Assignee
E Courier (UK) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/065,474 priority Critical patent/US7828202B2/en
Application filed by E Courier (UK) Ltd filed Critical E Courier (UK) Ltd
Priority to US12/849,282 priority patent/US20100332609A1/en
Publication of US20100332609A1 publication Critical patent/US20100332609A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading, distribution or shipping; Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading, distribution or shipping; Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement, balancing against orders

Abstract

A system and method for controlling the transport of articles comprises in one embodiment one or more communication devices for receiving and transmitting data, at least one primary server in communication with the primary server for allocating couriers for the collection and delivery of articles, a program for controlling the server, and at least one remote interface for placing orders for the collection and delivery of the articles, wherein the program, upon the execution of an order, compares stored historical travel times from one geographic location to another with actual travel times from one geographic location to another to thereby provide updated estimates for the collection time and delivery time of articles provided in subsequent orders.

Description

    CROSS-REFERENCE TO PRIORITY APPLICATION
  • This application is a divisional application of and claims the benefit of Non-Provisional patent application Ser. No. 11/065,474 (filed Feb. 24, 2005), which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The invention relates to a system for allocating transportation assets for the collection and delivery of articles. In particular, the invention relates to a system for controlling the transport of articles. The invention also relates to a method of controlling the transport of articles.
  • BACKGROUND OF THE INVENTION
  • The transport of articles from one location to another geographically separated location is typically conducted by vehicles, railroad, and aircraft. Within metropolitan areas of substantial size, the transport of articles is more often conducted by vehicles such as cars, trucks, scooters, motorcycles, and bicycles. More specifically, the transport of articles for same-day on-demand collection (i.e., pick-up) and delivery within large cities requires a variety of mobile units in communication with a central processing or control facility.
  • Known transportation providers (e.g., FedEx and UPS) handling local deliveries, non-local deliveries, scheduled deliveries, and routed deliveries rely primarily upon vehicles to deliver articles within metropolitan areas. Most of these transportation providers, however, do not serve customers seeking same-day on-demand delivery. Stated differently, the traditional large transportation providers cater to the overnight and routine scheduled deliveries. Thus, there is a need for a system for controlling the transport of articles that serves customers requiring same-day on-demand services. Stated differently, there is a need for a system for controlling the collection and delivery of articles on the same day as the order is requested.
  • Traditional courier companies gain a slight competitive advantage based upon economies of scale. Servicing large clients, however, necessitates competition for tenders and subsequent discounts to the contracted firms. Further, an upper limit on the number of couriers and customers still exists that even the largest companies cannot support due to the reliance on human controllers to allocate incoming jobs to suitable couriers. The present invention permits a user to multiply the economies of scale associated with larger courier companies while attracting and servicing clients falling across the size spectrum, including personal users who will be able to pay for individual deliveries by credit card without the need for an established account.
  • Known courier systems may consider predetermined or historical routes (e.g., shortest distance between two points) when allocating jobs, but fail to consider variables that may expedite or delay the execution (i.e., completion) of an order. Thus, there is a need for a control system that compares historical travel times with actual travel times and updates the travel times to more accurately predict the expected collection and delivery of articles.
  • Advantageously, the present invention incorporates heuristic techniques in the selection and control of couriers. It will be understood by those skilled in the art that the term “heuristic” used in connection with “techniques” refers to methods that serve as an aid to learning, discovery, or problem-solving by experimental and especially trial-and-error methods. Stated differently, heuristic techniques relates to exploratory problem-solving techniques that utilize self-education (e.g., the evaluation of feedback) to improve performance. Heuristic techniques are also commonly associated with adaptive learning.
  • Further, the term “metaheuristics” refers to tools that allow computers to choose the most appropriate candidate from a variety of options in real-time. It will also be understood that metaheuristics refers to a high-level algorithmic framework or approach that can be specialized to solve optimization problems in the search for feasible solutions. In other words, metaheuristics are a class of approximate methods designed to solve difficult combinatorial optimization problems where classical heuristics have failed to be efficient and effective. In brief, those skilled in the art will understand that the terms heuristics and metaheuristics refers to methodological approaches used to address combinatorial optimization formulations. Specifically, the present invention provides a server having a metaheuristic computer program.
  • As compared to known courier systems reliant upon human controllers, a more desirable option is to provide a system for controlling the transport of articles having a server in communication with a plurality of mobile communication devices in the possession of couriers. Even more desirable is a system wherein the server is capable of identifying the most suitable courier, transmitting order information, analyzing historical route data and updating route information to thereby minimize delivery time and more accurately predict the collection and delivery times of articles.
  • OBJECT AND SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a system for controlling the transport of articles that provides same-day on-demand delivery.
  • A further object of the invention is to provide a method for controlling the transport of articles that compares historical travel times with actual travel times and updates the travel times to more accurately predict the expected collection and delivery of articles.
  • The invention meets these objectives with a system for controlling the allocation and transport of articles that is capable of tracking couriers, allocating orders to the most suitable courier, monitoring the collection and delivery of articles, and analyzing historical data and current delivery data to thereby increase efficiencies. In particular, the invention is a system having a plurality of communication devices, a processing facility for managing orders, and a server capable of adaptive learning. In another aspect, the invention is a method for controlling the transport of articles that incorporates the system wherein a primary server identifies a suitable courier based on a plurality of variables, communicates the order information to an accepting courier, and then monitors the progress of the delivery.
  • Advantageously, the job or order allocation system operated by the present invention improves courier efficiency, allowing more jobs per day versus existing radio- and human-controlled systems, while reducing the overhead associated with conventional courier management.
  • The foregoing and other objects and advantages of the invention and the manner in which the same are accomplished will become clearer based on the following detailed description taken in conjunction with the accompanying drawings in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatical view of a preferred embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which a preferred embodiment of the invention is shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
  • An overall view of the system 10 which incorporates features of the present invention is set forth in FIG. 1. In one embodiment the system 10 for controlling the transport of articles 26 for delivery comprises one or more communication devices 11 for receiving and transmitting data, at least one primary server 12 in communication with the communication devices, one or more secondary servers 13 in communication with the primary servers and the communication devices, and at least one remote interface 14 for placing orders for the collection and delivery of a plurality of articles. One of the primary servers 12 includes a program 15 for controlling the servers. The secondary servers 13 may include a mapping server 20, a customer database server 21, a communication server 22, and a website server 23.
  • In a preferred embodiment, the invention includes two primary servers 12. One of the primary servers will be referred to as the auto-allocation server 24 and the other will be referred to as the advanced information-based allocation (AIBA) database server 25. The auto-allocation server 24 operates with the program 15 and the AIBA database server 25 to automatically allocate orders to suitable couriers 30 for acceptance or rejection.
  • The AIBA database server 25 stores data related to historical travel time from one geographic location to another. The AIBA database server 25 operates in conjunction with the auto-allocation server 24 to allocate courier jobs by means of a computer algorithm according to courier location and suitability.
  • As recited above, one of the primary servers 12 and specifically the auto-allocation server 24 includes a program 15 for controlling the primary servers. Specifically, the program 15 is operative with both primary servers 12 to select a suitable courier 30 for a given order based upon a plurality of variables. As discussed more fully herein, the program 15 operating the auto-allocation server 24 includes an auto-allocation algorithm that analyzes the geographic location of couriers 30. The geographic locations are communicated from the communication devices 11 in possession of the couriers 30 to the auto-allocation server 24. The program 15 considers new orders input via a remote interface 14 (e.g., computer terminal) and then considers a plurality of variables to select the most appropriate courier 30 for a given order. Stated differently, the program 15 of the present invention is operative with the primary servers 12 to select a suitable courier 30 for a given order based upon a plurality of variables.
  • In a preferred embodiment, the plurality of variables upon which the program 15 bases the selection of a suitable courier 30 comprises the geographic location of the couriers, historical travel times from one geographic location to another, historical delivery performance of the couriers, environmental conditions, courier vehicle types, geographic locations of the origin of an article (i.e., collection point), geographic locations of the destination of an article (i.e., delivery point), requested delivery time, and type of article for delivery (e.g., envelope, box, etc.). The environmental conditions include traffic and weather conditions affecting potential routes for the courier. Advantageously, in a preferred embodiment, the program 15 permits the updating of traffic conditions every several minutes and the updating of weather conditions every hour.
  • Upon selection and acceptance by a courier 30, one of the secondary servers 13 (i.e., the communication server 22) transmits the order to the communication device 11 in the possession of the selected courier. The process mimics the actions of a human controller, but with a greater degree of precision provided by exact location information of couriers 30 and the ability to consider more information than can be processed by human controllers. The program 15 operates to dynamically allocate orders as the orders are booked. The program 15, and more specifically the auto-allocation algorithm, incorporates advanced scheduling techniques known as metaheuristics as discussed above. The program 15 also provides the ability to automatically reposition a fleet of couriers 30 in a predetermined geographic area in accordance with predicted demand by sending messages from the primary servers 12 to courier units via one or more secondary servers 13 (i.e., the communication server 11 and the customer database server 21), thus decreasing response times to customer orders.
  • The AIBA database 25 server also hosts a neural network 31 that operates with the program 15 to accomplish adaptive learning during the selection of a suitable courier 30. As used herein, the term “neural network” 31 refers to a computer architecture in which a number of processors are interconnected in a manner suggestive of the connections between neurons in a human brain and which is able to learn by a process of trial and error.
  • For example, upon the execution of an order, the program 15 compares historical travel times from one geographic location to another with actual travel times collected. The historical travel times are stored on one of the primary servers 12 (e.g., the AIBA database server 25). The actual travel times are collected and stored on at least one of the secondary servers 13 (e.g., customer database server 21) as well as on the AIBA database server 25. Subsequently, the program 15 updates the stored historical travel times to reflect variations between the historical travel times and the actual travel times. By doing so, the present invention provides more accurate estimates for the collection time and delivery time of articles 26 provided in subsequent orders.
  • A preferred embodiment of the present invention also includes one or more secondary servers 13 in communication with the primary servers 12 and communication devices 11. The mapping server 20 generates map displays accessible to employees and customers over a network (e.g., the Internet). The mapping server 20 also generates cost estimates for delivering articles 26 from one geographic location to another. The mapping server 20 is in communication with the customer database server 21 and local interfaces 32 (i.e., computer terminals) provided in a central processing facility 33 that controls the system 10.
  • The customer database server 21 stores orders placed by customers over a network (e.g., the Internet). The customer database server 21 is in communication with the mapping server 20, the local interfaces 32 in the central processing facility 33, the communication server 22, the host server for the website 23, and the primary servers 24, 25. The customer database server 21 also generates information regarding the status of one or more orders. The status information is accessible by a user over a network such as the Internet. Furthermore, the customer database server 21 stores actual travel times of couriers 30 from one geographic location to another.
  • Accordingly, a customer can monitor the status of an order by logging onto a website hosted by one of the secondary servers 13. In like fashion, employees maintaining the system 10 can monitor the status of orders on the local interfaces 32 positioned in the central processing facility 33. The status information comprises estimated time for collection of an article 26, estimated time for delivery of the article, geographic location of the origin of the article (i.e., collection point), geographic location of the destination of the article (i.e., delivery point), and the current geographic location of communication devices 11 in possession of the couriers 30.
  • The customer database server 21 also generates a display depicting the current geographic location and status of the couriers 30. The display is accessible to employees and customers via a network such as the Internet.
