US20100296999A1 - Ozonated capacitive deionization process - Google Patents

Ozonated capacitive deionization process Download PDF

Info

Publication number
US20100296999A1
US20100296999A1 US12/805,303 US80530310A US2010296999A1 US 20100296999 A1 US20100296999 A1 US 20100296999A1 US 80530310 A US80530310 A US 80530310A US 2010296999 A1 US2010296999 A1 US 2010296999A1
Authority
US
United States
Prior art keywords
water
separation means
cell
delivering
desalination cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/805,303
Inventor
Robert L. Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WATER RESOURCES INTERNATIONAL Ltd
Original Assignee
Campbell Applied Physics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Campbell Applied Physics Inc filed Critical Campbell Applied Physics Inc
Priority to US12/805,303 priority Critical patent/US20100296999A1/en
Assigned to CAMPBELL APPLIED PHYSICS INC. reassignment CAMPBELL APPLIED PHYSICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMPBELL, ROBERT L.
Assigned to WATER RESOURCES INTERNATIONAL LTD reassignment WATER RESOURCES INTERNATIONAL LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMPBELL APPLIED PHYSICS, INC
Publication of US20100296999A1 publication Critical patent/US20100296999A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Definitions

  • This patent pertains to a process for ozonating and deionizing a specific source of water to yield potable water for drinking and agricultural purposes.
  • Capacitive DEIONIZATION is not new, yet it has not had a huge commercial success due to the high cost of implementation.
  • Another reason for the lack of commercial success is the historical problem of contamination of capacitive deionization units by organic compounds and high ionic loads both of which are alleviated by the ozonation and separation steps prior to the capacitive deionization. When these problems are eliminated, one obtains longer useful life for the equipment, reduced power consumption, and faster regeneration of the CD unit.
  • the grandfather patent in the field is Farmer, U.S. Pat. No. 5,425,858 issued Jun. 20, 1995 to Joseph Farmer of Lawrence Livermore Laboratory, which patent is assigned to the Regents of the University of California. It is titled “Method and apparatus for capacitive deionization, electrochemical purification and regeneration of electrodes.”
  • CDT Systems of Dallas Tex. has licensed the aforementioned Farmer patent as well as other Lawrence Livermore patents pertaining to the impregnation of a carbon paper support with a water-resorcinol-formaldehyde solution, and then polymerizing the resorcinol formaldehyde resin, extracting the water, and then heating the polymerized resin/paper structure to convert the resin to a micro porous carbon aerogel supported on the paper. While the original process was and still remains costly, CDT has achieved significant reductions in cost to permit wider adoption of the capacitive deionization process using carbon aerogels in specialized situations.
  • Coal bed methane exists in areas where the dominant chemistry of the water in a coal seam is sodium bicarbonate and where the coal seam is buried deeply enough to maintain sufficient water pressure to hold the gas in place. Since Coal Bed Methane hereinafter CBM travels with ground water in coal seams, extraction of CBM for commercial use involves pumping available water from the seam in order to reduce the water pressure that holds gas in the seam. CBM has very low solubility in water and readily separates as pressure decreases, allowing it to be piped out of the well separately from the water. Water moving from the coal seam to the well bore encourages gas migration toward the well.
  • One very specific application of the process of this invention relates to the generation of water suitable for both domestic and agricultural purposes from coal bed methane gas water by a specialized form of capacitive deionization followed by possible further treatment to reduce the salinity. Not only is the water ultimately produced by this process suitable for agriculture but it is suitable for human consumption as well.
  • Coal bed methane [CBM] containing water which is suitable for almost nothing as produced from coal seams as a result of CBM extraction, is collected, is then ozonated in a reactor to reduce organic content, oxidize the iron content from +2 to +3, that is ferrous to ferric, and to oxidize the manganese content from +2 to +4, that is manganous to manganic.
  • the water after such first treatment, which still contains dissolved sodium and other ions is run through a reactor/separator, then through a filtration step, and then is subjected to capacitive deionization, to yield clean water, which then may be treated further to adjust the sodium content to render the water suitable for domestic and agricultural purposes.
  • the water purification system of this invention be operated near the CBM extraction facility.
  • FIG. 1 is a operations diagram of the process of this invention.
  • FIG. 2 is a simplified black box diagram of the process of the invention.
  • FIG. 3 is a diagram that illustrates the operational principles of a capacitive desalination plant.
  • This Coutette reactor technology is believed to be originally patented under auspices of the Oak Ridge National Laboratory, Oak Ridge Tenn.
  • Injector 15 has an input line 14 from a plasma chemical reactor 17 , which may hereinafter be called a PCR.
  • a plasma chemical reactor 17 which may hereinafter be called a PCR.
  • PCR plasma chemical reactor
  • Applicant uses a PCR to generate ozone, which ozone is delivered by pipe 14 to the MazzeiTM injector.
  • the Mazzei injector creates a vacuum to suck the ozone from the plasma chemical reactor. This negates the requirement of having to pump ozone to a reaction zone, as ozone is quite corrosive to piping.
  • the Mazzei injector draws the ozone into a small pipe for mixture with a finite amount of water, the concentrated water-ozone mix is then delivered to the main pipe, usually a 4 inch pipe as opposed to a 1 inch pipe for the initial input. The further diluted ozone-water mix is then delivered to the sedimentation tank or Couette Reactor/separator 23 .
  • the Mazzei injector creates the most minute micro-bubbles and is therefore the preferred piece of equipment.
  • the Ferrous iron with a valance of plus 2 is oxidized to Ferric iron with a valance of +3.
  • the manganese ion present as Mn+2 is oxidized to the higher manganic ion with a valance of +4.
  • These oxidized ions form dissolved or soluble metallo-organic compounds both stay in solution and for the most part form compounds which can be separated out.
  • a Plasma Chemical Reactor is the preferred apparatus for ozone generation, any apparatus that generates ozone can be utilized in this reclamation process.
  • the sedimentation tank, 23 or an equivalent acting apparatus such as a cyclonic separator or a Couette reactor/separator, which ever is used, is generally wider at the top and tapers to a narrower bottom for ease of removal of solids.
  • the separation means 23 used generically here for any of the 3 apparatuses—, has two inputs one from the injector for CBM (coal bed methane) water and one for input from a SAR tank, line 51 .
  • CBM coal bed methane
  • SAR will be discussed in further detail infra with respect to the discussion of the SAR tank 53 .
  • the tapering downward shape permits mass that accumulates due to gravity to collect in a smaller space, thus rendering it easier to collect.
  • Moist waste product containing ferric oxide and manganic oxide is removed through a port at the bottom of the sedimentation tank and is piped via pipes and pump 25 to a conventional sedimentation pond 53 .
  • a fluid port connected to pipes and pump 27 delivers the water containing dissolved solids to a rotating screen filter 29 .
  • Micro-screen rotating drum filters are an alternative to sand filtration especially when excessive waste water is a concern, as here.
  • the filtering process of these rotating screen filters captures particles on a screen fabric while letting the water pass through. They are designed with few moving parts to ensure long life and low operational costs, with minimal maintenance.
  • Hydrotech® One brand of such products known to applicant is Hydrotech®, and another is Orival®.
  • the captured solids are moved by pipes and pumps 49 from the rotating screen filter 29 to the sedimentation pond 53 .
  • the sedimentation tank 23 also receives fluid from SAR tank 43 via pipe 51 , 51 A to help dilute the water in the sedimentation tank 23 , some of which is exiting port 25 with the solid waste.
  • water from the SAR tank 43 also enters the rotating screen filter via pipe line 51 , 51 B near the egress end. See FIG. 1 .
  • Each bank can easily have from 6 to 10 capacitive desalination stations, or even more which alternate between an operation cycle and a cleaning cycle.
  • One such bank is designated 39 A and the other 39 B in FIG. 1 .
  • the capacitive desalination technology (CDT)—works in two half cycles, wherein the pairs of spaced electrodes are first polarized to separate solids from water, and then de-polarized to backwash the collected solids away such that the polarized cycle can commence.
  • CDT brackish water or other non-potable water is pumped between pairs of high surface area carbon electrodes, such as those called aerogels, which electrodes are held at a potential difference of about 1.3 volts+/ ⁇ Ions present and other charged particles such as microorganisms bind to and are retained at the electrode of an opposing charge.
  • Typical ions that can separated in such manner include Ca, Mg, and Na—calcium, magnesium and sodium respectively.
  • Part of the exiting water also goes via piping 45 A and 45 B respectively through valve system 37 back to each cell bank via piping 35 B and 35 A. See FIG. 1 .
  • Fluid from the SAR tank 43 also flows through the same valve system 37 to the respective cell bank via the same piping 35 A and 35 B.
  • valve system 37 provides both access and egress from the CDT cells.
  • SAR sodium anion reduction. Rather it stands for sodium adsorption ratio. It is an expression of relative activity of sodium ions in the exchange reactions with soil. This ratio measures the relative concentration of sodium ion to calcium and magnesium.
  • SAR Sodium ion content divided by the square root of the sum of Ca ion and Mg ion divided by 2.
  • the SAR tank includes a packed ion exchange column of calcium carbonate to further reduce the sodium content as the sodium containing water is passed therethrough. The operation of SAR tanks is generally well understood by those skilled in the art.
  • the procedure also includes the steps of recycling some of the output from one or both of the at least capacitive desalination cell and some of the output from the S.A.R. tank, back through a valve system into the at least one desalination cell for cell cleaning purposes. Some of the output from the S.A.R. tank can also be sent back to both the sedimentation tank and the filter station, if desired. Again see FIG. 1 .

Abstract

Water from coal bed methane production which is suitable for almost nothing, is ozonated in a reactor to oxidize the iron content from +2 to +3, that is from ferrous to ferric, and to oxidize the manganese content from +2 to +4. The water after such first treatment is run through a separation means and then through a rotating filter, and then subjected to capacitive deionization, to yield clean water, which is then treated further to adjust he sodium content to render the water suitable for domestic and agricultural purposes. Some of the produced water is run back through the capacitive deionization cells when no voltage is applied to clean the cells for the next voltage application cycle. Some of the water produced may also be run back through the separation means to help clean out the crud.

Description

    RELATIONSHIP TO OTHER PATENT APPLICATIONS
  • This application is a divisional application of U.S. Ser. No. 12/454010, filed May 12, 2009, now U.S. Pat. No. ______.
  • FIELD OF INVENTION
  • This patent pertains to a process for ozonating and deionizing a specific source of water to yield potable water for drinking and agricultural purposes.
  • BACKGROUND OF THE INVENTION
  • Capacitive DEIONIZATION is not new, yet it has not had a huge commercial success due to the high cost of implementation. Another reason for the lack of commercial success is the historical problem of contamination of capacitive deionization units by organic compounds and high ionic loads both of which are alleviated by the ozonation and separation steps prior to the capacitive deionization. When these problems are eliminated, one obtains longer useful life for the equipment, reduced power consumption, and faster regeneration of the CD unit. The grandfather patent in the field is Farmer, U.S. Pat. No. 5,425,858 issued Jun. 20, 1995 to Joseph Farmer of Lawrence Livermore Laboratory, which patent is assigned to the Regents of the University of California. It is titled “Method and apparatus for capacitive deionization, electrochemical purification and regeneration of electrodes.”
  • It is well known throughout California and other parts of the western USA that obtaining reliable and plentiful supply of clean water is becoming more and more difficult, especially in, view of the recent drought years of 2006 and 2007 winters. Not only in the USA but in Africa, Australia and the middle east, there are huge water availability problems. For this reason Israel a little country has become a big player in the water desalination industry.
  • CDT Systems of Dallas Tex. has licensed the aforementioned Farmer patent as well as other Lawrence Livermore patents pertaining to the impregnation of a carbon paper support with a water-resorcinol-formaldehyde solution, and then polymerizing the resorcinol formaldehyde resin, extracting the water, and then heating the polymerized resin/paper structure to convert the resin to a micro porous carbon aerogel supported on the paper. While the original process was and still remains costly, CDT has achieved significant reductions in cost to permit wider adoption of the capacitive deionization process using carbon aerogels in specialized situations.
  • It is also known to the art that high sodium ion content is detrimental to agriculture. The NaCl content when high affects the permeability of the soil by rain or other irrigation water. Sodium when present in soil tends to replace calcium and magnesium according to the periodic table from the soil and the sodium causes dispersion of soil particles thus reducing the ease of cultivation and permeability of the soil to permit moisture to seep down to plant roots. The soil becomes hard and compact. Other known problems caused by excess sodium in irrigation water include formation of crusted seed beds, short term saturation of the surface soil, while water fails to sink down to root hairs. The pH goes up and this may be bothersome or evenly deadly to some plants.
  • In the USA, Australia and England and other countries, there is much coal produced, most of which is used for power generation. Coal bed methane exists in areas where the dominant chemistry of the water in a coal seam is sodium bicarbonate and where the coal seam is buried deeply enough to maintain sufficient water pressure to hold the gas in place. Since Coal Bed Methane hereinafter CBM travels with ground water in coal seams, extraction of CBM for commercial use involves pumping available water from the seam in order to reduce the water pressure that holds gas in the seam. CBM has very low solubility in water and readily separates as pressure decreases, allowing it to be piped out of the well separately from the water. Water moving from the coal seam to the well bore encourages gas migration toward the well. But the capture of this methane gas creates a lot of water that is unsuitable for agriculture or other domestic uses. This water which is known as coal bed methane gas water, is also known by the term, PRODUCED WATER, and it must be purified before it can used. CBM water also contains a high amount of salinity, and since people don't like the taste of salt water, even if the water is pure from microbes and other toxics, the salt content must be reduced or eliminated. Not only is the high sodium content a taste problem, it is also a health problem when ingested in large quantities. Salt water's only domestic use is as a gargle, for sore throats But this is more than a taste issue, it is a health issue. Soil destruction also takes place due to the SAR effect.
  • But why is this purified high salinity water unsuitable for agricultural purposes?
  • Salinity becomes a problem when enough salts accumulate in the root zone to negatively affect plant growth. Excess salts in the root zone hinder plant roots from withdrawing water from surrounding soil. This lowers the amount of water available to the plant, regardless of the amount of water actually in the root zone. For example, when plant growth is compared in two identical soils with the same moisture levels, one soil receiving salty water and the other receiving salt-free water, plants are able to use more water from the soil receiving salt-free water. Although the water is not held tighter to the soil in saline environments, the presence of salt in the water causes plants to exert more energy extracting water from the soil. The main point is that excess salinity in soil water can decrease plant available water and cause plant stress.
  • One very specific application of the process of this invention relates to the generation of water suitable for both domestic and agricultural purposes from coal bed methane gas water by a specialized form of capacitive deionization followed by possible further treatment to reduce the salinity. Not only is the water ultimately produced by this process suitable for agriculture but it is suitable for human consumption as well.
  • SUMMARY OF THE INVENTION
  • Coal bed methane [CBM] containing water, which is suitable for almost nothing as produced from coal seams as a result of CBM extraction, is collected, is then ozonated in a reactor to reduce organic content, oxidize the iron content from +2 to +3, that is ferrous to ferric, and to oxidize the manganese content from +2 to +4, that is manganous to manganic. The water after such first treatment, which still contains dissolved sodium and other ions is run through a reactor/separator, then through a filtration step, and then is subjected to capacitive deionization, to yield clean water, which then may be treated further to adjust the sodium content to render the water suitable for domestic and agricultural purposes. For economic reasons, it is suggested that the water purification system of this invention be operated near the CBM extraction facility.
  • It is an object therefore to provide a process for ozonating coal bed methane produced water.
  • It is a second object to provide a mode of treating water formerly having a content of Fe and manganese in their higher oxidation states, separated and filtered, prior to being subjected to capacitive deionization.
  • It is a third object to adjust the salt content, IE. the NaCl content to render such water potable and suitable for agriculture.
  • Other objects of the invention will in part be obvious and will in part appear hereinafter. The invention accordingly comprises the process possessing the series of steps, and combination of elements, as well as the product of the process, all of which are exemplified in the following detailed disclosure, and the scope of the application of which will be indicated in the claims.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a operations diagram of the process of this invention.
  • FIG. 2 is a simplified black box diagram of the process of the invention.
  • FIG. 3 is a diagram that illustrates the operational principles of a capacitive desalination plant.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The discussion commences at FIG. 1. Coal Bed Methane produced water, 11 from any coal mine, which normally would be deemed a hazardous material, is collected, and then transported by pipe 13, and pumped 13 as may be necessary into a Mazzei injector, 15, a multi-patented device made by the Mazzei Injector Company, LLC of Bakersfield, Calif. and the mixture is then delivered to a sedimentation tank 23 or to a Couette reactor/separator 23, for continued simultaneous ozonation and separation of solids. This Coutette reactor technology is believed to be originally patented under auspices of the Oak Ridge National Laboratory, Oak Ridge Tenn.
  • Injector 15 has an input line 14 from a plasma chemical reactor 17, which may hereinafter be called a PCR. These devices are known to the art from such patents as U.S. Pat. No. 4,013,415 and U.S. Pat. No. 6,846,467 among others. Applicant uses a PCR to generate ozone, which ozone is delivered by pipe 14 to the Mazzei™ injector. In operation the Mazzei injector creates a vacuum to suck the ozone from the plasma chemical reactor. This negates the requirement of having to pump ozone to a reaction zone, as ozone is quite corrosive to piping. In actual operation, the Mazzei injector draws the ozone into a small pipe for mixture with a finite amount of water, the concentrated water-ozone mix is then delivered to the main pipe, usually a 4 inch pipe as opposed to a 1 inch pipe for the initial input. The further diluted ozone-water mix is then delivered to the sedimentation tank or Couette Reactor/separator 23.
  • While there are other means for delivering ozone from its source of creation, the Mazzei injector creates the most minute micro-bubbles and is therefore the preferred piece of equipment.
  • Here in the diluted ozone water mix, the Ferrous iron with a valance of plus 2 is oxidized to Ferric iron with a valance of +3. The manganese ion present as Mn+2 is oxidized to the higher manganic ion with a valance of +4. These oxidized ions form dissolved or soluble metallo-organic compounds both stay in solution and for the most part form compounds which can be separated out. While a Plasma Chemical Reactor is the preferred apparatus for ozone generation, any apparatus that generates ozone can be utilized in this reclamation process.
  • The sedimentation tank, 23, or an equivalent acting apparatus such as a cyclonic separator or a Couette reactor/separator, which ever is used, is generally wider at the top and tapers to a narrower bottom for ease of removal of solids. The separation means 23—used generically here for any of the 3 apparatuses—, has two inputs one from the injector for CBM (coal bed methane) water and one for input from a SAR tank, line 51. Prior to discussing the SAR tank, it should be pointed out that the Couette Reactor/separator allows for the use of a lower quantity of ozone than do the other two separation means. This apparatus offers the advantage of being a continuous reactor with high throughput and is compact and easy to use.
  • The term SAR will be discussed in further detail infra with respect to the discussion of the SAR tank 53. The tapering downward shape permits mass that accumulates due to gravity to collect in a smaller space, thus rendering it easier to collect. Moist waste product containing ferric oxide and manganic oxide is removed through a port at the bottom of the sedimentation tank and is piped via pipes and pump 25 to a conventional sedimentation pond 53.
  • A fluid port connected to pipes and pump 27 delivers the water containing dissolved solids to a rotating screen filter 29. Micro-screen rotating drum filters, are an alternative to sand filtration especially when excessive waste water is a concern, as here. The filtering process of these rotating screen filters captures particles on a screen fabric while letting the water pass through. They are designed with few moving parts to ensure long life and low operational costs, with minimal maintenance. One brand of such products known to applicant is Hydrotech®, and another is Orival®.
  • The captured solids are moved by pipes and pumps 49 from the rotating screen filter 29 to the sedimentation pond 53. Note also that the sedimentation tank 23 also receives fluid from SAR tank 43 via pipe 51,51A to help dilute the water in the sedimentation tank 23, some of which is exiting port 25 with the solid waste. Note further that water from the SAR tank 43 also enters the rotating screen filter via pipe line 51,51B near the egress end. See FIG. 1.
  • Water exiting the rotating screen filter passes through a gate valve 31 to split the flow to two banks or sets of capacitive desalination cells. Each bank can easily have from 6 to 10 capacitive desalination stations, or even more which alternate between an operation cycle and a cleaning cycle. One such bank is designated 39A and the other 39B in FIG. 1.
  • Reference is made to FIG. 3 which sets forth the operating principles of this technology. The capacitive desalination technology—(CDT)—works in two half cycles, wherein the pairs of spaced electrodes are first polarized to separate solids from water, and then de-polarized to backwash the collected solids away such that the polarized cycle can commence. In CDT brackish water or other non-potable water is pumped between pairs of high surface area carbon electrodes, such as those called aerogels, which electrodes are held at a potential difference of about 1.3 volts+/−Ions present and other charged particles such as microorganisms bind to and are retained at the electrode of an opposing charge. Thus cations, go to the anode, or negative electrode. Typical ions that can separated in such manner include Ca, Mg, and Na—calcium, magnesium and sodium respectively.
  • The same concept holds true for anions which are negatively charged. They are attracted to the positive electrode. Typical anions include chloride, nitrate and silicate, and sulfate ions. This attraction half cycle is called the active cycle. The ions stick to the electrode plates and the clarified water passes from the cell. This last activity takes place through pipes and pumps 41A, and 41B to the SAR tank 43.
  • Part of the exiting water also goes via piping 45A and 45B respectively through valve system 37 back to each cell bank via piping 35B and 35A. See FIG. 1. Fluid from the SAR tank 43 also flows through the same valve system 37 to the respective cell bank via the same piping 35A and 35B.
  • When and as the electrodes have reached near their capacity in ion content, the applied electrical potential is removed. The ions become unbound from their respective electrodes, and are flushed out of the cell during the depolarization cycle by the incoming water entering via piping 35A, 35B, from both the exudate of the respective cell and from the SAR tank. This concentrated waste product goes back through the valve system 37 to the evaporation pond or other collection location 53. Thus it is seen that the valve system 37 provides both access and egress from the CDT cells.
  • The discussion now moves to the SAR tank 43 seen in the lower right corner of FIG. 1. In order to make this coal bed methane potable and suitable for agriculture, it is necessary to reduce the sodium ion content dissolved therein. This is because excess sodium in water can cause the crusting of seed beds, temporary saturation of surface soil thus preventing permeation of the water, and the sodium can contribute to increased levels of plant disease, soil erosion, and cause high pH in the soil and water. Fruits, nuts citrus and avocados are especially sensitive to high levels of sodium in the water.
  • Contrary to popular belief, SAR does NOT stand for sodium anion reduction. Rather it stands for sodium adsorption ratio. It is an expression of relative activity of sodium ions in the exchange reactions with soil. This ratio measures the relative concentration of sodium ion to calcium and magnesium. SAR=Sodium ion content divided by the square root of the sum of Ca ion and Mg ion divided by 2. The SAR tank, includes a packed ion exchange column of calcium carbonate to further reduce the sodium content as the sodium containing water is passed therethrough. The operation of SAR tanks is generally well understood by those skilled in the art.
  • It is seen from FIG. 1 that the procedure also includes the steps of recycling some of the output from one or both of the at least capacitive desalination cell and some of the output from the S.A.R. tank, back through a valve system into the at least one desalination cell for cell cleaning purposes. Some of the output from the S.A.R. tank can also be sent back to both the sedimentation tank and the filter station, if desired. Again see FIG. 1.
  • Since certain changes may be made in the above process without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description and shown in the accompanying drawings, shall be interpreted as illustrative only and not in a limiting sense.

Claims (16)

1. A process for producing pure water for agricultural and domestic purposes from coal bed methane derived water, which process comprises:
a) delivering CBM production water to a reaction chamber,
b) introducing ozone into the reaction chamber,
c) reacting the ozone with the CBM production water, to oxidize metal ions therein,
d) delivering the ozonated CBM water to a separation means,
e) filtering the liquid output from the separation means, and removing the oxidized metallic ions and compounds,
f) filtering the water from the separation means,
g) delivering the filtered water to at least one capacitive desalination cell for treatment,
h) activating the at least one desalination cell to produce desalinated water,
i) delivering the product water from the at least one desalination cell to a S.A.R. tank for further sodium content reduction.
2. The process of claim 1 wherein the reaction chamber is a Mazzei™ injector.
3. The process of claim 1 wherein the filtering step comprises passing the water from step e) through a rotating screen filter.
4. The process of claim 3 further including the step of removing the separated out solids from the rotating screen filter.
5. The process of claim 1 further including the step of recycling some of the output from the at least capacitive desalination cell back through a valve system into the at least one desalination cell for cell cleaning purposes.
6. The process of claim 1 further including the step of recycling some of the output from the S.A.R. tank back through a valve system into the at least one desalination cell for cell cleaning purposes.
7. The process of claim 1 further including the step of recycling some of the output from both the at least one capacitive desalination cell and some of the output from the S.A.R. tank, back a valve system into the at least one desalination cell for cell cleaning purposes.
8. The process of claim 1 wherein the separation means of step d) is a sedimentation tank.
9. The process of claim 1 wherein the separation means of step d) is a cyclonic separator.
10. The process of claim 1 wherein the separation means of step d) is a Couette reactor/separator.
11. Desalinated water prepared by the process of claim 1.
12. Desalinated water prepared by the process of claim 3.
13. A process for producing pure water for agricultural and domestic purposes from coal bed methane derived water, which process comprises:
a) delivering CBM production water to a reaction chamber which is a Mazzei injector,
b) introducing ozone into the reaction chamber,
c) reacting the ozone with the CBM production water, to oxidize metal ions therein,
d) delivering the ozonated CBM water to a separation means,
e) filtering the liquid output from the separation means, and removing the oxidized metallic ions and compounds,
f) filtering the water from the separation means, wherein the filtering step comprises passing the water from step e) through a rotating screen filter,
g) delivering the filtered water to at least one capacitive desalination cell for treatment,
h) activating the at least one desalination cell to produce desalinated water,
i) delivering the product water from the at least one desalination cell to a S,A,R, tank for further sodium content reduction
14. The process of claim 13 further including the step of recycling some of the output from the S.A.R. tank back through a valve system into the at least one desalination cell for cell cleaning purposes.
15. The process of claim 13 wherein the separation means of step d) is a Couette reactor/separator.
16. Desalinated water prepared by the process of claim 13.
US12/805,303 2009-05-12 2010-07-22 Ozonated capacitive deionization process Abandoned US20100296999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/805,303 US20100296999A1 (en) 2009-05-12 2010-07-22 Ozonated capacitive deionization process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/454,010 US7767097B1 (en) 2009-05-12 2009-05-12 Ozonated capacitive deionization process & product water
US12/805,303 US20100296999A1 (en) 2009-05-12 2010-07-22 Ozonated capacitive deionization process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/454,010 Division US7767097B1 (en) 2009-05-12 2009-05-12 Ozonated capacitive deionization process & product water

Publications (1)

Publication Number Publication Date
US20100296999A1 true US20100296999A1 (en) 2010-11-25

Family

ID=42358776

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/454,010 Expired - Fee Related US7767097B1 (en) 2009-05-12 2009-05-12 Ozonated capacitive deionization process & product water
US12/805,303 Abandoned US20100296999A1 (en) 2009-05-12 2010-07-22 Ozonated capacitive deionization process
US12/805,393 Abandoned US20100297000A1 (en) 2009-05-12 2010-07-28 Product water from an ozonated capacitive deionization process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/454,010 Expired - Fee Related US7767097B1 (en) 2009-05-12 2009-05-12 Ozonated capacitive deionization process & product water

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/805,393 Abandoned US20100297000A1 (en) 2009-05-12 2010-07-28 Product water from an ozonated capacitive deionization process

Country Status (1)

Country Link
US (3) US7767097B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043811A (en) * 2011-10-11 2013-04-17 北京中宇科博环保工程有限公司 High-efficient process system for slime water through drifting separation
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220371A1 (en) * 2010-03-11 2011-09-15 Halliburton Energy Services, Inc. System and method for fluid treatment
US9038725B2 (en) 2012-07-10 2015-05-26 Halliburton Energy Services, Inc. Method and system for servicing a wellbore
CN102718351A (en) * 2012-07-12 2012-10-10 中国环境科学研究院 Device and method for sewage desalting
CN109429606A (en) * 2018-11-12 2019-03-08 谢宁汉 Harmful heavy metal ions minimizing technology in planting process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013415A (en) * 1974-06-07 1977-03-22 Igor Sergeevich Burov Plasma-chemical reactor for treatment of disperse materials
US4276155A (en) * 1977-11-07 1981-06-30 Occidental Petroleum Corporation Method for recycling the water used in a process for recovering glass from municipal waste
US5236590A (en) * 1991-11-21 1993-08-17 Chevron Research And Technology Company Process for removing dissolved organics from aqueous compositions
US5547584A (en) * 1994-03-17 1996-08-20 Electronic Drilling Control, Inc. Transportable, self-contained water purification system and method
US5685994A (en) * 1994-10-20 1997-11-11 Johnson; Dennis E. J. Method for water treatment and purification using gas ion plasma source and disinfectant metal ion complexes
WO2001089656A1 (en) * 2000-05-22 2001-11-29 Abb Power T & D Company Inc. Capacitive deionization cell power supply
US20020170858A1 (en) * 2001-05-21 2002-11-21 John Maddux System and method for removing contaminants from water
US20020175128A1 (en) * 2000-03-22 2002-11-28 Great Lakes Clean Water Limited Partnership Water treatment system and method
US20040174657A1 (en) * 2001-04-18 2004-09-09 Andelman Marc D. Charge barrier flow-through capacitor
US6846467B1 (en) * 2000-06-27 2005-01-25 Mikhail Rudolfovich Predtechensky Plasma-chemical reactor
US6929753B1 (en) * 2003-09-22 2005-08-16 Aqua-Envirotech Mfg., Inc. Coal bed methane wastewater treatment system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013415A (en) * 1974-06-07 1977-03-22 Igor Sergeevich Burov Plasma-chemical reactor for treatment of disperse materials
US4276155A (en) * 1977-11-07 1981-06-30 Occidental Petroleum Corporation Method for recycling the water used in a process for recovering glass from municipal waste
US5236590A (en) * 1991-11-21 1993-08-17 Chevron Research And Technology Company Process for removing dissolved organics from aqueous compositions
US5547584A (en) * 1994-03-17 1996-08-20 Electronic Drilling Control, Inc. Transportable, self-contained water purification system and method
US5685994A (en) * 1994-10-20 1997-11-11 Johnson; Dennis E. J. Method for water treatment and purification using gas ion plasma source and disinfectant metal ion complexes
US20020175128A1 (en) * 2000-03-22 2002-11-28 Great Lakes Clean Water Limited Partnership Water treatment system and method
WO2001089656A1 (en) * 2000-05-22 2001-11-29 Abb Power T & D Company Inc. Capacitive deionization cell power supply
US6846467B1 (en) * 2000-06-27 2005-01-25 Mikhail Rudolfovich Predtechensky Plasma-chemical reactor
US20040174657A1 (en) * 2001-04-18 2004-09-09 Andelman Marc D. Charge barrier flow-through capacitor
US20020170858A1 (en) * 2001-05-21 2002-11-21 John Maddux System and method for removing contaminants from water
US6929753B1 (en) * 2003-09-22 2005-08-16 Aqua-Envirotech Mfg., Inc. Coal bed methane wastewater treatment system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043811A (en) * 2011-10-11 2013-04-17 北京中宇科博环保工程有限公司 High-efficient process system for slime water through drifting separation
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system
US9903485B2 (en) 2011-10-27 2018-02-27 Pentair Residential Filtration, Llc Control valve assembly

Also Published As

Publication number Publication date
US7767097B1 (en) 2010-08-03
US20100297000A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US7767097B1 (en) Ozonated capacitive deionization process & product water
Mossad et al. Using capacitive deionisation for inland brackish groundwater desalination in a remote location
Khatri et al. Recent strategies for the removal of iron from water: A review
Pramanik et al. A review of the management and treatment of brine solutions
Millar et al. Strategies for the management and treatment of coal seam gas associated water
Goodman et al. A feasibility study of municipal wastewater desalination using electrodialysis reversal to provide recycled water for horticultural irrigation
Subramani et al. Treatment technologies for reverse osmosis concentrate volume minimization: A review
Mossad et al. Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts
Khan et al. Inland desalination: Techniques, brine management, and environmental concerns
Ghernaout Brine recycling: towards membrane processes as the best available technology
Katal et al. An overview on the treatment and management of the desalination brine solution
US10196290B2 (en) Electrolytic treatment method of olive mill waste water
CN207596652U (en) A kind of highly mineralized mine water near-zero release comprehensive resource PDCES processing systems
Al-Absi et al. Brine management strategies, technologies, and recovery using adsorption processes
Tao et al. RO brine treatment and recovery by biological activated carbon and capacitive deionization process
Ahdab et al. Desalination of brackish groundwater to improve water quality and water supply
Hameed et al. Boron removal from seawater using adsorption and Ion exchange techniques
Gao et al. The general methods of mine water treatment in China
CN103145264A (en) Purifying treatment and recycling process for high-salt-content reclaimed water
CN103951139A (en) Oilfield wastewater treatment process
Kumar et al. RO Reject Water Management Techniques
CN102417261A (en) Method for treating coal bed gas produced water by combining pre-oxidation aerated oxidation with capacitive deionization
KR101831864B1 (en) System and method of desalination of lava seawater and extraction valuable mineral from lava seawater
CN212924707U (en) Shale gas fracturing flowback liquid membrane type treatment recycling system
RU2219761C1 (en) System for preparation of water and delivery of fertilizer into soil at drop irrigation

Legal Events

Date Code Title Description
AS Assignment

Owner name: CAMPBELL APPLIED PHYSICS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAMPBELL, ROBERT L.;REEL/FRAME:024784/0506

Effective date: 20100721

AS Assignment

Owner name: WATER RESOURCES INTERNATIONAL LTD, MALTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAMPBELL APPLIED PHYSICS, INC;REEL/FRAME:025308/0920

Effective date: 20101117

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION