US20100242207A1 - Spring contact plate - Google Patents

Spring contact plate Download PDF

Info

Publication number
US20100242207A1
US20100242207A1 US12/383,579 US38357909A US2010242207A1 US 20100242207 A1 US20100242207 A1 US 20100242207A1 US 38357909 A US38357909 A US 38357909A US 2010242207 A1 US2010242207 A1 US 2010242207A1
Authority
US
United States
Prior art keywords
edge
contact plate
end fitting
spring
spring contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/383,579
Inventor
Stacy Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flexible Technologies Inc
Original Assignee
Flexible Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flexible Technologies Inc filed Critical Flexible Technologies Inc
Priority to US12/383,579 priority Critical patent/US20100242207A1/en
Assigned to FLEXIBLE TECHNOLOGIES, INC. reassignment FLEXIBLE TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, STACY
Publication of US20100242207A1 publication Critical patent/US20100242207A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/38Built-in suction cleaner installations, i.e. with fixed tube system to which, at different stations, hoses can be connected
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/24Hoses or pipes; Hose or pipe couplings
    • A47L9/242Hose or pipe couplings
    • A47L9/246Hose or pipe couplings with electrical connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/005Electrical coupling combined with fluidic coupling

Definitions

  • the present invention is primarily directed to the field of central vacuum systems and more particularly, to an improved end fitting having a spring contact plate for providing more consistent electrical contact between an end fitting on a hose used in a central vacuum system and the respective wall inlet.
  • the primary advantage of a central vacuum system is that the user does not have to carry a heavy unit from room to room or up and down stairs. This is particularly advantageous for people who are very concerned about cleaning but have difficulty with the weight of the portable systems. Many times, these people find it more difficult to maneuver the movable vacuum cleaners to various locations in the house, such as up and down stairs or tight spaces, as they are using it. Thus, the central vacuum systems where just the hose is carried, have become more popular.
  • a building's central vacuum system is provided with a plurality of inlets at various locations throughout the structure.
  • the number and placement of the inlets plays a direct role in the ease of use of a central vacuum system.
  • hose lengths are finite there is a real need for inlets to be placed conveniently throughout the house in many locations.
  • a vacuum hose is plugged into the inlet.
  • many systems besides a venting hose that extends from the inlet to the vacuum motor, there are also electrical conductors that extend from the inlet to the system motor.
  • the electrical conductors permit the user to switch the system on and off at the inlet or, if desired, at the end fitting that is at the end of the hose opposite the inlet. This permits the user to turn the system on and off when the hose is being held by the user without having to return to the wall outlet or other on/off switch. Since the system only has a hose extending from the inlet all the user has to carry or drag along is the vacuum hose and not a canister or other device.
  • the central vacuum system has a central power unit that is situated usually in an out of the way place in the building. For a home it can be, for example, in a basement, in a garage or elsewhere where it is out of the way but yet convenient to empty.
  • the central power unit provides suction to the hose and a receptacle for the dust, dirt and debris picked up by the system.
  • the power unit is connected via hosing or tubing to wall inlet valves positioned at a variety of locations throughout the building.
  • the tubing can be run through the walls, through a basement, attic, cold air returns, etc.
  • the insertion of the hose into the wall outlet can trigger operation.
  • the system operates by plugging a hose and a power brush into the wall inlet.
  • the power button is located on the handle on most systems.
  • the system carries the dirt, dust and debris out of the room through the in wall tubing to the main power unit where it is deposited in a canister or bag for disposal.
  • Type A wall valve is a dual purpose wall valve with a high voltage (HV)/low voltage (LV).
  • HV high voltage
  • LV low voltage
  • the Type A wall valve is defined by UL1017. While UL1017 sets standards for these HV/LV valves, there exists a multitude of LV wall valves that are not described in any standard since UL is only concerned with HV safety. This lack of LV standardization driven by an agency or industry group is the crux of the problem as there is no uniformity in the connectors.
  • the UL1017 defined wall valves provide an air connection, line voltage power and low voltage on/off signaling connections. More specifically, the air connection provides an air path for airborne dust and debris obtained from cleaning to be transmitted to a receptacle for removal.
  • the line-voltage power connection (often called high-voltage power and hereafter abbreviated “HV”) is switched line-level AC power for powering a motorized power head and other power accessories on the end of the hose.
  • the low-voltage signaling connection hereafter abbreviated “LV”) is a switched low-voltage source (typically 24V or less, AC or DC) that is used to remotely switch the main vacuum unit on and off for use by a user.
  • the present invention provides an improved low voltage signaling connection for hoses. More particularly, the present invention is directed to a spring-loaded LV contact plate that can accommodate a broader range of wall-valve LV connection implementations.
  • the semi-cylindrical shape used previously has been eliminated.
  • the present invention is provided with a semi-conical shape with integral spring legs.
  • the present invention is directed to an improved end fitting for a hose.
  • the end fitting can be on either end of the hose.
  • the same end fitting can be inserted into a wall inlet or into the power head or other accessories used by the vacuum system.
  • the end fitting has one end that is secured to an end of a hose.
  • the other end of the end fitting is adapted to be inserted into the opening in a wall inlet or the opening in a power head or other accessory.
  • the end of the fitting that is adapted to be received by the inlet preferably has a generally cylindrical member extending from the fitting.
  • the cylindrical member has a first end and a second end. One of the ends is secured to the housing of the end fitting.
  • the cylindrical member is in the form of a hollow tube open at each end.
  • the free end of the cylindrical member is preferably provided with a smaller cross section with the opposite end secured to the housing.
  • the outer surface of the cylindrical member is preferably tapered so that the end can be easily inserted into the wall inlet.
  • the cylindrical member has on its outer surface a spring clip contact plate that provides a low voltage electrical connection with the central vacuum system.
  • the electrical connection is provided by one or more preferably two spring contact plates. At least a portion of the outer surface of each spring contact plate is raised above the outer surface of the cylindrical member.
  • the spring contact plates have a top surface, a bottom surface and are generally curved to conform generally in shape to the outer surface of the cylindrical member.
  • the plates have four edges and have the edge generally at right angles to each other. Extending from the first edge to the second edge on each side of the spring contact plate are first and second side edges. These side edges follow the general curved contour of the spring contact plate.
  • the spring contact plate has a first side edge which is the edge closest to the end tip of the housing of the end fitting and a second side edge which is the side closest to the main body of the housing or end fitting.
  • the side wall is generally at an angle to the top surface of the contact plate and extends for a short distance. In one embodiment the side wall is generally perpendicular to the top surface of the contact plate.
  • the lip preferably has a plurality of tabs extending outwardly from the lip the tabs have a top edge and a pair of side edges extending from the top edge to the edge of the lip.
  • the side edges of the tabs are preferably angled to facilitate mounting.
  • the contact spring On the opposite edge of the contact spring there are a plurality of fingers extending from the top surface. These fingers are extending outwardly of the edge of the spring contact plate and are generally in the same plane as the top and bottom surfaces of the spring contact plate, i.e. there is preferably a continuous surface from the top and bottom surface of the spring contact plate to the fingers.
  • One group of fingers are generally triangular in configuration with a tip and two side edges extending toward said second edge.
  • This first group of fingers extend from the side edge of the spring contact place over the outside surface of the cylindrical member and a portion of the end fitting where the cylindrical member is connected to the end fitting.
  • the second type of finger extends a short distance from the edge and contacts a corresponding raised pin on the housing.
  • This second type of finger has a raised angular tip that extends upwardly of the top surface of the contact spring.
  • the pin that is on the housing prevents axial movement of the spring when the spring is inserted into a Type A wall inlet or a powered head.
  • the configuration of the pin and the respective tab on the contact spring plate causes the spring plate to flex outwardly in a radial direction with minimum axial displacement.
  • This arrangement and the arrangement of the other fingers on the spring contact plate provide good electrical contact with the LV electrical contacts in the Type A inlet.
  • FIG. 1 is a side perspective view of an end fitting having the spring contact plate in position.
  • FIG. 2A is a perspective view of the spring contact plate.
  • FIG. 2B is a top view of the spring contact plate.
  • FIG. 2C is a side view of the spring contact plate.
  • FIG. 2D is an end view of the spring contact plate taken from the left side of the plate.
  • FIG. 2E is an end view of the spring contact plate taken from the right side of the plate.
  • FIG. 3 is a cutaway view of a portion of the end fitting with the spring contact plate in position.
  • FIG. 4 is an enlarged view of a portion of the spring contact plate on the end fitting.
  • FIG. 5 shows an end fitting with a dummy HV connector plug replacing the pigtails on the HV connector of FIG. 1
  • the core 10 has an end fitting that is secured to an end of a hose (not shown).
  • the core 10 has a first end that is secured to a hose and a second end 11 opposite the first end.
  • the second end 11 of the core 10 is adapted to be inserted into an opening in the Type A wall valve or an opening in a motorized power head or other accessory.
  • the housing 53 has a pair of high voltage connectors 12 and 13 to provide power to the power nozzle or other powered device on the opposite end of the hose from the housing 53 when the core 10 is inserted in a Type A wall outlet.
  • a pair of pins or pigtails extending from the housing that are insertable into a pair of pin openings in the wall valve.
  • direct connect power is drawn directly from a Type A wall valve.
  • the HV connector is rotated 180 degrees and a patch cord (pigtail) connects the hose to a nearby wall power outlet.
  • the end 11 of the core 10 opposite the end secured to the hose has a generally cylindrical member 15 having a generally circular cross section.
  • the cylindrical member is hollow to permit air to pass through the cylindrical member.
  • the cylindrical member 15 is preferably shaped so that it is slightly smaller in cross section at the free end 11 than at the end 16 secured to the core 10 .
  • the cylindrical member is adapted to be inserted into the orifice in a Type A wall valve. The tapering towards the free end facilitates this.
  • the first end 16 is secured to the housing and the second end 11 is the free end.
  • a portion of the cylindrical member or neck 17 has a diameter less than the remaining portion of the cylindrical member. This recessed portion receives the spring contact plates 14 .
  • the entire cylindrical body 15 can be tapered or just the end or tip portion from the end 11 to the neck 17 can be tapered to facilitate insertion into the wall valve configuration.
  • the cylindrical member 15 has a recessed portion or a neck 17 and an end region 18 that extends from the neck to the tip 11 of the body 15 .
  • the neck 17 can be of a smaller diameter than the end region 18 . This provides room for the contact plate 14 which provides a low voltage connection to the wall valve.
  • the low voltage connection operates, for example, the on/off switch of the system.
  • At least one contact plate 14 Around the neck is at least one contact plate 14 .
  • the two contact plates cannot touch each other as that will defeat the system electrically; they have to be isolated from each other and the core features are designed to prevent that circumstance.
  • the contact plates are generally in the form of a ring around the neck of the cylindrical member between the end 11 of the cylindrical member 15 and the remainder of the housing 53 .
  • the components of the end fitting i.e., the LV contact plates, hose, HV connector, housing etc are mounted to the core.
  • the core positions the contact plates while the housing prevents them from coming out of position after assembly.
  • the contact plate has an outer surface 19 and an inner surface 20 .
  • the inner surface conforms generally to the shape of the outer surface of the neck.
  • the outer surface conforms generally to the inner surface of the wall outlet so that an electrical contact may be made between the contact plate and the inner surface of the wall outlet.
  • the contact plate has a first edge 21 and a second edge 22 .
  • the contact plate preferably has two generally straight edges 21 and 22 and two curved edges 23 and 24 .
  • the generally straight edges 21 and 22 are positioned on the neck generally parallel to the direction of air travel through the core 10 .
  • One straight edge of the contact plate may be secured to the straight edge of a second contact plate to form a contact plate arrangement around the neck of the end.
  • the first edge 21 of the first contact plate may be secured to the second end 22 of the second contact plate.
  • the second end 22 of the first contact plate can then be secured to the first end 21 of the second contact plate.
  • the same end to end arrangement can be used for additional contact plates that may make up the ring.
  • first and second side edges 23 and 24 Extending from the first edge to the second edge on each side of the spring contact plate are first and second side edges 23 and 24 . These edges follow the general curved contour of the spring contact plate.
  • the spring contact plate has a first side edge 23 which is the edge closest to the end tip 11 of the core 10 of the end fitting and a second side edge 24 which is the side closest to the main body of the housing.
  • the spring contact plate has an outer surface 19 and an inner surface 20 as noted above.
  • At the first side edge 23 of the spring contact plate there is a sidewall 25 extending from the top surface 19 of the plate inwardly toward the center point of the opening in the cylindrical member 15 .
  • the side wall 25 is generally angled or may be perpendicular to the top surface of the contact plate and extends for a short distance.
  • the lip 26 is a lip 26 extending outwardly from the sidewall.
  • the lip 26 is generally parallel to the top surface and perpendicular to the sidewall.
  • the lip may extend for a distance as desired based on the mounting arrangement on the cylindrical member as discussed below.
  • the lip may have one or more serrations or tabs 27 extending outwardly of the lip extending from the sidewall.
  • the lip preferably has a plurality of tabs extending outwardly from the lip the tabs have a top edge 28 and a pair of side edges 29 and 30 extending from the top edge to the edge of the lip 26 .
  • the side edges of the tabs are preferably angled to facilitate mounting.
  • a plurality of fingers 31 extending from the top surface. These fingers are extending outwardly of the edge 24 of the spring contact plate and are generally in the same plane as the top and bottom 19 and 20 surfaces of the spring contact plate.
  • One group of fingers 31 are generally triangular in configuration with a tip 32 and two side edges 33 and 34 extending toward said second edge. This first group of fingers 31 extend from the side edge of the spring contact place over the outside surface of the cylindrical member and a portion of the end fitting where the cylindrical member is connected to the end fitting.
  • the second type of finger 35 extends a short distance from the edge and contacts a corresponding raised pin 36 on the housing. This finger 35 has a raised angular tip 37 that extends upwardly of the top surface of the contact spring.
  • the pin 36 that is on the housing prevents axial movement of the spring when the spring is inserted into a Type A wall inlet or a powered head.
  • the configuration of the pin and the respective tab on the contact spring plate causes the spring plate to flex outwardly in a radial direction with minimum axial displacement.
  • This arrangement and the arrangement of the other fingers on the spring contact plate provide good electrical contact with the LV electrical contacts in the Type A inlet.
  • the third type of finger 38 extends outwardly from the top surface.
  • This finger has a base 39 attached to a side edge, a first side edge 40 and a second side edge 41 ending in a tip 42 .
  • the tab has a first section 43 that is generally parallel to or at a slight angle to the top surface of the contact spring.
  • This third tab follows the contour of the outer surface of the core 10 .
  • the tab may be provided with an orifice 46 on its surface that passes through the tab.
  • the third type of finger 38 is a tab designed to match with a “FastOn” type electrical connector.
  • soldder, welding, etc. There are a number of other electrical connection solutions suitable for the low volt implementation (solder, welding, etc.).
  • FIG. 3 shows a cut away view of a portion of the core 10 . More specifically, the FIG. 3 shows a cut away view of the cylindrical member extending from the end fitting.
  • the cylindrical member has a tip 11 with an end portion 15 extending from the tip toward the housing 53 .
  • the outer surface of the end portion 15 is tapered and the flange 50 continues a short distance over the neck.
  • the region between the underside of the flange and the top surface of the neck 17 provides a recess for receiving the first edge 26 or tabs 28 of the spring contact plate and holding it in position.
  • the neck 17 can have a top surface 51 that is flat or a slight taper.
  • the neck has a region 52 with a greater taper about three quarters of the total length of the neck. This tapered surface rises and forms a surface where the first type of fingers 31 rest.
  • the serrations or tabs that extend from the lip extend into the region between the neck and the ring. This recess holds the edge of the contact spring in place.
  • the tabs on the opposite edge of the contact spring cause the contact spring's bottom surface to be raised above the surface of the neck. This arrangement gives the contact spring its flexibility. The contact spring is retained in position by the housing.
  • the LV spring contact plate can flex to contract to a range of diameters to fit a broader range of wall valve LV connection implementations.
  • FIG. 3 shows how the spring contact plate is constrained and allowed to flex only in a radial orientation with minimal axial displacement.
  • the forward edge of the LV contact plate is captured in an undercut in the air path tube.
  • the spring stop prevents disengagement and hides the spring legs from view of the end user.
  • the contact plates are captured and allowed to flex while minimizing axial and radial translation, achieving the desired ability of accommodating multiple wall valves in the marketplace with a single fitting configuration.

Abstract

An improved end fitting for a hose adapted for use with a central vacuum system is provided. The end fitting has a housing and a cylindrical member extending from the housing. The cylindrical member is adapted to be received by a wall inlet. The cylindrical member has an end portion of a first diameter and a neck of a second smaller diameter and at least one spring contact plate positioned over the neck to provide an electrical connection to the wall inlet.

Description

    FIELD OF THE INVENTION
  • The present invention is primarily directed to the field of central vacuum systems and more particularly, to an improved end fitting having a spring contact plate for providing more consistent electrical contact between an end fitting on a hose used in a central vacuum system and the respective wall inlet.
  • BACKGROUND OF THE INVENTION
  • While movable vacuum cleaners make up the vast majority of vacuum systems in homes and businesses, there has recently been a significant increase in the use of central vacuum cleaning systems. Movable or portable vacuum cleaners are plugged into an electric outlet and or self-contained system for picking up dust, dirt and debris. Provided there is a long enough cord, the portable vacuum can cover most areas in a home or other building without too much difficulty.
  • The primary advantage of a central vacuum system is that the user does not have to carry a heavy unit from room to room or up and down stairs. This is particularly advantageous for people who are very concerned about cleaning but have difficulty with the weight of the portable systems. Many times, these people find it more difficult to maneuver the movable vacuum cleaners to various locations in the house, such as up and down stairs or tight spaces, as they are using it. Thus, the central vacuum systems where just the hose is carried, have become more popular.
  • A building's central vacuum system is provided with a plurality of inlets at various locations throughout the structure. The number and placement of the inlets plays a direct role in the ease of use of a central vacuum system. The more inlets there are for removing dust, dirt and debris, the easier it is for a user to fully clean the entire area. As hose lengths are finite there is a real need for inlets to be placed conveniently throughout the house in many locations. To operate a central vacuum system, a vacuum hose is plugged into the inlet. In many systems besides a venting hose that extends from the inlet to the vacuum motor, there are also electrical conductors that extend from the inlet to the system motor. The electrical conductors permit the user to switch the system on and off at the inlet or, if desired, at the end fitting that is at the end of the hose opposite the inlet. This permits the user to turn the system on and off when the hose is being held by the user without having to return to the wall outlet or other on/off switch. Since the system only has a hose extending from the inlet all the user has to carry or drag along is the vacuum hose and not a canister or other device. The central vacuum system has a central power unit that is situated usually in an out of the way place in the building. For a home it can be, for example, in a basement, in a garage or elsewhere where it is out of the way but yet convenient to empty. The central power unit provides suction to the hose and a receptacle for the dust, dirt and debris picked up by the system. The power unit is connected via hosing or tubing to wall inlet valves positioned at a variety of locations throughout the building. The tubing can be run through the walls, through a basement, attic, cold air returns, etc. In some systems, there is a separate switch that starts the vacuum system when activated. In other systems the insertion of the hose into the wall outlet can trigger operation. In still other systems, the system operates by plugging a hose and a power brush into the wall inlet. The power button is located on the handle on most systems. The system carries the dirt, dust and debris out of the room through the in wall tubing to the main power unit where it is deposited in a canister or bag for disposal.
  • Many current central vacuum systems utilize a Type A wall valve. The type A wall valve is a dual purpose wall valve with a high voltage (HV)/low voltage (LV). The Type A wall valve is defined by UL1017. While UL1017 sets standards for these HV/LV valves, there exists a multitude of LV wall valves that are not described in any standard since UL is only concerned with HV safety. This lack of LV standardization driven by an agency or industry group is the crux of the problem as there is no uniformity in the connectors.
  • The UL1017 defined wall valves provide an air connection, line voltage power and low voltage on/off signaling connections. More specifically, the air connection provides an air path for airborne dust and debris obtained from cleaning to be transmitted to a receptacle for removal. The line-voltage power connection (often called high-voltage power and hereafter abbreviated “HV”) is switched line-level AC power for powering a motorized power head and other power accessories on the end of the hose. The low-voltage signaling connection (hereafter abbreviated “LV”) is a switched low-voltage source (typically 24V or less, AC or DC) that is used to remotely switch the main vacuum unit on and off for use by a user. While the air path and HV power connections are reasonably well-defined by UL1017 (but not fully defined, it is important to note), the LV signaling connections are not defined at all. As a result, there are a wide variety of low-voltage connection implementations and orientations in commercially available wall inlet valves. Ideally, a single wall end fitting would be able to fit all Type A wall valves and function properly, but due to omissions and ambiguities in the standards, this is not always possible in practice.
  • Current implementations of the LV connection utilize semi-cylindrical metal tabs on the sides of the air connection portion of the fitting. The challenge to this implementation is that the mating implementations in the Type A wall valves vary greatly; there are fixed and spring loaded pins of varying diameters and positions with differing degrees of flexibility and range of motion. Therefore, the size, shape, geometry and diameter of the LV contacts on the hose wall end fitting are critical in making a reliable connection. For example, in the current production wall fitting two thicknesses of LV contacts must be used in order to fit an acceptable percentage of the installed base of wall valves. This increases the expense in manufacturing the hose end fittings.
  • SUMMARY OF THE INVENTION
  • The present invention provides an improved low voltage signaling connection for hoses. More particularly, the present invention is directed to a spring-loaded LV contact plate that can accommodate a broader range of wall-valve LV connection implementations. The semi-cylindrical shape used previously has been eliminated. The present invention is provided with a semi-conical shape with integral spring legs.
  • More specifically, the present invention is directed to an improved end fitting for a hose. The end fitting can be on either end of the hose. In a preferred embodiment, the same end fitting can be inserted into a wall inlet or into the power head or other accessories used by the vacuum system. The end fitting has one end that is secured to an end of a hose. The other end of the end fitting is adapted to be inserted into the opening in a wall inlet or the opening in a power head or other accessory. The end of the fitting that is adapted to be received by the inlet preferably has a generally cylindrical member extending from the fitting. The cylindrical member has a first end and a second end. One of the ends is secured to the housing of the end fitting. The cylindrical member is in the form of a hollow tube open at each end. The free end of the cylindrical member is preferably provided with a smaller cross section with the opposite end secured to the housing. The outer surface of the cylindrical member is preferably tapered so that the end can be easily inserted into the wall inlet. The cylindrical member has on its outer surface a spring clip contact plate that provides a low voltage electrical connection with the central vacuum system.
  • The electrical connection is provided by one or more preferably two spring contact plates. At least a portion of the outer surface of each spring contact plate is raised above the outer surface of the cylindrical member. The spring contact plates have a top surface, a bottom surface and are generally curved to conform generally in shape to the outer surface of the cylindrical member. The plates have four edges and have the edge generally at right angles to each other. Extending from the first edge to the second edge on each side of the spring contact plate are first and second side edges. These side edges follow the general curved contour of the spring contact plate. The spring contact plate has a first side edge which is the edge closest to the end tip of the housing of the end fitting and a second side edge which is the side closest to the main body of the housing or end fitting.
  • At the first side edge of the spring contact plate there is a sidewall extending from the top surface of the plate inwardly toward the center point of the opening in the cylindrical member. The side wall is generally at an angle to the top surface of the contact plate and extends for a short distance. In one embodiment the side wall is generally perpendicular to the top surface of the contact plate. There is a lip extending outwardly from the sidewall. The lip is generally parallel to the top surface and perpendicular to the sidewall. The lip may have one or more serrations or tabs extending outwardly of the lip extending from the sidewall. The lip preferably has a plurality of tabs extending outwardly from the lip the tabs have a top edge and a pair of side edges extending from the top edge to the edge of the lip. The side edges of the tabs are preferably angled to facilitate mounting.
  • On the opposite edge of the contact spring there are a plurality of fingers extending from the top surface. These fingers are extending outwardly of the edge of the spring contact plate and are generally in the same plane as the top and bottom surfaces of the spring contact plate, i.e. there is preferably a continuous surface from the top and bottom surface of the spring contact plate to the fingers.
  • One group of fingers are generally triangular in configuration with a tip and two side edges extending toward said second edge. This first group of fingers extend from the side edge of the spring contact place over the outside surface of the cylindrical member and a portion of the end fitting where the cylindrical member is connected to the end fitting. The second type of finger extends a short distance from the edge and contacts a corresponding raised pin on the housing. This second type of finger has a raised angular tip that extends upwardly of the top surface of the contact spring. The pin that is on the housing prevents axial movement of the spring when the spring is inserted into a Type A wall inlet or a powered head. The configuration of the pin and the respective tab on the contact spring plate causes the spring plate to flex outwardly in a radial direction with minimum axial displacement. This arrangement and the arrangement of the other fingers on the spring contact plate provide good electrical contact with the LV electrical contacts in the Type A inlet.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side perspective view of an end fitting having the spring contact plate in position.
  • FIG. 2A is a perspective view of the spring contact plate.
  • FIG. 2B is a top view of the spring contact plate.
  • FIG. 2C is a side view of the spring contact plate.
  • FIG. 2D is an end view of the spring contact plate taken from the left side of the plate.
  • FIG. 2E is an end view of the spring contact plate taken from the right side of the plate.
  • FIG. 3 is a cutaway view of a portion of the end fitting with the spring contact plate in position.
  • FIG. 4 is an enlarged view of a portion of the spring contact plate on the end fitting.
  • FIG. 5 shows an end fitting with a dummy HV connector plug replacing the pigtails on the HV connector of FIG. 1
  • DETAILED DESCRIPTION OF THE INVENTION
  • As seen in FIG. 1, there is a core 10 over which a housing 53 is secured. The core has an end fitting that is secured to an end of a hose (not shown). The core 10 has a first end that is secured to a hose and a second end 11 opposite the first end. The second end 11 of the core 10 is adapted to be inserted into an opening in the Type A wall valve or an opening in a motorized power head or other accessory. The housing 53 has a pair of high voltage connectors 12 and 13 to provide power to the power nozzle or other powered device on the opposite end of the hose from the housing 53 when the core 10 is inserted in a Type A wall outlet. In this embodiment there are a pair of pins or pigtails extending from the housing that are insertable into a pair of pin openings in the wall valve. In an alternate configuration of the wall valves there may be a direct connection instead of pigtails. They both use LV contact plates, but the supply of HV power is different. In direct connect, power is drawn directly from a Type A wall valve. In the pigtail configuration, the HV connector is rotated 180 degrees and a patch cord (pigtail) connects the hose to a nearby wall power outlet. In a still further embodiment, there may be no HV connection at all. See FIG. 5.
  • The end 11 of the core 10 opposite the end secured to the hose has a generally cylindrical member 15 having a generally circular cross section. The cylindrical member is hollow to permit air to pass through the cylindrical member. The cylindrical member 15 is preferably shaped so that it is slightly smaller in cross section at the free end 11 than at the end 16 secured to the core 10. The cylindrical member is adapted to be inserted into the orifice in a Type A wall valve. The tapering towards the free end facilitates this. The first end 16 is secured to the housing and the second end 11 is the free end. A portion of the cylindrical member or neck 17 has a diameter less than the remaining portion of the cylindrical member. This recessed portion receives the spring contact plates 14. The entire cylindrical body 15 can be tapered or just the end or tip portion from the end 11 to the neck 17 can be tapered to facilitate insertion into the wall valve configuration. The cylindrical member 15 has a recessed portion or a neck 17 and an end region 18 that extends from the neck to the tip 11 of the body 15. The neck 17 can be of a smaller diameter than the end region 18. This provides room for the contact plate 14 which provides a low voltage connection to the wall valve. The low voltage connection operates, for example, the on/off switch of the system.
  • Around the neck is at least one contact plate 14. Preferably there are two or more contact plates that are in separated by an insulating member to prevent contact with each other (See FIG. 5) The two contact plates cannot touch each other as that will defeat the system electrically; they have to be isolated from each other and the core features are designed to prevent that circumstance. By closing the switch in the hose assembly, the circuit is closed and this remotely activates the central vac unit.
  • The contact plates are generally in the form of a ring around the neck of the cylindrical member between the end 11 of the cylindrical member 15 and the remainder of the housing 53. The components of the end fitting i.e., the LV contact plates, hose, HV connector, housing etc are mounted to the core. The core positions the contact plates while the housing prevents them from coming out of position after assembly. The contact plate has an outer surface 19 and an inner surface 20. The inner surface conforms generally to the shape of the outer surface of the neck. The outer surface conforms generally to the inner surface of the wall outlet so that an electrical contact may be made between the contact plate and the inner surface of the wall outlet. The contact plate has a first edge 21 and a second edge 22. The contact plate preferably has two generally straight edges 21 and 22 and two curved edges 23 and 24. The generally straight edges 21 and 22 are positioned on the neck generally parallel to the direction of air travel through the core 10. One straight edge of the contact plate may be secured to the straight edge of a second contact plate to form a contact plate arrangement around the neck of the end. There are preferably two or more contact plate portions that are secured together. Depending on the number of contact plates that form the sleeve that surrounds the neck of the end, the first edge 21 of the first contact plate may be secured to the second end 22 of the second contact plate. The second end 22 of the first contact plate can then be secured to the first end 21 of the second contact plate. The same end to end arrangement can be used for additional contact plates that may make up the ring.
  • Extending from the first edge to the second edge on each side of the spring contact plate are first and second side edges 23 and 24. These edges follow the general curved contour of the spring contact plate. The spring contact plate has a first side edge 23 which is the edge closest to the end tip 11 of the core 10 of the end fitting and a second side edge 24 which is the side closest to the main body of the housing. The spring contact plate has an outer surface 19 and an inner surface 20 as noted above. At the first side edge 23 of the spring contact plate there is a sidewall 25 extending from the top surface 19 of the plate inwardly toward the center point of the opening in the cylindrical member 15. The side wall 25 is generally angled or may be perpendicular to the top surface of the contact plate and extends for a short distance. There is a lip 26 extending outwardly from the sidewall. The lip 26 is generally parallel to the top surface and perpendicular to the sidewall. The lip may extend for a distance as desired based on the mounting arrangement on the cylindrical member as discussed below. The lip may have one or more serrations or tabs 27 extending outwardly of the lip extending from the sidewall. The lip preferably has a plurality of tabs extending outwardly from the lip the tabs have a top edge 28 and a pair of side edges 29 and 30 extending from the top edge to the edge of the lip 26. The side edges of the tabs are preferably angled to facilitate mounting.
  • On the opposite edge 24 of the contact spring there are a plurality of fingers 31 extending from the top surface. These fingers are extending outwardly of the edge 24 of the spring contact plate and are generally in the same plane as the top and bottom 19 and 20 surfaces of the spring contact plate. One group of fingers 31 are generally triangular in configuration with a tip 32 and two side edges 33 and 34 extending toward said second edge. This first group of fingers 31 extend from the side edge of the spring contact place over the outside surface of the cylindrical member and a portion of the end fitting where the cylindrical member is connected to the end fitting. The second type of finger 35 extends a short distance from the edge and contacts a corresponding raised pin 36 on the housing. This finger 35 has a raised angular tip 37 that extends upwardly of the top surface of the contact spring. The pin 36 that is on the housing prevents axial movement of the spring when the spring is inserted into a Type A wall inlet or a powered head. The configuration of the pin and the respective tab on the contact spring plate causes the spring plate to flex outwardly in a radial direction with minimum axial displacement. This arrangement and the arrangement of the other fingers on the spring contact plate provide good electrical contact with the LV electrical contacts in the Type A inlet. The third type of finger 38 extends outwardly from the top surface. This finger has a base 39 attached to a side edge, a first side edge 40 and a second side edge 41 ending in a tip 42. As seen in the Figure, the tab has a first section 43 that is generally parallel to or at a slight angle to the top surface of the contact spring. There is a mid region 44 that is generally perpendicular or angled to the first section and a tip region 45. This third tab follows the contour of the outer surface of the core 10. The tab may be provided with an orifice 46 on its surface that passes through the tab. The third type of finger 38 is a tab designed to match with a “FastOn” type electrical connector. There are a number of other electrical connection solutions suitable for the low volt implementation (solder, welding, etc.).
  • FIG. 3 shows a cut away view of a portion of the core 10. More specifically, the FIG. 3 shows a cut away view of the cylindrical member extending from the end fitting. The cylindrical member has a tip 11 with an end portion 15 extending from the tip toward the housing 53. There is a lip or flange 50 that extends over the neck 17 of the cylindrical member. The outer surface of the end portion 15 is tapered and the flange 50 continues a short distance over the neck. The region between the underside of the flange and the top surface of the neck 17 provides a recess for receiving the first edge 26 or tabs 28 of the spring contact plate and holding it in position. The neck 17 can have a top surface 51 that is flat or a slight taper. The neck has a region 52 with a greater taper about three quarters of the total length of the neck. This tapered surface rises and forms a surface where the first type of fingers 31 rest. As can be seen in the FIG. 4, the serrations or tabs that extend from the lip extend into the region between the neck and the ring. This recess holds the edge of the contact spring in place. The tabs on the opposite edge of the contact spring cause the contact spring's bottom surface to be raised above the surface of the neck. This arrangement gives the contact spring its flexibility. The contact spring is retained in position by the housing.
  • The LV spring contact plate can flex to contract to a range of diameters to fit a broader range of wall valve LV connection implementations. FIG. 3 shows how the spring contact plate is constrained and allowed to flex only in a radial orientation with minimal axial displacement. The forward edge of the LV contact plate is captured in an undercut in the air path tube. The spring stop prevents disengagement and hides the spring legs from view of the end user. The contact plates are captured and allowed to flex while minimizing axial and radial translation, achieving the desired ability of accommodating multiple wall valves in the marketplace with a single fitting configuration.

Claims (25)

1. An improved hose adapted for use with a central vacuum systems and the like comprising a hose having a first end and a second end, at least one of said ends having an end fitting thereon adapted to be received by a wall inlet, said end fitting having housing and a cylindrical member extending from said housing, said cylindrical member being adapted to be received by said wall inlet, said cylindrical member having and end portion of a first diameter and a neck of a second smaller diameter and at least one spring contact plate positioned over said neck to provide an electrical connection to a wall inlet that is adapted to receive at least a portion of said cylindrical member.
2. The improved hose according to claim 1 wherein said spring contact plate comprises a top surface and a bottom surface and a first edge and a second edge at opposite ends of the spring contact plate, said spring contact plate further comprising a first and second side edges extending from said first edge to said second edge and wherein the first and second side edges follow a curved contour of the spring contact plate and wherein at least one side edge of the spring contact plate has a tab that contacts a pin on said housing to prevents axial movement of the spring when the spring is inserted into a Type A wall inlet or a powered head or other accessory.
3. The improved hose according to claim 2 wherein said spring contact plate flexes inwardly toward said neck when inserted into a Type A valve.
4. An improved end fitting for a hose adapted for use with a central vacuum system said end fitting having a housing and a cylindrical member extending from said housing said cylindrical member adapted to be received by a wall inlet, said cylindrical member having an end portion of a first diameter and a neck of a second smaller diameter and at least one spring contact plate positioned over said neck to provide an electrical connection to said wall inlet that is adapted to receive at least a portion of said cylindrical member.
5. The improved end fitting according to claim 4 wherein said spring contact plate has a top surface and a bottom surface and a first edge and a second edge at opposite ends of the spring contact plate, said spring contact plate having first and second side edges extending from said first edge to said second edge and wherein the first and second side edges follow a curved contour of the spring contact plate.
6. The end fitting according to claim 5 wherein said spring contact plate flexes inwardly toward said neck when said end fitting inserted into a Type A valve.
7. The end fitting according to claim 6 wherein at least one side edge of the spring contact plate has a tab that contacts a pin that is on a housing of said end fitting to prevent axial movement of the spring when the spring is inserted into a Type A wall inlet or a powered head or other accessory.
8. The end fitting according to claim 6 wherein the first side edge of the spring contact plate has a sidewall extending from the top surface of the plate inwardly toward a center point of the opening in a cylindrical member.
9. The end fitting according to claim 8 wherein there is a lip extending outwardly from the sidewall.
10. The end fitting according to claim 9 wherein the lip is generally parallel to the top surface.
11. The end fitting according to claim 10 wherein the lip has one or more tabs extending outwardly of the lip extending from the sidewall.
12. The end fitting according to claim 11 wherein the tabs have a top edge and a pair of side edges extending from the top edge to the edge of the lip and the side edges of the tabs are angled with respect to the edge of said lip.
13. The end fitting according to claim 12 wherein a second side edge of the contact spring has a plurality of fingers extending from the top surface.
14. The end fitting according to claim 13 wherein the fingers extend outwardly of the second side edge of the spring contact plate and generally extend from the same plane as the top and bottom surfaces of the spring contact plate.
15. The end fitting according to claim 14 wherein there is a first group of fingers extending from the second side edge that are generally triangular in configuration with a tip and two side edges extending toward said second edge.
16. The end fitting according to claim 15 wherein said first group of fingers extend from the side edge of the spring contact place over the outside surface of the cylindrical member and a portion of the end fitting in an area where the cylindrical member is connected to said end fitting.
17. The end fitting according to claim 16 wherein there is a second type of finger extending from the second side edge said finger adapted to contact a corresponding raised pin on the housing, said pin preventing axial movement of the spring when the spring is inserted into a wall inlet.
18. The end fitting according to claim 17 wherein said second type of finger has a raised angular tip that extends upwardly of the top surface of the contact spring.
19. The end fitting according to claim 18 wherein there is a third type of finger extending from said second edge, said third type of finger having a base attached to said side edge of said spring contact plate, said third type of finger further comprising a first side edge and a second side edge and ending in a tip, said third type of finger having a first section at an angle to the top surface of the contact spring, a mid section that is at an angle to said top surface that is different from the angle of the first section and third section having an angle that is different from the angle of the second section.
20. The end fitting according to claim 18 wherein at least one of said fingers can form an electrical connection.
21. The end fitting according to claim 20 where said electrical connection is with a Fast On connector.
22. The end fitting according to claim 20 where said electrical connection is a soldered connection.
23. The end fitting according to claim 20 where said electrical connection is a welded connection.
24. A spring contact plate to provide an electrical connection to a wall inlet comprising
a top surface and a bottom surface and a first edge and a second edge at opposite ends of the spring contact plate, said spring contact plate having first and second side edges extending from said first edge to said second edge and wherein the first and second side edges follow a curved contour of the spring contact plate and wherein the first side edge of the spring contact plate has a sidewall extending from the top surface of the plate inwardly toward a center point of the opening in a cylindrical member and there is a lip extending outwardly from the sidewall wherein the lip is generally parallel to the top surface said lip having one or more tabs extending outwardly of the lip extending from the sidewall and
wherein a second side edge of the contact spring has a plurality of fingers extending outwardly from the top surface generally in the same plane as the top and bottom surfaces of the spring contact plate and
wherein there is a first group of fingers extending from the second side edge that are generally triangular in configuration with a tip and two side edges extending toward said second edge and a second type of finger extending from the second side edge said finger adapted to contact a corresponding raised pin on a housing of an end fitting, said pin preventing axial movement of the spring and wherein there is a third type of finger extending from said second edge, said third type of finger having a base attached to said side edge of said spring contact plate, said third type of finger further comprising a first side edge and a second side edge and ending in a tip, said third type of finger having a first section at an angle to the top surface of the contact spring, a mid section that is at an angle to said top surface that is different from the angle of the first section and third section having an angle that is different from the angle of the second section.
25. The spring contact plate according to claim 20 wherein said top surface flexes inwardly toward said neck when inserted into a Type A valve.
US12/383,579 2009-03-25 2009-03-25 Spring contact plate Abandoned US20100242207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/383,579 US20100242207A1 (en) 2009-03-25 2009-03-25 Spring contact plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/383,579 US20100242207A1 (en) 2009-03-25 2009-03-25 Spring contact plate

Publications (1)

Publication Number Publication Date
US20100242207A1 true US20100242207A1 (en) 2010-09-30

Family

ID=42782341

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/383,579 Abandoned US20100242207A1 (en) 2009-03-25 2009-03-25 Spring contact plate

Country Status (1)

Country Link
US (1) US20100242207A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094535A (en) * 1977-01-10 1978-06-13 The Hoover Company Conductive hose and ends
US4915640A (en) * 1988-08-25 1990-04-10 Hayden Theodore R Central vacuum system apparatus
US5004428A (en) * 1990-01-05 1991-04-02 Hayden Theodore R Vacuum system attachment
US5349146A (en) * 1992-02-11 1994-09-20 Lindsay Manufacturing, Inc. Combination electrical and suction hose wall outlet
US5387117A (en) * 1993-11-12 1995-02-07 Electrolux Corporation Universal central vacuum cleaner hose end fitting
US20050183228A1 (en) * 2004-02-20 2005-08-25 Jon Snyder Central vacuum system universal hose end
US20070251046A1 (en) * 2003-09-19 2007-11-01 Heung-Mook Kang Structure for Connecting a Dust Collecting Hose of a Central Vacuun Cleaning System

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094535A (en) * 1977-01-10 1978-06-13 The Hoover Company Conductive hose and ends
US4915640A (en) * 1988-08-25 1990-04-10 Hayden Theodore R Central vacuum system apparatus
US5004428A (en) * 1990-01-05 1991-04-02 Hayden Theodore R Vacuum system attachment
US5349146A (en) * 1992-02-11 1994-09-20 Lindsay Manufacturing, Inc. Combination electrical and suction hose wall outlet
US5387117A (en) * 1993-11-12 1995-02-07 Electrolux Corporation Universal central vacuum cleaner hose end fitting
US20070251046A1 (en) * 2003-09-19 2007-11-01 Heung-Mook Kang Structure for Connecting a Dust Collecting Hose of a Central Vacuun Cleaning System
US20050183228A1 (en) * 2004-02-20 2005-08-25 Jon Snyder Central vacuum system universal hose end

Similar Documents

Publication Publication Date Title
JPH04231925A (en) Handle assemblage for suction cleaner system
JP4544536B2 (en) Transmission vacuum cleaner hose connection system
US7159270B2 (en) Vacuum cleaner adapters and assemblies including the same
US4473923A (en) Vacuum cleaning tool adapter with electrical control means
US20120255758A1 (en) Extension Hose for Vacuum Cleaners
US4277640A (en) Electric current-carrying hose assembly having end fittings enclosing an electrical switch and/or a circuit-breaking device
US4915640A (en) Central vacuum system apparatus
US7168127B2 (en) Vacuum cleaner handle assemblies and adapters mating therewith
US4758170A (en) Current carrying inlet valve for central vacuum system
US11412905B2 (en) Retractable vacuum hose system
US4639055A (en) Hose coupling for vacuum cleaner
KR100611028B1 (en) Vacuum cleaner
US20200093340A1 (en) Connector assemblies and associated methods
US10927826B2 (en) Electrical device and method having an electrical cord set convertible between different electrical amperage ratings
US4012091A (en) Vacuum cleaner with replaceable electrical terminals
GB2513561A (en) A pipe connector for a surface treating appliance
US5004428A (en) Vacuum system attachment
US20120216362A1 (en) Central vacuum control unit
US20020069477A1 (en) Hand wand with electrical wiring for vacuum cleaning
US20100242207A1 (en) Spring contact plate
KR200407232Y1 (en) A fixing structure of inlet valve for centralized vacuum cleaning
US20120030899A1 (en) Electrical connector for handle and wand of vacuum cleaner
KR200426993Y1 (en) Wall end pipe for central vacuum cleaning system and, connecting structure of it and induction hose
US20080042433A1 (en) Electrical swivel connector
JPS6324858Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: FLEXIBLE TECHNOLOGIES, INC., SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SMITH, STACY;REEL/FRAME:022705/0551

Effective date: 20090506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE