US20100299709A1 - Accessing content via a receiver coupled to a transmitter - Google Patents

Accessing content via a receiver coupled to a transmitter Download PDF

Info

Publication number
US20100299709A1
US20100299709A1 US12/576,171 US57617109A US2010299709A1 US 20100299709 A1 US20100299709 A1 US 20100299709A1 US 57617109 A US57617109 A US 57617109A US 2010299709 A1 US2010299709 A1 US 2010299709A1
Authority
US
United States
Prior art keywords
computer
receiver
media item
transmitter
media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/576,171
Inventor
Michael Denis O'Connor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cisco Technology Inc
Original Assignee
Cisco Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17968809P priority Critical
Application filed by Cisco Technology Inc filed Critical Cisco Technology Inc
Priority to US12/576,171 priority patent/US20100299709A1/en
Assigned to CISCO TECHNOLOGY, INC. reassignment CISCO TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: O'CONNOR, MICHAEL DENIS
Publication of US20100299709A1 publication Critical patent/US20100299709A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network, synchronizing decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or inside the home ; Interfacing an external card to be used in combination with the client device
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43637Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wireless protocol, e.g. Bluetooth or wireless LAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Structure of client; Structure of client peripherals using peripherals receiving signals from specially adapted client devices
    • H04N21/4122Structure of client; Structure of client peripherals using peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/162Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing
    • H04N7/163Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing by receiver means only

Abstract

A communication system for accessing media items via a display device. A receiver is coupled to the display device and a transmitter is coupled to a computer system. Media items stored locally on the computer system and/or remotely on a remote server may be wirelessly transferred from the transmitter to the receiver for display on the display device. In addition, the transmitter and the receiver may be pre-paired prior to delivery to the user, allowing for the network to be configured without any user input. Advantageously, embodiments provide a user with the ability to conveniently view content stored on a computer or a web server without the user having to perform any wireless network setup procedures.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims benefit of U.S. provisional patent application Ser. No. 61/179,688, filed on May 19, 2009, which is hereby incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Digital video cameras enable a user to capture video footage, which can be viewed on a computer or television, uploaded to video sharing websites, or recorded onto a recording medium such as a DVD. Typically, transferring video footage from a digital video camera to an external device such as a television or computer requires the use of a video cable and software to connect the digital video camera to the external device. Some models of digital video cameras provide a built-in Universal Serial Bus (USB) connector to facilitate transfer of video footage from/to the digital video camera and the external device. In order to view video footage on a television, a user typically uses a cable (e.g., a cable with both video and audio connectors) to connect the digital video camera to the inputs of the television, and then uses a user interface on the digital video camera to initiate and control the playback of the video footage displayed on the television. Some digital video cameras also utilize a remote control to supplement or replace the user interface on the digital video camera during playback to the television. This method of viewing video footage on a television presents several difficulties, including either using the batteries in the digital video camera or providing external power to the digital video camera during playback, positioning of the digital video camera close to the television while the user is typically sitting farther from the television during video playback, and the like.
  • If the user has already downloaded the video content recorded on the digital video camera to a computer, the video content can be viewed on the computer display. However, many users prefer to watch video footage on a television, which is typically located at a distance (e.g., in a separate room) from the computer. One approach is to use the computer to burn a digital versatile disc (DVD) including the video content. However, burning a DVD is a complicated operation for some users and requires use of DVD media. Additionally, DVDs have limits on the length of videos that can be stored on the DVD, typically one or two hours of video. Thus, for video footage of longer durations, multiple DVDs are typically required. Another approach is to transmit the video footage from the computer to the television. 802.11-based media extenders have been developed for this purpose. Using 802.11-based wireless networks is a challenging endeavor for many users. Setting up the network is a complicated process that many users find difficult and frustrating, including issues related to firewalls, port forwarding, dynamic Domain Name System (DNS), etc. The challenges of setting up and operating 802.11-based networks is a contributing factor to the high return rate of wireless networking equipment.
  • Despite the capabilities of currently available systems, the viewing experience of digital video for many users is less than desirable. Thus, there is a need in the art for improved methods and systems for viewing video footage on a display device.
  • SUMMARY
  • One embodiment of the invention provides a computer-readable storage medium storing instructions that, when executed by a processor, cause a computer system to provide a user access to one or more media items, by performing the steps of: receiving from a receiver device a data request for media data within a byte range associated with at least a portion of a first media item, where the computer system is part of a communications system that also includes a transmitter device configured to perform two-way wireless communications with the receiver device; retrieving the media data; and causing the media data to be transmitted to the receiver device via the transmitter device for playback or display on a display device coupled to the receiver device.
  • Another embodiment of the invention provides a method for accessing content via a communications system. The method includes receiving identifying information associated with a user; examining one or more memory locations within a computer system to determine that a first set of media items accessible by the user is stored locally within the computer system, where the communications system includes a transmitter device coupled to the computer system that is configured to perform two-way wireless communications with a receiver device coupled to a display device; determining a second set of media items stored on a computer system that is remote from the communications system based on the identifying information, where the user is recognized as a recipient of each media item in the second set of media items via one or more channels, and each of the one or more channels is associated with a set of recipients and a set of media items; and providing, to the user, access to each media item in both the first set of media items and the second set of media items via the receiver device.
  • Many benefits are achieved by way of embodiments of the present invention over conventional techniques. For example, embodiments of the present invention provide an enhanced user experience in comparison with conventional wireless communications networks. Additionally, embodiments provide a user with the ability to conveniently view video footage stored on a computer or a web server on a television without having to perform any wireless network setup procedures. As an example, embodiments of the present invention provide a simple and reliable way for viewing videos, movies, photos, and other media on a home television. Utilizing the embodiments described herein, consumers can effectively bring their multimedia content onto their primary viewing device (i.e., the TV) and enjoy this media in a comfortable setting such as a living room. These and other embodiments of the invention along with many of its advantages and features are described in more detail in conjunction with the text below and attached figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified illustration of elements of a communications system, according to an embodiment of the present invention;
  • FIG. 2 is a simplified illustration of an exemplary use of the communications system, according to an embodiment of the present invention;
  • FIG. 3 is a simplified schematic diagram of a receiver, according to an embodiment of the present invention;
  • FIG. 4 is a simplified schematic diagram of a transmitter, according to an embodiment of the present invention;
  • FIG. 5 is a flow diagram of method steps for operating a communications system, according to an embodiment of the present invention.
  • FIG. 6 is a flow diagram of method steps for accessing content via a receiver, according to an embodiment of the present invention.
  • FIG. 7 is a flow diagram of method steps for marking a media item as a favorite, according to an embodiment of the present invention.
  • DESCRIPTION OF EXAMPLE EMBODIMENTS
  • Embodiments of the present invention relate to transmitting video footage from a source to a display device. Merely by way of example, embodiments of the invention are applied to a communications system including a transmitter coupled to a computer and a receiver coupled to any type of display device, such as a television, a monitor, or any other type of display device. The methods and techniques can be applied to video footage stored on a web server, a local machine, a remote machine, and the like.
  • According to an embodiment of the present invention, a system for transmitting video content from a computer to a display device is provided. The system includes a receiver operable to communicate with the display device. The receiver includes a first wireless transceiver, a video output, and an audio output. The system also includes a transmitter operable to communicate with the computer. The transmitter also includes a wireless transceiver. The receiver and the transmitter are operable to perform two-way wireless communication with each other.
  • According to yet another embodiment of the present invention, a method of transmitting video content is provided. The method includes establishing a connection between a receiver and a display device. The receiver includes a first wireless transceiver, a video output, and an audio output. The method also includes establishing a connection between a transmitter and a computer. The transmitter includes a second wireless transceiver and memory and the transmitter is operable to operate in a first mode and a second mode. The method further includes uploading software from the memory of the transmitter to the computer while operating in the first mode and transmitting the video content from the transmitter to the receiver while operating in the second mode.
  • System Overview
  • FIG. 1 is a simplified illustration of elements of a communications system 100, according to an embodiment of the present invention. The communications system 100 includes a receiver 110 operable to communicate with a display device. The receiver 110, which may be a transceiver, includes the ability to both transmit and to receive data from a matched transceiver (i.e., transmitter 120). Because receiving data for display on the display device is the primary function of the receiver 110, it is referred to as a receiver, despite the fact that in some embodiments the receiver 110 includes the functionality of transmitting data as well. In one embodiment, the receiver 110 includes a wireless transceiver 350 as illustrated in FIG. 3. The receiver 110 also includes one or more video outputs and one or more audio outputs as described more fully below. As shown in FIG. 1, the receiver includes a High-Definition Multimedia Interface (HDMI) output 112 that carries both audio and video signals, as well as RCA outputs 114, including separate output ports for composite video and stereo audio (left and right). In another embodiment, component video outputs may be provided as appropriate to the particular application. Preferably, the RCA audio outputs will be active concurrently with the HDMI output so that the RCA audio outputs can be used in parallel with the HDMI output. The receiver includes a power port 111 to receive power from a power source and to power the various components of the receiver 110.
  • The communications system 100 also includes a transmitter 120. The transmitter 120, which may also be a transceiver, includes the ability to both transmit and receive data from a matched transceiver (i.e., receiver 110). Because transmitting data for subsequent display on the display device is, in some embodiments, the primary function of the transmitter 120, the transmitter 120 is referred to as a “transmitter,” despite the fact that the transmitter 120 includes the functionality of receiving data as well. In a particular embodiment, the transmitter 120 is a dongle including a connector 122 compliant with the Universal Serial Bus (USB) standard and operable to be inserted into a USB port of a computer, for example, a personal computer. As described in greater detail in FIG. 4, the transmitter 120 includes a wireless transceiver 450 that is operable to transmit data from the computer to the receiver 110. For example, the data may include video and audio data for display on the display device.
  • According to embodiments of the present invention, the receiver 110 and the transmitter 120 are pre-paired during the manufacturing process. Thus, when a user first sets up the communications systems, there is no need for the user to pair or define settings associated with the communication that occurs between the receiver 110 and the transmitter 120. This embodiment contrasts with conventional wireless networking equipment, for which a user typically needs to manually pair the various devices prior to use. As an example, in a conventional 802.11-based network, a user needs to set the Service Set Identifier (SSID), password, and/or other network parameters that enable the various network elements to communicate. In the embodiments described herein, such settings are pre-set at the time of manufacturing as part of the manufacturing process or at other time prior to delivery to the user. Thus, when the user first installs the equipment, the parameters necessary for two-way communications between the receiver 110 and the transmitter 120 are already set. As a result, the user is provided with a fully functioning communications system straight “out-of-the-box.”
  • In some embodiments, the communications system 100 may also include a remote control 130. The remote control is operable to communicate with receiver 110 and may be used to control the playback of video footage on the display device. Like the transmitter 120, the remote control 130 is also pre-paired with the receiver 110 prior to delivery to the user. In some embodiments, the remote control 130 is also able to control operation of the transmitter 120, although this feature is not required by embodiments of the present invention. As described in more detail in FIG. 2, the receiver 110, transmitter 120, and/or the remote control 130 provide a system used to view video footage stored in various manners, such as on a computer, stored on a remote site such as a web server, or the like.
  • The remote control 130 includes user input buttons including play, pause, fast forward, rewind, next track, previous track, volume up, volume down, mute, and the like. Other functionality as appropriate to the particular embodiment can be implemented in the remote control 130 as needed. For example, a “favorites” button may be provided that allows a user to mark a particular media item as a favorite. A signal is transmitted from the remote control 130 to the receiver 110 that indicates that a selected media item should be marked as a favorite. The receiver 110, then, transmits a signal to the transmitter 120 indicating that the selected media item should be marked as a favorite. The transmitter 120, in turn, conveys this information to the software executing on the computer 220 by sending a signal to the computer 220. The software executing on the computer 220 updates the metadata associated with a local copy of the selected media item to indicate that the selected media item should be marked as a favorite. If the selected media item is also stored on a remote server and is being accessed remotely, then metadata associated with the copy of the media item stored on the remote server is updated as well. As another example, another button may be provided on the remote control 130 that allows a user to mark a selected media item to be transmitted to a particular person or stored on a remote server. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
  • FIG. 2 is a simplified illustration of an exemplary use of the communications system, according to an embodiment of the present invention. As shown, the receiver 110 is connected to display device 210, for example, a television or other video display monitor. The embodiment illustrated in FIG. 2 utilizes an HDMI cable carrying both audio and video data from the receiver 110 to the display device 210. In one embodiment, in order to view content received by the receiver 110, the user may select an input on the display device 210 corresponding to the input connector to which the HDMI cable or other cable(s) is connected. In another embodiment, composite video and stereo audio RCA outputs, component video outputs, analog audio/visual outputs, or the like are utilized. In one embodiment, the receiver 110 communicates with the transmitter 120 as a dedicated solution. One of the benefits provided by embodiments of the present invention is that the various components of communications system 100 can be configured to not interact with other, non-system components and devices. In a typical use case of an embodiment of the invention, there may be additional wireless devices in the proximity of communication system 100. However, embodiments of the present invention provide a “walled garden” approach in which no configuration actions on the part of the user are needed. Because the receiver 110, the transmitter 120, and/or the remote control 130 are pre-paired prior to shipment from the manufacturer and/or delivery to the user, the user does not need to configure these devices and the user experience is more streamlined—the user just plugs-in the devices and they operate as intended. As an example, the receiver 110 is coupled to a television using an HDMI cable, the transmitter 120 is inserted into the USB port of a computer containing video files, and with no wireless setup actions, the user is able to watch the videos on the television. This contrasts sharply with conventional wireless networking system setup procedures.
  • Target customers for the products described herein include owners of digital video cameras. As described more fully in relation to FIG. 4, the transmitter 120 may includes software that is configured to access video footage stored on a computer or on a web server accessible through the Internet. In some embodiments, when the transmitter 120 is plugged into the computer for the first time, the software may be uploaded to and installed on the computer (automatically in some embodiments). Using the installed software, the user is able to access video footage or other media stored on the computer, transmit the media to the receiver 110, and view and/or listen to the media on the display device 210. In other embodiments, a user is able to download the appropriate software from the Internet.
  • The ease of installation and use enables users that are not particularly technology savvy to enjoy the benefits of more widely present video footage. As an example, it may be desirable to share videos on a user's computer with a family member without a digital video camera or a wireless network, but with a television, a computer, and an Internet connection. The family member purchases a system as described herein, couples the receiver 110 to the television and couples the transmitter 120 to the computer. After the installation of software resident on the transmitter, typically only requiring an acceptance of a click-through license agreement by the family member, the family member is able to receive videos from the user and then watch them on their television. In other implementations, a user account may be created or other setup procedures may be performed. Other content that is downloaded to the computer can also be viewed on the television, which is typically a more comfortable viewing environment than the computer, using the communications system described herein. It should be noted that various methods for identifying the receiver 110 as a network element may be used, as described in greater detail herein.
  • Embodiments of the present invention provide for a variety of sources of media for viewing using communications system 100. As an example, videos may be stored on the computer or on a web server accessible through the Internet. Additionally, in some embodiments, a user is able to define one or more channels and associate other users with these channels. Video content is then shared using these channels to the associated users.
  • Although the system illustrated in FIG. 2 includes receiver 110, other embodiments replace the receiver 110 with a router that is operable to communicate with the transmitter 120. The router can serve other functions than delivering content to the display device, for example, other wireless communications functions. The router in this embodiment is operable to interact with not only the transmitter but the software resident on the computer.
  • In still further embodiments, the receiver 110 may be replaced by any device that would typically be plugged into a computer and would typically require a driver, such as a computer peripheral (e.g., a printer or a scanner), among others. For example, a transmitter 120 (i.e., a dongle) may be provided that is configured to communicate with one or more of other devices. One or more drivers and/or software for the other devices may be stored in a mass storage portion of the transmitter 120. When the transmitter 120 is plugged-in to the computer, the transmitter 120 is detected as a mass storage device and the drivers and/or software stored in the mass storage portion may be automatically installed on the computer, as described herein. Once the drivers and/or software are installed and executed on the computer, the drivers and/or software may transmit a signal to the transmitter 120 (i.e., to the dongle) indicating to the transmitter 120 to switch from mass storage device mode to wireless mode. Again, the transmitter 120 may be configured to communicate with a single device or with multiple devices of the same or different types. One advantage of these embodiments is that manufacturing costs are reduced since a CD (compact disc) or DVD (digital versatile disc) that includes the drivers and/or software does not need to be shipped or sold with the transmitter 120. A second advantage is ease of installation, since no user input is required to install and configure the device.
  • Referring once again to the embodiment shown in FIG. 2, the display device 210 may show a user interface generated either by the receiver 110, the transmitter 120, the computer 220, or some combination thereof. As an example, the user interface displayed could be a version of software executing on the computer 220 modified for display on a television. Depending on the particular implementation, the processing load for generating the user interlace and processing of the video signal may be distributed between the receiver 110 and/or the combination of the transmitter 120 and/or computer 220. Since the computer typically has significant computing resources available, a specific embodiment utilizes the computer 220 to perform the vast majority of processing, merely relying on the receiver 110 to receive and display the received data. In this specific embodiment, the computer renders the information to be displayed as the user interface, the computer renders video footage at 30 frames per second (or another appropriate frame rate) that is broadcast to the television, and the like. Since a broadcast-ready video signal is transmitted to the receiver in this embodiment, the receiver only needs to pass this video signal through to the display device, greatly reducing the processing load on the receiver 110.
  • In another embodiment, at the other end of the processing spectrum, much of the processing may be performed in the receiver 110. In this alternative embodiment, the receiver 110 may have significant computing resources. Video processing, buffering, storage, and the like may be performed in the receiver. Other embodiments also fall at other points along the spectrum, dividing the processing tasks between the computer 220, the transmitter 120, and the receiver 110.
  • As an example use case, a user uses remote control 130 to control the receiver 110. The user interface is displayed on the display device 210 and two-way communication is established between the receiver 110 and the transmitter 120. Requests from the user may pass from the remote control 130 to the receiver 110, through the wireless connection to the transmitter 120, and then from the transmitter 120 to the computer 220. For an application executing on the computer 220, information related to the available videos (i.e., metadata) may be transmitted from the transmitter 120 to the receiver 110 and displayed on the display device 210. Using the remote control 130, the user may select a video to be played and the selected video footage may be transmitted from the computer 220 through the transmitter 120 to the receiver 110 and then displayed on the display device 210.
  • In various embodiments, metadata associated with the video content stored on the computer 220 or on the Internet is available to the system and can be used to sort, categorize, or otherwise manage the video content. As an example, if a particular video is marked as a favorite, given a name, placed in one or more particular folders, or the like, this information may be available to the user through the user interface displayed on the display device 210. The availability of this metadata contrasts with conventional media extenders in which only video content is available. Additionally, since embodiments of the present invention provide custom software solutions, the methods and systems described herein make available proprietary features such as user-defined channels that are not available using conventional techniques.
  • In one embodiment, the user interface displayed on the display device 210 is simple to use and requires little or no training. Some embodiments provide for customization of the user interface although this is not required by embodiments of the present invention. As an example, keyboard shortcuts could be included, although not used by all users. Additionally, in some embodiments, changes made by a user interacting with the software executing on the computer 220 may be reflected in the user interface displayed to the user on the display device 210. For example, one or more media items may be marked as “favorites” or “new.” Media items that are marked as new, in some embodiments, include those media items that have not yet been viewed.
  • In some embodiments, the communications channel between the transmitter 120 and the receiver 110 is provided in accordance with commercially available wireless communications standards. For example, using the IEEE 802.11n wireless standard, bandwidth suitable for high definition (HD) videos (e.g., 10 megabits per second) is provided. Other wireless standards providing suitable bandwidth can also be utilized. One of ordinary skill in the art would recognize many variations, modifications, and alternatives. For example, the bandwidth of the connection between the transmitter 120 and the receiver 110 may be limited to a predefined level when the content being transmitted over the communications channel is being transmitted from a remote server, e.g., 1 megabits per second. The predefined level, in some embodiments, may be configurable by the user.
  • In some implementations, the bandwidth of the communications channel can be conserved by performing some video processing at the receiver 110. For example, if video content is stored on the computer 220 at a resolution of 480 p, up-scaling could be performed on the receiver 110 to provide a 720 p signal for display on the display device 210 (e.g., the television). A benefit of using an HDMI connector to couple the receiver 110 and the display device 210 is that the television is able to scale video content received over an HDMI connection to a scale appropriate for the particular television. For example, if the television can display 1080 p video content and the content provided by the HDMI connection is 720 p, then the television can upscale the content to 1080 p for display.
  • Embodiments of the present invention provide for personalization of content provided in channels the user has established. For example, if a channel is associated with a hockey team of a user, the display on the display device 210 could be personalized with hockey-related themes or the like. The background of the user interface, generated either at the computer 220 or the receiver 110, could be hockey-based. More sophisticated environments and attributes related to hockey could also be provided, such as news or information feeds. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
  • According to embodiments of the present invention, the connection between the remote control 130 and the receiver 110 is a radio frequency (RF) connection so that line-of-sight is not required between the remote control 130 and the receiver 110. This feature enables the receiver 110 to be placed at a location behind other components, for example, at the back of an entertainment center in a user's home. Thus, the receiver 110 does not have to be a “front row” device, competing for shelf space with other audio-visual system components. In addition to non line-of-sight communications, the range for RF connections is typically greater than that available with infrared connections. The RF nature of the remote control 130 allows the remote control to also be used in conjunction with the transmitter 120, which may be coupled to a computer 220 that is not located in the room with the receiver 110 and display device 210. In an alternative embodiment, the remote control operates using infrared technology.
  • The pre-pairing of the remote control with the receiver also solves potential problems with cross-talk between adjacent systems. As an example, if a user is installing communications system 100 in an apartment complex in which another user has already installed a similar communications system, it would be undesirable to have one user's remote control controlling another user's receiver. The pre-pairing of the remote control and receiver during manufacturing prevents this undesirable cross-talk, thereby enhancing the user experience.
  • In one embodiment, the receiver is configured to operate in a “pass-through” mode. In the pass-through mode, the receiver is installed between another user device (e.g., a set-top box, a DVD player, or the like) and the display device (e.g., a television). The signal from the user device passes through the receiver during normal operation of the user device. However, when the receiver begins to receive data from the transmitter, a switch in the receiver switches the video path from the user device to the transmitter. In another embodiment, when the receiver is powered on, the receiver could switch the video path. In yet another embodiment, the switch includes a sensor responsive to incoming video signals and switches to the active video signal, with priority being given to video from the transmitter. In these embodiments, the user does not need to switch the input on the display device in order to view content received by the receiver. Referring to FIG. 1, an optional pass-through HDMI input 116 and optional pass-through RCA inputs 118 are illustrated. In other embodiments, these optional inputs are not utilized and data is received at the receiver using only the wireless connection to the transmitter.
  • In addition to switching from one video input to another video input in the pass-through configuration, overlay technologies are included within the scope of the present invention. Using these overlay technologies, a signal from a set-top box or other user device could be provided to the television, but overlaid with a signal from the transmitter. Typically, the overlaying of the signal would be performed using a processor in the receiver and would not involve processing of the video signal received from the set-top box, but merely overlaying of an additional signal. As an example, if a new video is available for viewing, a logo could be displayed on the television, overlaid on the video signal from the set-top box, indicating the availability of the new video. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
  • According to some embodiments of the present invention, status indicators 115 are provided on the receiver, through the user interface, or combinations thereof. As an example, LED status indicators 115 are illustrated on the receiver in FIG. 1 and may be used to indicate lack of connection to a paired device (e.g., a transmitter or remote control), presence of connection, but at a data rate unsuitable for video signals or certain types of video signals (e.g., HD signals), or the presence of a suitable connection, among others. Additional status indicators could be provided on the transmitter indicating similar or other characteristics. Moreover, status indicators could be provided through software on the computer, delivered to the user through the user interface.
  • It should be noted that communications both downstream (i.e., transmitter to receiver) and upstream (i.e., receiver to transmitter) are provided by embodiments of the present invention. In addition to control commands transmitted from the remote control to the receiver and then to the transmitter, status information is also transmitted upstream, providing the user with enhanced control in comparison with conventional systems.
  • Utilizing the system illustrated in FIG. 2, users can enjoy multimedia content after minimal setup requiring little technical know-how. The system includes one or more of the following features and benefits: (1) no cables between the TV and the computer; (2) no need for wireless network setup or configuration by the user; (3) no complex software installation or online setup; (4) no long delays, video download, or general “wait time;” and/or (5) completely secure (e.g., no one else can view personal videos). Once the system is operational, in some embodiments, the user can access some or all of the videos, movies, and/or photos stored on their computer, as well as online content accessible through the Internet. Using the remote control, users can easily play back videos on their TV as well as potentially interact with the computer, opening up many possibilities for future features and services.
  • The system illustrated in FIG. 2 can be characterized by a number of technical specifications. The following specifications are not intended to limit the scope of embodiments of the present invention but merely to provide an example of system specifications for a particular embodiment. Specifications for the overall system are provided in Table 1, specifications for the receiver are provided in Table 2, specifications for the transmitter are provided in Table 3, and specifications for the remote control are provided in Table 4.
  • TABLE 1
    Feature Specification
    Wireless Range Up to 200 ft with clear line of sight with up to 50 ft
    reduction per wall (construction material dependent)
    Wireless 12 Mbits/sec
    Bandwidth
    Wireless Proprietary streams; No access to computer through
    Security transmitter
    Wireless Compliance with FCC and WiFi requirements
    Interference
    Pairing Pre-pairing of receiver, transmitter, and remote control
    as a component of the manufacturing process
    Response No longer than 3 seconds of latency for starting
    Durations playback on the display device; Minimal latency for
    selection/navigation, preferably less than 1/10th of a
    second; Pause and continue playing - nearly
    instantaneous; Skip next/previous - up to 3 seconds;
    Enter new folder (populate one screen's worth of
    thumbnails) - nearly instantaneous; Display a screen's
    worth of folder names - nearly instantaneous; Boot time
    for receiver - up to 10 seconds; Initial sync or re-sync
    between transmitter and receiver - nearly instantaneous
    feedback that syncing is underway, syncing complete
    within 5 seconds.
    Localization Country specific
    Co-existence Multiple systems can co-exist within range of each
    other; no cross-talk between systems
    Updates Software and firmware update process similar to Flip
    camcorder products; Receiver updates are sent
    remotely via wireless connection; Remote control and
    transmitter are not anticipated to require firmware
    upgrades
    Video Overlay of graphics on video passed through receiver;
    Pass-through Notification of newly arrived videos
    Video Controls Play; Pause; Fast Forward; Rewind; Skip next/previous
    Out-of-the-box Components can be connected in any order; On-screen
    user guide (PC or TV) to assist with setup and/or
    experience troubleshooting; Signal strength indicator on receiver
    and/or shown graphically as a signal meter on the TV
    and/or PC as part of setup and troubleshooting
  • TABLE 2
    Feature Specification
    Inputs Optional HDMI; Optional RCA Composite Video +
    Stereo Audio; Power
    Outputs HDMI; RCA Composite Video + Stereo Audio; Optional
    DVI
    Optional Pass- RCA Composite Video + Stereo Audio pass-through;
    through HDMI pass-through; Pass-through functionality is active
    when receiver is not in use
    Display NTSC: 720 × 480 interlaced, 30 fps; PAL: 720 × 576
    Resolution interlaced, 25 fps; HDMI (US): 1280 × 720 progressive,
    30 fps; HDMI (EU): 1280 × 720 progressive, 25 fps
    TV Standards NTSC; PAL
    Status LED(s) OK (Wireless connection; Acceptable bandwidth);
    Reduced Bandwidth; (Wireless connection; Bandwidth
    lower than specification); No connection (No wireless
    connection); Power indicator
    File Format 640 × 480, 30 fps MPEG-4 AVI; 640 × 480, 30 fps
    Playback MPEG-4 AVI; 1280 × 720, 30 fps H.264 MP4;
    Compatibility 640 × 480, 30 fps H.264 MP4; 480 × 360 H.264 MP4;
    480 × 270 H.264 MP4; 1280 × 720, 30 fps H.264 MP4;
    640 × 480, 30 fps H.264 MP4
    Boot Time Less than 10 seconds
    Playback Mode Pause/Play/Previous Clip/Next Clip/Exit; Ability to mark
    favorites
    Screen Saver Plays videos with no audio
  • TABLE 3
    Feature Specification
    Range Non-line of sight (RF); Up to 50 ft
    Battery Life More than 1 year
    Battery Indicator Notification to receiver when batteries are low
    Buttons Up/Down/Left/Right; Select/Enter
    Universal Compatibility Programmable into universal remote controls
    Find my Remote Activated through software on computer; Beeps
    beeper in remote
  • TABLE 4
    Feature Specification
    Interface USB 2.0
    Power USB bus power
    Co-existence Can co-exist with Flip camcorder
    Storage 256 MB capacity; Pre-loaded with software
  • FIG. 3 is a simplified schematic diagram of a receiver 110, according to an embodiment of the present invention. The receiver 110 includes a power connector 310 configured to receive power from a power supply, such as a 110-volt electric supply. In one embodiment, a power port 111 on the side of the receiver 110, as illustrated in FIG. 1, is utilized as the power connector 310. The receiver 110 also includes processor 330 and transceiver 350, which is coupled to antenna 352. The transceiver 350 is operable to provide two-way communications with a matched transceiver in the transmitter 120. In some embodiments, the receiver 110 provides for two-way communications. However, since the dominant operation of the receiver is receiving video content transmitted by the transmitter 120, the nomenclature of “receiver” is used herein to describe this component of the communications system.
  • The receiver 110 includes one or more audio outputs 370 and one or more video outputs 372. The audio outputs 370 provide an audio signal to a display device, such as a television. The video outputs 372 provide a video signal to the display device. A wide variety of audio and video outputs are included within the scope of embodiments of the present invention. For example, the audio and video outputs can be combined in an HDMI output configured to connect to an HDMI cable. Since HDMI cables carry both audio and video signals, only a single cable is needed to couple the receiver 110 to the display device. In other applications, RCA component video outputs, optical-fiber based outputs, composite video outputs, S-Video outputs, or the like are utilized. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
  • Optional audio inputs 380 and video inputs 382 are illustrated in FIG. 3. These optional inputs, which correspond to optional HDMI input 116 and optional RCA inputs 118 illustrated in FIG. 1, are utilized, in some embodiments, when the receiver 110 is employed in a “pass-through” configuration. In a pass-through configuration, audio and video signals from a device, such as a set-top box, are provided to the audio in 380 and the video in 382, respectively, of the receiver 110, which then pass these signals to the audio out 370 and the video out 372, respectively, in a first mode of operation. Alternatively, when video content from the transmitter 120 is received by the transceiver 350, the signal passed to the audio and video out is changed to display the video content received through the wireless connection on the display device. In some embodiments, this is a second mode of operation. Thus, in configurations where the number of inputs to the display device is limited, only a single input or cable is needed to display content from either the other device or from the transmitter 120. The mechanism for transitioning from one input signal to another may depend on the particular application and should not be understood to limit embodiments of the present invention. For example, the receiver may include non-volatile memory 320 used to store settings and the like. In a particular embodiment of the present invention, the receiver 110 may be integrated into the display device, thus further reducing complexity and the need of providing a cable between the receiver 110 and the display device.
  • FIG. 4 is a simplified schematic diagram of a transmitter 120, according to an embodiment of the present invention. The transmitter 120 includes a USB connector 410 connected to processor 430. Although the USB connector 410 is illustrated in FIG. 4, the USB connector 410 is not required by embodiments of the present invention and other suitable communications protocols and standards can be utilized by other embodiments of the present invention. The ubiquity of the USB standard and the availability of USB ports, either on the computer or on a USB extender connected to the computer, make the use of a USB connection a suitable connector for embodiments of the present invention. The transmitter 120 also includes transceiver 450 and antenna 452, providing for two-way communications with the receiver 110 paired with the transmitter 120. In some embodiments, the transceiver 450 and antenna 452 provide for two-way communications. However, since the dominant operation of the transmitter 120 is transmitting video content to the receiver 110, the nomenclature of “transmitter” is used to describe this component of the communications system.
  • In some embodiments, when the transmitter 120 is coupled to computer 220 for the first time, the transmitter 120 may identify itself to the computer 220 as a mass storage device, such as a removable disk drive. In one embodiment, for instance, after the transmitter 120 is coupled to the computer 220, the transmitter 120 may identify itself as a removable disk drive to an operating system executing on the computer 220. The operating system can then treat the internal non-volatile memory 420 of the transmitter 120 like any other removable disk. This behavior is similar to the behavior discussed in relation to the camcorder described in U.S. patent application Ser. No. 11/497,039, filed on Jul. 31, 2006, the disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.
  • In one embodiment, a resident software application is stored in the non-volatile memory 420 of the transmitter 120. When a connection between the transmitter 120 and the computer 220 is detected by the computer 220, an operating system executing on the computer may automatically execute the resident software application. For example, a Windows® operating system may be configured to check the contents of the non-volatile memory of the transmitter for an “autoplay.inf” file upon detecting a connection between the transmitter and the computer. The “autoplay.inf” file then directs the operating system to the resident software application, which is stored in the non-volatile memory 420 of the transmitter 120. The operating system of the computer 220 then executes the resident software application.
  • In some embodiments, upon execution, the resident software application may check the computer 220 to determine whether required software components are available on the computer 220, and then install the software components in the computer 220 when the software components are not available on the computer 220. If appropriate software is already installed on the computer 220, then the resident software application may check the installed software to determine if the software is a current version and then update the computer, if needed. For example, the resident software application may determine whether certain compression/decompression algorithms (codecs) are available on the computer 220. If the resident software application determines that the codecs are not available on the computer 220, the resident software application may then automatically install the codecs on the computer 220 without additional user intervention. In other embodiments, the resident software application may wait for verification from a user before installing the software components. The resident software application may also install other software components such as software libraries or application files. The resident software, in one embodiment, may also cause data to be written to memory in the computer 220 for tracking purposes. For instance, the resident software may add entries or keys to the registry of a computer 220 running the Windows® operating system so that upon a subsequent connection to the same computer 220, the resident software application can simply check the registry entries or keys to determine which codecs or software components were previously installed. In still further embodiments, if the version of the resident software application stored in the non-volatile memory 420 is older than the version of the software application installed on the computer, then the resident software application stored in the non-volatile memory 420 may be over-written to update the software stored in the non-volatile memory 420 to the most recent version.
  • In one embodiment, the resident software application may produce a graphical user interface (GUI) on a display associated with the computer 220. The GUI may present a user with graphical controls to help the user to perform various tasks. Such tasks may include playing digital video footage present on the computer 220, and the like.
  • As described above, in some embodiments, during an initial connection, the transmitter 120 may identify itself to the computer 220 as a mass storage device and a resident software application present on the transmitter 120 may be used to install software on the computer 220. After completion of these tasks, the transmitter 120 may modify its own operation to function as a transmitter 120 of video footage. This dual-purpose use of transmitter 120 differs from conventional systems in which pluggable devices serve only one of the two roles.
  • In one embodiment, the processor 430 and switch 460 are operable to convert the use of the transmitter 120 from a mass storage device, as described above, to a wireless transceiver. Logic stored in the non-volatile memory 420 may be utilized in making this switch from the first state of operation (e.g., mass storage device mode) to the second state of operation (e.g., wireless transceiver mode). In an embodiment, after installation of the software on the computer 220, the transmitter 120 may “eject” itself, ceasing to function as a mass storage device, and may begin operation as a wireless transceiver in communication with receiver 110.
  • It should be noted that, in some embodiments, the transmitter 120 includes not only the functionality of switching from a mass storage device to a wireless transceiver, but also the functionality of switching back to a mass storage device as appropriate. For example, if after use with a first computer, the transmitter is moved to another computer, then the transmitter may repeat the processes described above, acting as a mass storage device, determining if appropriate software is installed, installing and/or updating the software if needed, and/or then switching into the wireless transceiver mode.
  • FIG. 5 is a flow diagram of method steps for operating a communications system, according to an embodiment of the present invention. The method 500 includes establishing a connection between a receiver and a display device (510). The receiver includes a first wireless transceiver, a video output, and an audio output. An exemplary receiver is illustrated as receiver 110 in FIG. 1 in which the video and audio outputs can be combined as an HDMI connector or kept separate in the form of component RCA video/audio outputs. In some embodiments, as described in relation to FIG. 1, the receiver provides for two-way communications. However, since the dominant operation of the receiver is receiving video content from the transmitter 120, the nomenclature of “receiver” is used to describe this component of the communications system. An example of a display device is a television. Establishing the connection between the receiver and the display device may take the form of connecting the two devices using one or more cables, for example, an HDMI cable.
  • The method 500 also includes establishing a connection between a transmitter and a computer (512). The transmitter includes a second wireless transceiver and a memory. An exemplary transmitter is transmitter 120 with USB connector 122 (i.e., a USB dongle) illustrated in FIG. 1. The transmitter is operable to operate in a first mode and a second mode. In some embodiments, as discussed in relation to FIG. 1, the transmitter provides for two-way communications. However, since the dominant operation of the transmitter is transmitting video content to the receiver 110, the nomenclature of “transmitter” is used to describe this component of the communications system.
  • The transmitter initially operates in a first mode associated with a mass storage device. Thus, when the transmitter is connected to the computer, for example, by plugging the USB connector of the transmitter into a USB port on the computer, the transmitter appears or is registered as a mass storage device in the operating system. In some embodiments, software stored on the memory of the transmitter can be uploaded and installed on the computer while the transmitter is operating in the first mode (514). This feature of the transmitter enables for distribution of desired software for use in conjunction with embodiments of the invention.
  • The method 500 also includes an optional process of modifying a state of the transmitter (516) from a first state to a second state. In the second state, the second wireless transceiver is activated and the mass storage device characteristics of the transmitter are turned off. This can be considered as dismounting or ejecting the mass storage device from the computer. Although the transmitter is not physically disconnected from the computer, the transmitter ceases to appear as a mass storage device in the operating system of the computer. This “ejection” operation is similar to ejecting a mass storage device through operating system commands, at which point the mass storage device ceases to be listed as an available disk. In alternative embodiments, the transmitter continues to be displayed as a mass storage device.
  • The method further includes transmitting the video content from the transmitter to the receiver while operating in the second mode (518). The second mode of operation continues while the transmitter is connected to the computer. The video content can be displayed on the display device (520) as an optional process.
  • As illustrated in FIG. 1, a remote control 130 is provided in some embodiments of the present invention. In these embodiments, the method 500 can include transmitting one or more control signals from the remote control to the receiver. In turn, the one or more control signals, some subset of the control signals, or additional control signals based on the one or more control signals, can be transmitted from the receiver to the transmitter. Thus, user control over software executing on the receiver or executing on the computer can be provided by use of the remote control. In alternative embodiments, the software application executing on the computer may be configured to allow the user to control the transmitter and/or receiver from the computer. For example, the user may cause a video to be displayed on the display device coupled to the receiver, which is in communication with the transmitter, by selecting the video from the software application executing on the computer.
  • It should be appreciated that the specific steps illustrated in FIG. 5 provide a particular method of transmitting video content according to an embodiment of the present invention. Other sequences of steps may also be performed according to alternative embodiments. For example, alternative embodiments of the present invention may perform the steps outlined above in a different order. Moreover, the individual steps illustrated in FIG. 5 may include multiple sub-steps that may be performed in various sequences as appropriate to the individual step. Furthermore, steps may be added or removed depending on the particular applications. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
  • Accessing Content
  • FIG. 6 is a flow diagram of method steps for accessing content via a receiver, according to an embodiment of the present invention. Persons skilled in the art will understand that, even though the method 600 is described in conjunction with the systems of FIGS. 1-4, any system configured to perform the steps of the method 600 illustrated in FIG. 6, in any order, is within the scope of the invention.
  • As shown, the method 600 begins at step 602, where a receiver receives a user request to play a media item. In one embodiment, as described above, the receiver may receive a signal transmitted from the remote control that indicates that a selected media item should be played on the display device coupled to the receiver. In alternative embodiments, the user request may originate at the computer coupled to the transmitter, and may be received by the receiver from the transmitter.
  • At step 604, the receiver transmits a request to a web server for a byte range associated with the media item. In one embodiment, the receiver executes a DHCP (Dynamic Host Configuration Protocol) server as part of an embedded system included in the receiver. For example, the receiver may include a memory and a processor, where the memory stores an operating system that is executed by the processor. The operating system may include a DHCP server that maintains a list of IP addresses and is configured to assign IP addresses to one or more client devices (i.e., transmitters) in communication with the receiver. Accordingly, in one embodiment, an IP address is assigned to the transmitter by the DHCP server executing on the receiver. The IP address may be a link-local address that provides a point-to-point communication link between the receiver and the transmitter, without providing the ability for the receiver to access the WAN (wide area network), LAN (local area network), or Internet to which the computer coupled to the transmitter has access.
  • Additionally, in some embodiments, the transmitter communicates with a web server executing in software on the computer system coupled to the transmitter. In one embodiment, the communication protocol between the transmitter and the web server is a HTTP (Hypertext Transfer Protocol) protocol, where the transmitter transmits HTTP requests to the web server and the web server responds to the HTTP requests with data. At step 604, in one embodiment, the receiver transmits a request to a web server via the transmitter for a byte range associated with the media item.
  • At step 606, the web server executing on the computer determines whether the media item associated with the request is stored locally in a memory included in the computer or remotely on a remote computer or server. If, at step 606, the web server executing on the computer determines that the media item associated with the request is stored locally on the computer, then the method 600 proceeds to step 608. At step 608, the web server executing on the computer determines whether the media item stored locally is in a format that is supported for playback by the receiver. In one embodiment, the receiver can only play back content having a format included in a first list of formats. For example, the first list of formats may include the .AVI (Audio Video Interleave) file format and the .MP4 (Moving Picture Experts Group (MPEG) 4) file format. Other file formats, such a the .WMV (Windows Media® Video) file format or the .MOV (Apple® QuickTime®) file format, may not be included in the first list of formats and may not be supported by the receiver. As an example, a video clip may have been recorded by a digital video camera in a native .AVI or .MP4 file format, both of which are supported by the receiver. Then, the video clip may be edited, thereby changing the file format of the edited clip to the .WMV or the .MOV file format. The original video clip is supported for playback by the receiver; whereas, the edited video clip is not supported for playback by the receiver.
  • If, at step 608, the web server executing on the computer determines that the media item stored locally is in a format that is supported for playback by the receiver, then the method 600 proceeds to step 618. If, at step 608, the web server executing on the computer determines that the media item stored locally is not in a format that is supported for playback by the receiver, then the method 600 proceeds to step 610.
  • At step 610, the computer transcodes the media item into a format supported by the receiver. Various implementations are within the scope of embodiments of the invention for transcoding the media item into a supported format. In one embodiment, a software application executing on the computer may include a low-priority thread that periodically checks for media items that need to be transcoded and, if found, transcodes the media items. In an alternative embodiment, the software application may automatically transcode a first portion of each media item. For example, the software application may transcode the first two-hundred (200) frames of a media item, while leaving the remaining frames not transcoded. When a particular media item is selected for playback, only then is the remainder of the media item transcoded. In still another embodiment, the software application does not transcode any portion of the media item until the media item is selected for playback by a user (i.e., “on-demand” transcoding).
  • Referring again to step 606, if the web server executing on the computer determines that the media item associated with the request is not stored locally and is stored remotely on a remote server, then the method 600 proceeds to step 612. At step 612, the web server executing on the computer determines whether the byte range associated with the media item included in the byte range request is stored or cached locally on the computer. In some embodiments, the media item may be stored remotely on a remote server. However, a local copy of the media item may already be cached on the computer. In still further embodiments, a portion of the media item is already cached on the computer. For example, the first half of a media item may be cached locally, but the second half of the media item is only stored remotely. At step 612, if the web server executing on the computer determines that the byte range associated with the media item included in the byte range request is cached locally, then the method 600 proceeds to step 618. If the web server executing on the computer determines that the byte range associated with the media item included in the byte range request is not cached locally, then the method proceeds to step 614.
  • At step 614, the web server opens a socket to the location of the remotely-stored media item. At step 616, the web server retrieves the bytes associated with the byte range request from the remote server. The method 600 then proceeds to step 618.
  • At step 618, the web server transmits the bytes associated with the byte range request to the receiver. At step 620, the web server pre-fetches other content based on the byte range request. In some embodiments, the web server may use heuristics to determine which byte ranges are likely to be requested based on previously-requested byte ranges. For example, a second byte range immediately following a first byte range within a single media item is likely to be requested following a request for the first byte range. In some embodiments, step 620 is optional and is omitted.
  • At step 622, the receiver receives the bytes requested from the web server via the transmitter. At step 624, the receiver outputs video and/or audio to a display device based on the received bytes. The method 600 then returns to step 604, described above, where the receiver requests another range of bytes.
  • Accordingly, by implementing byte range requests to playback content through the receiver, embodiments of the invention allow a user to “skip around” within a media item with good responsiveness. More specifically, any portion of the media item can be played back with little or no delay as though the media item were stored locally, even when the media item is stored remotely.
  • As described herein, a user may access, via the receiver coupled to the display device, local content stored on the computer coupled to the transmitter and remote content stored on a remote server. For example, the user may be a recipient of a “channel” that is associated with one or more media items and one or more recipients. The different media items associated with channel are also accessible via the receiver. For example, a user may log-in to an account with a username and password via the receiver or via the software application executing on the computer system. Accordingly, in various embodiments, the user is able to access via the receiver (1) local content stored on the computer coupled to the transmitter that is in communication with the receiver, (2) remote content for which the user is a “recipient” via a channel, and/or (3) remote content for which the user is the “sender” of a channel. Additionally, embodiments of the invention provide for “public channels.” A public channel is a channel to which any user can subscribe and become a recipient. An administrator maintains the public channel and may add additional content periodically. For example, a “Movie Trailers” public channel may be created and maintained by a movie studio, where the movie studio adds additional trailers to the public channel as they become available. A user may enroll as a recipient of the Movie Trailers public channel, providing the user with access to the media items in the channel via the receiver included in the communications system.
  • In addition, certain embodiments of the invention provide a “favorites” button on the remote control that allows a user to mark a particular media item as a favorite. FIG. 7 is a flow diagram of method steps for marking a media item as a favorite, according to an embodiment of the present invention. Persons skilled in the art will understand that, even though the method 750 is described in conjunction with the systems of FIGS. 1-4, any system configured to perform the steps of the method 750 illustrated in FIG. 7, in any order, is within the scope of the invention.
  • As shown, the method 750 begins at step 700, where a receiver provides a user with access to content (e.g., media items) stored locally in a memory included in the computer or remotely in a remote computer or server. In some embodiments, a user may log-in with a username and password into a media sharing account through the receiver or through the software application executing on the computer. The software application may be configured to determine a first set of media items stored locally in a memory included in the computer. The software application may also be configured to determine a second set of media items stored remotely in a remote server. Each media item in the second set of media items may be a media item for which the user is a “recipient” via a channel. In some embodiments, the second set of media item includes the media items that the user has included in a private channel for which the user is the only recipient.
  • At step 702, the receiver receives a user selection to mark a media item as a favorite. In one embodiment, a signal is transmitted from the remote control to the receiver that indicates that a selected media item should be marked as a favorite. At step 704, the receiver transmits information to the software application executing on the computer via the transmitter. In one embodiment, the receiver transmits a signal to the transmitter that is relayed by the transmitter to the software application.
  • At step 706, the software application executing on the computer updates the metadata associated with a local copy of the selected media item to indicate that the selected media item should be marked as a favorite. At step 708, the software application determines whether the media item being marked as a favorite is stored locally or remotely. If the software application determines that the media item being marked as a favorite is only stored locally, then the method 750 terminates.
  • If the software application determines that the media item being marked as a favorite is also stored remotely, then the method 750 proceeds to step 710, where the software application determines whether a network connection is available to the remote server. If, at step 710, no network connection is available, then the software application waits, at step 716, until an Internet connection is available.
  • Once an Internet connection is available, then the method 750 proceeds to step 712. At step 712, the software application transmits information associated with marking the media item as a favorite to the remote server. At step 714, the remote server updates the metadata associated with the remote copy of the selected media item to indicate that the selected media item should be marked as a favorite. Accordingly, if the user accesses the media item at a later time and/or from another location (e.g., via a web-based software application), the marking of the media item as a favorite is maintained and the media item remains marked as a favorite.
  • Various embodiments of the invention may be implemented as a program product for use with a computer system. The program(s) of the program product define functions of the embodiments (including the methods described herein) and can be contained on a variety of computer-readable storage media. Illustrative computer-readable storage media include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which alterable information is stored.
  • It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

Claims (22)

1. A computer-readable storage medium storing instructions that, when executed by a processor, cause a computer system to provide a user access to one or more media items, by performing the steps of:
receiving from a receiver device a data request for media data within a byte range associated with at least a portion of a first media item, wherein the computer system is part of a communications system that also includes a transmitter device configured to perform two-way wireless communications with the receiver device;
retrieving the media data; and
causing the media data to be transmitted to the receiver device via the transmitter device for playback or display on a display device coupled to the receiver device.
2. The computer-readable storage medium of claim 1, further comprising the step of determining whether the first media item is stored locally in a memory within the computer system or is stored on a computer system remote from the communications system.
3. The computer-readable storage medium of claim 2, wherein the first media item is stored on a computer system remote from the communications system, and further comprising the step of retrieving the media data from the computer system remote from the communications system.
4. The computer-readable storage medium of claim 3, wherein the step of retrieving the media data from the computer system remote from the communications system comprises opening a socket associated with the location of the first media item on the computer system remote from the communications system.
5. The computer-readable storage medium of claim 2, wherein the first media item is stored locally in a memory included in the computer system, and further comprising the step of transcoding the portion of the first media item into a data format supported by the receiver device.
6. The computer-readable storage medium of claim 5, wherein the data format supported by the receiver device comprises at least one of an MPEG-4 (Moving Picture Experts Group 4) file format and an AVI (Audio Video Interleave) file format.
7. The computer-readable storage medium of claim 5, further comprising the step of transcoding all of the first media item into the data format supported by the receiver device.
8. The computer-readable storage medium of claim 1, further comprising the step of transcoding the portion of the first media item into a data format supported by the receiver device prior to providing the user an option to playback the first media item via the receiver device.
9. The computer-readable storage medium of claim 1, further comprising the step of transcoding all of the first media item into a data format supported by the receiver device prior to providing the user an option to playback the first media item via the receiver device.
10. A method for accessing media items via a communications system, the method comprising:
receiving a user request to display a first media item on a display device;
transmitting a data request for media data within a byte range associated with at least a portion of the first media item to a web server executing on a computer system coupled to a transmitter device;
receiving the media data associated with the data request from the web server via the transmitter device; and
outputting the media data to the display device for playback or display.
11. The method of claim 10, wherein the data request comprises an HTTP (Hypertext Transfer Protocol) request.
12. The method of claim 10, wherein the user request is received from a remote control included in the communications system.
13. The method of claim 10, wherein the media data is video data.
14. A system for accessing media items, the system comprising:
a transmitter device coupled to a computer system;
a receiver device coupled to a display device and configured to:
receive a user request to display a first media item on the display device,
transmit a data request for media data within a byte range associated with at least a portion of the first media item to a web server executing on the computer system coupled to the transmitter device,
receive the media data associated with the data request from the web server via the transmitter device, and
output the media data to the display device for playback or display.
15. The system of claim 14, wherein a software application executing on the computer system is configured to determine whether the first media item is stored locally in a memory within the computer system or is stored on a computer system remote from the communications system.
16. The system of claim 15, wherein the first media item is stored on a computer system remote from the communications system, and the software application is further configured to retrieve the media data from the computer system remote from the communications system.
17. The system of claim 16, wherein retrieving the media data from the computer system remote from the communications system comprises opening a socket associated with the location of the first media item on the computer system remote from the communications system.
18. The system of claim 15, wherein the first media item is stored locally in a memory included in the computer system, and the software application is further configured to transcode the portion of the first media item into a data format supported by the receiver device.
19. The system of claim 18, wherein the data format supported by the receiver device comprises at least one of an MPEG-4 (Moving Picture Experts Group 4) file format and an AVI (Audio Video Interleave) file format.
20. The system of claim 18, further comprising the step of transcoding all of the first media item into the data format supported by the receiver device.
21. The system of claim 14, wherein a software application executing on the computer system is configured to transcode the portion of the first media item into a data format supported by the receiver device prior to providing the user an option to playback the first media item via the receiver device.
22. The system of claim 14, wherein a software application executing on the computer system is configured to transcode all of the first media item into a data format supported by the receiver device prior to providing the user an option to playback the first media item via the receiver device.
US12/576,171 2009-05-19 2009-10-08 Accessing content via a receiver coupled to a transmitter Abandoned US20100299709A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17968809P true 2009-05-19 2009-05-19
US12/576,171 US20100299709A1 (en) 2009-05-19 2009-10-08 Accessing content via a receiver coupled to a transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/576,171 US20100299709A1 (en) 2009-05-19 2009-10-08 Accessing content via a receiver coupled to a transmitter

Publications (1)

Publication Number Publication Date
US20100299709A1 true US20100299709A1 (en) 2010-11-25

Family

ID=43124359

Family Applications (7)

Application Number Title Priority Date Filing Date
US12/538,073 Active 2030-10-27 US8281343B2 (en) 2009-05-19 2009-08-07 Management and display of video content
US12/576,154 Active 2031-07-13 US8682262B2 (en) 2009-05-19 2009-10-08 Dual function device
US12/576,149 Abandoned US20100299697A1 (en) 2009-05-19 2009-10-08 Accessing content via a receiver coupled to a transmitter
US12/576,171 Abandoned US20100299709A1 (en) 2009-05-19 2009-10-08 Accessing content via a receiver coupled to a transmitter
US12/576,165 Abandoned US20100296654A1 (en) 2009-05-19 2009-10-08 Configuring a network connection
US12/576,167 Active 2030-02-19 US8352616B2 (en) 2009-05-19 2009-10-08 Configuring a network connection
US12/577,007 Abandoned US20100299712A1 (en) 2009-05-19 2009-10-09 Dual Function Device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12/538,073 Active 2030-10-27 US8281343B2 (en) 2009-05-19 2009-08-07 Management and display of video content
US12/576,154 Active 2031-07-13 US8682262B2 (en) 2009-05-19 2009-10-08 Dual function device
US12/576,149 Abandoned US20100299697A1 (en) 2009-05-19 2009-10-08 Accessing content via a receiver coupled to a transmitter

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/576,165 Abandoned US20100296654A1 (en) 2009-05-19 2009-10-08 Configuring a network connection
US12/576,167 Active 2030-02-19 US8352616B2 (en) 2009-05-19 2009-10-08 Configuring a network connection
US12/577,007 Abandoned US20100299712A1 (en) 2009-05-19 2009-10-09 Dual Function Device

Country Status (2)

Country Link
US (7) US8281343B2 (en)
WO (3) WO2010135348A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176060A1 (en) * 2010-01-21 2011-07-21 Qualcomm Incorporated Data feedback for broadcast applications
US20140192698A1 (en) * 2013-01-04 2014-07-10 Qualcomm Incorporated Selectively adjusting a rate or delivery format of media being delivered to one or more multicast/broadcast single frequency networks for transmission
US20140240591A1 (en) * 2013-02-22 2014-08-28 Comcast Cable Communications, Llc Methods And Systems For Processing Content
US20160205362A1 (en) * 2014-07-29 2016-07-14 Zhejiang Shenghui Lighting Co., Ltd Smart led lighting device and system thereof

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281343B2 (en) * 2009-05-19 2012-10-02 Cisco Technology, Inc. Management and display of video content
CN102461198B (en) * 2009-06-05 2014-09-03 夏普株式会社 Software updating system, electronic devices, and software updating method
US8214545B2 (en) * 2009-08-12 2012-07-03 Streaming Networks (Pvt) Ltd. Multi-functional USB apparatus with auto-configuration and USB battery cap
US8929887B2 (en) * 2009-08-20 2015-01-06 T-Mobile Usa, Inc. Shared book reading
US8654952B2 (en) 2009-08-20 2014-02-18 T-Mobile Usa, Inc. Shareable applications on telecommunications devices
US8751329B2 (en) * 2009-08-20 2014-06-10 T-Mobile Usa, Inc. Licensed content purchasing and delivering
US8825036B2 (en) * 2009-08-20 2014-09-02 T-Mobile Usa, Inc. Parent telecommunication device configuration of activity-based child telecommunication device
US20110115990A1 (en) * 2009-11-13 2011-05-19 Joe Bhaktiar Display system
US8233802B2 (en) * 2009-12-31 2012-07-31 At&T Intellectual Property I, L.P. Portable infrared control liaison
US8750854B2 (en) * 2010-03-25 2014-06-10 T-Mobile Usa, Inc. Parent-controlled episodic content on a child telecommunication device
US8483738B2 (en) * 2010-03-25 2013-07-09 T-Mobile Usa, Inc. Chore and rewards tracker
US9167194B2 (en) * 2010-04-12 2015-10-20 Dell Products, Lp Method for generating a unique service set identifier on a wireless projector
US8522283B2 (en) 2010-05-20 2013-08-27 Google Inc. Television remote control data transfer
US8667148B1 (en) * 2010-10-04 2014-03-04 Netblazr Inc. Minimal effort network subscriber registration
US8069465B1 (en) * 2011-01-05 2011-11-29 Domanicom Corp. Devices, systems, and methods for managing multimedia traffic across a common wireless communication network
JP5675373B2 (en) 2011-01-06 2015-02-25 任天堂株式会社 Communication system, an information processing apparatus, a communication program, and communication method
JP5688297B2 (en) * 2011-01-06 2015-03-25 任天堂株式会社 Communication system, an information processing apparatus, a communication program, and communication method
US20130067346A1 (en) * 2011-09-09 2013-03-14 Microsoft Corporation Content User Experience
US8825931B2 (en) * 2011-11-04 2014-09-02 International Business Machines Corporation KVM switch system capable of wirelessly transmitting keyboard-mouse-data between wired input/output devices based on a security clearance level
US8543398B1 (en) 2012-02-29 2013-09-24 Google Inc. Training an automatic speech recognition system using compressed word frequencies
US8725918B2 (en) 2012-02-29 2014-05-13 Apple Inc. Cable with fade and hot plug features
US9007526B2 (en) * 2012-04-02 2015-04-14 Lg Electronics Inc. Upgradeable display device and method for controlling the same
US8374865B1 (en) 2012-04-26 2013-02-12 Google Inc. Sampling training data for an automatic speech recognition system based on a benchmark classification distribution
US8805684B1 (en) 2012-05-31 2014-08-12 Google Inc. Distributed speaker adaptation
US8571859B1 (en) 2012-05-31 2013-10-29 Google Inc. Multi-stage speaker adaptation
US8972970B2 (en) * 2012-07-02 2015-03-03 Taiwan Gomet Technology Co. Ltd. Firmware overwriting method in paired use wireless microphone and receiver
US9565622B2 (en) * 2012-07-05 2017-02-07 Qualcomm Incorporated Detecting services provided by a wireless node before device discovery and connection establishment
CN102841801B (en) * 2012-07-11 2017-12-12 中兴通讯股份有限公司 Method and apparatus for firmware upgrade free drive terminal
US8554559B1 (en) 2012-07-13 2013-10-08 Google Inc. Localized speech recognition with offload
US9092455B2 (en) 2012-07-17 2015-07-28 Microsoft Technology Licensing, Llc Image curation
GB2504696B (en) * 2012-08-06 2015-01-21 Nvidia Corp Modem installation
CN103748585A (en) 2012-08-17 2014-04-23 弗莱克斯电子有限责任公司 Intelligent Television
US9123333B2 (en) 2012-09-12 2015-09-01 Google Inc. Minimum bayesian risk methods for automatic speech recognition
US20140150037A1 (en) * 2012-11-29 2014-05-29 Alexandros Cavgalar Gateway device, system and method
US20150358363A1 (en) * 2013-02-07 2015-12-10 Lg Electronics Inc. Method and apparatus for controlling session between devices on network including multiple devices
GB2510882A (en) * 2013-02-14 2014-08-20 Graham Henry Thomas Interface apparatus
USD717748S1 (en) * 2013-07-25 2014-11-18 Sumitomo Electric Networks, Inc. Set top box
USD717747S1 (en) * 2013-07-25 2014-11-18 Sumitomo Electric Networks, Inc. Set top box
US20150189059A1 (en) * 2013-12-27 2015-07-02 Motorola Mobility Llc HDMI Communication System for Electronic Devices and Methods Therefor
CN104378758B (en) * 2014-05-12 2016-08-17 腾讯科技(深圳)有限公司 The method of connecting the access point, and a terminal server
CN105334908A (en) * 2014-06-12 2016-02-17 英业达科技有限公司 display screen
US9787576B2 (en) 2014-07-31 2017-10-10 Microsoft Technology Licensing, Llc Propagating routing awareness for autonomous networks
US9836464B2 (en) 2014-07-31 2017-12-05 Microsoft Technology Licensing, Llc Curating media from social connections
US9414417B2 (en) 2014-08-07 2016-08-09 Microsoft Technology Licensing, Llc Propagating communication awareness over a cellular network
US9794496B2 (en) * 2014-08-12 2017-10-17 High Sec Labs Ltd Meeting room power and multimedia center device
US9692699B2 (en) 2014-10-30 2017-06-27 Intel Corporation Apparatus, system and method of protecting a service identifier
TWI578797B (en) * 2015-01-20 2017-04-11 Awind Inc
US20160350058A1 (en) * 2015-06-01 2016-12-01 Intel Corporation Wireless display adapter device
US10069793B2 (en) * 2015-08-26 2018-09-04 Tatung Company Identity verification method, internet of thins gateway device, and verification gateway device using the same
US10129499B1 (en) * 2015-12-07 2018-11-13 Gopro, Inc. Securing wireless network credentials without a user login
CN105812793B (en) * 2016-03-28 2018-07-24 深圳市九洲电器有限公司 Kinds of set-top box and audio and video output detection system

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020059642A1 (en) * 2000-11-14 2002-05-16 Russ Samuel H. Networked subscriber television distribution
US6720860B1 (en) * 2000-06-30 2004-04-13 International Business Machines Corporation Password protection using spatial and temporal variation in a high-resolution touch sensitive display
US20040177132A1 (en) * 2003-03-05 2004-09-09 Tong Zhang Installation procedure for wireless human interface device
US20050060436A1 (en) * 2003-09-12 2005-03-17 Juergen Kienhoefer Method and system for providing wireless communications between electronic devices
US20050066072A1 (en) * 2003-09-19 2005-03-24 Canon Kabushiki Kaisha Peripheral control device and method for controlling peripheral device
US20050134735A1 (en) * 2003-12-23 2005-06-23 Genesis Microchip Inc. Adaptive display controller
US20050155077A1 (en) * 2004-01-08 2005-07-14 Mediamall Technologies Media on-demand systems
US20050278755A1 (en) * 2004-06-09 2005-12-15 Broadcom Corporation Video data processing system with integrated high speed connection capacity
US20060002352A1 (en) * 2004-06-30 2006-01-05 Canon Kabushiki Kaisha Information processing device, printing device, printing system, system setting method, storage medium storing computer-readable program, and program
US20060015929A1 (en) * 2004-02-20 2006-01-19 Vbox Communications Ltd. USB interface module for TV broadcasting
US20060083404A1 (en) * 2004-10-19 2006-04-20 Canon Kabushiki Kaisha Electronic device and information processing apparatus and control method thereof, and computer program and computer-readable storage medium
US20060227759A1 (en) * 2004-09-14 2006-10-12 Bohm Mark R Peripheral Sharing USB Hub
US20070106764A1 (en) * 2005-11-08 2007-05-10 Carl Mansfield System and method for device configuration using a portable flash memory storage device with an infrared transmitter
US20070135866A1 (en) * 2005-12-14 2007-06-14 Welch Allyn Inc. Medical device wireless adapter
US20070245058A1 (en) * 2006-04-14 2007-10-18 Henry Wurzburg Method for automatically switching usb peripherals between usb hosts
US20070255868A1 (en) * 2006-04-26 2007-11-01 Cisco Technology, Inc. (A California Corporation) Method and system for managing a network device using a slave USB interface
US20080005262A1 (en) * 2006-06-16 2008-01-03 Henry Wurzburg Peripheral Sharing USB Hub for a Wireless Host
US20080071935A1 (en) * 2004-06-10 2008-03-20 Microsoft Corporation Self-Installing Computer Peripherals
US7511848B2 (en) * 2004-10-18 2009-03-31 Microsoft Corporation Method and system for configuring an electronic device
US20090091656A1 (en) * 2007-10-05 2009-04-09 Sony Corporation Display device and transmitting device
US20090313675A1 (en) * 2008-06-13 2009-12-17 Embarq Holdings Company, Llc System and Method for Distribution of a Television Signal
US20100077441A1 (en) * 2005-07-22 2010-03-25 Genevieve Thomas Buffering content on a handheld electronic device
US20100077443A1 (en) * 2008-09-23 2010-03-25 Asustek Computer Inc. Electronic System and Method for Driving Electronic Device
US8024420B2 (en) * 2005-06-13 2011-09-20 Sony Computer Entertainment Inc. Content delivery apparatus and system
US20110250932A1 (en) * 2005-03-28 2011-10-13 Sound Id Personal Sound System Including Multi-Mode Ear Level Module with Priority Logic

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69840782D1 (en) * 1998-01-02 2009-06-04 Cryptography Res Inc Leak-resistant cryptographic method and apparatus
US6819677B1 (en) * 1999-02-08 2004-11-16 Sigmatel, Inc. Method and apparatus for recovering data that was transported utilizing multiple data transport protocols
US6704824B1 (en) * 1999-07-27 2004-03-09 Inline Connection Corporation Universal serial bus adapter with automatic installation
JP4553429B2 (en) 1999-11-25 2010-09-29 パナソニック株式会社 Disk device
US20080147964A1 (en) * 2004-02-26 2008-06-19 Chow David Q Using various flash memory cells to build usb data flash cards with multiple partitions and autorun function
US6788687B2 (en) * 2001-10-30 2004-09-07 Qualcomm Incorporated Method and apparatus for scheduling packet data transmissions in a wireless communication system
WO2003047235A2 (en) * 2001-11-26 2003-06-05 United Video Properties, Inc. Interactive television program guide for recording enhanced video content
US6931132B2 (en) * 2002-05-10 2005-08-16 Harris Corporation Secure wireless local or metropolitan area network and related methods
FR2847060B1 (en) * 2002-11-12 2005-02-11 Somfy Sas Process for securisation of the recording mode of a device driving an element ensuring the safety and / or comfort of a building
US6882729B2 (en) * 2002-12-12 2005-04-19 Universal Electronics Inc. System and method for limiting access to data
EP1618598A4 (en) * 2003-04-11 2008-07-16 Flexiworld Technologies Inc Autorun for integrated circuit memory component
US20050182946A1 (en) * 2004-02-13 2005-08-18 Will Shatford Fast hashing function for pseudo-random generator
US7853663B2 (en) * 2004-03-12 2010-12-14 Riip, Inc. Wireless management system for control of remote devices
US20050239445A1 (en) * 2004-04-16 2005-10-27 Jeyhan Karaoguz Method and system for providing registration, authentication and access via broadband access gateway
US7593532B2 (en) * 2004-04-22 2009-09-22 Netapp, Inc. Management of the retention and/or discarding of stored data
US7617513B2 (en) * 2005-01-04 2009-11-10 Avocent Huntsville Corporation Wireless streaming media systems, devices and methods
KR100692522B1 (en) * 2005-01-10 2007-03-09 삼성전자주식회사 the apparatus for generating the visual channel and the operating method thereof
US20060209892A1 (en) * 2005-03-15 2006-09-21 Radiospire Networks, Inc. System, method and apparatus for wirelessly providing a display data channel between a generalized content source and a generalized content sink
JP2006261938A (en) * 2005-03-16 2006-09-28 Sony Corp Communications system, communications apparatus and method, recording medium, and program
US20060282571A1 (en) 2005-04-25 2006-12-14 Perception Digital Limited Multimedia devices with enhanced functionality
US20070021053A1 (en) * 2005-07-20 2007-01-25 Marrah Jeffrey J Wireless satellite radio distribution network
US7579809B2 (en) * 2005-08-04 2009-08-25 Staccato Communications, Inc. Rechargeable wireless adapters
US20070064681A1 (en) * 2005-09-22 2007-03-22 Motorola, Inc. Method and system for monitoring a data channel for discontinuous transmission activity
WO2007037478A1 (en) * 2005-09-30 2007-04-05 Matsushita Electric Industrial Co., Ltd. Wireless transmission system
US20070297612A1 (en) * 2005-10-21 2007-12-27 Meir Feder Method, device and system of encrypted wireless communication
US20070155358A1 (en) * 2005-10-31 2007-07-05 Black & Decker Inc. Rechargeable audio/video link and docking station
JP4836241B2 (en) * 2005-11-10 2011-12-14 任天堂株式会社 Communication system, a communication program, and communication terminal
US8135880B2 (en) 2006-03-31 2012-03-13 Cypress Semiconductor Corporation USB mass storage locking
US20070256126A1 (en) * 2006-04-14 2007-11-01 Ewan1, Inc. Secure identification remote and dongle
WO2008019595A1 (en) * 2006-08-11 2008-02-21 Shanda Computer (Shanghai) Co., Ltd. A system and method of television internet and interactive entertainment, and a pc box and tv box
WO2008033507A2 (en) * 2006-09-14 2008-03-20 Hickman Paul L Content server systems and methods
JP4835345B2 (en) * 2006-09-19 2011-12-14 ソニー株式会社 Radio communication device, radio communication method, radio communication system and a computer program
US8973072B2 (en) * 2006-10-19 2015-03-03 Qualcomm Connected Experiences, Inc. System and method for programmatic link generation with media delivery
US8799521B2 (en) * 2006-11-29 2014-08-05 Sony Corporation System and method for receiving control commands at a peripheral device
US20080148057A1 (en) * 2006-12-19 2008-06-19 Ohanae, Inc. Security token
TWI330990B (en) * 2007-01-31 2010-09-21 Bluepacket Comm Co Ltd
US8213908B2 (en) * 2007-04-05 2012-07-03 Microsoft Corporation Systems and methods for pairing bluetooth devices
TWI403145B (en) * 2007-08-16 2013-07-21 Ind Tech Res Inst Authentication system and method thereof for wireless networks
US8064599B2 (en) * 2007-08-29 2011-11-22 Red Hat, Inc. Secure message transport using message segmentation
US20090217335A1 (en) * 2008-02-27 2009-08-27 Richard Sai Kit Wong Apparatus and methods for network access
US8081991B2 (en) * 2008-05-06 2011-12-20 The Johns Hopkins University Wireless based positioning method and apparatus
WO2009150492A1 (en) * 2008-06-11 2009-12-17 Freescale Semiconductor, Inc. Method and apparatus for enabling communication between a first device and at least one further device
US20100095342A1 (en) * 2008-08-06 2010-04-15 Belkin International, Inc. Wireless content transmission and control
US9405939B2 (en) * 2008-10-07 2016-08-02 Arm Limited Data processing on a non-volatile mass storage device
US8281343B2 (en) 2009-05-19 2012-10-02 Cisco Technology, Inc. Management and display of video content

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720860B1 (en) * 2000-06-30 2004-04-13 International Business Machines Corporation Password protection using spatial and temporal variation in a high-resolution touch sensitive display
US20020059642A1 (en) * 2000-11-14 2002-05-16 Russ Samuel H. Networked subscriber television distribution
US20040177132A1 (en) * 2003-03-05 2004-09-09 Tong Zhang Installation procedure for wireless human interface device
US20050060436A1 (en) * 2003-09-12 2005-03-17 Juergen Kienhoefer Method and system for providing wireless communications between electronic devices
US20050066072A1 (en) * 2003-09-19 2005-03-24 Canon Kabushiki Kaisha Peripheral control device and method for controlling peripheral device
US20050134735A1 (en) * 2003-12-23 2005-06-23 Genesis Microchip Inc. Adaptive display controller
US20050155077A1 (en) * 2004-01-08 2005-07-14 Mediamall Technologies Media on-demand systems
US20060015929A1 (en) * 2004-02-20 2006-01-19 Vbox Communications Ltd. USB interface module for TV broadcasting
US20050278755A1 (en) * 2004-06-09 2005-12-15 Broadcom Corporation Video data processing system with integrated high speed connection capacity
US20080071935A1 (en) * 2004-06-10 2008-03-20 Microsoft Corporation Self-Installing Computer Peripherals
US20060002352A1 (en) * 2004-06-30 2006-01-05 Canon Kabushiki Kaisha Information processing device, printing device, printing system, system setting method, storage medium storing computer-readable program, and program
US20060227759A1 (en) * 2004-09-14 2006-10-12 Bohm Mark R Peripheral Sharing USB Hub
US7511848B2 (en) * 2004-10-18 2009-03-31 Microsoft Corporation Method and system for configuring an electronic device
US20060083404A1 (en) * 2004-10-19 2006-04-20 Canon Kabushiki Kaisha Electronic device and information processing apparatus and control method thereof, and computer program and computer-readable storage medium
US20110250932A1 (en) * 2005-03-28 2011-10-13 Sound Id Personal Sound System Including Multi-Mode Ear Level Module with Priority Logic
US8024420B2 (en) * 2005-06-13 2011-09-20 Sony Computer Entertainment Inc. Content delivery apparatus and system
US20100077441A1 (en) * 2005-07-22 2010-03-25 Genevieve Thomas Buffering content on a handheld electronic device
US20070106764A1 (en) * 2005-11-08 2007-05-10 Carl Mansfield System and method for device configuration using a portable flash memory storage device with an infrared transmitter
US20070135866A1 (en) * 2005-12-14 2007-06-14 Welch Allyn Inc. Medical device wireless adapter
US20070245058A1 (en) * 2006-04-14 2007-10-18 Henry Wurzburg Method for automatically switching usb peripherals between usb hosts
US20070255868A1 (en) * 2006-04-26 2007-11-01 Cisco Technology, Inc. (A California Corporation) Method and system for managing a network device using a slave USB interface
US20080005262A1 (en) * 2006-06-16 2008-01-03 Henry Wurzburg Peripheral Sharing USB Hub for a Wireless Host
US20090091656A1 (en) * 2007-10-05 2009-04-09 Sony Corporation Display device and transmitting device
US20090313675A1 (en) * 2008-06-13 2009-12-17 Embarq Holdings Company, Llc System and Method for Distribution of a Television Signal
US20100077443A1 (en) * 2008-09-23 2010-03-25 Asustek Computer Inc. Electronic System and Method for Driving Electronic Device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176060A1 (en) * 2010-01-21 2011-07-21 Qualcomm Incorporated Data feedback for broadcast applications
US20140192698A1 (en) * 2013-01-04 2014-07-10 Qualcomm Incorporated Selectively adjusting a rate or delivery format of media being delivered to one or more multicast/broadcast single frequency networks for transmission
US9351128B2 (en) * 2013-01-04 2016-05-24 Qualcomm Incorporated Selectively adjusting a rate or delivery format of media being delivered to one or more multicast/broadcast single frequency networks for transmission
US20140240591A1 (en) * 2013-02-22 2014-08-28 Comcast Cable Communications, Llc Methods And Systems For Processing Content
US9648320B2 (en) * 2013-02-22 2017-05-09 Comcast Cable Communications, Llc Methods and systems for processing content
US20160205362A1 (en) * 2014-07-29 2016-07-14 Zhejiang Shenghui Lighting Co., Ltd Smart led lighting device and system thereof

Also Published As

Publication number Publication date
US8281343B2 (en) 2012-10-02
WO2010135346A1 (en) 2010-11-25
US8352616B2 (en) 2013-01-08
US20100299697A1 (en) 2010-11-25
US20100297964A1 (en) 2010-11-25
US20100296654A1 (en) 2010-11-25
US8682262B2 (en) 2014-03-25
US20100299417A1 (en) 2010-11-25
US20100295994A1 (en) 2010-11-25
US20100299712A1 (en) 2010-11-25
WO2010135337A1 (en) 2010-11-25
WO2010135348A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5128491B2 (en) Integrated multimedia, entertainment, communications, and control systems, as well as a method of generating a programmable services performed by the system
US9473744B2 (en) Method and apparatus for providing user input back channel in audio/video system
KR101442441B1 (en) Intelligent remote control system
CA2763413C (en) Media bridge apparatus and methods
EP1793570B1 (en) Phone with television remote control functionality
US7140033B1 (en) Methods and systems for controlling consumer electronics external devices via data delivered to a device
US20050015805A1 (en) Power line home network
US9294797B2 (en) Methods, systems, and products for control of devices
US20130290848A1 (en) Connected multi-screen video
US20040090984A1 (en) Network adapter for remote devices
US20070136778A1 (en) Controller and control method for media retrieval, routing and playback
US20120047532A1 (en) Methods and Apparatus for Accessing External Devices From a Television Receiver Utilizing Integrated Content Selection Menus
CN101467447B (en) Remotely controllable media distribution device
CN103024522B (en) The method of managing content and an image using the same display device
JP5873006B2 (en) How to share the selected user and the audiovisual content
US9473324B2 (en) Home automation system and method including remote media access
US8844824B2 (en) Laptop based television remote control
US8286210B2 (en) HDMI switching technology for the coupling of consumer electronic control and/or non-consumer electronic control devices in an audio/visual environment
US8713614B2 (en) Audiovisual multi-room support
JP4483788B2 (en) Remote control system, the remote commander and the remote operation method, the remote controller controlling target devices and computer systems,
EP2048882A1 (en) Display apparatus
US10178429B2 (en) Aggregated control and presentation of media content from multiple sources
US20140033260A1 (en) Shared Television Sessions
JP2006227843A (en) Content information management system, content information management device, content information management method and computer program
DK2522127T3 (en) Systems and methods for providing a guide to a media application functionality with a wireless communication device

Legal Events

Date Code Title Description
AS Assignment

Owner name: CISCO TECHNOLOGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:O CONNOR, MICHAEL DENIS;REEL/FRAME:023354/0287

Effective date: 20091007