Connect public, paid and private patent data with Google Patents Public Datasets

Display configured to display health status of a memory device

Download PDF

Info

Publication number
US20100231408A1
US20100231408A1 US12787538 US78753810A US20100231408A1 US 20100231408 A1 US20100231408 A1 US 20100231408A1 US 12787538 US12787538 US 12787538 US 78753810 A US78753810 A US 78753810A US 20100231408 A1 US20100231408 A1 US 20100231408A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
memory
device
blocks
nonvolatile
health
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12787538
Inventor
Martin Ragnar Furuhjelm
Steffen Markus Hellmold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Lexar Media Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5002Characteristic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/76Masking faults in memories by using spares or by reconfiguring using address translation or modifications

Abstract

An apparatus includes a display configured to display a health status of a memory device, where the health status is indicative of an amount of spare memory the memory device has available to replace memory of the memory device that may become defective.

Description

    RELATED APPLICATIONS
  • [0001]
    This application is a continuation of U.S. application Ser. No. 12/276,699, titled “STATUS OF OVERALL HEALTH OF NONVOLATILE MEMORY,” filed Nov. 24, 2008 (allowed), which application is a continuation of U.S. application Ser. No. 10/927,871, titled “STATUS OF OVERALL HEALTH OF NONVOLATILE MEMORY,” filed Aug. 27, 2004 and issued on Dec. 9, 2008 as U.S. Pat. No. 7,464,306, both applications commonly assigned and incorporated in their entirety herein by reference.
  • FIELD
  • [0002]
    This invention relates generally to the field of nonvolatile or flash or EEPROM memory and in particular to a method and apparatus for measuring and displaying the health status of such memory.
  • BACKGROUND
  • [0003]
    Nonvolatile memory, such as FLASH memory and EEPROM, has gained notoriety in the recent decade, namely due to its fast write time characteristics and ability to maintain storage of information even when no power is connected thereto. Nonvolatile memory is now employed in a wide number of applications, such as digital film for digital cameras, as a drive (or mass storage) in personal computers (PCs) or other hosts, hand-held electronic devices such as personal data access (PDAs) and the like.
  • [0004]
    During manufacturing of nonvolatile memory devices, certain defects within the memory are detected and marked accordingly. Manufacturing defects are inherent in nonvolatile memory devices and other types of defects arise during use of the devices. Other types of defects can and generally result from repeated usage of the device. For example, a nonvolatile memory device is now generally expected to be used or re-written thereto anywhere from thousands to tens of thousands to hundreds of thousands to one million times and thereafter, the device typically becomes unusable due to the number of defective memory locations therein. As nonvolatile memory is utilized, it is written thereto for use in storing information and then it is erased prior to use of the same locations, i.e. re-written. In most applications, nonvolatile memory is organized into blocks and when a write is initiated by a host that is coupled to the memory, generally through a controller device, one or more blocks are written thereto. Prior to re-writing the one or more blocks, the latter need be erased and when a block undergoes anywhere from thousands to tens of thousands to hundreds of thousands to one million or so write and erase operations, it will generally become defective or its ability to store information reliably deteriorates. Thus, the more nonvolatile or flash memory is utilized, the more defects grow.
  • [0005]
    Through the use of the controller device coupling nonvolatile memory devices to a host, the defects within the devices are managed by replacing use of the detected defective blocks with blocks from a list of spare blocks. That is, firmware or software code being executed by the controller device causes such a replacement so that when a block, noted to be defective is in some manner, is accessed by a host, such access occurs of a replacement or spare block with the host generally remaining oblivious thereto. Thus, the controller device must maintain a list of spare blocks and a mapping of the defective blocks, if any, to spare blocks in replacement thereof.
  • [0006]
    However, currently, while the controller device is aware of the number of defective blocks and the number of spare blocks and the number of blocks being employed for storage, or in essence, status of the health of a nonvolatile memory device, the user of the latter and the host remain ignorant of such information. Additionally, the health status of nonvolatile memory devices is not readily shown or displayed to a host or user thereof.
  • [0007]
    Therefore, the need arises for a method and apparatus to measure and display the health status of nonvolatile or flash memory.
  • IN THE DRAWINGS
  • [0008]
    FIG. 1 shows a nonvolatile memory system 10 including a host 12 and a device 16 through an interface 14 in accordance with an embodiment of the present invention.
  • [0009]
    FIG. 2 shows the system 10 of FIG. 1 with the host sending an inquiry to the device 16, through the interface 14.
  • [0010]
    FIG. 3 illustrates the system 10 further including a monitor or display 18 coupled to the host 12,
  • [0011]
    FIG. 4 shows further details of the device 16 in accordance with an embodiment of the present invention.
  • [0012]
    FIG. 4( a) shows the system 10 in accordance with another embodiment or the present invention wherein the host 12 is coupled to the display 19 for showing HS at 21 without the need for a controller.
  • [0013]
    FIGS. 5-11 show examples of a grid of blocks and for some blocks, status thereof.
  • [0014]
    FIGS. 12-14 show examples of different ways in which HS may be displayed.
  • DETAILED DESCRIPTION
  • [0015]
    Referring now to FIG. 1, a nonvolatile memory system 10 is shown to include a host 12 and a device 16 through an interface 14 in accordance with an embodiment of the present invention. The host 12 may be any number of electronic systems or devices, such a personal computer (PC), a server, a digital camera and the like. The device 16, while not shown in FIG. 1, includes a controller device coupled to one or more nonvolatile memory devices. The controller transfers digital information between the host 12 and the nonvolatile memory devices. The nonvolatile memory devices store information transferred by the host upon direction from the controller device and can include any type of nonvolatile memory, such as flash memory, EEPROM memory or the like. The interface 14 can be any of the known interfaces currently being employed and adopted by the industry at large, such as a Universal Serial Bus (USB) interface, a small computer systems interface (SCSI), firewire and the like.
  • [0016]
    As noted earlier, there is currently no method and apparatus indicative of the health status of the nonvolatile memory device(s) within the device 16. Thus, a user of the system 10 and the host 12 remain unaware of the number of defective blocks or usable blocks included within the nonvolatile memory. However, in the embodiment of FIG. 1 and further of those that follow, the host 12 and/or a user of the system 10 are aware of the health of the nonvolatile memory within the device 16, as will be evident shortly.
  • [0017]
    FIG. 2 shows the system 10 of FIG. 1 with the host sending an inquiry to the device 16, through the interface 14, which basically asks the device 16 about its health status, specifically the health of the nonvolatile memory included therein.
  • [0018]
    FIG. 3 shows the system 10 further including a monitor or display 18 coupled to the host 12, which receives a response from the device 16 regarding the health status of the nonvolatile memory included therein and displays the same on the monitor 18. As an example, the monitor 18 is caused to display a “Warning!” regarding the health of the nonvolatile memory, i.e. the latter may not be usable much longer.
  • [0019]
    FIG. 4 shows further details of the device 16 in accordance with an embodiment of the present invention. The device 16 is shown to include a controller device 20 coupled to the nonvolatile memory devices 22-26. There may be a larger number of memory devices than those shown in FIG. 4. The devices 22-26 each include nonvolatile memory organized in blocks with each block having one or more sectors for storing sector information received from the host 12. During manufacturing, the nonvolatile memory of the devices 22-26 include certain defective blocks, which are detected and noted by the controller device 20 to avoid use thereof. As the nonvolatile memory is employed further, other defects develop or grow resulting in the deterioration of the health of the nonvolatile memory.
  • [0020]
    While not shown, the controller device 20 is coupled to the host 12 of FIGS. 1-3, which initiate a read or write operation through the controller device 20. After the first write operation of any of the locations within the devices 22-26, any further write operations need to be preceded by an erase operation. Accordingly, the life span of the nonvolatile memory of the devices 22-26 is limited. Generally, such a life expectancy is on the order of anywhere from thousands to tens of thousands to hundreds of thousands to one million write or store operations.
  • [0021]
    As earlier noted, each of the nonvolatile memory devices 22-26 includes blocks for storage of sector information from the host. The host addresses or identifies sectors to be stored or written via logical block address and the controller device 20 translates these logical block addresses into physical block addresses or virtual physical block addresses for identifying the blocks within the nonvolatile memory wherein sector information is to be stored or read therefrom.
  • [0022]
    FIG. 4( a) shows the system 10 in accordance with another embodiment or the present invention wherein the host 12 is coupled to a display 19 for showing HS at 21 without the need for a controller. The display 19 may be a monitor or a window on a flash or nonvolatile memory card and HS, at 21, may be displayed in various ways, as will be discussed with respect to additional figures.
  • [0023]
    An example of a grid of blocks is shown in FIGS. 5-11 and for some blocks, status thereof. Specifically, in these figures, an example of a twenty four blocks is shown within the device 22. That is, a group of blocks 34 is shown to include twenty four blocks, such as a block 30 and a block 32 and in FIGS. 6-11, the status of these blocks is shown to change as defects are noted and grow. FIGS. 5-11 merely shown an example one of the ways in which a method and apparatus of the present invention may be employed, it should be understood that there are many other ways of implementing the various embodiments of the present invention.
  • [0024]
    Starting with FIG. 5, when the device 22 is manufactured, at some point, all of the blocks may be usable, that is a read, write or erase operation may be performed thereupon reliably. However, more typically, even during manufacturing, some blocks are known to be defective, i.e. a read, write or erase operation cannot be performed thereupon reliably. As an example, the group of blocks 34, in FIG. 6, is shown to include defective blocks 36 and 38. Also, during manufacturing or prior to use in operation, some of the blocks of the groups of blocks 34 may be designated as ‘spare’ blocks, such as the blocks 40-54, shown in FIG. 7.
  • [0025]
    Next, the defective blocks 36 and 38 are replaced with the replacement blocks 44 and 46. That is, blocks 44 and 46 are no longer spare blocks and are rather blocks that will be used every time there is a need to store information into the blocks 36 and 38, respectively.
  • [0026]
    In FIG. 6, there are a total of two defective blocks and assuming there are no defective blocks in the device 24-26, the total number of defective blocks is two, this value is represented by ‘MD’. Thus, ‘MD’ is the number of manufacturer's defects for all of the nonvolatile memory devices, such as the devices 22-26 within the device 16. ‘SBfw’ is the total number of spare blocks, such as the blocks 40-54 of FIG. 7, initially reserved by the controller device 20, in FIG. 7, this value is eight, as each of the blocks 40-54 are reserved as spare blocks. ‘SBrem’ is the total number of spare blocks remaining at the time of the measurement of the health status of the nonvolatile memory or the devices 22-26, in FIG. 8, this value is six, as blocks 40, 42, and 48-54 are the remaining total number of spare blocks. Using these values, the following equation results:
  • [0000]

    HS=(SB rem/(SB fw −MD))*100  Equation (1)
  • [0000]
    where HS is the health status in percentage of the nonvolatile memory of the devices 22-26. HS is rounded up to the next integer as follows: int(HS+0.5) and reported as the health status of the nonvolatile memory within the devices 22-26 to the host 12 and to a user through, perhaps, the monitor 18 or other display means as will be discussed later.
  • [0027]
    In the example of FIGS. 6-8, HS is equal to 100% because the equation is (6/(8−2))*100 or 6/6 *100. Thus, the health of the nonvolatile memory of the devices 22-26 is 100% or perfect even though two manufacturing defects are noted. The health status of the present invention takes into account the manufacturing defects and is only then concerned with growing defects.
  • [0028]
    The controller device 20 of FIG. 4 generally performs the HS measurement pursuant to Equation (1), however, other devices or apparatus may do the same. For example, the nonvolatile memory device 22 or the host 12 may perform such measurement.
  • [0029]
    Alternatively, health status can be measured as a ratio in accordance with the following equation:
  • [0000]

    HS=(SB rem/(SB fw −MD))  Equation (2)
  • [0030]
    In Equation (2), HS is a value representing a ratio rather than a percentage of growing defects. Thus, whether HS is a percentage or a value representing a ratio, it nevertheless represents the number of growing defects on an on-going basis, as will become more evident with examples to follow.
  • [0031]
    As the device 16 is used, defects grow and the HS of the device 16 will no longer remain 100%, as shown by the example of FIGS. 9-11. In FIG. 9, block 60 is noted as being defective and shown accordingly using the letter ‘Y’. Thus, the block 60 is replaced with a spare block, such as the block 42, as shown in FIG. 10 by the indicator ‘Ry’. FIG. 11 shows even further growth of defects of blocks 62-70, denoted as Z1-Z5, respectively. Each of these blocks is replaced by the blocks 40 and 48-54, respectively.
  • [0032]
    According to FIGS. 9 and 10, SBrem is five, SBfw, is eight and MD is two, thus, HS is (5/(8−2))*100=83%.
  • [0033]
    However, the defects grow in FIG. 11 where SBrem is zero, SBfw is eight and MD is two, thus, HS is (0/(8−2))*100=0% indicating that the information stored in the nonvolatile memory is reliable but should not be used any further. This would perhaps invoke the ‘Warning!’ message on the monitor 18 in FIG. 3. In this manner, the HS represents a measure of the health of nonvolatile memory regardless of the number of manufacturing defects. Thus, different manufacturers of nonvolatile memory are on an equal playing field with respect to defect measurement, as only growing defects are accounted therefore with the value of HS.
  • [0034]
    In one embodiment of the present invention, HS is displayed to a user of the system 10. FIGS. 12-14 show examples of such displays. The displays of FIGS. 12-14, in one embodiment of the present invention, are nonvolatile, i.e. they show the status of the nonvolatile memory even when power is disconnected thereto. In another embodiment of the present invention, the displays of FIGS. 12-14 are Light Emitting Diodes (LEDs) that require power applied thereto to operate. In the latter embodiment, different colors of LEDs can be employed to signify different health status. For example, a single red LED illuminated would indicate poor nonvolatile memory health. In another example, when multiple LEDs are employed, no LEDs being illuminated would indicate good nonvolatile memory health (100%) and as health deteriorates, more LED's would be illuminated, until all LEDs indicate 0%. There may also be a single multicolored LED, or multiple LED's of different colors where green would indicate a “good” status with some defined range (eg 100%) and yellow would indicate some deterioration (eg 50% to 75%) and red would indicate poor (0%).
  • [0035]
    In FIG. 12, the device 16 is shown to include a display 69 with HS being displayed in a bar fashion where the percentage of nonvolatile memory included within the device 16 that is healthy or in good condition for reading, writing and erasing is shown at 70 (the shaded area) and the rest of the display 69 shows the percentage of unhealthy memory locations within the nonvolatile memory of the device 16 at 72. Thus, if HS is 75%, the area 70 would take up three quarters of the display 69.
  • [0036]
    Similarly, FIGS. 13 and 14 show different ways of displaying the value of HS. In FIG. 13, the more defective the nonvolatile memory, the more there will be rectangular shapes displayed and in FIG. 14, the more defective the nonvolatile memory, the further the arrow will point towards ‘Bad’ similar to a fuel gauge.
  • [0037]
    Although the present invention has been described in terms of specific embodiments, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modification as fall within the true spirit and scope of the invention.

Claims (23)

1. An apparatus, comprising:
a display configured to display a health status of a memory device;
wherein the health status is indicative of an amount of spare memory the memory device has available to replace memory of the memory device that may become defective.
2. The apparatus of claim 1, wherein the display is a monitor.
3. The apparatus of claim 1, wherein the memory device can store information when the health status is zero.
4. The apparatus of claim 1, wherein the display is configured to display a warning when the amount of spare memory the memory device has available to replace memory of the memory device that may become defective is zero.
5. The apparatus of claim 1, wherein the display is non-volatile.
6. The apparatus of claim 1, wherein the display comprises a plurality of different colored LEDs, where each color signifies a different value of the health status.
7. The apparatus of claim 1, wherein the display comprises a plurality of LEDs, wherein a number of LEDs illuminated indicates a respective value of the health status.
8. The apparatus of claim 1, wherein the display comprises a single, multi-colored LED, where each color indicates a different value of the health status.
9. The apparatus of claim 1, wherein the health status is displayed in bar fashion.
10. The apparatus of claim 1, wherein a value of the health status is displayed using rectangular shapes.
11. The apparatus of claim 1, wherein the display comprises an indicator that points increasingly toward a particular value of the health status as the health status deteriorates.
12. The apparatus of claim 1, wherein the health status is a measure of a health of the memory regardless of an amount of memory of the memory device that is defective at a time of manufacture of the memory device.
13. The apparatus of claim 1, wherein the display is on the memory device.
14. The apparatus of claim 1, wherein the display is a window on the memory device.
15. The apparatus of claim 1, wherein the display is coupled to a host.
16. The apparatus of claim 15, wherein the host measures the health status.
17. The apparatus of claim 1, wherein the health status is a percentage.
18. The apparatus of claim 1, wherein the health status is a ratio.
19. The apparatus of claim 1, wherein a controller coupled to the memory device measures the health status.
20. The apparatus of claim 1, wherein the memory device measures the health status.
21. The apparatus of claim 1, wherein the memory device is a memory card.
22. An apparatus, comprising:
a display configured to display a health status of a memory device;
wherein the health status only accounts for a growing number of defects of a memory of the memory device.
23. An apparatus, comprising:
a display configured to display a health status of a memory device;
wherein the health status depends upon a number of memory blocks of the memory device that become defective after the memory device is manufactured.
US12787538 2004-08-27 2010-05-26 Display configured to display health status of a memory device Abandoned US20100231408A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10927871 US7464306B1 (en) 2004-08-27 2004-08-27 Status of overall health of nonvolatile memory
US12276699 US7743290B2 (en) 2004-08-27 2008-11-24 Status of overall health of nonvolatile memory
US12787538 US20100231408A1 (en) 2004-08-27 2010-05-26 Display configured to display health status of a memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12787538 US20100231408A1 (en) 2004-08-27 2010-05-26 Display configured to display health status of a memory device

Publications (1)

Publication Number Publication Date
US20100231408A1 true true US20100231408A1 (en) 2010-09-16

Family

ID=40090679

Family Applications (3)

Application Number Title Priority Date Filing Date
US10927871 Active 2026-01-12 US7464306B1 (en) 2004-08-27 2004-08-27 Status of overall health of nonvolatile memory
US12276699 Active US7743290B2 (en) 2004-08-27 2008-11-24 Status of overall health of nonvolatile memory
US12787538 Abandoned US20100231408A1 (en) 2004-08-27 2010-05-26 Display configured to display health status of a memory device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10927871 Active 2026-01-12 US7464306B1 (en) 2004-08-27 2004-08-27 Status of overall health of nonvolatile memory
US12276699 Active US7743290B2 (en) 2004-08-27 2008-11-24 Status of overall health of nonvolatile memory

Country Status (1)

Country Link
US (3) US7464306B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120072696A1 (en) * 2010-09-17 2012-03-22 Hon Hai Precision Industry Co., Ltd. Method for diagnosing a memory of an electronic device
US20150262459A1 (en) * 2014-03-12 2015-09-17 Precor Incorporated Fitness Equipment Unit Service Condition Notification System
WO2017160407A1 (en) * 2016-03-16 2017-09-21 Intel Corporation Data storage system with persistent status display for memory storage devices

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7464306B1 (en) * 2004-08-27 2008-12-09 Lexar Media, Inc. Status of overall health of nonvolatile memory
US7861122B2 (en) * 2006-01-27 2010-12-28 Apple Inc. Monitoring health of non-volatile memory
US7653778B2 (en) * 2006-05-08 2010-01-26 Siliconsystems, Inc. Systems and methods for measuring the useful life of solid-state storage devices
US7778077B2 (en) * 2006-05-15 2010-08-17 Sandisk Corporation Non-volatile memory system with end of life calculation
KR100781976B1 (en) * 2006-11-02 2007-12-06 삼성전자주식회사 Method for serving block status information for use in semiconductor memory device having flash memory
US8549236B2 (en) * 2006-12-15 2013-10-01 Siliconsystems, Inc. Storage subsystem with multiple non-volatile memory arrays to protect against data losses
US7596643B2 (en) * 2007-02-07 2009-09-29 Siliconsystems, Inc. Storage subsystem with configurable buffer
US20080288712A1 (en) 2007-04-25 2008-11-20 Cornwell Michael J Accessing metadata with an external host
US7913032B1 (en) 2007-04-25 2011-03-22 Apple Inc. Initiating memory wear leveling
US8078918B2 (en) * 2008-02-07 2011-12-13 Siliconsystems, Inc. Solid state storage subsystem that maintains and provides access to data reflective of a failure risk
US7962792B2 (en) * 2008-02-11 2011-06-14 Siliconsystems, Inc. Interface for enabling a host computer to retrieve device monitor data from a solid state storage subsystem
US8259498B2 (en) * 2008-12-08 2012-09-04 Infinite Memory Ltd. Continuous address space in non-volatile-memories (NVM) using efficient management methods for array deficiencies
KR101624969B1 (en) * 2009-05-26 2016-05-31 삼성전자주식회사 Memory system and bad block management method thereof
US8966041B1 (en) * 2010-08-17 2015-02-24 Digital Connections, Inc. System and method for managing information technology infrastructure
US8719531B2 (en) 2011-06-14 2014-05-06 Western Digital Technologies, Inc. System and method for performing data retention that incorporates environmental conditions
US8719660B2 (en) * 2011-12-20 2014-05-06 Sandisk Technologies Inc. Apparatus and methods for indicating the health of removable storage devices
US9792192B1 (en) * 2012-03-29 2017-10-17 Amazon Technologies, Inc. Client-side, variable drive health determination
US9037921B1 (en) * 2012-03-29 2015-05-19 Amazon Technologies, Inc. Variable drive health determination and data placement
US8719320B1 (en) 2012-03-29 2014-05-06 Amazon Technologies, Inc. Server-side, variable drive health determination
US8972799B1 (en) 2012-03-29 2015-03-03 Amazon Technologies, Inc. Variable drive diagnostics

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173362B2 (en) *
US4309627A (en) * 1978-04-14 1982-01-05 Kabushiki Kaisha Daini Seikosha Detecting circuit for a power source voltage
US4450559A (en) * 1981-12-24 1984-05-22 International Business Machines Corporation Memory system with selective assignment of spare locations
US4498146A (en) * 1982-07-30 1985-02-05 At&T Bell Laboratories Management of defects in storage media
US4654847A (en) * 1984-12-28 1987-03-31 International Business Machines Apparatus for automatically correcting erroneous data and for storing the corrected data in a common pool alternate memory array
US4746998A (en) * 1985-11-20 1988-05-24 Seagate Technology, Inc. Method for mapping around defective sectors in a disc drive
US4748320A (en) * 1985-10-29 1988-05-31 Toppan Printing Co., Ltd. IC card
US4797543A (en) * 1985-07-31 1989-01-10 501 Toppan Moore Company, Ltd. Selectable data readout IC card
US4800520A (en) * 1985-10-29 1989-01-24 Kabushiki Kaisha Toshiba Portable electronic device with garbage collection function
US4829169A (en) * 1985-07-01 1989-05-09 Toppan Moore Company, Inc. IC card having state marker for record access
US4896262A (en) * 1984-02-24 1990-01-23 Kabushiki Kaisha Meidensha Emulation device for converting magnetic disc memory mode signal from computer into semiconductor memory access mode signal for semiconductor memory
US4914529A (en) * 1988-07-18 1990-04-03 Western Digital Corp. Data disk defect handling using relocation ID fields
US4920518A (en) * 1985-04-23 1990-04-24 Hitachi, Ltd. Semiconductor integrated circuit with nonvolatile memory
US4924331A (en) * 1985-11-20 1990-05-08 Seagate Technology, Inc. Method for mapping around defective sectors in a disc drive
US5093785A (en) * 1985-11-30 1992-03-03 Kabushiki Kaisha Toshiba Portable electronic device with memory having data pointers and circuitry for determining whether a next unwritten memory location exist
US5198380A (en) * 1988-06-08 1993-03-30 Sundisk Corporation Method of highly compact EPROM and flash EEPROM devices
US5200959A (en) * 1989-10-17 1993-04-06 Sundisk Corporation Device and method for defect handling in semi-conductor memory
US5284130A (en) * 1992-06-03 1994-02-08 Ratliff Jack L Surgical instrument positioning and securing apparatus
US5293560A (en) * 1988-06-08 1994-03-08 Eliyahou Harari Multi-state flash EEPROM system using incremental programing and erasing methods
US5297148A (en) * 1989-04-13 1994-03-22 Sundisk Corporation Flash eeprom system
US5303198A (en) * 1990-09-28 1994-04-12 Fuji Photo Film Co., Ltd. Method of recording data in memory card having EEPROM and memory card system using the same
US5305276A (en) * 1991-09-11 1994-04-19 Rohm Co., Ltd. Non-volatile IC memory
US5305278A (en) * 1990-12-18 1994-04-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having block write function
US5315541A (en) * 1992-07-24 1994-05-24 Sundisk Corporation Segmented column memory array
US5315558A (en) * 1991-10-25 1994-05-24 Vlsi Technology, Inc. Integrated circuit memory with non-binary array configuration
US5381539A (en) * 1992-06-04 1995-01-10 Emc Corporation System and method for dynamically controlling cache management
US5382839A (en) * 1992-09-16 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Power supply control circuit for use in IC memory card
US5384743A (en) * 1992-03-06 1995-01-24 Sgs-Thomson Microelectronics, S.A. Structure and method for flash eprom memory erasable by sectors
US5388083A (en) * 1993-03-26 1995-02-07 Cirrus Logic, Inc. Flash memory mass storage architecture
US5396468A (en) * 1991-03-15 1995-03-07 Sundisk Corporation Streamlined write operation for EEPROM system
US5404485A (en) * 1993-03-08 1995-04-04 M-Systems Flash Disk Pioneers Ltd. Flash file system
US5406527A (en) * 1992-06-26 1995-04-11 Kabushiki Kaisha Toshiba Partial write transferable multiport memory
US5485595A (en) * 1993-03-26 1996-01-16 Cirrus Logic, Inc. Flash memory mass storage architecture incorporating wear leveling technique without using cam cells
US5490117A (en) * 1993-03-23 1996-02-06 Seiko Epson Corporation IC card with dual level power supply interface and method for operating the IC card
US5495442A (en) * 1993-07-08 1996-02-27 Sandisk Corporation Method and circuit for simultaneously programming and verifying the programming of selected EEPROM cells
US5504760A (en) * 1991-03-15 1996-04-02 Sandisk Corporation Mixed data encoding EEPROM system
US5508971A (en) * 1994-10-17 1996-04-16 Sandisk Corporation Programmable power generation circuit for flash EEPROM memory systems
US5513138A (en) * 1993-05-13 1996-04-30 Ricoh Co., Ltd. Memory card having a plurality of EEPROM chips
US5515333A (en) * 1991-10-29 1996-05-07 Hitachi, Ltd. Semiconductor memory
US5519847A (en) * 1993-06-30 1996-05-21 Intel Corporation Method of pipelining sequential writes in a flash memory
US5592415A (en) * 1992-07-06 1997-01-07 Hitachi, Ltd. Non-volatile semiconductor memory
US5596526A (en) * 1995-08-15 1997-01-21 Lexar Microsystems, Inc. Non-volatile memory system of multi-level transistor cells and methods using same
US5598370A (en) * 1993-02-24 1997-01-28 International Business Machines Corporation Nonvolatile memory with cluster-erase flash capability and solid state file apparatus using the same
US5599151A (en) * 1993-03-04 1997-02-04 Daum Gmbh Surgical manipulator
US5603001A (en) * 1994-05-09 1997-02-11 Kabushiki Kaisha Toshiba Semiconductor disk system having a plurality of flash memories
US5606660A (en) * 1994-10-21 1997-02-25 Lexar Microsystems, Inc. Method and apparatus for combining controller firmware storage and controller logic in a mass storage system
US5611067A (en) * 1992-03-31 1997-03-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having means for selective transfer of memory block contents and for chaining together unused memory blocks
US5644539A (en) * 1991-11-26 1997-07-01 Hitachi, Ltd. Storage device employing a flash memory
US5712819A (en) * 1988-06-08 1998-01-27 Harari; Eliyahou Flash EEPROM system with storage of sector characteristic information within the sector
US5723990A (en) * 1995-06-21 1998-03-03 Micron Quantum Devices, Inc. Integrated circuit having high voltage detection circuit
US5734567A (en) * 1992-11-06 1998-03-31 Siemens Aktiengesellschaft Diagnosis system for a plant
US5745418A (en) * 1996-11-25 1998-04-28 Macronix International Co., Ltd. Flash memory mass storage system
US5754567A (en) * 1996-10-15 1998-05-19 Micron Quantum Devices, Inc. Write reduction in flash memory systems through ECC usage
US5758100A (en) * 1996-07-01 1998-05-26 Sun Microsystems, Inc. Dual voltage module interconnect
US5757712A (en) * 1996-07-12 1998-05-26 International Business Machines Corporation Memory modules with voltage regulation and level translation
US5860124A (en) * 1996-09-30 1999-01-12 Intel Corporation Method for performing a continuous over-write of a file in nonvolatile memory
US5860083A (en) * 1996-11-26 1999-01-12 Kabushiki Kaisha Toshiba Data storage system having flash memory and disk drive
US5862099A (en) * 1996-02-15 1999-01-19 Integrated Silicon Solution, Inc. Non-volatile programmable memory having a buffering capability and method of operation thereof
US5890192A (en) * 1996-11-05 1999-03-30 Sandisk Corporation Concurrent write of multiple chunks of data into multiple subarrays of flash EEPROM
US5901086A (en) * 1996-12-26 1999-05-04 Motorola, Inc. Pipelined fast-access floating gate memory architecture and method of operation
US5907856A (en) * 1995-07-31 1999-05-25 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US6011323A (en) * 1997-09-30 2000-01-04 International Business Machines Corporation Apparatus, method and article of manufacture providing for auxiliary battery conservation in adapters
US6011322A (en) * 1997-07-28 2000-01-04 Sony Corporation Apparatus and method for providing power to circuitry implementing two different power sources
US6018265A (en) * 1997-12-10 2000-01-25 Lexar Media, Inc. Internal CMOS reference generator and voltage regulator
US6021408A (en) * 1996-09-12 2000-02-01 Veritas Software Corp. Methods for operating a log device
US6026020A (en) * 1992-03-17 2000-02-15 Hitachi, Ltd. Data line disturbance free memory block divided flash memory and microcomputer having flash memory therein
US6026027A (en) * 1994-01-31 2000-02-15 Norand Corporation Flash memory system having memory cache
US6034897A (en) * 1999-04-01 2000-03-07 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6035357A (en) * 1996-06-07 2000-03-07 Kabushiki Kaisha Toshiba IC card compatible with different supply voltages, IC card system comprising the same, and IC for the IC card
US6040997A (en) * 1998-03-25 2000-03-21 Lexar Media, Inc. Flash memory leveling architecture having no external latch
US6041001A (en) * 1999-02-25 2000-03-21 Lexar Media, Inc. Method of increasing data reliability of a flash memory device without compromising compatibility
US6047352A (en) * 1996-10-29 2000-04-04 Micron Technology, Inc. Memory system, method and predecoding circuit operable in different modes for selectively accessing multiple blocks of memory cells for simultaneous writing or erasure
US6055184A (en) * 1998-09-02 2000-04-25 Texas Instruments Incorporated Semiconductor memory device having programmable parallel erase operation
US6055188A (en) * 1997-04-30 2000-04-25 Kabushiki Kaishi Toshiba Nonvolatile semiconductor memory device having a data circuit for erasing and writing operations
US6069827A (en) * 1995-09-27 2000-05-30 Memory Corporation Plc Memory system
US6172906B1 (en) * 1995-07-31 2001-01-09 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6173362B1 (en) * 1996-12-24 2001-01-09 Kabushiki Kaisha Toshiba Storage system with selective optimization of data location
US6181118B1 (en) * 1999-06-24 2001-01-30 Analog Devices, Inc. Control circuit for controlling a semi-conductor switch for selectively outputting an output voltage at two voltage levels
US6182162B1 (en) * 1998-03-02 2001-01-30 Lexar Media, Inc. Externally coupled compact flash memory card that configures itself one of a plurality of appropriate operating protocol modes of a host computer
US6223308B1 (en) * 1995-07-31 2001-04-24 Lexar Media, Inc. Identification and verification of a sector within a block of mass STO rage flash memory
US6226708B1 (en) * 1997-08-18 2001-05-01 Texas Instruments Incorporated Method and system for efficiently programming non-volatile memory
US6230234B1 (en) * 1995-07-31 2001-05-08 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US6345367B1 (en) * 1996-07-11 2002-02-05 Memory Corporation Plc Defective memory block handling system by addressing a group of memory blocks for erasure and changing the content therewith
US6374337B1 (en) * 1998-11-17 2002-04-16 Lexar Media, Inc. Data pipelining method and apparatus for memory control circuit
US20030033471A1 (en) * 2001-08-07 2003-02-13 Chun-Hung Lin Window-based flash memory storage system and management and access methods thereof
US6711059B2 (en) * 2001-09-28 2004-03-23 Lexar Media, Inc. Memory controller
US6721843B1 (en) * 2000-07-07 2004-04-13 Lexar Media, Inc. Flash memory architecture implementing simultaneously programmable multiple flash memory banks that are host compatible
US6721819B2 (en) * 1998-03-02 2004-04-13 Lexar Media, Inc. Flash memory card with enhanced operating mode detection and user-friendly interfacing system
US6725321B1 (en) * 1999-02-17 2004-04-20 Lexar Media, Inc. Memory system
US6728851B1 (en) * 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6993690B1 (en) * 1998-12-16 2006-01-31 Hagiwara Sys-Com Co., Ltd. Memory unit having memory status indicator
US7000064B2 (en) * 2001-09-28 2006-02-14 Lexar Media, Inc. Data handling system
US7009896B2 (en) * 2003-04-04 2006-03-07 Samsung Electronics Co., Ltd. Apparatus and method for managing bad blocks in a flash memory
US20070005090A1 (en) * 2004-04-02 2007-01-04 Whitmore Willet F Iii Device and Method for Vascular Tamponade Following Percutaneous Puncture
US7171536B2 (en) * 2002-10-28 2007-01-30 Sandisk Corporation Unusable block management within a non-volatile memory system
US7385864B2 (en) * 2006-09-12 2008-06-10 Texas Instruments Incorporated SRAM static noise margin test structure suitable for on chip parametric measurements
US7464306B1 (en) * 2004-08-27 2008-12-09 Lexar Media, Inc. Status of overall health of nonvolatile memory
US7594063B1 (en) * 2004-08-27 2009-09-22 Lexar Media, Inc. Storage capacity status
US7682307B2 (en) * 2003-05-23 2010-03-23 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130536A (en) 1976-04-26 1977-11-01 Toshiba Corp Semiconductor memory unit
US4099069A (en) 1976-10-08 1978-07-04 Westinghouse Electric Corp. Circuit producing a common clear signal for erasing selected arrays in a mnos memory system
US4210959A (en) 1978-05-10 1980-07-01 Apple Computer, Inc. Controller for magnetic disc, recorder, or the like
FR2426938B1 (en) 1978-05-26 1980-10-31 Cii Honeywell Bull
JPS6250861B2 (en) 1978-07-03 1987-10-27 Nippon Electric Co
US4532590A (en) 1980-04-25 1985-07-30 Data General Corporation Data processing system having a unique address translation unit
US4355376A (en) 1980-09-30 1982-10-19 Burroughs Corporation Apparatus and method for utilizing partially defective memory devices
JPS5764383A (en) 1980-10-03 1982-04-19 Toshiba Corp Address converting method and its device
US4398248A (en) 1980-10-20 1983-08-09 Mcdonnell Douglas Corporation Adaptive WSI/MNOS solid state memory system
JPS57132256A (en) 1981-02-09 1982-08-16 Sony Corp Memory device
JPH0563861B2 (en) 1981-10-30 1993-09-13 Hitachi Ltd
US4473878A (en) 1981-11-23 1984-09-25 Motorola, Inc. Memory management unit
US4468730A (en) 1981-11-27 1984-08-28 Storage Technology Corporation Detection of sequential data stream for improvements in cache data storage
US4476526A (en) 1981-11-27 1984-10-09 Storage Technology Corporation Cache buffered memory subsystem
US4710871A (en) 1982-11-01 1987-12-01 Ncr Corporation Data transmitting and receiving apparatus
US4609833A (en) 1983-08-12 1986-09-02 Thomson Components-Mostek Corporation Simple NMOS voltage reference circuit
JPH0411957B2 (en) 1984-06-21 1992-03-03 Nippon Electric Co
JPS6180597A (en) 1984-09-26 1986-04-24 Hitachi Ltd Semiconductor memory device
JPS61208673A (en) 1985-03-12 1986-09-17 Matsushita Electric Ind Co Ltd Information recording and reproducing device
JPS62102482A (en) 1985-10-28 1987-05-12 Matsushita Electric Ind Co Ltd Information recording and reproducing device
US4752893A (en) * 1985-11-06 1988-06-21 Texas Instruments Incorporated Graphics data processing apparatus having image operations with transparent color having a selectable number of bits
US4757474A (en) 1986-01-28 1988-07-12 Fujitsu Limited Semiconductor memory device having redundancy circuit portion
US4953122A (en) 1986-10-31 1990-08-28 Laserdrive Ltd. Pseudo-erasable and rewritable write-once optical disk memory system
JPS63198567U (en) 1987-06-12 1988-12-21
JPS6473430A (en) 1987-09-14 1989-03-17 Hudson Soft Co Ltd Memory access control device
JPH081760B2 (en) 1987-11-17 1996-01-10 三菱電機株式会社 A semiconductor memory device
JPH01137817A (en) 1987-11-25 1989-05-30 Toshiba Corp Delay circuit
US5168465A (en) 1988-06-08 1992-12-01 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5268318A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5268319A (en) 1988-06-08 1993-12-07 Eliyahou Harari Highly compact EPROM and flash EEPROM devices
US5070474A (en) 1988-07-26 1991-12-03 Disk Emulation Systems, Inc. Disk emulation system
US5253351A (en) 1988-08-11 1993-10-12 Hitachi, Ltd. Memory controller with a cache memory and control method of cache memory including steps of determining memory access threshold values
US5535328A (en) 1989-04-13 1996-07-09 Sandisk Corporation Non-volatile memory system card with flash erasable sectors of EEprom cells including a mechanism for substituting defective cells
US5226168A (en) 1989-04-25 1993-07-06 Seiko Epson Corporation Semiconductor memory configured to emulate floppy and hard disk magnetic storage based upon a determined storage capacity of the semiconductor memory
US5247658A (en) 1989-10-31 1993-09-21 Microsoft Corporation Method and system for traversing linked list record based upon write-once predetermined bit value of secondary pointers
US5218695A (en) 1990-02-05 1993-06-08 Epoch Systems, Inc. File server system having high-speed write execution
US5220518A (en) 1990-06-07 1993-06-15 Vlsi Technology, Inc. Integrated circuit memory with non-binary array configuration
DE69021732D1 (en) 1990-12-04 1995-09-21 Hewlett Packard Ltd Reprogrammable data storage system.
GB2251323B (en) 1990-12-31 1994-10-12 Intel Corp Disk emulation for a non-volatile semiconductor memory
GB2251324B (en) 1990-12-31 1995-05-10 Intel Corp File structure for a non-volatile semiconductor memory
US5270979A (en) 1991-03-15 1993-12-14 Sundisk Corporation Method for optimum erasing of EEPROM
US5663901A (en) 1991-04-11 1997-09-02 Sandisk Corporation Computer memory cards using flash EEPROM integrated circuit chips and memory-controller systems
JP2582487B2 (en) 1991-07-12 1997-02-19 インターナショナル・ビジネス・マシーンズ・コーポレイション External storage system and its control method using the semiconductor memory
US5430859A (en) 1991-07-26 1995-07-04 Sundisk Corporation Solid state memory system including plural memory chips and a serialized bus
DE69223099D1 (en) 1991-08-09 1997-12-18 Toshiba Kawasaki Kk Recording device for a memory card
US6230233B1 (en) 1991-09-13 2001-05-08 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US5438573A (en) 1991-09-13 1995-08-01 Sundisk Corporation Flash EEPROM array data and header file structure
US5357462A (en) 1991-09-24 1994-10-18 Kabushiki Kaisha Toshiba Electrically erasable and programmable non-volatile semiconductor memory with automatic write-verify controller
US5778418A (en) 1991-09-27 1998-07-07 Sandisk Corporation Mass computer storage system having both solid state and rotating disk types of memory
US5227714A (en) 1991-10-07 1993-07-13 Brooktree Corporation Voltage regulator
JPH05151097A (en) 1991-11-28 1993-06-18 Fujitsu Ltd Data control system for rewriting frequency limited type memory
US5974544A (en) * 1991-12-17 1999-10-26 Dell Usa, L.P. Method and controller for defect tracking in a redundant array
JP3171901B2 (en) 1992-02-05 2001-06-04 セイコーインスツルメンツ株式会社 Rewriting method of a non-volatile memory card
JPH05233426A (en) 1992-02-20 1993-09-10 Fujitsu Ltd Flash memory using method
DE69326370D1 (en) 1992-03-05 1999-10-21 Toshiba Kawasaki Kk The nonvolatile semiconductor memory device
JP2830594B2 (en) 1992-03-26 1998-12-02 日本電気株式会社 Semiconductor memory device
US5267218A (en) 1992-03-31 1993-11-30 Intel Corporation Nonvolatile memory card with a single power supply input
KR0121800B1 (en) * 1992-05-08 1997-11-22 사또오 후미오 Memory card device
US5532962A (en) 1992-05-20 1996-07-02 Sandisk Corporation Soft errors handling in EEPROM devices
DE4219145C1 (en) 1992-06-11 1994-03-17 Emitec Emissionstechnologie Method and apparatus for applying brazing material to a metallic honeycomb body
JP3328321B2 (en) 1992-06-22 2002-09-24 株式会社日立製作所 A semiconductor memory device
US5428621A (en) 1992-09-21 1995-06-27 Sundisk Corporation Latent defect handling in EEPROM devices
JP3105092B2 (en) 1992-10-06 2000-10-30 株式会社東芝 Semiconductor memory device
US5341330A (en) 1992-10-30 1994-08-23 Intel Corporation Method for writing to a flash memory array during erase suspend intervals
US5341339A (en) 1992-10-30 1994-08-23 Intel Corporation Method for wear leveling in a flash EEPROM memory
US5357475A (en) 1992-10-30 1994-10-18 Intel Corporation Method for detaching sectors in a flash EEPROM memory array
US5822781A (en) 1992-10-30 1998-10-13 Intel Corporation Sector-based storage device emulator having variable-sized sector
US5337275A (en) 1992-10-30 1994-08-09 Intel Corporation Method for releasing space in flash EEPROM memory array to allow the storage of compressed data
JPH06236686A (en) 1993-01-22 1994-08-23 Nec Corp Semiconductor device
US5581723A (en) 1993-02-19 1996-12-03 Intel Corporation Method and apparatus for retaining flash block structure data during erase operations in a flash EEPROM memory array
US5812814A (en) 1993-02-26 1998-09-22 Kabushiki Kaisha Toshiba Alternative flash EEPROM semiconductor memory system
JP3594626B2 (en) 1993-03-04 2004-12-02 株式会社ルネサステクノロジ Nonvolatile memory device
JPH06266596A (en) 1993-03-11 1994-09-22 Hitachi Ltd Flash memory file storage device and information processor
US5479638A (en) 1993-03-26 1995-12-26 Cirrus Logic, Inc. Flash memory mass storage architecture incorporation wear leveling technique
KR970008188B1 (en) 1993-04-08 1997-05-21 가나이 쯔또무 Control method of flash memory and information processing apparatus using the same
US5353256A (en) 1993-06-30 1994-10-04 Intel Corporation Block specific status information in a memory device
US5329491A (en) 1993-06-30 1994-07-12 Intel Corporation Nonvolatile memory card with automatic power supply configuration
US5465338A (en) 1993-08-24 1995-11-07 Conner Peripherals, Inc. Disk drive system interface architecture employing state machines
US5566314A (en) 1993-08-30 1996-10-15 Lucent Technologies Inc. Flash memory device employing unused cell arrays to update files
JP2922116B2 (en) 1993-09-02 1999-07-19 株式会社東芝 A semiconductor memory device
JP3683915B2 (en) 1993-09-24 2005-08-17 株式会社東芝 A semiconductor memory device
JP3215237B2 (en) 1993-10-01 2001-10-02 富士通株式会社 Write / erase method of a storage device and a storage device
US5365127A (en) 1993-10-18 1994-11-15 Hewlett-Packard Company Circuit for conversion from CMOS voltage levels to shifted ECL voltage levels with process compensation
JPH07235193A (en) 1993-12-28 1995-09-05 Toshiba Corp Semiconductor memory
DE69428881D1 (en) 1994-01-12 2001-12-06 Sun Microsystems Inc Logically addressable physical memory for a computer system with virtual memory that supports multiple page sizes
US5473765A (en) 1994-01-24 1995-12-05 3Com Corporation Apparatus for using flash memory as a floppy disk emulator in a computer system
US5661053A (en) 1994-05-25 1997-08-26 Sandisk Corporation Method of making dense flash EEPROM cell array and peripheral supporting circuits formed in deposited field oxide with the use of spacers
US5809558A (en) 1994-09-29 1998-09-15 Intel Corporation Method and data storage system for storing data in blocks without file reallocation before erasure
JP2669365B2 (en) 1994-11-24 1997-10-27 日本電気株式会社 Rewritable rom file device
US5537077A (en) 1994-12-23 1996-07-16 Advanced Micro Devices, Inc. Power supply dependent method of controlling a charge pump
US5847552A (en) 1995-01-24 1998-12-08 Dell Usa, L.P. Integrated circuit with determinate power source control
JPH08212019A (en) 1995-01-31 1996-08-20 Mitsubishi Electric Corp Semiconductor disk device
JPH08263361A (en) 1995-03-23 1996-10-11 Mitsubishi Denki Semiconductor Software Kk Flash memory card
US5818350A (en) 1995-04-11 1998-10-06 Lexar Microsystems Inc. High performance method of and system for selecting one of a plurality of IC chip while requiring minimal select lines
US6072796A (en) 1995-06-14 2000-06-06 Avid Technology, Inc. Apparatus and method for accessing memory in a TDM network
US5552698A (en) 1995-06-29 1996-09-03 United Microelectronics Corp. Voltage supply system for IC chips
US5627416A (en) 1995-07-21 1997-05-06 Itt Corporation Multi-voltage IC card host
US5930815A (en) 1995-07-31 1999-07-27 Lexar Media, Inc. Moving sequential sectors within a block of information in a flash memory mass storage architecture
US6567307B1 (en) * 2000-07-21 2003-05-20 Lexar Media, Inc. Block management for mass storage
US6122195A (en) 1997-03-31 2000-09-19 Lexar Media, Inc. Method and apparatus for decreasing block write operation times performed on nonvolatile memory
US6411546B1 (en) 1997-03-31 2002-06-25 Lexar Media, Inc. Nonvolatile memory using flexible erasing methods and method and system for using same
US6125435A (en) 1995-09-13 2000-09-26 Lexar Media, Inc. Alignment of cluster address to block addresses within a semiconductor non-volatile mass storage memory
US6978342B1 (en) 1995-07-31 2005-12-20 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US6757800B1 (en) 1995-07-31 2004-06-29 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US5953737A (en) 1997-03-31 1999-09-14 Lexar Media, Inc. Method and apparatus for performing erase operations transparent to a solid state storage system
JPH0954726A (en) 1995-08-18 1997-02-25 Mitsubishi Electric Corp Memory device
JPH0969295A (en) 1995-08-31 1997-03-11 Sanyo Electric Co Ltd Non-volatile multi-value memory device
US5835935A (en) 1995-09-13 1998-11-10 Lexar Media, Inc. Method of and architecture for controlling system data with automatic wear leveling in a semiconductor non-volatile mass storage memory
GB9519669D0 (en) 1995-09-27 1995-11-29 Memory Corp Plc Flash memory management system
US5809560A (en) 1995-10-13 1998-09-15 Compaq Computer Corporation Adaptive read-ahead disk cache
KR100253868B1 (en) 1995-11-13 2000-05-01 니시무로 타이죠 Non-volatile semiconductor memory device
JP4299883B2 (en) 1995-11-13 2009-07-22 レクサー・メディア・インコーポレーテッド Automatic voltage detection at a plurality voltage application
US5799168A (en) 1996-01-05 1998-08-25 M-Systems Flash Disk Pioneers Ltd. Standardized flash controller
JPH09212411A (en) 1996-02-06 1997-08-15 Tokyo Electron Ltd Memory system
US5787445A (en) 1996-03-07 1998-07-28 Norris Communications Corporation Operating system including improved file management for use in devices utilizing flash memory as main memory
US5822252A (en) 1996-03-29 1998-10-13 Aplus Integrated Circuits, Inc. Flash memory wordline decoder with overerase repair
GB9606927D0 (en) 1996-04-02 1996-06-05 Memory Corp Plc Data storage devices
GB9606928D0 (en) 1996-04-02 1996-06-05 Memory Corp Plc Memory devices
US5991849A (en) 1996-04-10 1999-11-23 Sanyo Electric Co., Ltd Rewriting protection of a size varying first region of a reprogrammable non-volatile memory
GB9609301D0 (en) 1996-05-03 1996-07-10 Wallace & Tiernan Ltd Measuring chlorine concentration
US6490649B2 (en) 1998-11-10 2002-12-03 Lexar Media, Inc. Memory device
GB9609833D0 (en) 1996-05-10 1996-07-17 Memory Corp Plc Memory device
US5959926A (en) 1996-06-07 1999-09-28 Dallas Semiconductor Corp. Programmable power supply systems and methods providing a write protected memory having multiple interface capability
GB9613088D0 (en) 1996-06-21 1996-08-28 Memory Corp Plc Memory device
JP3761635B2 (en) 1996-07-12 2006-03-29 株式会社ダックス Memory board, a memory access method and memory access device
US5787484A (en) 1996-08-08 1998-07-28 Micron Technology, Inc. System and method which compares data preread from memory cells to data to be written to the cells
US5920884A (en) 1996-09-24 1999-07-06 Hyundai Electronics America, Inc. Nonvolatile memory interface protocol which selects a memory device, transmits an address, deselects the device, subsequently reselects the device and accesses data
US5909586A (en) 1996-11-06 1999-06-01 The Foxboro Company Methods and systems for interfacing with an interface powered I/O device
US5956473A (en) 1996-11-25 1999-09-21 Macronix International Co., Ltd. Method and system for managing a flash memory mass storage system
JPH10177797A (en) 1996-12-17 1998-06-30 Toshiba Corp Semiconductor memory
US6279069B1 (en) 1996-12-26 2001-08-21 Intel Corporation Interface for flash EEPROM memory arrays
US5928370A (en) 1997-02-05 1999-07-27 Lexar Media, Inc. Method and apparatus for verifying erasure of memory blocks within a non-volatile memory structure
US5822245A (en) 1997-03-26 1998-10-13 Atmel Corporation Dual buffer flash memory architecture with multiple operating modes
US5831929A (en) 1997-04-04 1998-11-03 Micron Technology, Inc. Memory device with staggered data paths
US5937425A (en) 1997-10-16 1999-08-10 M-Systems Flash Disk Pioneers Ltd. Flash file system optimized for page-mode flash technologies
JPH11224492A (en) 1997-11-06 1999-08-17 Toshiba Corp Semiconductor memory, non-volatile semiconductor memory, and flash memory
US6076137A (en) 1997-12-11 2000-06-13 Lexar Media, Inc. Method and apparatus for storing location identification information within non-volatile memory devices
GB9801373D0 (en) 1998-01-22 1998-03-18 Memory Corp Plc Memory system
GB9806687D0 (en) 1998-03-27 1998-05-27 Memory Corp Plc Memory system
US5969986A (en) 1998-06-23 1999-10-19 Invox Technology High-bandwidth read and write architectures for non-volatile memories
US6279114B1 (en) 1998-11-04 2001-08-21 Sandisk Corporation Voltage negotiation in a single host multiple cards system
US6260156B1 (en) * 1998-12-04 2001-07-10 Datalight, Inc. Method and system for managing bad areas in flash memory
US6084483A (en) 1999-03-10 2000-07-04 Lexar Media, Inc. Internal oscillator circuit including a ring oscillator controlled by a voltage regulator circuit
US6141249A (en) 1999-04-01 2000-10-31 Lexar Media, Inc. Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time
EP1228510B1 (en) 1999-04-01 2006-09-20 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6772274B1 (en) 2000-09-13 2004-08-03 Lexar Media, Inc. Flash memory system and method implementing LBA to PBA correlation within flash memory array
JP4031190B2 (en) * 2000-09-29 2008-01-09 株式会社東芝 Memory card, nonvolatile memory, data writing method and a data writing device of non-volatile memory
GB0123416D0 (en) 2001-09-28 2001-11-21 Memquest Ltd Non-volatile memory control
GB0123412D0 (en) 2001-09-28 2001-11-21 Memquest Ltd Memory system sectors
GB0123410D0 (en) 2001-09-28 2001-11-21 Memquest Ltd Memory system for data storage and retrieval
GB2411499B (en) 2001-09-28 2006-02-08 Lexar Media Inc Method of writing data to non-volatile memory
GB0123415D0 (en) 2001-09-28 2001-11-21 Memquest Ltd Method of writing data to non-volatile memory
US6957295B1 (en) 2002-01-18 2005-10-18 Lexar Media, Inc. File management of one-time-programmable nonvolatile memory devices
US6950918B1 (en) 2002-01-18 2005-09-27 Lexar Media, Inc. File management of one-time-programmable nonvolatile memory devices
WO2003071853A3 (en) * 2002-02-22 2004-01-15 Lexar Media Inc Removable memory media with integral indicator light
US20030227451A1 (en) * 2002-06-07 2003-12-11 Chi-Tung Chang Portable storage device with a storage capacity display
US6973519B1 (en) 2003-06-03 2005-12-06 Lexar Media, Inc. Card identification compatibility
JP4196743B2 (en) * 2003-06-12 2008-12-17 沖電気工業株式会社 A semiconductor memory device
US20050144516A1 (en) * 2003-12-30 2005-06-30 Gonzalez Carlos J. Adaptive deterministic grouping of blocks into multi-block units

Patent Citations (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172906B2 (en) *
US6182162B2 (en) *
US6173362B2 (en) *
US4309627A (en) * 1978-04-14 1982-01-05 Kabushiki Kaisha Daini Seikosha Detecting circuit for a power source voltage
US4450559A (en) * 1981-12-24 1984-05-22 International Business Machines Corporation Memory system with selective assignment of spare locations
US4498146A (en) * 1982-07-30 1985-02-05 At&T Bell Laboratories Management of defects in storage media
US4896262A (en) * 1984-02-24 1990-01-23 Kabushiki Kaisha Meidensha Emulation device for converting magnetic disc memory mode signal from computer into semiconductor memory access mode signal for semiconductor memory
US4654847A (en) * 1984-12-28 1987-03-31 International Business Machines Apparatus for automatically correcting erroneous data and for storing the corrected data in a common pool alternate memory array
US4920518A (en) * 1985-04-23 1990-04-24 Hitachi, Ltd. Semiconductor integrated circuit with nonvolatile memory
US4829169A (en) * 1985-07-01 1989-05-09 Toppan Moore Company, Inc. IC card having state marker for record access
US4797543A (en) * 1985-07-31 1989-01-10 501 Toppan Moore Company, Ltd. Selectable data readout IC card
US4800520A (en) * 1985-10-29 1989-01-24 Kabushiki Kaisha Toshiba Portable electronic device with garbage collection function
US4748320A (en) * 1985-10-29 1988-05-31 Toppan Printing Co., Ltd. IC card
US4924331A (en) * 1985-11-20 1990-05-08 Seagate Technology, Inc. Method for mapping around defective sectors in a disc drive
US4746998A (en) * 1985-11-20 1988-05-24 Seagate Technology, Inc. Method for mapping around defective sectors in a disc drive
US5093785A (en) * 1985-11-30 1992-03-03 Kabushiki Kaisha Toshiba Portable electronic device with memory having data pointers and circuitry for determining whether a next unwritten memory location exist
US5198380A (en) * 1988-06-08 1993-03-30 Sundisk Corporation Method of highly compact EPROM and flash EEPROM devices
US5712819A (en) * 1988-06-08 1998-01-27 Harari; Eliyahou Flash EEPROM system with storage of sector characteristic information within the sector
US5293560A (en) * 1988-06-08 1994-03-08 Eliyahou Harari Multi-state flash EEPROM system using incremental programing and erasing methods
US4914529A (en) * 1988-07-18 1990-04-03 Western Digital Corp. Data disk defect handling using relocation ID fields
US5719808A (en) * 1989-04-13 1998-02-17 Sandisk Corporation Flash EEPROM system
US5297148A (en) * 1989-04-13 1994-03-22 Sundisk Corporation Flash eeprom system
US5418752A (en) * 1989-04-13 1995-05-23 Sundisk Corporation Flash EEPROM system with erase sector select
US5602987A (en) * 1989-04-13 1997-02-11 Sandisk Corporation Flash EEprom system
US5200959A (en) * 1989-10-17 1993-04-06 Sundisk Corporation Device and method for defect handling in semi-conductor memory
US5303198A (en) * 1990-09-28 1994-04-12 Fuji Photo Film Co., Ltd. Method of recording data in memory card having EEPROM and memory card system using the same
US5305278A (en) * 1990-12-18 1994-04-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having block write function
US5396468A (en) * 1991-03-15 1995-03-07 Sundisk Corporation Streamlined write operation for EEPROM system
US5504760A (en) * 1991-03-15 1996-04-02 Sandisk Corporation Mixed data encoding EEPROM system
US5305276A (en) * 1991-09-11 1994-04-19 Rohm Co., Ltd. Non-volatile IC memory
US5315558A (en) * 1991-10-25 1994-05-24 Vlsi Technology, Inc. Integrated circuit memory with non-binary array configuration
US5515333A (en) * 1991-10-29 1996-05-07 Hitachi, Ltd. Semiconductor memory
US5644539A (en) * 1991-11-26 1997-07-01 Hitachi, Ltd. Storage device employing a flash memory
US5384743A (en) * 1992-03-06 1995-01-24 Sgs-Thomson Microelectronics, S.A. Structure and method for flash eprom memory erasable by sectors
US6026020A (en) * 1992-03-17 2000-02-15 Hitachi, Ltd. Data line disturbance free memory block divided flash memory and microcomputer having flash memory therein
US5611067A (en) * 1992-03-31 1997-03-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device having means for selective transfer of memory block contents and for chaining together unused memory blocks
US5284130A (en) * 1992-06-03 1994-02-08 Ratliff Jack L Surgical instrument positioning and securing apparatus
US5381539A (en) * 1992-06-04 1995-01-10 Emc Corporation System and method for dynamically controlling cache management
US5406527A (en) * 1992-06-26 1995-04-11 Kabushiki Kaisha Toshiba Partial write transferable multiport memory
US5592415A (en) * 1992-07-06 1997-01-07 Hitachi, Ltd. Non-volatile semiconductor memory
US5315541A (en) * 1992-07-24 1994-05-24 Sundisk Corporation Segmented column memory array
US5382839A (en) * 1992-09-16 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Power supply control circuit for use in IC memory card
US5734567A (en) * 1992-11-06 1998-03-31 Siemens Aktiengesellschaft Diagnosis system for a plant
US5598370A (en) * 1993-02-24 1997-01-28 International Business Machines Corporation Nonvolatile memory with cluster-erase flash capability and solid state file apparatus using the same
US5599151A (en) * 1993-03-04 1997-02-04 Daum Gmbh Surgical manipulator
US5404485A (en) * 1993-03-08 1995-04-04 M-Systems Flash Disk Pioneers Ltd. Flash file system
US5490117A (en) * 1993-03-23 1996-02-06 Seiko Epson Corporation IC card with dual level power supply interface and method for operating the IC card
US5485595A (en) * 1993-03-26 1996-01-16 Cirrus Logic, Inc. Flash memory mass storage architecture incorporating wear leveling technique without using cam cells
US5388083A (en) * 1993-03-26 1995-02-07 Cirrus Logic, Inc. Flash memory mass storage architecture
US5513138A (en) * 1993-05-13 1996-04-30 Ricoh Co., Ltd. Memory card having a plurality of EEPROM chips
US5519847A (en) * 1993-06-30 1996-05-21 Intel Corporation Method of pipelining sequential writes in a flash memory
US5495442A (en) * 1993-07-08 1996-02-27 Sandisk Corporation Method and circuit for simultaneously programming and verifying the programming of selected EEPROM cells
US6026027A (en) * 1994-01-31 2000-02-15 Norand Corporation Flash memory system having memory cache
US5603001A (en) * 1994-05-09 1997-02-11 Kabushiki Kaisha Toshiba Semiconductor disk system having a plurality of flash memories
US5592420A (en) * 1994-10-17 1997-01-07 Sandisk Corporation Programmable power generation circuit for flash EEPROM memory systems
US5508971A (en) * 1994-10-17 1996-04-16 Sandisk Corporation Programmable power generation circuit for flash EEPROM memory systems
US5606660A (en) * 1994-10-21 1997-02-25 Lexar Microsystems, Inc. Method and apparatus for combining controller firmware storage and controller logic in a mass storage system
US5723990A (en) * 1995-06-21 1998-03-03 Micron Quantum Devices, Inc. Integrated circuit having high voltage detection circuit
US6230234B1 (en) * 1995-07-31 2001-05-08 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US6202138B1 (en) * 1995-07-31 2001-03-13 Lexar Media, Inc Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6223308B1 (en) * 1995-07-31 2001-04-24 Lexar Media, Inc. Identification and verification of a sector within a block of mass STO rage flash memory
US6172906B1 (en) * 1995-07-31 2001-01-09 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6728851B1 (en) * 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US5907856A (en) * 1995-07-31 1999-05-25 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US5596526A (en) * 1995-08-15 1997-01-21 Lexar Microsystems, Inc. Non-volatile memory system of multi-level transistor cells and methods using same
US6069827A (en) * 1995-09-27 2000-05-30 Memory Corporation Plc Memory system
US5862099A (en) * 1996-02-15 1999-01-19 Integrated Silicon Solution, Inc. Non-volatile programmable memory having a buffering capability and method of operation thereof
US6035357A (en) * 1996-06-07 2000-03-07 Kabushiki Kaisha Toshiba IC card compatible with different supply voltages, IC card system comprising the same, and IC for the IC card
US5758100A (en) * 1996-07-01 1998-05-26 Sun Microsystems, Inc. Dual voltage module interconnect
US6345367B1 (en) * 1996-07-11 2002-02-05 Memory Corporation Plc Defective memory block handling system by addressing a group of memory blocks for erasure and changing the content therewith
US5757712A (en) * 1996-07-12 1998-05-26 International Business Machines Corporation Memory modules with voltage regulation and level translation
US6021408A (en) * 1996-09-12 2000-02-01 Veritas Software Corp. Methods for operating a log device
US5860124A (en) * 1996-09-30 1999-01-12 Intel Corporation Method for performing a continuous over-write of a file in nonvolatile memory
US5754567A (en) * 1996-10-15 1998-05-19 Micron Quantum Devices, Inc. Write reduction in flash memory systems through ECC usage
US6047352A (en) * 1996-10-29 2000-04-04 Micron Technology, Inc. Memory system, method and predecoding circuit operable in different modes for selectively accessing multiple blocks of memory cells for simultaneous writing or erasure
US5890192A (en) * 1996-11-05 1999-03-30 Sandisk Corporation Concurrent write of multiple chunks of data into multiple subarrays of flash EEPROM
US5745418A (en) * 1996-11-25 1998-04-28 Macronix International Co., Ltd. Flash memory mass storage system
US5860083A (en) * 1996-11-26 1999-01-12 Kabushiki Kaisha Toshiba Data storage system having flash memory and disk drive
US6173362B1 (en) * 1996-12-24 2001-01-09 Kabushiki Kaisha Toshiba Storage system with selective optimization of data location
US5901086A (en) * 1996-12-26 1999-05-04 Motorola, Inc. Pipelined fast-access floating gate memory architecture and method of operation
US6055188A (en) * 1997-04-30 2000-04-25 Kabushiki Kaishi Toshiba Nonvolatile semiconductor memory device having a data circuit for erasing and writing operations
US6011322A (en) * 1997-07-28 2000-01-04 Sony Corporation Apparatus and method for providing power to circuitry implementing two different power sources
US6226708B1 (en) * 1997-08-18 2001-05-01 Texas Instruments Incorporated Method and system for efficiently programming non-volatile memory
US6011323A (en) * 1997-09-30 2000-01-04 International Business Machines Corporation Apparatus, method and article of manufacture providing for auxiliary battery conservation in adapters
US6018265A (en) * 1997-12-10 2000-01-25 Lexar Media, Inc. Internal CMOS reference generator and voltage regulator
US6182162B1 (en) * 1998-03-02 2001-01-30 Lexar Media, Inc. Externally coupled compact flash memory card that configures itself one of a plurality of appropriate operating protocol modes of a host computer
US6721819B2 (en) * 1998-03-02 2004-04-13 Lexar Media, Inc. Flash memory card with enhanced operating mode detection and user-friendly interfacing system
US6040997A (en) * 1998-03-25 2000-03-21 Lexar Media, Inc. Flash memory leveling architecture having no external latch
US6055184A (en) * 1998-09-02 2000-04-25 Texas Instruments Incorporated Semiconductor memory device having programmable parallel erase operation
US6374337B1 (en) * 1998-11-17 2002-04-16 Lexar Media, Inc. Data pipelining method and apparatus for memory control circuit
US6993690B1 (en) * 1998-12-16 2006-01-31 Hagiwara Sys-Com Co., Ltd. Memory unit having memory status indicator
US6725321B1 (en) * 1999-02-17 2004-04-20 Lexar Media, Inc. Memory system
US6041001A (en) * 1999-02-25 2000-03-21 Lexar Media, Inc. Method of increasing data reliability of a flash memory device without compromising compatibility
US6034897A (en) * 1999-04-01 2000-03-07 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6181118B1 (en) * 1999-06-24 2001-01-30 Analog Devices, Inc. Control circuit for controlling a semi-conductor switch for selectively outputting an output voltage at two voltage levels
US6721843B1 (en) * 2000-07-07 2004-04-13 Lexar Media, Inc. Flash memory architecture implementing simultaneously programmable multiple flash memory banks that are host compatible
US20030033471A1 (en) * 2001-08-07 2003-02-13 Chun-Hung Lin Window-based flash memory storage system and management and access methods thereof
US7000064B2 (en) * 2001-09-28 2006-02-14 Lexar Media, Inc. Data handling system
US6711059B2 (en) * 2001-09-28 2004-03-23 Lexar Media, Inc. Memory controller
US7171536B2 (en) * 2002-10-28 2007-01-30 Sandisk Corporation Unusable block management within a non-volatile memory system
US7009896B2 (en) * 2003-04-04 2006-03-07 Samsung Electronics Co., Ltd. Apparatus and method for managing bad blocks in a flash memory
US7682307B2 (en) * 2003-05-23 2010-03-23 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US20070005090A1 (en) * 2004-04-02 2007-01-04 Whitmore Willet F Iii Device and Method for Vascular Tamponade Following Percutaneous Puncture
US7464306B1 (en) * 2004-08-27 2008-12-09 Lexar Media, Inc. Status of overall health of nonvolatile memory
US7594063B1 (en) * 2004-08-27 2009-09-22 Lexar Media, Inc. Storage capacity status
US7743290B2 (en) * 2004-08-27 2010-06-22 Lexar Media, Inc. Status of overall health of nonvolatile memory
US7385864B2 (en) * 2006-09-12 2008-06-10 Texas Instruments Incorporated SRAM static noise margin test structure suitable for on chip parametric measurements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120072696A1 (en) * 2010-09-17 2012-03-22 Hon Hai Precision Industry Co., Ltd. Method for diagnosing a memory of an electronic device
US20150262459A1 (en) * 2014-03-12 2015-09-17 Precor Incorporated Fitness Equipment Unit Service Condition Notification System
WO2017160407A1 (en) * 2016-03-16 2017-09-21 Intel Corporation Data storage system with persistent status display for memory storage devices

Also Published As

Publication number Publication date Type
US20090077434A1 (en) 2009-03-19 application
US7464306B1 (en) 2008-12-09 grant
US7743290B2 (en) 2010-06-22 grant

Similar Documents

Publication Publication Date Title
US6262918B1 (en) Space management for managing high capacity nonvolatile memory
US7277246B2 (en) Methods and systems for providing predictive maintenance, preventative maintenance, and/or failure isolation in a tape storage subsystem
US6076137A (en) Method and apparatus for storing location identification information within non-volatile memory devices
US6757800B1 (en) Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6977847B2 (en) Detecting partially erased units in flash devices
US7472331B2 (en) Memory systems including defective block management and related methods
US7477547B2 (en) Flash memory refresh techniques triggered by controlled scrub data reads
US6831865B2 (en) Maintaining erase counts in non-volatile storage systems
US20080162793A1 (en) Management method for reducing utilization rate of random access memory (ram) used in flash memory
US20090216936A1 (en) Data reading method for flash memory and controller and storage system using the same
US7609561B2 (en) Disabling faulty flash memory dies
US20060218359A1 (en) Method and system for managing multi-plane memory devices
US7797481B2 (en) Method and apparatus for flash memory wear-leveling using logical groups
US5471478A (en) Flash EEPROM array data and header file structure
US7424593B2 (en) Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US20130054881A1 (en) Electronic system with storage management mechanism and method of operation thereof
US20070276987A1 (en) Source and Shadow Wear-Leveling Method and Apparatus
US20110202709A1 (en) Optimizing storage of common patterns in flash memory
US20120236658A1 (en) Systems and methods for refreshing non-volatile memory
US6016275A (en) Flash memory wear leveling system and method
US20040177212A1 (en) Maintaining an average erase count in a non-volatile storage system
US20080307158A1 (en) Method and apparatus for providing data type and host file information to a mass storage system
US7523381B2 (en) Non-volatile memory with error detection
US20080177956A1 (en) Page-based failure management for flash memory
US20060107130A1 (en) System and method of reading non-volatile computer memory

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: MERGER;ASSIGNOR:LEXAR MEDIA, INC.;REEL/FRAME:026024/0131

Effective date: 20060621