  • The communication server 22 facilitates communication between the remote interfaces 14 (i.e., computer terminals used by customers) and the primary servers 12 via at least one of the secondary servers 13 (e.g., customer database server 21). The communication server further facilitates communication between the primary servers 12 and the mobile communication devices 11 in possession of the couriers 30. In one embodiment of the invention, the communication server 22 hosts a website that permits customers to place orders over the Internet and track the status of their orders.
  • In an alternative embodiment, the invention includes a dedicated secondary server 13 to host the website. The website allows customers to interact directly with the secondary servers 13 without using customer service representatives (i.e., employees) as intermediaries. Advantageously, customers can track an article 26 moving in real-time from one geographic location to another upon placing an order, thus providing unprecedented oversight of secure deliveries. Furthermore, the present invention provides highly accurate and constantly-updated delivery time estimates that are displayed on the website. Upon delivery, the name of the signor and signature is displayed on the website as a graphical file, complete with the time and date of delivery, as well as a link to a map which indicates the location at which the signature was taken. The present invention also notifies customers of the execution of an order via electronic mail, Short Message Service (SMS), or facsimile. Further, the present invention allows customers to manage their account, access past orders, and utilize relevant billing tools. Customers can view and sort their past orders online and download the orders to software programs (e.g., Sage or Excel software programs) for auditing purposes. In summary, the status information as discussed herein includes full line-by-line information for each order and executed signature to confirm proof of delivery.
  • The communication devices 11 are preferably mobile and in the possession of one or more of the couriers 30. The communication devices 11 are capable of transmitting and receiving voice information as well as electronic information (i.e., data). In a preferred embodiment, the communication devices 11 transmit and receive voice and data via the General Packet Radio Service (CPRS).
  • In one embodiment, the communication device 11 is a XDA 2 (i.e., a small handheld personal computer) configured to withstand rugged handling and marketed by the company O2. In a preferred embodiment, the communication device 11 includes the Microsoft PocketPC 2003 operating system. This operating system enables the use of customized wireless applications and provides Global System for Mobile Communications (GSM) and GPRS service on the O2 network. Advantageously, the O2 network provides a dedicated voice and data channel, thereby reducing bandwidth congestion.
  • The communication devices 11 are capable of communicating with a global positioning network 35 to provide geographical coordinates (i.e., location) of the device. For example, the communication devices 11 communicate with the network system known as Global Positioning System (GPS) to provide geographical information. Further, the communication devices 11 are configured to transmit their present geographic location to the primary servers 12 via one or more of the secondary servers 13 over a network. Preferably the geographic locations are transmitted over the GPRS network.
  • The present invention may also include a central processing facility 33 having a plurality of local interfaces 32 permitting employees to communicate with the primary and secondary servers 12,13. Specifically, the central processing facility 33 permits employees to input orders, track the status of couriers, track the status of deliveries, and maintain the primary and secondary servers 12,13. The processing facility 33 may be collocated with the servers 12,13 or positioned remotely from the servers. The local interfaces 32 operated by the employees include booking software to assist in operations. In a preferred embodiment, the booking software is modified DA Systems Advanced Courier Interface Windows software. This preferred software promotes direct interaction with the software contained in the communication devices 11. The booking software is also linked to the customer database server 21, and the primary servers 12. The booking software and customer database may also incorporate reporting software (e.g., software sold under the name Crystal Reports) to create customised invoices and reports for customers, wherein the reporting technology allows customers to download their order history into their preferred accounting format (e.g., Sage and Excel software programs). The above-referenced information is available to customers from the website, by phone, or via paper invoicing.
  • The local interfaces 32 in the central processing facility 33 permit employees to accept verbal orders and input the orders into at least one of the secondary servers 13 (e.g., customer database server 21). Accordingly, in one embodiment, the remote interfaces 14 may include a telephone for communicating an order to the central processing facility 33.
  • In another embodiment, the remote interface 14 is a computer terminal in communication with at least one of the secondary servers 13. In this embodiment, a user may input an order directly from, for example, a remote computer terminal, and the order is directly input into at least one of the secondary servers 13 (e.g., customer database server 21) via the communication server 22 or dedicated website server 23.
  • The communication devices 11 and primary servers 12 are in communication with one another and thus capable of exchanging one or more messages. Specifically, the messages are related to an order placed by a customer via telephone or a computer terminal. The first message is an offer of the order for acceptance by a courier 30 selected by the program 15. The first message is communicated from the primary servers 12 to the communication device 11 in possession of the selected courier 30 via one of the secondary servers 13. Specifically, the first message is electronically transmitted from the primary servers 12 to the selected courier's 30 communication device 11 via the communication server 22 and one or more of the secondary servers 13. In a preferred embodiment of the communication device 11, the device displays details of the order forwarded to the courier 30.
  • The second message is an acceptance or a rejection by the selected courier 30 of the order offer. The second message is communicated from the selected courier's 30 communication device 11 to one of the secondary servers 13. Specifically, the second message is electronically transmitted from the selected courier's 30 communication device 11 to the customer database server 21 via the communication server 22.
  • The third message includes order information necessary for the collection and delivery of the article 25. The third message is communicated from the customer database server 21 to the selected courier's 30 communication device 11. In particular, the third message is electronically transmitted from the customer database server 21 to the accepting courier's 30 communication device 11 via the communication server 22. Once accepted by the courier 30, the communication device 11 will display the full job details and a point-to-point map if required. The device 11 can also be used to display the courier's job history, location, and even personal accounting details.
  • A fourth message includes confirmation of collection (i.e., collection) of the article 26. The fourth message is communicated from the communication device 11 in possession of the accepting courier 30 to the primary servers 12 via one or more of the secondary servers 13. In particular, the courier 30 presses a button upon collection of the article 26 and the collection information is communicated to the primary servers 12.
  • A fifth message includes the time and date of delivery of the article 26. The fifth message is communicated from the communication device 11 in possession of the courier 30 to the primary servers 12 via one or more of the secondary servers 13. Specifically, upon arrival at the destination of the article 26, the courier 30 obtains the recipient's signature on the screen of the communication device 11. This procedure increases customer confidence and security while streamlining the allocation process and eliminating paperwork. As stated above, customers will have instant access to a digital graphic of the delivery confirmation signature from the website. Further, customers have the option of receiving electronic mail that includes the above-referenced delivery information.
  • In a preferred embodiment of the present invention, the messages are preferably transmitted via a wireless network between the communication server 21 and the communication devices 11. The messages may include data or voice transmissions.
  • In another aspect, the present invention provides for a method of controlling the transport of articles 26. The controlling method provides for the steps of collecting one or more orders for delivery of one or more articles 26, selecting a suitable courier 30 based upon a plurality of variables, and performing the delivery of the articles. The orders include an origin and a destination of the articles to be delivered. The selection of a suitable courier 30 is accomplished by at least one server having a program 15 for selecting couriers based on a plurality of variables. In a preferred embodiment, the selection is accomplished by the primary servers 12.
  • The step of collecting includes receiving an order from a remote location over a network. In one embodiment of the present method, a customer accesses the website from a remote interface 14 and places an order for a delivery. Specifically, the electronic order is transmitted from a computer terminal to the server. In another embodiment, a customer may use a telephone to contact the central processing facility 33 and place a verbal order over the public switched telephone network. Upon placing the verbal order, an employee in the central processing facility 33 will physically input the order into the primary servers 12 via a local interface 32 (i.e., computer terminal). Accordingly, the step of collecting also includes the step of inputting the origin and destination of one or more articles 26 into at least one of the secondary servers 13 and the primary servers 12.
  • Upon placement of an order, a suitable courier 30 is selected by first identifying the geographical locations of the communication devices 11 in possession of the couriers. Advantageously, the communication devices 11 are in communication with the primary servers 12. During the selection of a suitable courier 30, the geographical locations of the communication devices 11 are calculated by a global positioning network 35 (i.e., GPS). Next, the geographical locations of the communication devices 11 are communicated (i.e., transmitted) from the devices to the primary servers 12 via the communication server 22.
  • The plurality of variables upon which the program 15 bases the selection of a suitable courier 30 include the geographic location of the couriers, historical travel times from one geographic location to another, historical delivery performance of the couriers, environmental conditions, courier vehicle types, geographic locations of the origin of an article, geographic locations of the destination of an article 26, requested delivery time, and type of article for delivery.
  • The step of performing the delivery of the articles 26 includes exchanging one or more messages between the communication devices 11 and the primary server 12. The messages relate to an order placed by a customer. The first message is an offer of the order to a courier 30 selected by the primary server 12. The first message is communicated (i.e., electronically transmitted) from the primary servers 12 to the selected courier's communication device 11 via one or more secondary servers 13 (e.g., customer database server 21 and communication server 22).
  • The second message is an acceptance or a rejection of the offer of the order. The second message is electronically transmitted from the selected courier's communication device 11 to one of the secondary servers 13 via the communication server 22. Specifically, the second message is electronically transmitted from the selected courier's communication device 11 to the customer database server 21 via the communication server 22.
  • The third message includes information regarding the order that is necessary for the collection and delivery of the article 26. The third message is electronically transmitted from the customer database server 21 to the selected courier's communication device 11. In particular, the third message is electronically transmitted from the customer database server 21 to the accepting courier's communication device 11 via the communication server 22.
  • Upon forwarding the order information to the accepting courier 30, the present method further provides for the steps of collecting the article 26 to be delivered, and then exchanging one or more messages between the communication device 11 and the primary server 12. The messages include data related to the collection of an article 26. The first message includes the time and date of collection of the article 26 to be delivered. The first message is communicated from the selected courier's communication device 11 to the primary servers 12 via one or more secondary servers 13 (e.g., customer database server 21 and communication server 22).
  • Upon collection the article 26 to be delivered, the courier 30 delivers the article. Thereafter, one or more messages are exchanged between the communication device 11 and the primary servers 12. The messages relate to the delivery of an article 26. The first message includes the time and date of delivery of the article 26. The first message is communicated from the communication device 11 in possession of the selected courier 30 to the primary servers 12 via one or more secondary servers 13 (e.g., customer database server 21 and communication server 22).
  • Subsequently, the method provides for the step of informing customers of the estimated collection and delivery times of the articles 26. The customer may access the website via a local network (e.g., Internet) to view the estimated times.
  • Advantageously, the present method includes the step of repositioning couriers 30 to account for an increase in the number of orders in a particular geographic location. Specifically, the primary servers 12 and secondary servers 13 are capable of tracking the current demand for orders and the geographical position of the mobile communication devices 11 in possession of the couriers 30. Upon identifying a particular geographic area that is currently underserved, the primary and secondary servers 12,13 will communicate suggested locations for the couriers 30 to position themselves during idle time (i.e., between collections and deliveries).
  • Further, the method may provide for the communications server 22 and customer database server 21 to monitor the location of the couriers 30. In this fashion, the method permits employees and customers to track the status of orders.
  • The present invention dramatically increases the efficiency and productivity of a courier 30 by reducing idle-time and providing advanced, intelligent job consolidation. The invention allows real-time communication between couriers 30 on the street and employees in the central processing facility 33 without the inconvenience and expense associated with the traditional courier company infrastructure. The system further permits one to manage a large fleet of couriers 30 with minimal overhead. Specifically, the invention is designed to control more than 1,000 couriers.
  • In the drawings and specification, there have been disclosed typical embodiments on the invention and, although specific terms have been employed, they have been used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (20)

1. A method of controlling the transport of articles, said method comprising the steps of:
collecting one or more orders for delivery of one or more articles, the orders comprising an origin and a destination of the articles to be delivered;
selecting a suitable courier based upon a plurality of variables, the selection accomplished by at least one server having a program for selecting couriers based on a plurality of variables such that said program, upon the execution of an initial order and then a subsequent order, dynamically and automatically organizes routes and dynamically and automatically reroutes allocated couriers for the collection and delivery of said one or more articles; and
performing the delivery of said one or more articles.
2. A controlling method according to claim 1, wherein the step of collecting comprises receiving an order from a remote location over a network.
3. The controlling method according to claim 2, wherein the order is transmitted from a remote interface to the server.
4. The controlling method according to claim 2, wherein the order is transmitted from a telephone over the public switched telephone network to a central processing facility for placement into the server.
5. The controlling method according to claim 1, wherein the step of selecting a suitable courier comprises identifying the geographical locations of one or more communication devices in possession of one or more couriers;
wherein the communication devices are in communication with the server.
6. The controlling method according to claim 5, wherein the step of selecting a suitable courier further comprises communicating the geographical locations of the communication devices to the server.
7. The controlling method according to claim 1, wherein the step of performing the delivery of the articles comprises exchanging one or more messages between the communication devices and the server, the messages being related to an order placed by a customer.
8. The controlling method according to claim 7, wherein a first of the one or more messages comprises an offer of the order for acceptance by a courier.
9. The controlling method according to claim 8, wherein the first message is communicated from the server to the communication device in possession of the selected courier.
10. The controlling method according to claim 7, wherein a second of the one or more messages comprises an acceptance or a rejection by the selected courier of the offer of the order.
11. The controlling method according to claim 10, wherein the second message is communicated from the communication device in possession of the selected courier to the server.
12. The controlling method according to claim 7, wherein a third of the one or more messages comprises order information necessary for the collection and delivery of the article.
13. The controlling method according to claim 12, wherein the third message is communicated from the server to the communication device in possession of the selected courier.
14. The controlling method according to claim 1, further comprising the steps of:
collecting the article to be delivered; and
exchanging one or more messages between the communication devices and the server, the messages being related to the collection of an article.
15. The controlling method according to claim 14, wherein a first of the one or more messages comprises the time and date of collection of the article to be delivered.
16. The controlling method according to claim 15, wherein the first message is communicated from the communication device in possession of the selected courier to the server.
17. The controlling method according to claim 1, further comprising the steps of:
delivering the article; and
exchanging one or more messages between the communication devices and the server, the messages being related to the delivery of an article.
18. The controlling method according to claim 17, wherein a first of the one or more messages comprises the time and date of delivery of the article.
19. The controlling method according to claim 18, wherein the first message is communicated from the communication device in possession of the selected courier to the server.
20. The controlling method according to claim 1, further comprising the step of repositioning couriers to account for an increase in the number of orders in a particular geographic location.
US12/849,282 2005-02-24 2010-08-03 System and method for controlling the transport of articles Abandoned US20100332609A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/065,474 US7828202B2 (en) 2005-02-24 2005-02-24 System and method for controlling the transport of articles
US12/849,282 US20100332609A1 (en) 2005-02-24 2010-08-03 System and method for controlling the transport of articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/849,282 US20100332609A1 (en) 2005-02-24 2010-08-03 System and method for controlling the transport of articles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/065,474 Division US7828202B2 (en) 2005-02-24 2005-02-24 System and method for controlling the transport of articles

Publications (1)

Publication Number Publication Date
US20100332609A1 true US20100332609A1 (en) 2010-12-30

Family

ID=36913978

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/065,474 Expired - Fee Related US7828202B2 (en) 2005-02-24 2005-02-24 System and method for controlling the transport of articles
US12/849,282 Abandoned US20100332609A1 (en) 2005-02-24 2010-08-03 System and method for controlling the transport of articles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/065,474 Expired - Fee Related US7828202B2 (en) 2005-02-24 2005-02-24 System and method for controlling the transport of articles

Country Status (5)

Country Link
US (2) US7828202B2 (en)
EP (1) EP1856660A4 (en)
BR (1) BRPI0608559A2 (en)
CA (1) CA2599117A1 (en)
WO (1) WO2006091399A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129166A1 (en) * 2011-03-21 2012-09-27 Amazon Technologies, Inc. Courier management
WO2018227864A1 (en) * 2017-06-13 2018-12-20 北京小度信息科技有限公司 Information processing method and apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016363A1 (en) * 2005-07-15 2007-01-18 Oracle International Corporation Interactive map-based user interface for transportation planning
US20090094084A1 (en) * 2007-10-05 2009-04-09 Eric Rempel Method and System for Use in Scheduling Transfer of Transportation Assets
JP2010128535A (en) * 2008-11-25 2010-06-10 Casio Computer Co Ltd Delivery confirmation system, portable terminal, and program
US20140052370A1 (en) * 2011-05-27 2014-02-20 Mitsubishi Electric Corporation Mobile-body navigation device and mobile-body navigation system
US10346784B1 (en) * 2012-07-27 2019-07-09 Google Llc Near-term delivery system performance simulation
AU2012216820B2 (en) * 2012-09-13 2015-09-03 Mail Call Couriers Pty Ltd A system and method for allocating an item
WO2014040133A1 (en) * 2012-09-13 2014-03-20 Mail Call Couriers Pty Ltd A system and method for providing an indication of an anticipated time of arrival of a courier at a predetermined waypoint
EP2720177A1 (en) * 2013-12-02 2014-04-16 Argiriadis, Ioannis Method for tracking transports
US9626639B2 (en) * 2014-09-26 2017-04-18 Shyp, Inc. Image processing and item transport
US9888114B2 (en) * 2015-10-05 2018-02-06 Phong Trung Nguyen Multimedia alert and response system for urgent and local requests

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122959A (en) * 1988-10-28 1992-06-16 Automated Dispatch Services, Inc. Transportation dispatch and delivery tracking system
US5467268A (en) * 1994-02-25 1995-11-14 Minnesota Mining And Manufacturing Company Method for resource assignment and scheduling
US5532702A (en) * 1992-12-04 1996-07-02 Mintz; Yosef Method and system for obtaining information from a plurality of remote stations
US5542237A (en) * 1989-10-26 1996-08-06 Resource America, Inc. Recycle shipping assembly
US5636122A (en) * 1992-10-16 1997-06-03 Mobile Information Systems, Inc. Method and apparatus for tracking vehicle location and computer aided dispatch
US5754857A (en) * 1995-12-08 1998-05-19 Sun Microsystems, Inc. Distributed asynchronous workflow on the net
US5812959A (en) * 1996-02-27 1998-09-22 Trimble Navigation Limited Automated vehicle recommendation system
US5884216A (en) * 1992-10-16 1999-03-16 Mobile Information System, Inc. Method and apparatus for tracking vehicle location
US5918214A (en) * 1996-10-25 1999-06-29 Ipf, Inc. System and method for finding product and service related information on the internet
US5922040A (en) * 1995-05-17 1999-07-13 Mobile Information System, Inc. Method and apparatus for fleet management
US6050490A (en) * 1997-10-31 2000-04-18 Hewlett-Packard Company Handheld writing device and related data entry system
US6233517B1 (en) * 1996-02-27 2001-05-15 Trimble Navigation Limited Predictive model for automated vehicle recommendation system
US6360875B1 (en) * 2000-06-19 2002-03-26 William H. Altemus, Jr. Conveyor belt scraper tensioner
US6401078B1 (en) * 1998-04-01 2002-06-04 R & L Carriers Bill of lading transmission and processing system for less than a load carriers
US20020093673A1 (en) * 2001-01-16 2002-07-18 Safra Irving R. System and method for fulfilling information requests
US6430496B1 (en) * 1995-10-27 2002-08-06 Trak Software, Inc. Fully automated vehicle dispatching, monitoring and billing
US6437743B1 (en) * 1992-12-04 2002-08-20 Yosef Mintz Method and system for mapping and tracking information from a plurality of remote stations
US6496775B2 (en) * 2000-12-20 2002-12-17 Tracer Net Corporation Method and apparatus for providing automatic status information of a delivery operation
US6519625B1 (en) * 1998-10-27 2003-02-11 Sociocybernetics Uniform network access
US6553407B1 (en) * 1997-07-28 2003-04-22 Solectron Corporation Form route manager for workflow systems and methods
US6550683B1 (en) * 2000-02-24 2003-04-22 Telxon Corporation Hand held portable device with multiple functions
US6606557B2 (en) * 2001-12-07 2003-08-12 Motorola, Inc. Method for improving dispatch response time
US6615046B1 (en) * 1999-12-29 2003-09-02 International Business Machines Corporation Automatic dispatch of mobile services
US6625539B1 (en) * 2002-10-22 2003-09-23 Electricab Taxi Company Range prediction in fleet management of electric and fuel-cell vehicles
US20040039527A1 (en) * 2000-12-20 2004-02-26 Mcdonald Wesley E. Method and apparatus for providing automatic status information of a vehicle operation cycle
US6741927B2 (en) * 1993-05-18 2004-05-25 Arrivalstar, Inc. User-definable communications methods and systems
US6833811B2 (en) * 2002-10-07 2004-12-21 Harris Corporation System and method for highly accurate real time tracking and location in three dimensions
US6898621B2 (en) * 1998-04-24 2005-05-24 Fujitsu Limited Message processing device message management method and storage medium for storing message management program
US6957247B1 (en) * 1999-09-22 2005-10-18 Ates Gorkem I Internet system
US7035731B2 (en) * 2002-12-30 2006-04-25 Motorola, Inc. Threshold-based service notification system and method
US7085775B2 (en) * 1997-04-09 2006-08-01 Sidewinder Holdings Ltd. Database method and system for conducting integrated dispatching
US7139721B2 (en) * 2000-05-10 2006-11-21 Borders Louis H Scheduling delivery of products via the internet
US7177825B1 (en) * 1999-05-11 2007-02-13 Borders Louis H Integrated system for ordering, fulfillment, and delivery of consumer products using a data network
US7251612B1 (en) * 2000-01-10 2007-07-31 Parker John E Method and system for scheduling distribution routes and timeslots
US7467095B2 (en) * 1997-05-21 2008-12-16 Sap Ag Strategic planning and optimization system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644510B1 (en) * 1993-09-22 1999-08-18 Teknekron Infoswitch Corporation Telecommunications system monitoring
US5946375A (en) * 1993-09-22 1999-08-31 Teknekron Infoswitch Corporation Method and system for monitoring call center service representatives
US6028842A (en) * 1996-12-23 2000-02-22 Nortel Networks Corporation Dynamic traffic conditioning
US5923552A (en) * 1996-12-31 1999-07-13 Buildnet, Inc. Systems and methods for facilitating the exchange of information between separate business entities
JP3497348B2 (en) * 1997-06-20 2004-02-16 株式会社日立製作所 Production planning system
DE19925524A1 (en) 1999-05-14 2000-12-07 Identcom Gmbh Mobile recording device for delivery settlement
EP1264255A1 (en) 2000-03-16 2002-12-11 Wolfgang Russ Device for selection of courier itineraries
AU4626901A (en) * 2000-03-31 2001-10-23 Mdsi Mobile Data Solutions Inc Configurable scheduling system
US6882269B2 (en) * 2000-07-14 2005-04-19 Darren Murrey System and method for remotely coordinating the secure delivery of goods
US6993763B2 (en) * 2001-06-26 2006-01-31 International Business Machines Corporation Technique for scheduling execution of jobs for or by network-connected devices
US20040030572A1 (en) 2002-05-03 2004-02-12 Helen Campbell Same day product and document delivery management system and process
AT412826B (en) 2002-11-08 2005-07-25 Oesterreichisches Forschungs U A method and system for determining and / or evaluation of positions of devices with a mobile communications component
US6940832B2 (en) * 2003-01-17 2005-09-06 The Research Foundation Of The City University Of New York Routing method for mobile infrastructureless network
US7119716B2 (en) * 2003-05-28 2006-10-10 Legalview Assets, Limited Response systems and methods for notification systems for modifying future notifications
US7119976B2 (en) * 2005-01-12 2006-10-10 International Business Machines Corporation Planar servo format verifier head

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122959A (en) * 1988-10-28 1992-06-16 Automated Dispatch Services, Inc. Transportation dispatch and delivery tracking system
US5794414A (en) * 1989-10-26 1998-08-18 Re-Source America I.P., Inc. Recycle shipping assembly
US5542237A (en) * 1989-10-26 1996-08-06 Resource America, Inc. Recycle shipping assembly
US6026345A (en) * 1992-10-16 2000-02-15 Mobile Information Systems, Inc. Method and apparatus for tracking vehicle location
US5884216A (en) * 1992-10-16 1999-03-16 Mobile Information System, Inc. Method and apparatus for tracking vehicle location
US5636122A (en) * 1992-10-16 1997-06-03 Mobile Information Systems, Inc. Method and apparatus for tracking vehicle location and computer aided dispatch
US6088648A (en) * 1992-10-16 2000-07-11 Mobile Information Systems, Inc. Method and apparatus for tracking vehicle location
US6437743B1 (en) * 1992-12-04 2002-08-20 Yosef Mintz Method and system for mapping and tracking information from a plurality of remote stations
US5532702A (en) * 1992-12-04 1996-07-02 Mintz; Yosef Method and system for obtaining information from a plurality of remote stations
US6734823B2 (en) * 1992-12-04 2004-05-11 Yosef Mintz Method and system for mapping and tracking information from a plurality of remote stations
US6741927B2 (en) * 1993-05-18 2004-05-25 Arrivalstar, Inc. User-definable communications methods and systems
US6763300B2 (en) * 1993-05-18 2004-07-13 Arrivalstar, Inc. Notification systems and methods with purpose message in notifications
US6763299B2 (en) * 1993-05-18 2004-07-13 Arrivalstar, Inc. Notification systems and methods with notifications based upon prior stop locations
US5467268A (en) * 1994-02-25 1995-11-14 Minnesota Mining And Manufacturing Company Method for resource assignment and scheduling
US5922040A (en) * 1995-05-17 1999-07-13 Mobile Information System, Inc. Method and apparatus for fleet management
US6430496B1 (en) * 1995-10-27 2002-08-06 Trak Software, Inc. Fully automated vehicle dispatching, monitoring and billing
US5754857A (en) * 1995-12-08 1998-05-19 Sun Microsystems, Inc. Distributed asynchronous workflow on the net
US6233517B1 (en) * 1996-02-27 2001-05-15 Trimble Navigation Limited Predictive model for automated vehicle recommendation system
US5812959A (en) * 1996-02-27 1998-09-22 Trimble Navigation Limited Automated vehicle recommendation system
US5918214A (en) * 1996-10-25 1999-06-29 Ipf, Inc. System and method for finding product and service related information on the internet
US7085775B2 (en) * 1997-04-09 2006-08-01 Sidewinder Holdings Ltd. Database method and system for conducting integrated dispatching
US7467095B2 (en) * 1997-05-21 2008-12-16 Sap Ag Strategic planning and optimization system
US6553407B1 (en) * 1997-07-28 2003-04-22 Solectron Corporation Form route manager for workflow systems and methods
US6050490A (en) * 1997-10-31 2000-04-18 Hewlett-Packard Company Handheld writing device and related data entry system
US6401078B1 (en) * 1998-04-01 2002-06-04 R & L Carriers Bill of lading transmission and processing system for less than a load carriers
US6898621B2 (en) * 1998-04-24 2005-05-24 Fujitsu Limited Message processing device message management method and storage medium for storing message management program
US6519625B1 (en) * 1998-10-27 2003-02-11 Sociocybernetics Uniform network access
US7177825B1 (en) * 1999-05-11 2007-02-13 Borders Louis H Integrated system for ordering, fulfillment, and delivery of consumer products using a data network
US6957247B1 (en) * 1999-09-22 2005-10-18 Ates Gorkem I Internet system
US6615046B1 (en) * 1999-12-29 2003-09-02 International Business Machines Corporation Automatic dispatch of mobile services
US7251612B1 (en) * 2000-01-10 2007-07-31 Parker John E Method and system for scheduling distribution routes and timeslots
US6550683B1 (en) * 2000-02-24 2003-04-22 Telxon Corporation Hand held portable device with multiple functions
US7139721B2 (en) * 2000-05-10 2006-11-21 Borders Louis H Scheduling delivery of products via the internet
US6360875B1 (en) * 2000-06-19 2002-03-26 William H. Altemus, Jr. Conveyor belt scraper tensioner
US6496775B2 (en) * 2000-12-20 2002-12-17 Tracer Net Corporation Method and apparatus for providing automatic status information of a delivery operation
US20040039527A1 (en) * 2000-12-20 2004-02-26 Mcdonald Wesley E. Method and apparatus for providing automatic status information of a vehicle operation cycle
US20020093673A1 (en) * 2001-01-16 2002-07-18 Safra Irving R. System and method for fulfilling information requests
US6606557B2 (en) * 2001-12-07 2003-08-12 Motorola, Inc. Method for improving dispatch response time
US6833811B2 (en) * 2002-10-07 2004-12-21 Harris Corporation System and method for highly accurate real time tracking and location in three dimensions
US6625539B1 (en) * 2002-10-22 2003-09-23 Electricab Taxi Company Range prediction in fleet management of electric and fuel-cell vehicles
US7035731B2 (en) * 2002-12-30 2006-04-25 Motorola, Inc. Threshold-based service notification system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129166A1 (en) * 2011-03-21 2012-09-27 Amazon Technologies, Inc. Courier management
CN103403734A (en) * 2011-03-21 2013-11-20 亚马逊技术股份有限公司 Courier management
WO2018227864A1 (en) * 2017-06-13 2018-12-20 北京小度信息科技有限公司 Information processing method and apparatus

Also Published As

Publication number Publication date
CA2599117A1 (en) 2006-08-31
US7828202B2 (en) 2010-11-09
EP1856660A4 (en) 2010-07-14
WO2006091399A2 (en) 2006-08-31
US20060190360A1 (en) 2006-08-24
EP1856660A2 (en) 2007-11-21
WO2006091399A3 (en) 2008-10-16
BRPI0608559A2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
US5832451A (en) Automated travel service management information system
US9679322B2 (en) Secure messaging with user option to communicate with delivery or pickup representative
JP3782975B2 (en) Method and system for aggregating information for confirming the location of the user
US8355936B2 (en) Managing a travel itinerary
US6356838B1 (en) System and method for determining an efficient transportation route
EP1833292B1 (en) Method and system for gps augmentation of mail carrier efficiency
US20100268456A1 (en) System and method for delivering departure notifications
US9958272B2 (en) Real-time computation of vehicle service routes
US9519921B2 (en) GPS and wireless integrated fleet management system and method
US7725406B2 (en) Systems and methods for international shipping and brokerage operations support processing
US10108910B2 (en) Mobile parking systems and methods for providing real-time parking guidance
US6240362B1 (en) Method to schedule a vehicle in real-time to transport freight and passengers
US20030069680A1 (en) Multi-stage truck assignment system and method
US8712871B2 (en) Method and apparatus for supporting delivery, sale and billing of perishable and time-sensitive goods such as newspapers, periodicals and direct marketing and promotional materials
US20070179709A1 (en) Navigation data quality feedback
US6411897B1 (en) Method to schedule a vehicle in real-time to transport freight and passengers
US7755518B2 (en) Dynamic and predictive information system and method for shipping assets and transport
US7624024B2 (en) Systems and methods for dynamically updating a dispatch plan
CN101520950B (en) Immediate taxi calling assignment managing system and calling assignment managing method
US20040030572A1 (en) Same day product and document delivery management system and process
US10083608B2 (en) Shared transport system and service network
Dial Autonomous dial-a-ride transit introductory overview
US9026454B2 (en) System for procuring services
US5835376A (en) Fully automated vehicle dispatching, monitoring and billing
EP2369299B1 (en) Navigation device and method for predicting the destination of a trip

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION