US20100307145A1 - Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas - Google Patents
Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas Download PDFInfo
- Publication number
- US20100307145A1 US20100307145A1 US12/664,423 US66442307A US2010307145A1 US 20100307145 A1 US20100307145 A1 US 20100307145A1 US 66442307 A US66442307 A US 66442307A US 2010307145 A1 US2010307145 A1 US 2010307145A1
- Authority
- US
- United States
- Prior art keywords
- exhaust gas
- pipe
- backflow
- mounting pipe
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/082—Other arrangements or adaptations of exhaust conduits of tailpipe, e.g. with means for mixing air with exhaust for exhaust cooling, dilution or evacuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features
- F01N13/18—Construction facilitating manufacture, assembly, or disassembly
- F01N13/1838—Construction facilitating manufacture, assembly, or disassembly characterised by the type of connection between parts of exhaust or silencing apparatus, e.g. between housing and tubes, between tubes and baffles
- F01N13/1844—Mechanical joints
- F01N13/1855—Mechanical joints the connection being realised by using bolts, screws, rivets or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
Definitions
- the present invention relates, in general, to apparatuses for removing exhaust gas pressure and preventing backflow (exhaust pulse) of exhaust gas and, more particularly, to an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, which includes a mounting pipe, which is fitted over the rear end of an exhaust gas pipe extending from an internal combustion engine or the rear end of a gas flue of a boiler and has a plurality of backflow gas guide holes in a line around the circumferential surface thereof at predetermined positions, and a secondary exhaust gas pipe, which is provided around the mounting pipe, such that a backflow passage is defined between the mounting pipe and the secondary exhaust gas pipe, the backflow passage being open from the backflow gas guide holes in the direction in which exhaust gas is discharged, so that,
- the performance of the internal combustion engine can be enhanced, thus improving gas mileage and reducing exhaust fumes, thereby maximizing thermal energy efficiency, and furthermore, the apparatus of the present invention is easily installed merely by forcibly fitting it over the exhaust gas pipe, thus being convenient for a user.
- the silencer is typically designed to have a capacity that is fifteen to twenty times larger than the engine displacement, so that exhaust resistance is unavoidably created. Thereby, the output of the engine is reduced, and fuel consumption and the amount of pollutants are increased by 5% to 10%.
- combustion efficiency can be enhanced merely by smoothly discharging exhaust gas so that gas mileage, output energy and thermal energy are improved.
- various conventional techniques have been proposed.
- an exhaust gas discharge device for vehicles using the flow of air was proposed in Korean Patent Laid-Open Publication No. 2000-56951.
- This technique using the flow of air, is devised such that the streamlined body of the exhaust gas discharge device is coupled to a tail pipe, so that when the vehicle travels, a low pressure region is formed around the exhaust gas discharge device by the flow speed of air that passes along the surface of the streamlined body, and exhaust gas is thus sucked out by the lower pressure, thereby promoting the discharge of exhaust gas.
- this technique is disadvantageous in that the streamlined body has a relatively large and complex structure, which affects the installation thereof, so that it is very difficult to use this technique in practice.
- a vortex-generating blade is provided at a medial portion in the tail pipe so as to be rotatable by exhaust gas.
- This technique is constructed such that the blade is rotated by exhaust gas, thus generating vortexes, thereby promoting the discharge of exhaust gas.
- the blade serves as a source of some resistance that interferes with the flow of exhaust gas, and the construction thereof may be deformed by high heat, thus it cannot be used in practice.
- a separate duct for drawing outside air is provided on the front end of a silencer, which is provided in an exhaust gas discharge path. Furthermore, a vane, which draws outside air and generates vortexes, is installed in the duct. In addition, the device has a damper for regulating the amount of drawn outside air which is operated in proportion to the opening degree of a throttle valve.
- this device is constructed such that vortexes are created by the steel plates and the screw plates in a flared tube, so that exhaust gas must pass through a relatively narrow path. Therefore, the device is problematic in that it is structurally unstable, exhaust resistance and backflow of air are generated, and aerodynamic noise is generated around the rear end of a silencer.
- an object of the present invention is to provide an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, which includes a mounting pipe, which is fitted over the rear end of an exhaust gas pipe extending from an internal combustion engine or the rear end of a gas flue of a boiler, and has a plurality of backflow gas guide holes in a line around the circumferential surface thereof at predetermined positions, and a secondary exhaust gas pipe, which is provided around the mounting pipe, such that a backflow passage is defined between the mounting pipe and the secondary exhaust gas pipe, the backflow passage being open from the backflow gas guide holes in the direction in which exhaust gas is discharged, so that,
- the performance of the internal combustion engine can be enhanced, thus improving gas mileage and reducing exhaust fumes, thereby maximizing thermal energy efficiency, the apparatus of the present invention being easily installed merely by forcibly fitting it over the exhaust gas pipe, thus being convenient for a user.
- the present invention provides an apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas, including: a mounting pipe having a structure that is fitted over an end of an exhaust gas pipe extending from an internal combustion engine or an end of a gas flue of a boiler, such that a part of the mounting pipe other than a part thereof that is fastened to the end of the exhaust gas pipe protrudes outwards from the end of the exhaust gas pipe, the mounting pipe being hollow, such that an interior thereof communicates with the exhaust gas pipe, with a plurality of backflow gas guide holes formed in the mounting pipe in a line around a circumference thereof at positions adjacent to the end of the exhaust gas pipe; and a secondary exhaust gas pipe provided into a shape to surround the mounting pipe, wherein a backflow passage is defined between the mounting pipe and the secondary exhaust gas pipe, so that a backflowing portion of exhaust gas, which is discharged from the mounting pipe, is drawn into the backflow passage and is guided into the mounting pipe through the backflow gas guide holes, and the guided back
- each of ends of the mounting pipe and the secondary exhaust gas pipe which are opposite to ends thereof that are fastened to the exhaust gas pipe, is bent towards a longitudinal central axis, and a cross-sectional area of a space defined by the bent end of the secondary exhaust gas pipe is greater than a cross-sectional area of a space defined by the bent end of the mounting pipe.
- the apparatus may further include an internal flue provided in the end of the mounting pipe which is opposite the end thereof that is fastened to the exhaust gas pipe, the internal flue having a honeycomb structure.
- the apparatus may further include a gas guide blade unit provided in the mounting pipe to minimize collisions between the backflow gas, which is discharged through the backflow gas guide holes, and exhaust gas, and to increase a speed at which the exhaust gas is discharged, thus rapidly and smoothly discharging the exhaust gas.
- a gas guide blade unit provided in the mounting pipe to minimize collisions between the backflow gas, which is discharged through the backflow gas guide holes, and exhaust gas, and to increase a speed at which the exhaust gas is discharged, thus rapidly and smoothly discharging the exhaust gas.
- the gas guide blade unit may include: a plurality of blades provided on an inner surface of the mounting pipe, each of the plurality of blades being disposed between the adjacent backflow gas guide holes; and a conical blade support body provided at a center of the mounting pipe at which the blades are coupled to each other.
- each of the plurality of blades may be curved so as to be inclined at a predetermined angle relative to a direction in which the exhaust gas is discharged.
- the apparatus may further include a blade flue provided in the end of the mounting pipe which is opposite to the end thereof that is fastened to the exhaust gas pipe, the blade flue having a honeycomb structure.
- the apparatus may further include a gas guide blade unit, an end thereof interposed between the mounting pipe and the exhaust gas pipe, the gas guide blade unit having a longitudinal cross-section curved towards a longitudinal central axis thereof such that a cross-sectional area of a space defined by the gas guide blade unit is reduced in a direction in which the exhaust gas is discharged, thus increasing a flow speed of the exhaust gas, the gas guide blade unit defining a second backflow passage, communicating with the backflow gas guide holes, between the gas guide blade unit and a circumferential inner surface of the mounting pipe.
- the apparatus may further include a blade flue provided in a rear end of the gas guide blade unit with respect to the direction in which the exhaust gas is discharged, the blade flue having a honeycomb structure.
- the apparatus may further include a tertiary exhaust gas pipe provided around the secondary exhaust gas pipe, the tertiary exhaust gas pipe having a locking hole, into which a locking bolt is inserted, in an end of the tertiary exhaust gas pipe adjacent to the end of the exhaust gas pipe, so that the secondary exhaust gas pipe is firmly fastened to the exhaust gas pipe by the tertiary exhaust gas pipe.
- FIG. 1 is a view illustrating an apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas, according to the present invention
- FIG. 2 is a partial sectional view taken along the line A-A′ of FIG. 1 ;
- FIG. 3 is a side sectional view of the exhaust gas backflow prevention apparatus according to the present invention.
- FIG. 4 is a view showing the flow of exhaust gas in the exhaust gas backflow prevention apparatus according to the present invention.
- FIG. 5 is a view illustrating another embodiment of an exhaust gas backflow prevention apparatus, according to the present invention.
- FIG. 6 is a view illustrating an exhaust gas backflow prevention apparatus provided with an internal flue, according to a modification of the embodiment of the present invention
- FIG. 7 is a view illustrating an exhaust gas backflow prevention apparatus provided with a stationary blade, according to another embodiment of the present invention.
- FIG. 8 is a view illustrating another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention.
- FIG. 9 is a view showing a modification of FIG. 7 , in which a blade flue is further provided;
- FIG. 10 is a view showing another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention.
- FIG. 11 is a view showing a modification of FIG. 10 , in which a blade flue is further provided.
- FIG. 12 is a view illustrating an exhaust gas backflow prevention apparatus provided with a tertiary exhaust gas pipe, according to another embodiment of the present invention.
- FIG. 1 is a view illustrating an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, according to the present invention.
- FIG. 2 is a partial sectional view taken along the line A-A′ of FIG. 1 .
- FIG. 3 is a side sectional view of the exhaust gas backflow prevention apparatus according to the present invention.
- FIG. 4 is a view showing the flow of exhaust gas in the exhaust gas backflow prevention apparatus according to the present invention.
- FIG. 5 is a view illustrating another embodiment of an exhaust gas backflow prevention apparatus, according to the present invention.
- FIG. 6 is a view illustrating an exhaust gas backflow prevention apparatus provided with an internal flue, according to a modification of the embodiment of the present invention.
- FIG. 7 is a view illustrating an exhaust gas backflow prevention apparatus provided with a stationary blade, according to another embodiment of the present invention.
- FIG. 8 is a view illustrating another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention.
- FIG. 9 is a view showing a modification of FIG. 7 , in which a blade flue is further provided.
- FIG. 10 is a view showing another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention.
- FIG. 11 is a view showing a modification of FIG. 10 , in which a blade flue is further provided.
- FIG. 12 is a view illustrating an exhaust gas backflow prevention apparatus provided with a tertiary exhaust gas pipe, according to another embodiment of the present invention.
- the apparatus 10 for removing exhaust gas pressure and preventing the backflow of exhaust gas includes a mounting pipe 100 and a secondary exhaust gas pipe 110 , which have concentric circular shapes having different diameters.
- the mounting pipe 100 is fitted over the outer surface of the rear end of an exhaust gas pipe 1 , which extends from a boiler or an internal combustion engine. Furthermore, backflow gas guide holes 102 are formed around the circumferential outer surface of the mounting pipe 100 at positions adjacent to the rear end of the exhaust gas pipe 1 .
- the secondary exhaust gas pipe 110 is fitted over the outer surface of the mounting pipe 100 into a shape that surrounds the mounting pipe 100 .
- the secondary exhaust gas pipe 110 surrounds the mounting pipe 100 and defines a backflow passage 120 , which is open at one end thereof, between the secondary exhaust gas pipe 110 and the mounting pipe 100 .
- the mounting pipe 100 and the secondary exhaust gas pipe 110 are coupled at front ends thereof to each other and define therebetween the backflow passage 120 , which extends from the medial portions of the mounting pipe 100 and the secondary exhaust gas pipe 110 and is open towards their rear ends. That is, the backflow passage 120 is formed between the mounting pipe 100 and the secondary exhaust gas pipe 110 such that it is open from the backflow gas guide holes 102 in the direction in which exhaust gas is discharged.
- the backflow gas which is drawn into the backflow passage 120 , is moved into the mounting pipe 100 through the backflow gas guide holes 102 , which are formed in the mounting pipe 100 , and is discharged along with subsequent discharge gas outside the mounting pipe 100 .
- the mounting pipe 100 has a funnel shape such that the longitudinal cross-section thereof is inclined towards the longitudinal central axis thereof from the front end of the mounting pipe 100 , which is coupled to the rear end of the exhaust gas pipe 1 , to the rear end of the mounting pipe 100 , so that the speed at which exhaust gas is discharged can be increased. Furthermore, due to this shape of the mounting pipe 100 , the distance by which the mounting pipe 100 is spaced apart from the secondary exhaust gas pipe 110 is varied such that the sectional areas of the opposite ends of the backflow passage 120 differ from each other.
- the cross-section of the backflow passage 120 is increased from the front end thereof, which communicates with the backflow gas guide holes 102 , to the rear end thereof, the speed at which backflow gas is drawn into the rear end of the backflow passage 120 is increased, so that the inflow of backflow gas into the backflow passage is promoted and the backflow gas is smoothly drawn into the mounting pipe through the backflow gas guide holes 102 .
- the mounting pipe 100 and the secondary exhaust gas pipe 110 may be constructed such that the free ends (the rear ends) thereof are bent towards the longitudinal central axis. In this case, the speed at which exhaust gas is discharged is further increased around the bent ends of the mounting pipe 100 and the secondary exhaust gas pipe 110 , thus making the discharge of exhaust gas easy.
- the ends of the mounting pipe 100 and the secondary exhaust gas pipe 110 which are opposite the rear end of the exhaust gas pipe 1 , and through which exhaust gas is discharged out of the apparatus, are bent inwards, so that the flow speed of exhaust gas is increased from the front end of the mounting pipe 100 , which is fastened to the exhaust gas pipe 1 , to the rear end thereof, thus making the discharge of exhaust gas easy.
- the cross-sectional area of space defined by the rear end of the secondary exhaust gas pipe 110 is greater than the cross-sectional area of space defined by the rear end of the mounting pipe 100 , thus defining an inlet of the backflow passage 120 .
- the backflow passage 120 serves to reduce the amount of backflow gas, along with the secondary exhaust gas pipe 110 having the bent end.
- an internal flue 130 may be provided in the rear end of the mounting pipe 100 .
- the internal flue 130 has a honeycomb structure and serves to prevent exhaust gas from being undesirably diffused around the edge of the rear end of the mounting pipe 100 , such that exhaust gas can be rapidly and smoothly discharged outside.
- a gas guide blade unit 140 may be provided in the mounting pipe 100 to more smoothly discharge exhaust gas that has passed through the exhaust gas pipe 1 . Furthermore, backflow gas, which is drawn into the mounting pipe 100 through the backflow gas guide holes 102 , can be effectively discharged by the smooth discharge of exhaust gas.
- the gas guide blade unit 140 includes a blade support body and a plurality of blades.
- the blades are provided on the inner surface of the mounting pipe 100 , and each blade is disposed between the adjacent backflow gas guide holes 102 .
- the blade support body has a conical shape and is disposed at the junction of the blades, that is, at the center of the mounting pipe.
- the blade support body has been illustrated as having a conical shape, the blade support body can have any shape, as long as it makes it possible for exhaust gas to rapidly and smoothly flow through the mounting pipe 100 .
- a gas guide blade unit 140 ′ may have a structure such that each blade is curved so as to be inclined at a predetermined angle relative to the direction in which exhaust gas is discharged. In this case, exhaust gas can be discharged more rapidly, so that backflow gas, which has passed through the backflow gas guide holes 102 , can be discharged more effectively.
- a blade flue 150 having a honeycomb structure may be provided in the free end (the rear end) of the mounting pipe 100 , such that exhaust gas can be discharged more smoothly.
- backflow gas which is drawn into the mounting pipe 100 through the backflow gas guide holes 102 , can be effectively discharged due to the smooth discharge of exhaust gas.
- a gas guide blade unit 140 ′′ may be provided in the mounting pipe 100 and, in detail, may be interposed between the exhaust gas pipe 1 and the mounting pipe 100 .
- the gas guide blade unit 140 ′′ has a shape in which the longitudinal cross-section thereof is curved towards the longitudinal central axis thereof such that the cross-sectional area of space defined thereby is reduced from the front end thereof to the rear end thereof with respect to the direction in which exhaust gas is discharged.
- a second backflow passage 160 ′′ is defined between the mounting pipe 100 and the gas guide blade unit 140 ′′.
- the second backflow passage 160 ′′ serves to prevent backflow gas, which is drawn into the backflow passage 120 , from flowing backwards into the exhaust gas pipe 1 after passing through the backflow gas guide holes 102 , such that backflow gas can discharged outside more reliably and effectively.
- a blade flue 150 ′′ having a honeycomb structure may be provided in the rear end of the gas guide blade unit 140 ′′, so that exhaust gas can be discharged more effectively, and backflow gas, which is drawn into the mounting pipe 100 through the backflow gas guide holes 102 , can be effectively discharged due to the smooth discharge of exhaust gas.
- the present invention may have a structure such that a tertiary exhaust gas pipe 170 is provided around the secondary exhaust gas pipe 110 .
- the opposite ends of the tertiary exhaust gas pipe 170 are disposed outside the respective opposite ends of the secondary exhaust gas pipe 110 , so that the tertiary exhaust gas pipe 170 completely covers the secondary exhaust gas pipe 110 .
- a locking hole 172 for insertion of a locking bolt B is formed in the end of the tertiary exhaust gas pipe 170 , which is adjacent to the exhaust gas pipe 1 .
- the locking bolt B is rotatably inserted into the locking hole 172 to compress part of the outer surface of the exhaust gas pipe 1 .
- the tertiary exhaust gas pipe 170 is coupled to the secondary exhaust gas pipe 110 , and the locking bolt B compresses the part of the outer surface of the exhaust gas pipe 1 in the opposite direction. Thereby, the tertiary exhaust gas pipe 170 can be firmly fastened to the exhaust gas pipe 1 .
- the tertiary exhaust gas pipe 170 is provided in a shape in which it surrounds the mounting pipe 100 and the secondary exhaust gas pipe 110 , the mounting pipe 100 and the secondary exhaust gas pipe 110 can be protected by the tertiary exhaust gas pipe 170 , and a superior external appearance of the apparatus can be ensured, thus satisfying the needs of consumers.
- the present invention provides an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, which is constructed such that the backflowing portion of exhaust gas is guided into a backflow passage, which is defined between a secondary exhaust gas pipe and a mounting pipe, and guided backflow gas is drawn into the mounting pipe through backflow gas discharge holes and is discharged outside along with subsequent exhaust gas, thus preventing backflow gas from being drawn into an exhaust gas pipe.
- the apparatus of the present invention can be easily installed merely by forcibly fitting it over the exhaust gas pipe, thus being convenient for a user. As such, the present invention is regarded as being effective and useful.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
- Characterised By The Charging Evacuation (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
An apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas is disclosed. The apparatus of the present invention includes a mounting pipe (100), which is fitted over the end of an exhaust gas pipe of an internal combustion engine and has therein backflow gas guide holes (102) at positions adjacent to the exhaust gas pipe, and a secondary exhaust gas pipe (110), which surrounds the mounting pipe. In the apparatus, a backflow passage (120) is defined between the mounting pipe and the secondary exhaust gas pipe, so that a backflowing portion of exhaust gas, which is discharged from the mounting pipe, is drawn into the backflow passage and is guided into the mounting pipe through the backflow gas guide holes, and the guided backflow gas is discharged outside again. Therefore, the present invention prevents backflow gas from being drawn into the exhaust gas pipe, thus enhancing the performance of the internal combustion engine.
Description
- The present invention relates, in general, to apparatuses for removing exhaust gas pressure and preventing backflow (exhaust pulse) of exhaust gas and, more particularly, to an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, which includes a mounting pipe, which is fitted over the rear end of an exhaust gas pipe extending from an internal combustion engine or the rear end of a gas flue of a boiler and has a plurality of backflow gas guide holes in a line around the circumferential surface thereof at predetermined positions, and a secondary exhaust gas pipe, which is provided around the mounting pipe, such that a backflow passage is defined between the mounting pipe and the secondary exhaust gas pipe, the backflow passage being open from the backflow gas guide holes in the direction in which exhaust gas is discharged, so that,
- of exhaust gas, which is discharged through the mounting pipe, backflow gas (exhaust pulse) is guided into the backflow passage, which is defined between the secondary exhaust gas pipe and the mounting pipe, and the guided backflow gas is drawn into the mounting pipe through backflow gas discharge holes and is discharged outside along with subsequent exhaust gas, thus preventing backflow gas from being drawn into an exhaust gas pipe, and,
- as such, in the case where backflow gas is prevented from flowing backwards into the exhaust gas pipe, the performance of the internal combustion engine can be enhanced, thus improving gas mileage and reducing exhaust fumes, thereby maximizing thermal energy efficiency, and furthermore, the apparatus of the present invention is easily installed merely by forcibly fitting it over the exhaust gas pipe, thus being convenient for a user.
- Generally, in the case of internal combustion engines, because exhaust gas, which is a pollutant occurring as a result of the combustion in an internal combustion engine, is discharged at a relatively high pressure of approximately 3 to 5 kg/cm2 and at a relatively high temperature of approximately 600° C., a catalytic device and a silencer are essential.
- In the internal combustion engine, when exhaust gas is discharged from the engine, a vacuum is created in an exhaust manifold, thus creating a primary exhaust resistance which interferes with the discharge of exhaust gas. Subsequently, the flow speed of the exhaust gas is markedly reduced when the exhaust gas passes through a purifier, thus creating a secondary exhaust resistance.
- Thereafter, when exhaust gas, which is drawn into the silencer, passes through multi-stepped partition plates, tertiary exhaust resistance is created.
- In this gas discharge process, the silencer is typically designed to have a capacity that is fifteen to twenty times larger than the engine displacement, so that exhaust resistance is unavoidably created. Thereby, the output of the engine is reduced, and fuel consumption and the amount of pollutants are increased by 5% to 10%.
- Therefore, it is to be appreciated that combustion efficiency can be enhanced merely by smoothly discharging exhaust gas so that gas mileage, output energy and thermal energy are improved. To achieve the above purpose, various conventional techniques have been proposed.
- In the case of boilers, when opposite airflow is applied to a gas flue, outside air flows backwards, and it may enter a combustion chamber, with the result that incomplete combustion is induced and that steam and suspended nitrogenous compound matter, created during the combustion process, become adsorbed on the surface of a heat exchanger.
- In the case where such events are repeated, the performance of a heat exchanger of the boiler is deteriorated, and a problem of a reduction in thermal energy is induced. A lot of research aiming to solve these problems has been conducted.
- Meanwhile, as a representative example of the conventional techniques, an exhaust gas discharge device for vehicles using the flow of air was proposed in Korean Patent Laid-Open Publication No. 2000-56951. This technique, using the flow of air, is devised such that the streamlined body of the exhaust gas discharge device is coupled to a tail pipe, so that when the vehicle travels, a low pressure region is formed around the exhaust gas discharge device by the flow speed of air that passes along the surface of the streamlined body, and exhaust gas is thus sucked out by the lower pressure, thereby promoting the discharge of exhaust gas.
- However, this technique is disadvantageous in that the streamlined body has a relatively large and complex structure, which affects the installation thereof, so that it is very difficult to use this technique in practice.
- Meanwhile, as another example of the conventional techniques, in a tail pipe of a main silencer having a vortex generator, which was proposed in Korean Patent Laid-Open Publication No. 1998-75223, a vortex-generating blade is provided at a medial portion in the tail pipe so as to be rotatable by exhaust gas. This technique is constructed such that the blade is rotated by exhaust gas, thus generating vortexes, thereby promoting the discharge of exhaust gas. However, there is a problem in that the blade serves as a source of some resistance that interferes with the flow of exhaust gas, and the construction thereof may be deformed by high heat, thus it cannot be used in practice.
- As another example of the conventional techniques, in an exhaust gas discharging device using vortexes, which was proposed in Korean Patent Registration No. 257874, a separate duct for drawing outside air is provided on the front end of a silencer, which is provided in an exhaust gas discharge path. Furthermore, a vane, which draws outside air and generates vortexes, is installed in the duct. In addition, the device has a damper for regulating the amount of drawn outside air which is operated in proportion to the opening degree of a throttle valve.
- However, in this technique, because a sub duct, through which outside air passes, is provided on the front end of the silencer, which serves to generate vortexes in the exhaust gas discharge path and reduce exhaust noise, exhaust noise is transferred outside through the sub duct, thus increasing noise. Furthermore, due to the installation of the outside air regulating damper, which is operated in conjunction with the throttle valve of the engine, there is a disadvantage in that the structure and the configuration of the device are complicated.
- As another example of the conventional techniques, in an exhaust gas discharge device for vehicles, which was proposed in Korean Utility Model Application No. 20-0010194, air inflow holes are formed in the device, and screw plates and steel plates are provided around the inflow holes to form vortexes using air flow generated when a vehicle travels.
- However, this device is constructed such that vortexes are created by the steel plates and the screw plates in a flared tube, so that exhaust gas must pass through a relatively narrow path. Therefore, the device is problematic in that it is structurally unstable, exhaust resistance and backflow of air are generated, and aerodynamic noise is generated around the rear end of a silencer.
- The above-mentioned techniques realize an increase in the flow speed of exhaust gas, thus having advantages of enhancing the output of the engine and reducing fuel consumption. However, there are disadvantages in that, when the vehicle is stopped or travels at a low speed, the effect thereof is markedly reduced, and, when the vehicle travels at a high speed, aerodynamic noise is generated around the rear end of the silencer.
- Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, which includes a mounting pipe, which is fitted over the rear end of an exhaust gas pipe extending from an internal combustion engine or the rear end of a gas flue of a boiler, and has a plurality of backflow gas guide holes in a line around the circumferential surface thereof at predetermined positions, and a secondary exhaust gas pipe, which is provided around the mounting pipe, such that a backflow passage is defined between the mounting pipe and the secondary exhaust gas pipe, the backflow passage being open from the backflow gas guide holes in the direction in which exhaust gas is discharged, so that,
- of exhaust gas, which is discharged through the mounting pipe, backflow gas (exhaust pulse) is guided into the backflow passage, which is defined between the secondary exhaust gas pipe and the mounting pipe, and the guided backflow gas is drawn into the mounting pipe through backflow gas discharge holes and is discharged outside along with subsequent exhaust gas, thus preventing backflow gas from being drawn into an exhaust gas pipe, and,
- as such, in the case where backflow gas is prevented from flowing backwards into the exhaust gas pipe, the performance of the internal combustion engine can be enhanced, thus improving gas mileage and reducing exhaust fumes, thereby maximizing thermal energy efficiency, the apparatus of the present invention being easily installed merely by forcibly fitting it over the exhaust gas pipe, thus being convenient for a user.
- In order to accomplish the above object, the present invention provides an apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas, including: a mounting pipe having a structure that is fitted over an end of an exhaust gas pipe extending from an internal combustion engine or an end of a gas flue of a boiler, such that a part of the mounting pipe other than a part thereof that is fastened to the end of the exhaust gas pipe protrudes outwards from the end of the exhaust gas pipe, the mounting pipe being hollow, such that an interior thereof communicates with the exhaust gas pipe, with a plurality of backflow gas guide holes formed in the mounting pipe in a line around a circumference thereof at positions adjacent to the end of the exhaust gas pipe; and a secondary exhaust gas pipe provided into a shape to surround the mounting pipe, wherein a backflow passage is defined between the mounting pipe and the secondary exhaust gas pipe, so that a backflowing portion of exhaust gas, which is discharged from the mounting pipe, is drawn into the backflow passage and is guided into the mounting pipe through the backflow gas guide holes, and the guided backflow gas is discharged outside again.
- Preferably, each of ends of the mounting pipe and the secondary exhaust gas pipe, which are opposite to ends thereof that are fastened to the exhaust gas pipe, is bent towards a longitudinal central axis, and a cross-sectional area of a space defined by the bent end of the secondary exhaust gas pipe is greater than a cross-sectional area of a space defined by the bent end of the mounting pipe.
- The apparatus may further include an internal flue provided in the end of the mounting pipe which is opposite the end thereof that is fastened to the exhaust gas pipe, the internal flue having a honeycomb structure.
- Furthermore, the apparatus may further include a gas guide blade unit provided in the mounting pipe to minimize collisions between the backflow gas, which is discharged through the backflow gas guide holes, and exhaust gas, and to increase a speed at which the exhaust gas is discharged, thus rapidly and smoothly discharging the exhaust gas.
- In addition, the gas guide blade unit may include: a plurality of blades provided on an inner surface of the mounting pipe, each of the plurality of blades being disposed between the adjacent backflow gas guide holes; and a conical blade support body provided at a center of the mounting pipe at which the blades are coupled to each other.
- As well, each of the plurality of blades may be curved so as to be inclined at a predetermined angle relative to a direction in which the exhaust gas is discharged.
- The apparatus may further include a blade flue provided in the end of the mounting pipe which is opposite to the end thereof that is fastened to the exhaust gas pipe, the blade flue having a honeycomb structure.
- Furthermore, the apparatus may further include a gas guide blade unit, an end thereof interposed between the mounting pipe and the exhaust gas pipe, the gas guide blade unit having a longitudinal cross-section curved towards a longitudinal central axis thereof such that a cross-sectional area of a space defined by the gas guide blade unit is reduced in a direction in which the exhaust gas is discharged, thus increasing a flow speed of the exhaust gas, the gas guide blade unit defining a second backflow passage, communicating with the backflow gas guide holes, between the gas guide blade unit and a circumferential inner surface of the mounting pipe.
- In addition, the apparatus may further include a blade flue provided in a rear end of the gas guide blade unit with respect to the direction in which the exhaust gas is discharged, the blade flue having a honeycomb structure.
- Moreover, the apparatus may further include a tertiary exhaust gas pipe provided around the secondary exhaust gas pipe, the tertiary exhaust gas pipe having a locking hole, into which a locking bolt is inserted, in an end of the tertiary exhaust gas pipe adjacent to the end of the exhaust gas pipe, so that the secondary exhaust gas pipe is firmly fastened to the exhaust gas pipe by the tertiary exhaust gas pipe.
-
FIG. 1 is a view illustrating an apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas, according to the present invention; -
FIG. 2 is a partial sectional view taken along the line A-A′ ofFIG. 1 ; -
FIG. 3 is a side sectional view of the exhaust gas backflow prevention apparatus according to the present invention; -
FIG. 4 is a view showing the flow of exhaust gas in the exhaust gas backflow prevention apparatus according to the present invention; -
FIG. 5 is a view illustrating another embodiment of an exhaust gas backflow prevention apparatus, according to the present invention; -
FIG. 6 is a view illustrating an exhaust gas backflow prevention apparatus provided with an internal flue, according to a modification of the embodiment of the present invention; -
FIG. 7 is a view illustrating an exhaust gas backflow prevention apparatus provided with a stationary blade, according to another embodiment of the present invention; -
FIG. 8 is a view illustrating another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention; -
FIG. 9 is a view showing a modification ofFIG. 7 , in which a blade flue is further provided; -
FIG. 10 is a view showing another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention; -
FIG. 11 is a view showing a modification ofFIG. 10 , in which a blade flue is further provided; and -
FIG. 12 is a view illustrating an exhaust gas backflow prevention apparatus provided with a tertiary exhaust gas pipe, according to another embodiment of the present invention. - Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
- Although the preferred embodiments of the present invention will be disclosed for illustrative purposes, they do not limit the bounds of the present invention, and those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the technical scope and spirit of the invention.
-
FIG. 1 is a view illustrating an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, according to the present invention.FIG. 2 is a partial sectional view taken along the line A-A′ ofFIG. 1 .FIG. 3 is a side sectional view of the exhaust gas backflow prevention apparatus according to the present invention.FIG. 4 is a view showing the flow of exhaust gas in the exhaust gas backflow prevention apparatus according to the present invention.FIG. 5 is a view illustrating another embodiment of an exhaust gas backflow prevention apparatus, according to the present invention.FIG. 6 is a view illustrating an exhaust gas backflow prevention apparatus provided with an internal flue, according to a modification of the embodiment of the present invention.FIG. 7 is a view illustrating an exhaust gas backflow prevention apparatus provided with a stationary blade, according to another embodiment of the present invention.FIG. 8 is a view illustrating another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention.FIG. 9 is a view showing a modification ofFIG. 7 , in which a blade flue is further provided.FIG. 10 is a view showing another embodiment of the stationary blade of the exhaust gas backflow prevention apparatus, according to the present invention.FIG. 11 is a view showing a modification ofFIG. 10 , in which a blade flue is further provided.FIG. 12 is a view illustrating an exhaust gas backflow prevention apparatus provided with a tertiary exhaust gas pipe, according to another embodiment of the present invention. - As shown in the drawings, the
apparatus 10 for removing exhaust gas pressure and preventing the backflow of exhaust gas according to the present invention includes a mountingpipe 100 and a secondaryexhaust gas pipe 110, which have concentric circular shapes having different diameters. - The mounting
pipe 100 is fitted over the outer surface of the rear end of anexhaust gas pipe 1, which extends from a boiler or an internal combustion engine. Furthermore, backflow gas guide holes 102 are formed around the circumferential outer surface of the mountingpipe 100 at positions adjacent to the rear end of theexhaust gas pipe 1. - The secondary
exhaust gas pipe 110 is fitted over the outer surface of the mountingpipe 100 into a shape that surrounds the mountingpipe 100. Thus, the secondaryexhaust gas pipe 110 surrounds the mountingpipe 100 and defines abackflow passage 120, which is open at one end thereof, between the secondaryexhaust gas pipe 110 and the mountingpipe 100. - In other words, the mounting
pipe 100 and the secondaryexhaust gas pipe 110 are coupled at front ends thereof to each other and define therebetween thebackflow passage 120, which extends from the medial portions of the mountingpipe 100 and the secondaryexhaust gas pipe 110 and is open towards their rear ends. That is, thebackflow passage 120 is formed between the mountingpipe 100 and the secondaryexhaust gas pipe 110 such that it is open from the backflow gas guide holes 102 in the direction in which exhaust gas is discharged. - Typically, in the case of a boiler or an internal combustion engine, due to the structural characteristics thereof, a backflow phenomenon, in which gas backflow is generated around the rear end of the
exhaust gas pipe 1 and some exhaust gas thus flows backwards into theexhaust gas pipe 1, occurs. However, in the present invention, thanks to the above-mentioned construction, backflow gas enters thebackflow passage 120, rather than entering theexhaust gas pipe 1. - In other words, when exhaust gas, which is discharged from the
exhaust gas pipe 1, passes through the mountingpipe 100, which communicates with theexhaust gas pipe 1, backflow gas attributable to back pressure is drawn into thebackflow passage 120, so that the backflow gas is prevented from entering the mountingpipe 100 backwards. - Furthermore, the backflow gas, which is drawn into the
backflow passage 120, is moved into the mountingpipe 100 through the backflow gas guide holes 102, which are formed in the mountingpipe 100, and is discharged along with subsequent discharge gas outside the mountingpipe 100. - Here, the mounting
pipe 100 has a funnel shape such that the longitudinal cross-section thereof is inclined towards the longitudinal central axis thereof from the front end of the mountingpipe 100, which is coupled to the rear end of theexhaust gas pipe 1, to the rear end of the mountingpipe 100, so that the speed at which exhaust gas is discharged can be increased. Furthermore, due to this shape of the mountingpipe 100, the distance by which the mountingpipe 100 is spaced apart from the secondaryexhaust gas pipe 110 is varied such that the sectional areas of the opposite ends of thebackflow passage 120 differ from each other. - As such, because the cross-section of the
backflow passage 120 is increased from the front end thereof, which communicates with the backflow gas guide holes 102, to the rear end thereof, the speed at which backflow gas is drawn into the rear end of thebackflow passage 120 is increased, so that the inflow of backflow gas into the backflow passage is promoted and the backflow gas is smoothly drawn into the mounting pipe through the backflow gas guide holes 102. - As shown in
FIG. 5 , the mountingpipe 100 and the secondaryexhaust gas pipe 110 may be constructed such that the free ends (the rear ends) thereof are bent towards the longitudinal central axis. In this case, the speed at which exhaust gas is discharged is further increased around the bent ends of the mountingpipe 100 and the secondaryexhaust gas pipe 110, thus making the discharge of exhaust gas easy. - In other words, the ends of the mounting
pipe 100 and the secondaryexhaust gas pipe 110, which are opposite the rear end of theexhaust gas pipe 1, and through which exhaust gas is discharged out of the apparatus, are bent inwards, so that the flow speed of exhaust gas is increased from the front end of the mountingpipe 100, which is fastened to theexhaust gas pipe 1, to the rear end thereof, thus making the discharge of exhaust gas easy. - Furthermore, in the case where the rear end of the mounting
pipe 100 is bent towards the longitudinal central axis thereof, backflow gas can be more effectively prevented from flowing backwards through the rear end of the mountingpipe 100. - Here, the cross-sectional area of space defined by the rear end of the secondary
exhaust gas pipe 110 is greater than the cross-sectional area of space defined by the rear end of the mountingpipe 100, thus defining an inlet of thebackflow passage 120. Thebackflow passage 120 serves to reduce the amount of backflow gas, along with the secondaryexhaust gas pipe 110 having the bent end. - Meanwhile, an
internal flue 130 may be provided in the rear end of the mountingpipe 100. Theinternal flue 130 has a honeycomb structure and serves to prevent exhaust gas from being undesirably diffused around the edge of the rear end of the mountingpipe 100, such that exhaust gas can be rapidly and smoothly discharged outside. - As shown in
FIGS. 7 through 9 , a gasguide blade unit 140 may be provided in the mountingpipe 100 to more smoothly discharge exhaust gas that has passed through theexhaust gas pipe 1. Furthermore, backflow gas, which is drawn into the mountingpipe 100 through the backflow gas guide holes 102, can be effectively discharged by the smooth discharge of exhaust gas. - The gas
guide blade unit 140 includes a blade support body and a plurality of blades. The blades are provided on the inner surface of the mountingpipe 100, and each blade is disposed between the adjacent backflow gas guide holes 102. The blade support body has a conical shape and is disposed at the junction of the blades, that is, at the center of the mounting pipe. - In the embodiment of the present invention, although the blade support body has been illustrated as having a conical shape, the blade support body can have any shape, as long as it makes it possible for exhaust gas to rapidly and smoothly flow through the mounting
pipe 100. - Meanwhile, as another embodiment of the gas guide blade unit, as shown in
FIG. 8 , a gasguide blade unit 140′ may have a structure such that each blade is curved so as to be inclined at a predetermined angle relative to the direction in which exhaust gas is discharged. In this case, exhaust gas can be discharged more rapidly, so that backflow gas, which has passed through the backflow gas guide holes 102, can be discharged more effectively. - Furthermore, a
blade flue 150 having a honeycomb structure may be provided in the free end (the rear end) of the mountingpipe 100, such that exhaust gas can be discharged more smoothly. Thus, backflow gas, which is drawn into the mountingpipe 100 through the backflow gas guide holes 102, can be effectively discharged due to the smooth discharge of exhaust gas. - Meanwhile, as shown in
FIGS. 10 and 11 , a gasguide blade unit 140″ may be provided in the mountingpipe 100 and, in detail, may be interposed between theexhaust gas pipe 1 and the mountingpipe 100. - The gas
guide blade unit 140″ has a shape in which the longitudinal cross-section thereof is curved towards the longitudinal central axis thereof such that the cross-sectional area of space defined thereby is reduced from the front end thereof to the rear end thereof with respect to the direction in which exhaust gas is discharged. Thus, asecond backflow passage 160″ is defined between the mountingpipe 100 and the gasguide blade unit 140″. - As such, in the case where the rear end of the gas
guide blade unit 140″ is bent towards the longitudinal central axis thereof, the discharge speed of exhaust gas that has passed through theexhaust gas pipe 1 is increased, thus promoting the smooth discharge of exhaust gas. - The
second backflow passage 160″ serves to prevent backflow gas, which is drawn into thebackflow passage 120, from flowing backwards into theexhaust gas pipe 1 after passing through the backflow gas guide holes 102, such that backflow gas can discharged outside more reliably and effectively. - Furthermore, preferably, a
blade flue 150″ having a honeycomb structure may be provided in the rear end of the gasguide blade unit 140″, so that exhaust gas can be discharged more effectively, and backflow gas, which is drawn into the mountingpipe 100 through the backflow gas guide holes 102, can be effectively discharged due to the smooth discharge of exhaust gas. - Meanwhile, the present invention may have a structure such that a tertiary
exhaust gas pipe 170 is provided around the secondaryexhaust gas pipe 110. In this case, the opposite ends of the tertiaryexhaust gas pipe 170 are disposed outside the respective opposite ends of the secondaryexhaust gas pipe 110, so that the tertiaryexhaust gas pipe 170 completely covers the secondaryexhaust gas pipe 110. - Furthermore, a
locking hole 172 for insertion of a locking bolt B is formed in the end of the tertiaryexhaust gas pipe 170, which is adjacent to theexhaust gas pipe 1. The locking bolt B is rotatably inserted into thelocking hole 172 to compress part of the outer surface of theexhaust gas pipe 1. - As such, the tertiary
exhaust gas pipe 170 is coupled to the secondaryexhaust gas pipe 110, and the locking bolt B compresses the part of the outer surface of theexhaust gas pipe 1 in the opposite direction. Thereby, the tertiaryexhaust gas pipe 170 can be firmly fastened to theexhaust gas pipe 1. - Furthermore, in this embodiment, because the tertiary
exhaust gas pipe 170 is provided in a shape in which it surrounds the mountingpipe 100 and the secondaryexhaust gas pipe 110, the mountingpipe 100 and the secondaryexhaust gas pipe 110 can be protected by the tertiaryexhaust gas pipe 170, and a superior external appearance of the apparatus can be ensured, thus satisfying the needs of consumers. - As described above, the present invention provides an apparatus for removing exhaust gas pressure and preventing the backflow of exhaust gas, which is constructed such that the backflowing portion of exhaust gas is guided into a backflow passage, which is defined between a secondary exhaust gas pipe and a mounting pipe, and guided backflow gas is drawn into the mounting pipe through backflow gas discharge holes and is discharged outside along with subsequent exhaust gas, thus preventing backflow gas from being drawn into an exhaust gas pipe.
- In the case where exhaust gas pressure is removed by preventing the inflow of backflow gas, the performance of an internal combustion engine can be enhanced, thus improving gas mileage and reducing exhaust fumes, thereby maximizing thermal energy efficiency. Furthermore, the apparatus of the present invention can be easily installed merely by forcibly fitting it over the exhaust gas pipe, thus being convenient for a user. As such, the present invention is regarded as being effective and useful.
Claims (11)
1-10. (canceled)
11. An apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas, comprising:
a mounting pipe having a structure that is fitted over one of an end of an exhaust gas pipe extending from an internal combustion engine and an end of a gas flue of a boiler, such that a part of the mounting pipe protrudes outwards from the end of the exhaust gas pipe, the mounting pipe being hollow, such that an interior thereof communicates with the exhaust gas pipe, with a plurality of backflow gas guide holes formed in the mounting pipe in a line around a circumference thereof at positions adjacent to the end of the exhaust gas pipe; and
a secondary exhaust gas pipe surrounding the mounting pipe, wherein
a backflow passage is defined between the mounting pipe and the secondary exhaust gas pipe, so that a backflowing portion of exhaust gas, which is discharged from the mounting pipe, is drawn into the backflow passage and is guided into the mounting pipe through the backflow gas guide holes, and the guided backflow gas is discharged from the mounting pipe again.
12. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 11 , wherein an end of the mounting pipe and an end of the secondary exhaust gas pipe, each of which are opposite to ends thereof that are fastened to the exhaust gas pipe, are bent towards a longitudinal central axis, and a cross-sectional area of a space defined by the bent end of the secondary exhaust gas pipe is greater than a cross-sectional area of a space defined by the bent end of the mounting pipe.
13. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 11 , further comprising:
an internal flue provided in an end of the mounting pipe which is opposite an end thereof that is fastened to the exhaust gas pipe, the internal flue having a honeycomb structure.
14. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 11 , further comprising:
a gas guide blade unit provided in the mounting pipe to minimize collisions between the backflow gas, which is discharged through the backflow gas guide holes, and exhaust gas, and to increase a speed at which the exhaust gas is discharged.
15. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 14 , wherein the gas guide blade unit comprises:
a plurality of blades provided on an inner surface of the mounting pipe, each of the plurality of blades being disposed between the adjacent backflow gas guide holes; and
a conical blade support body provided at a center of the mounting pipe at which the blades are coupled to each other.
16. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 15 , wherein each of the plurality of blades is curved so as to be inclined relative to a direction in which the exhaust gas is discharged.
17. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 14 , further comprising:
a blade flue provided in an end of the mounting pipe which is opposite to an end thereof fastened to the exhaust gas pipe, the blade flue having a honeycomb structure.
18. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 14 , further comprising:
a gas guide blade unit, an end thereof interposed between the mounting pipe and the exhaust gas pipe, the gas guide blade unit having a longitudinal cross-section curved towards a longitudinal central axis thereof such that a cross-sectional area of a space defined by the gas guide blade unit is reduced in a direction in which the exhaust gas is discharged, thus increasing a flow speed of the exhaust gas, the gas guide blade unit defining a second backflow passage, communicating with the backflow gas guide holes, between the gas guide blade unit and a circumferential inner surface of the mounting pipe.
19. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 18 , further comprising:
a blade flue provided in a rear end of the gas guide blade unit with respect to the direction in which the exhaust gas is discharged, the blade flue having a honeycomb structure.
20. The apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas according to claim 11 , further comprising:
a tertiary exhaust gas pipe provided around the secondary exhaust gas pipe, the tertiary exhaust gas pipe defining a locking hole, into which a locking bolt is inserted, in an end of the tertiary exhaust gas pipe adjacent to the end of the exhaust gas pipe, so that the secondary exhaust gas pipe is firmly fastened to the exhaust gas pipe by the tertiary exhaust gas pipe.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020070059152A KR100769700B1 (en) | 2007-06-15 | 2007-06-15 | Back pressure removal backflow prevention device |
| KR1020070059152 | 2007-06-15 | ||
| KR1020070100532 | 2007-10-05 | ||
| KR1020070100532A KR100929692B1 (en) | 2007-10-05 | 2007-10-05 | Exhaust gas backflow prevention device of internal combustion engine and boiler |
| PCT/KR2007/004977 WO2008153247A1 (en) | 2007-06-15 | 2007-10-11 | Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100307145A1 true US20100307145A1 (en) | 2010-12-09 |
Family
ID=40129840
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/664,423 Abandoned US20100307145A1 (en) | 2007-06-15 | 2007-10-11 | Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas |
| US13/889,367 Abandoned US20130239557A1 (en) | 2007-06-15 | 2013-05-08 | Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/889,367 Abandoned US20130239557A1 (en) | 2007-06-15 | 2013-05-08 | Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20100307145A1 (en) |
| EP (1) | EP2162603A4 (en) |
| JP (1) | JP4988922B2 (en) |
| CN (1) | CN101688461B (en) |
| AU (1) | AU2007354986A1 (en) |
| WO (1) | WO2008153247A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102985676A (en) * | 2010-06-14 | 2013-03-20 | 卡特彼勒全球矿业美国有限责任公司 | Exhaust insert for exhaust port |
| US10150438B2 (en) * | 2017-05-03 | 2018-12-11 | Nissan North America, Inc. | Rear exhaust finisher assembly |
| CN110549014A (en) * | 2019-09-20 | 2019-12-10 | 广东捷泰克智能装备有限公司 | deslagging method, deslagging mechanism and applied pipe laser cutting machine |
| CN114259761A (en) * | 2021-12-27 | 2022-04-01 | 曲誉环境综合治理有限公司 | Sedimentation tank mud backward flow suction device and sludge sedimentation tank |
| US20220203314A1 (en) * | 2020-12-25 | 2022-06-30 | Kubota Corporation | Exhaust gas diffusing device |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101332259B1 (en) | 2011-08-12 | 2013-11-25 | 주식회사 한일월드 | Water purifier valve for preventing backward flow of dish washer |
| WO2016028974A1 (en) * | 2014-08-21 | 2016-02-25 | Williams International Co., L.L.C. | Valvular-conduit manifold |
| CN104763508A (en) * | 2015-04-03 | 2015-07-08 | 中国能源建设集团山西省电力勘测设计院有限公司 | Device for preventing condensate water from refluxing for gas exhausting vertical tube of internal combustion engine |
| CN209069695U (en) * | 2018-07-24 | 2019-07-05 | 江苏苏净集团有限公司 | A kind of aerosol dilution device |
| CN109536373A (en) * | 2018-11-27 | 2019-03-29 | 南京先进激光技术研究院 | A kind of automatic bubble discharging reagent reaction tube |
| DE102020118530A1 (en) | 2020-07-14 | 2021-08-05 | Audi Ag | Motor vehicle with an exhaust-generating drive device and an exhaust system |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4012907A (en) * | 1975-06-09 | 1977-03-22 | Thomas Buchanan | Exhaust apparatus |
| US4331213A (en) * | 1980-01-28 | 1982-05-25 | Mitsuko Leith | Automobile exhaust control system |
| US4339918A (en) * | 1980-09-11 | 1982-07-20 | Hirokuni Michikawa | Means for accelerating the discharge of exhaust gas from an internal combustion engine |
| US5150573A (en) * | 1987-10-02 | 1992-09-29 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Catalyst arrangement with flow guide body |
| EP1607597A1 (en) * | 2004-06-08 | 2005-12-21 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Exhaust system |
| US20070095057A1 (en) * | 2005-10-28 | 2007-05-03 | Field Nicholas C | Dynamic exhaust tip |
| US7380397B2 (en) * | 2005-09-08 | 2008-06-03 | Chih-Kuang Chang | Automobile exhaust pipe assembly |
| US20090057056A1 (en) * | 2007-08-31 | 2009-03-05 | Fred Baumgartner | Vehicular exhaust resonator with cooling feature |
| US20090090101A1 (en) * | 2006-04-04 | 2009-04-09 | Soo Won Kim | Exhaust Gas-Discharging Device of Vehicle |
| US20100083647A1 (en) * | 2006-09-07 | 2010-04-08 | Volvo Trucks North America, Inc. | Exhaust diffuser for a vocational truck |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3642094A (en) * | 1969-11-26 | 1972-02-15 | Raymond W Yancey | Muffler construction |
| JPS6056891B2 (en) * | 1977-05-26 | 1985-12-12 | 株式会社日本自動車部品総合研究所 | exhaust muffler |
| JPH03490Y2 (en) * | 1984-10-29 | 1991-01-10 | ||
| JPH0269019U (en) * | 1988-11-11 | 1990-05-25 | ||
| JP2519935Y2 (en) * | 1990-11-30 | 1996-12-11 | 株式会社クボタ | Muffler device |
| JPH09256845A (en) * | 1996-03-19 | 1997-09-30 | Michimasa Yamaguchi | Gas exhausting method for internal combustion engine |
| KR100766807B1 (en) * | 2003-11-12 | 2007-10-17 | 김수원 | Exhaust for automobile |
| EP1766204B1 (en) * | 2004-07-02 | 2010-04-14 | Volvo Lastvagnar Ab | Arrangement for controlling exhaust pressure pulses at an internal combustion engine |
| KR100684568B1 (en) * | 2004-10-29 | 2007-02-22 | 김수원 | Car exhaust |
| CN1940261A (en) * | 2005-09-27 | 2007-04-04 | 林劲 | Energy-saving tailed-gas exhaust pipe |
| CN2848324Y (en) * | 2005-12-20 | 2006-12-20 | 沈阳建筑大学 | Three phase separator device |
| KR100853583B1 (en) * | 2007-01-30 | 2008-08-21 | 김수원 | Backflow Control Circulation Vent of Internal Combustion Engine |
| US7856807B2 (en) * | 2008-03-17 | 2010-12-28 | Cummins Filtration Ip, Inc. | Flow reversal chambers for increased residence time |
-
2007
- 2007-10-11 AU AU2007354986A patent/AU2007354986A1/en not_active Abandoned
- 2007-10-11 US US12/664,423 patent/US20100307145A1/en not_active Abandoned
- 2007-10-11 EP EP07833288A patent/EP2162603A4/en not_active Withdrawn
- 2007-10-11 JP JP2010512054A patent/JP4988922B2/en not_active Expired - Fee Related
- 2007-10-11 WO PCT/KR2007/004977 patent/WO2008153247A1/en active Application Filing
- 2007-10-11 CN CN200780053363.XA patent/CN101688461B/en not_active Expired - Fee Related
-
2013
- 2013-05-08 US US13/889,367 patent/US20130239557A1/en not_active Abandoned
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4012907A (en) * | 1975-06-09 | 1977-03-22 | Thomas Buchanan | Exhaust apparatus |
| US4331213A (en) * | 1980-01-28 | 1982-05-25 | Mitsuko Leith | Automobile exhaust control system |
| US4339918A (en) * | 1980-09-11 | 1982-07-20 | Hirokuni Michikawa | Means for accelerating the discharge of exhaust gas from an internal combustion engine |
| US5150573A (en) * | 1987-10-02 | 1992-09-29 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Catalyst arrangement with flow guide body |
| EP1607597A1 (en) * | 2004-06-08 | 2005-12-21 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Exhaust system |
| US7380397B2 (en) * | 2005-09-08 | 2008-06-03 | Chih-Kuang Chang | Automobile exhaust pipe assembly |
| US20070095057A1 (en) * | 2005-10-28 | 2007-05-03 | Field Nicholas C | Dynamic exhaust tip |
| US20090090101A1 (en) * | 2006-04-04 | 2009-04-09 | Soo Won Kim | Exhaust Gas-Discharging Device of Vehicle |
| US20100083647A1 (en) * | 2006-09-07 | 2010-04-08 | Volvo Trucks North America, Inc. | Exhaust diffuser for a vocational truck |
| US20090057056A1 (en) * | 2007-08-31 | 2009-03-05 | Fred Baumgartner | Vehicular exhaust resonator with cooling feature |
Non-Patent Citations (2)
| Title |
|---|
| Machine translation of EP1607597 * |
| Machine translation of KR10-0743236 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102985676A (en) * | 2010-06-14 | 2013-03-20 | 卡特彼勒全球矿业美国有限责任公司 | Exhaust insert for exhaust port |
| US10150438B2 (en) * | 2017-05-03 | 2018-12-11 | Nissan North America, Inc. | Rear exhaust finisher assembly |
| CN110549014A (en) * | 2019-09-20 | 2019-12-10 | 广东捷泰克智能装备有限公司 | deslagging method, deslagging mechanism and applied pipe laser cutting machine |
| US20220203314A1 (en) * | 2020-12-25 | 2022-06-30 | Kubota Corporation | Exhaust gas diffusing device |
| CN114259761A (en) * | 2021-12-27 | 2022-04-01 | 曲誉环境综合治理有限公司 | Sedimentation tank mud backward flow suction device and sludge sedimentation tank |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130239557A1 (en) | 2013-09-19 |
| EP2162603A1 (en) | 2010-03-17 |
| CN101688461B (en) | 2013-06-26 |
| EP2162603A4 (en) | 2012-03-07 |
| JP4988922B2 (en) | 2012-08-01 |
| AU2007354986A1 (en) | 2008-12-18 |
| JP2010530040A (en) | 2010-09-02 |
| CN101688461A (en) | 2010-03-31 |
| WO2008153247A1 (en) | 2008-12-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100307145A1 (en) | Apparatus for removing exhaust gas pressure and preventing backflow of exhaust gas | |
| CN101968003B (en) | Mixing and/or vaporisation device | |
| KR100983001B1 (en) | The apparatus for preventing backward stream of exhaust gas of the internal combustion engine and boiler | |
| KR101942753B1 (en) | Vortex generator for internal combustion engine of automobile | |
| US8234859B2 (en) | Method of and apparatus for exhausting internal combustion engines | |
| US20090090101A1 (en) | Exhaust Gas-Discharging Device of Vehicle | |
| US7331422B2 (en) | Vortex muffler | |
| KR100684568B1 (en) | Car exhaust | |
| KR100769700B1 (en) | Back pressure removal backflow prevention device | |
| KR100929692B1 (en) | Exhaust gas backflow prevention device of internal combustion engine and boiler | |
| CN210289946U (en) | Engine intake duct and engine cylinder head | |
| KR102127140B1 (en) | The exaust fumes reduction device for internal combustion engine | |
| KR20200084714A (en) | Apparatus for improving exhaust emission of vehicles | |
| KR100464711B1 (en) | Exhaust for automobile | |
| KR200374553Y1 (en) | Exhaust for automobile | |
| KR200237021Y1 (en) | Exhaust for automobile | |
| KR20120005917A (en) | Silencer of the internal combustion engine | |
| KR102319070B1 (en) | The exhaust fumes reduction device for internal combustion engine of automobile | |
| KR100766807B1 (en) | Exhaust for automobile | |
| KR20210001060A (en) | The exhaust fumes reduction device for internal combustion engine of automobile | |
| KR200287763Y1 (en) | Exhaust for automobile | |
| AU2006269815B2 (en) | Method of and apparatus for exhausting internal combustion engines | |
| KR20250139528A (en) | The exaust fumes reduction device for internal combustion engine of vehicle | |
| KR19980020744A (en) | Noise reduction exhaust pipe structure | |
| HK1131812A (en) | Exhaust gas-discharging device of vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |