US20100216206A1 - Method for Preparing an Acellular Organic Tissue for Revitalisation and Device for Implementing Said Method - Google Patents

Method for Preparing an Acellular Organic Tissue for Revitalisation and Device for Implementing Said Method Download PDF

Info

Publication number
US20100216206A1
US20100216206A1 US12601306 US60130608A US20100216206A1 US 20100216206 A1 US20100216206 A1 US 20100216206A1 US 12601306 US12601306 US 12601306 US 60130608 A US60130608 A US 60130608A US 20100216206 A1 US20100216206 A1 US 20100216206A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
tissue
method according
needles
surface
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12601306
Inventor
Maurizio Marzaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TELEA BIOTECH Srl
Original Assignee
Maurizio Marzaro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges

Abstract

The invention concerns a method for preparing an acellular organic tissue for revitalisation by means of the reimplantation of living cells, said method involving the following stages: preparing the acellular tissue on an essentially flat surface, creating a plurality of holes on the surface of the tissue, distributed all over said surface and positioned so that they penetrate at least through a portion of the thickness of said tissue. The holes are suitable for containing the living cells when they are reimplanted. The invention also includes a device for implementing said method, characterized in that it comprises—one or more needles (1) arranged in a holder (20);—a source of electric power (4) connected to said one or more needles.

Description

  • The invention relates to a method for preparing an acellular tissue for revitalisation and also concerns a device for implementing said method for preparing a tissue for revitalisation.
  • It is well known in the medical sector, and more specifically in the surgical sector, that it is becoming increasingly important to have tissues available for grafting into living beings to meet the growing need to replace parts of organs or whole organs.
  • The creation of biological substitutes that are prepared in the laboratory and then transplanted into animal or human recipients is a medical procedure known by the name of “tissue engineering”.
  • According to a known technique, tissues for grafting are prepared in the laboratory by implanting cells into a matrix consisting of an inorganic supporting medium generally called a “scaffold”.
  • The “scaffold”, which is used to compensate for a loss of substance of the organ being treated, facilitates the three-dimensional organisation of the cells until the formation of new tissue has been completed.
  • The scaffold must naturally then undergo a process of degradation until it disappears completely and is replaced by the regenerated tissue, which is facilitated by the cells implanted in said scaffold.
  • Transplants can be obtained using this method with either artificial or natural scaffolds (i.e. from a “donor”) obtainable from humans or animals, such as the oesophageal wall.
  • To use a natural scaffold harvested from a donor for transplanting into another human being, the tissue must be treated first to eliminate all the cells existing between the fibres of the connective tissue, and then to reimplant human cells belonging to the intended recipient of the graft (the “host”) in order to avoid rejection phenomena.
  • The techniques used to create a scaffold, i.e. an acellular matrix, starting from tissues harvested from a donor, are well known and are consequently not described in detail here; briefly, they involve immerging the tissue to be treated in a fluid containing enzymatic substances capable of digesting and destroying the living cells contained within the tissue without damaging the tissue's connective fibres.
  • After creating an acellular tissue matrix, ready to receive the cells obtained from the host, said tissue, or scaffold, is prepared in a so-called “Petri dish” (or similar container), which is a tray commonly used in biological laboratories, on the bottom of which the tissue to revitalise is rested.
  • The tissue is revitalised by implanting stem cells from the future recipient and nourishing them with a cell culture broth that feeds the cells, keeping them alive and enabling them to multiply and become disseminated.
  • Basically, the stem cells initially placed on the upper surface of the tissue move through the natural interstitia in the tissue of the scaffold—interstitia that were previously occupied by the donor's cells.
  • After a given period of time, under controlled temperatures and in the presence of the nutritional substances contained in the culture broth, the living cells reposition themselves in the interstitia of the tissue, which is then ready for transplantation into the host organ.
  • It should be noted that the cells generally used to revitalise the scaffold are stem cells, which subsequently become differentiated (or may have already done so) and acquire the specific function of the organ in which the revitalised tissue is grafted.
  • The success or failure of the transplantation of the tissue treated in this way depends on a capillary diffusion of the cells through the tissue matrix.
  • If this diffusion proves difficult or occurs on the surface, but not in depth, the transplanted tissue is not adequately revitalised and a necrotic process begins, leading to the failure of the transplant.
  • From the above considerations, it is clear that it is essential and important, not to say indispensable to success, to ensure the in-depth revitalisation of every part of the tissue, particularly through its full thickness.
  • For the time being, even when the preparatory and revitalising treatments are applied for a sufficiently lengthy period of time, it is still impossible to ensure results reliable enough to guarantee against any graft failures.
  • This is due to the scarce penetration of the living cells being reimplanted in the scaffold.
  • In practical terms, this drawback considerably restricts the opportunity to prepare tissues suitable for transplantation because thicker tissues are not fully revitalised after the transplant since they cannot be penetrated in sufficient depth.
  • It is consequently evident that the current technique is only suitable for the transplantation of tissues of very limited thickness, e.g. not exceeding approximately 0.1 mm.
  • The object of the present invention is to develop a method for preparing acellular tissues that overcomes the above-mentioned drawbacks.
  • More specifically, the object of the invention is to develop a method for preparing acellular organic tissue so that, when said tissue is revitalised with stem cells, it is easier for said cells to penetrate and colonise every possible space in the network of connective tissue fibres, so as to substantially recreate the same conditions of the tissue before it was devitalised.
  • Another object of the invention is to obtain a significant and important reduction in the treatment time needed to revitalise the acellular scaffold once the living cells have been added in order to prepare the tissue for transplantation.
  • The objects of the invention are achieved by a method for preparing an acellular organic tissue according to the contents of claim 1.
  • More precisely, this method consists in the creation of a plurality of holes in the surface of the tissue being prepared; these holes penetrate at least through a portion of the thickness, and preferably through the full thickness of the tissue concerned.
  • These holes are obtained by means of a device containing needles with a suitable current passing therethrough and without inducing any alteration (tearing, necrosis, reduction or increase in thickness, changes in fluid content, or coagulation) in the connective tissue surrounding the hole being created.
  • The holes can be made through the thickness of the tissue being treated using various devices and methods, provided that the preparation of these holes does not cause any deterioration of the connective tissue surrounding the hole and of the scaffold in general.
  • According to the description given below, the object of the invention and the best results in qualitative terms for the holes created in the tissue are achieved by applying a high-frequency voltage (generally 4 MHz) to the tip of each needle used to create each hole, so as to induce the passage of a weak electric current, but strong enough to break the bonds between the molecules in the connective tissue, thereby creating a hole, without inducing any breakage of the molecules.
  • This gives rise to narrow-diameter holes, essentially equating to the gauge of the needle being inserted.
  • It is important to use needles of very narrow gauge, e.g. in the order of 50 μM, but sufficient to facilitate the penetration of the cells inside said holes to revitalise the surrounding tissue.
  • It is logical and evident that creating numerous holes means preparing new routes for grafting cells into the deepest parts of the tissue, thus ensuring the complete revitalisation of the tissue concerned.
  • Using the method according to the invention, there is practically no limit to the thickness of the tissues that can be prepared for transplantation, since the holes can be made throughout the thickness of the tissue and over its entire surface, enabling its complete revitalisation because the living cells reimplanted in the acellular scaffold can penetrate throughout the tissue.
  • The invention also includes a device for implementing the method for preparing is the organic tissue according to the present invention, the main characteristics of which are expressed in claim 11.
  • Further characteristics and particular features of the invention will be highlighted in greater detail in the description of a preferred embodiment of the invention, provided here as a non-limiting example, and of the corresponding device for implementing said method.
  • The invention is described below with the aid of the attached drawings, wherein:
  • FIG. 1 shows a schematic cross-section of the device comprising a holder with an array of needles resting on the thickness of the tissue being prepared for revitalisation;
  • FIG. 2 shows one of the needles in the holder,
  • FIG. 3 shows the layout of the array of needles;
  • FIG. 4 shows a schematic view of the device for displacing the needle holder.
  • According to the invention, a previously-treated acellular organic tissue, the so-called scaffold, is deposited on the bottom of a Petri dish (or similar container) so that it lies spread out on a flat surface.
  • A plurality of needles, such as the one indicated by the numeral 1 and shown in FIG. 2, is arranged in an array, e.g. to form a square, indicated as a whole by the numeral 3 in FIG. 3, so as to ensure an orderly arrangement of needles that are preferably separated by the same distance, i.e. they are equidistant from one another.
  • The head 11 of each needle 1 is connected electrically, e.g. by means of a metal conductor plate 2 attached to the holder 20 of said array of needles. Said plate 2 is connected to an electric wire 21 that in turn receives the output from a generator 4.
  • Said generator 4 is a voltage generator, preferably generating 200-230 Volts, but at a wave frequency of 4 MHz, which is obtained by using electronic circuits, that are well known and consequently not described here for the sake of brevity.
  • The voltage sine wave available at the output 41 of the generator 4 is preferably a distorted sine wave and consequently with harmonics at least of the first, second and third order.
  • The power of the generator 4 is adjusted so that the current available at the tip is of each electrode 1 comes between 2 and 2.5 mA.
  • When the tip of each needle is rested on the surface 51 of the organic tissue 5, contact between the tip of each needle 1 and the organic tissue enables the passage of a current of around 2-2.5 mA, as mentioned previously.
  • Said current transmits an energy to the surrounding molecules that corresponds (as demonstrated experimentally) to what is called “molecular resonance”.
  • This energy is just enough to break the bonds between the molecules affected by the passage of the current, while in the surrounding area it causes no breakdown, tearing, necrosis, reduction or increase in thickness, change in fluid content fluid, coagulation or other tissue degeneration.
  • Basically, this opening created in the molecular bonds equates to the creation of a tiny hole that, in practical terms, is the same diameter as each needle 1, i.e. around 50-55 μm.
  • Of course, needles of a different, larger or smaller gauge may be used, provided that the user bears in mind that the minimum gauge of the needle cannot be smaller than the diameter of the cells used for revitalisation.
  • The holder 20 of the array of needles 3 is then pushed in the direction in which the needles point and proceeds at a sufficiently slow pace such that, as the needle moves forward, the tip of the needle finds the hole already created by the flow of current and the consequent rupture of the molecular bonds.
  • It is easy to see that there is consequently no tearing of the connective tissue, and that a narrow hole corresponding to the gauge of the needle being inserted is consequently achieved.
  • As explained previously, this is particularly important and useful because the cells that are reimplanted on the tissue can thus penetrate in depth throughout the tissue and become grafted onto the walls of the holes, where they can multiply and very quickly revitalise the full thickness of the organic tissue.
  • As shown in FIG. 1, the needles 1 penetrate preferably but not necessarily obliquely to the surface 51 of the scaffold 5, in order to increase the length of the holes and consequently obtain the maximum channelling effect in the scaffold.
  • Experiments have demonstrated that a 60° angle with respect to the vertical is more effective in the revitalisation process because the resulting holes are longer than the thickness of the scaffold.
  • Laboratory tests have shown that a useful dimension of the array of needles 3 containing the needles 1 is around 1 cm2, with said array comprising approximately 200 needles; in this case, the current delivered by the generator 4 is no more than 500 mA.
  • The perforation procedure must naturally be repeated all over the surface 51 of the scaffold in order to obtain a homogeneous distribution of the holes throughout the thickness and over the entire useful surface of the tissue for transplantation.
  • For this purpose, the invention includes a device for making the holes that is advantageously provided with means 30 for displacing the holder 20 along three Cartesian axes, i.e. along the vertical, or oblique axis Z, and along the Cartesian axes X and Y parallel to the plane of the surface 51 and shown schematically in FIG. 4.
  • Once the holes have been made in a given part of the scaffold 5, the holder 20 can be moved and the procedure can be repeated in an orderly manner so as to cover the entire surface 51.
  • Clearly, if the holder 20 carrying the array of needles 3 is connected to programmable displacement means 30, e.g. with stepping motors governed by an electronic control unit, the procedure can be repeated automatically and sequentially, and with the utmost precision.
  • After completing the series of holes in the acellular tissue 5, as explained above, it is evident that said acellular tissue can be placed in a Petri dish, or similar container, where the living cells can then be added, which are generally stem cells from the host individual intended to receive the graft. Suitably nourished with a culture broth, said stem cells can quickly and easily occupy all the holes made by the needles 1, thereby ensuring a complete and effective revitalisation of the entire tissue for transplantation.
  • It is clear that the method of the invention and the device for its implementation achieve all the set objects of the invention, since a perfect and effective revitalisation is ensured and any risk of failure of the subsequent transplantation is prevented.
  • Moreover, the revitalisation process takes place much more rapidly than when the known technique is used, and with extremely successful results.
  • Where technical features mentioned in any claim are followed by reference signs, those reference sings have been included for the sole purpose of increasing the intelligibility of the claims and accordingly such reference signs do not have any limiting effect on the interpretation of each element identified by way of example by such reference signs.

Claims (22)

  1. 1) Method for preparing an acellular organic tissue for revitalisation by means of the reimplantation of living cells, involving the following stages:
    preparing said acellular tissue on an essentially flat surface;
    creating a plurality of holes on the surface of said tissue, distributed all over said surface and positioned so that they penetrate at least through a portion of the thickness of said tissue, said holes being suitable for containing said living cells when they are reimplanted;
    wherein said plurality of holes is created by means of one or more metal needles connected to an electric power supply that induces, on the tip of each needle, the passage of a current of such intensity and wave form as to provide sufficient energy to break the bonds between the molecules comprising the organic tissue in the vicinity of the tip of said needle, each hole being created by said passage of current and being large enough for the tip of said needle to enter the space created by the opening of said molecular bonds.
  2. 2) (canceled)
  3. 3) Method according to claim 1), wherein said one or more metal needles are powered electrically with an alternating current of essentially sine wave type with a frequency of approximately 4 MHz.
  4. 4) Method according to claim 3), wherein said electric power supply to said one or more needles has harmonics at least up to the third order.
  5. 5) Method according to claim 3), wherein said electric voltage applied to said one or more needles is in the order of 200-230 Volts.
  6. 6) Method according to claim 3), wherein the current applied to each needle is in the order of 2-2.5 mA.
  7. 7) Method according to claim 1), wherein the depth of said holes corresponds to the full thickness of said organic tissue.
  8. 8) Method according to claim 1), wherein the length of said holes is greater than the thickness of said acellular organic tissue.
  9. 9) Method according to claim 1), wherein said plurality of holes lie in a direction essentially perpendicular to the surface of said tissue.
  10. 10) Method according to claim 8), wherein said plurality of holes lie obliquely to the surface of said organic tissue.
  11. 11) Method according to claim 1) wherein the one or more holes on the surface of the acellular organic tissue suitable for containing cells for revitalising said tissue are produced using a device comprising:
    said one or more metal needles arranged in a holder;
    a source of electric power representing said electric power supply and being connected to said one or more needles, suitable for delivering a current to the tip of each needle of such intensity and waveform that it provides an energy sufficient to induce the opening of the bonds between the molecules in the organic tissue coming into contact with the tip of said needle.
  12. 12) Method according to claim 11), wherein said electric power supply consists of a generator of essentially sine wave voltage at a frequency of approximately 4 MHz.
  13. 13) (canceled)
  14. 14) (canceled)
  15. 15) Method according to claim 11), wherein said device comprises a plurality of needles arranged in a holder suitable for creating an array of rows of needles essentially parallel to one another, said needles being substantially equidistant from one another.
  16. 16) Method according to claim 11), wherein the gauge of said at least one needle is at least 50-55 p.m.
  17. 17) Method according to claim 11), wherein the gauge of said at least one needle is greater than the maximum dimension of a revitalising cell.
  18. 18) Method according to claim 15), wherein said needles are arranged essentially perpendicular with respect to said holder.
  19. 19) Method according to claim 15), wherein said holder is positioned obliquely to the surface of the organic tissue being perforated.
  20. 20) Method according to claim 11), wherein said device comprises means for displacing said at least one needle along at least one axis incident on the surface of said tissue and along at least one axis parallel to said surface of said organic tissue.
  21. 21) Method according to claim 20), wherein said displacement means induce a movement along two Cartesian axes lying essentially parallel to the surface of said organic tissue.
  22. 22) Acellular organic tissue for revitalisation by means of the reimplantation of living cells obtained by the method according to claim 1).
US12601306 2007-05-31 2008-04-16 Method for Preparing an Acellular Organic Tissue for Revitalisation and Device for Implementing Said Method Abandoned US20100216206A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ITVI20070159 2007-05-31
ITVI2007A000159 2007-05-31
PCT/IB2008/000921 WO2008146106A9 (en) 2007-05-31 2008-04-16 Method and device for preparing an acellular organic tissue

Publications (1)

Publication Number Publication Date
US20100216206A1 true true US20100216206A1 (en) 2010-08-26

Family

ID=39874105

Family Applications (1)

Application Number Title Priority Date Filing Date
US12601306 Abandoned US20100216206A1 (en) 2007-05-31 2008-04-16 Method for Preparing an Acellular Organic Tissue for Revitalisation and Device for Implementing Said Method

Country Status (10)

Country Link
US (1) US20100216206A1 (en)
EP (1) EP2164536B8 (en)
JP (1) JP5412688B2 (en)
KR (1) KR101555069B1 (en)
CN (1) CN101687064B (en)
CA (1) CA2688626C (en)
DK (1) DK2164536T3 (en)
ES (1) ES2385116T3 (en)
RU (1) RU2430745C1 (en)
WO (1) WO2008146106A9 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765344B2 (en) * 2009-10-29 2015-08-19 テレア バイオテク エス.アール.エル. Methods of preparing acellular organic tissue from a human or animal for reactivation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1394171A (en) * 1921-05-02 1921-10-18 Mary E Hall Electric needle
US5112354A (en) * 1989-11-16 1992-05-12 Northwestern University Bone allograft material and method
US5658234A (en) * 1995-07-24 1997-08-19 J. D. Technologies, Inc. Method for treating tumors
US20010003155A1 (en) * 1997-01-22 2001-06-07 Rockley Paul W. Rapid pulse phaco power for burn free surgery
US6262532B1 (en) * 1998-03-31 2001-07-17 Samsung Display Devices Co., Ltd. Plasma display device with electrically floated auxiliary electrodes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932973A (en) 1983-09-30 1990-06-12 El Gendler Cartilage and bone induction by artificially perforated organic bone matrix
US6416514B1 (en) 1998-08-30 2002-07-09 Moshe Ein-Gal Electrocoagulation apparatus
US6479064B1 (en) * 1999-12-29 2002-11-12 Children's Medical Center Corporation Culturing different cell populations on a decellularized natural biostructure for organ reconstruction
US6565532B1 (en) * 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
DE10126509C2 (en) * 2001-05-30 2003-10-02 Andreas Schoenfeld Device for the treatment of tumors
GB0520757D0 (en) * 2005-10-12 2005-11-23 Vuppalapati Gunasekar Delivery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1394171A (en) * 1921-05-02 1921-10-18 Mary E Hall Electric needle
US5112354A (en) * 1989-11-16 1992-05-12 Northwestern University Bone allograft material and method
US5658234A (en) * 1995-07-24 1997-08-19 J. D. Technologies, Inc. Method for treating tumors
US20010003155A1 (en) * 1997-01-22 2001-06-07 Rockley Paul W. Rapid pulse phaco power for burn free surgery
US6262532B1 (en) * 1998-03-31 2001-07-17 Samsung Display Devices Co., Ltd. Plasma display device with electrically floated auxiliary electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Reiser et al., Enzymatic and nonenzymatic cross-linking of collagen and elastin, 1992, FASEB Journal 6(7): 2439-2449. *

Also Published As

Publication number Publication date Type
EP2164536B8 (en) 2012-04-25 grant
CA2688626C (en) 2013-01-22 grant
RU2430745C1 (en) 2011-10-10 grant
CN101687064A (en) 2010-03-31 application
KR20100019524A (en) 2010-02-18 application
CN101687064B (en) 2014-06-04 grant
RU2009149666A (en) 2011-07-10 application
EP2164536A2 (en) 2010-03-24 application
DK2164536T3 (en) 2012-07-23 grant
WO2008146106A9 (en) 2009-11-19 application
JP2010527724A (en) 2010-08-19 application
WO2008146106A2 (en) 2008-12-04 application
CA2688626A1 (en) 2008-12-04 application
WO2008146106A3 (en) 2009-05-07 application
KR101555069B1 (en) 2015-09-22 grant
ES2385116T3 (en) 2012-07-18 grant
JP5412688B2 (en) 2014-02-12 grant
EP2164536B1 (en) 2012-04-11 grant

Similar Documents

Publication Publication Date Title
Tasaki et al. Stria vascularis as source of endocochlear potential
Schmid et al. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment.
US7060103B2 (en) Tissue repair fabric
US5866415A (en) Materials for healing cartilage and bone defects
Okano et al. Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues
Borschel et al. Contractile skeletal muscle tissue-engineered on an acellular scaffold
US4026304A (en) Bone generating method and device
Singelyn et al. Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices
Stevens et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue
US6503273B1 (en) Tissue engineered blood vessels and methods and apparatus for their manufacture
US5736399A (en) Medium-penetrating cell culture carrier, a culturing method and a device using this carrier
US4604346A (en) Skin-equivalent prepared by the use of punch biopsy
US1867624A (en) Device for obtaining biopsy specimens
US20100261994A1 (en) Integration of very short electric pulses for minimally to noninvasive electroporation
US20050214344A1 (en) Tissue engineered biomimetic hair follicle graft
US6911202B2 (en) Cosmetic repair using cartilage producing cells and medical implants coated therewith
Hämmerle et al. The biological effect of natural bone mineral on bone neoformation on the rabbit skull
Burwell Studies in the transplantation of bone: VIII. Treated composite homograft-autografts of cancellous bone: An analysis of inductive mechanisms in bone transplantation
Boyne Review of the literature on cryopreservation of bone
US6514238B1 (en) Method for preparation and transplantation of volute grafts and surgical instrument therefor
WO1994021205A1 (en) Method for preparation and transplantation of volute grafts and surgical instrument therefor
US4932973A (en) Cartilage and bone induction by artificially perforated organic bone matrix
WO2002014480A2 (en) Decellularized tissue engineered constructs and tissues
US20100040687A1 (en) Tissue Scaffolds
WO1998022155A1 (en) Artificial neural canal

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELEA BIOTECH S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARZARO, MAURIZIO;REEL/FRAME:029345/0959

Effective date: 20120228