US20100215982A1 - Metal Covered Polyimide Composite, Process for Producing the Composite, and Apparatus for Producing the Composite - Google Patents

Metal Covered Polyimide Composite, Process for Producing the Composite, and Apparatus for Producing the Composite Download PDF

Info

Publication number
US20100215982A1
US20100215982A1 US12/738,095 US73809508A US2010215982A1 US 20100215982 A1 US20100215982 A1 US 20100215982A1 US 73809508 A US73809508 A US 73809508A US 2010215982 A1 US2010215982 A1 US 2010215982A1
Authority
US
United States
Prior art keywords
layer
copper
plating
zone
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/738,095
Other languages
English (en)
Inventor
Michiya Kohiki
Naonori Michishita
Nobuhito Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Assigned to NIPPON MINING & METALS CO., LTD. reassignment NIPPON MINING & METALS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAKINO, NOBUHITO, MICHISHITA, NAONORI, KOHIKI, MICHIYA
Publication of US20100215982A1 publication Critical patent/US20100215982A1/en
Assigned to NIPPON MINING HOLDINGS, INC. reassignment NIPPON MINING HOLDINGS, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: NIPPON MINING & METALS CO., LTD.
Assigned to JX NIPPON MINING & METALS CORPORATION reassignment JX NIPPON MINING & METALS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NIPPON MINING HOLDINGS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0635In radial cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component

Definitions

  • the present invention relates to a metal covered polyimide composite for use as a mounting material of electronic components such as a flexible print substrate, TAB, COF (Chip on Film), and additionally relates to a method of producing the composite and an apparatus for producing the composite.
  • FCCL Flexible Copper Clad Laminate
  • metal conductor layers primarily formed from copper are laminated on a polyimide film
  • FCCL Flexible Copper Clad Laminate
  • a non-adhesive flexible laminate especially a two-layer flexible laminate that does not include an adhesive layer between a polyimide film and a metal layer is catching attention on the demands of finer pitches of the circuit wiring width.
  • a method of producing a non-adhesive flexible laminate in particular a non-adhesive flexible laminate capable of accommodating fine pitches, primarily performed is a so-called metalizing method of forming, in advance, a tie-coat layer configured from a material having favorable adhesion with polyimide on a polyimide film by a drying method such as sputtering, CVD, or vapor deposition and a metal seed layer as a conductor of the cathode/current in the subsequent electroplating process, and thereafter forming a metal layer film to become the conductor layer of the circuit board by way of electroplating (refer to Patent Literature 1).
  • modification is carried out by performing plasma treatment to the polyimide film surface in order to eliminate the contaminants on the surface and to improve the surface roughness prior to forming the metal layer (refer to Patent Literature 2 and Patent Literature 3).
  • a polyimide film with a metal film for use in TAB or FPC obtained by performing chemical etching to the polyimide film surface so to roughen the surface, forming a foundation layer thereon, and additionally forming a copper vapor deposition layer thereon (refer to Patent Literature 5).
  • a metal covered polyimide composite When a metal covered polyimide composite is to be used as a mounting material of electronic components such as a COF (Chip on Film), the metal layer on the polyimide is partially eliminated to create a circuit pattern, tin plating is subsequently performed on the copper layer forming the circuit pattern, and treatment such as solder resist or resin seal is additionally performed on the tin plated layer.
  • tin plating is subsequently performed on the copper layer forming the circuit pattern
  • treatment such as solder resist or resin seal is additionally performed on the tin plated layer.
  • a major cause of such peeling is the Kirkendall voids (air gaps) that are generated between the copper layer and the tin plated layer due to the electroplating process.
  • the Kirkendall voids will be explained in detail later.
  • An electroplated copper layer is usually formed with a plurality of electrolytic baths, and the electroplating current conditions of the copper layer will change considerably among the electrolytic baths as a matter of course.
  • the portions in which the electroplating current conditions change considerably will become boundaries in the copper plated layer since the intake of copper crystal grains, impurities and the like will differ from the other portions. Since the Kirkendall voids particularly occur at the portions where the copper plated layer boundary and the tin plated layer are adjacent to each other, if plating is to be performed in multiple electroplating baths, then the Kirkendall voids will arise at least in a quantity that is equivalent to the number of electroplating baths.
  • Patent Literature 6 has analyzed that the Kirkendall voids causes the peeling.
  • Patent Literature 6 only sees the tin covered on the uppermost layer of the copper plating as the problem.
  • the tin layer will cover the side face in addition to the uppermost layer of the copper.
  • the foregoing method is a sufficient solution to the problem.
  • the drum electroplating method is a method of feeding a polyimide film, in which a tie-coat layer and a metal seed layer are formed thereon by electroless plating or a drying method, around a drum surface that is dipped in an electrolyzer, and thereby performing copper plating to the surface.
  • this method is able to move the anode and cathode closer without disturbances such as the warping or blurring during the feeding of the film to become the cathode and to control the distance constant between the anode and cathode, it is possible to increase the current density. Moreover, as a result of moving the anode and cathode closer together, the flow velocity of the plating electrolytic solution can also be increased easily, and this is also effective in increasing the current density. Accordingly, the drum electroplating method is effective in decreasing the Kirkendall voids.
  • this drum electroplating method also entails its own problems. It is necessary to increase the current density in order to increase the electrodeposition rate of the electroplating process.
  • the metal seed layer formed on the polyimide surface is unable to withstand a large current since its thickness is limited. Consequently, the anodes that set to face the drum are divided into a plurality of zones (plating zones), and the current density to the respective zones is being controlled independently.
  • an object of the present invention is to provide a metal covered polyimide composite which can effectively prevent peeling in a non-adhesive flexible laminate (especially a two-layer flexible laminate), and particularly can effectively inhibit peeling from the interface of a copper layer and a tin plating, as well as provide a method of producing the composite and an apparatus for producing the composite.
  • the present invention provides:
  • a metal covered polyimide composite comprising a tie-coat layer and a metal seed layer formed on a surface of a polyimide film by electroless plating or a drying method, and a copper layer or a copper alloy layer formed thereon by electroplating, wherein the copper plated layer or copper alloy plated layer includes three layers to one layer of the copper layer or copper alloy layer;
  • the present invention additionally provides:
  • a method of producing a metal covered polyimide composite wherein a tie-coat layer and a metal seed layer on a surface of a polyimide film by electroless plating or a drying method, three layers to one layer of an electroplated layer of copper or copper alloy are additionally formed thereon;
  • the present invention further provides:
  • An apparatus for producing a metal covered polyimide composite comprising an electroplating bath, a plating drum in which a part thereof is dipped in the electroplating bath, a unit for feeding a polyimide film to be plated, in which a tie-coat layer and a metal seed layer are formed on its surface by electroless plating or a drying method, around the plating drum, and a unit for supplying current to the plated surface of the polyimide film with the tie-coat layer and metal seed layer formed thereon, wherein one or more anodes are set to face the drum, and the plating zone is divided into one to four zones;
  • a metal covered polyimide composite, a method of producing the composite and an apparatus for producing the composite of the present invention can effectively prevent peeling in a non-adhesive flexible laminate (especially a two-layer flexible laminate), particularly can effectively inhibit peeling from the interface of a copper layer and a tin plating, and yield a superior effect of being able to improve the adhesion strength.
  • FIG. 1 [ FIG. 1 ]
  • FIG. 2 [ FIG. 2 ]
  • FIG. 3 [ FIG. 3 ]
  • FIG. 5 [ FIG. 5 ]
  • the present invention includes cases of copper alloy plating in addition to copper plating, but in order to simplify the explanation these will be collectively explained as copper plating.
  • the basic process is to form a metal layer on at least one face of the polyimide film by the sputtering method, and additionally form a metal conductor layer formed from a copper layer or copper alloy layer on the foregoing surface in order to prepare a non-adhesive flexible laminate.
  • the polyimide film surface is subject to plasma treatment in order to eliminate the contaminants on the surface and modify the surface.
  • a sputtered metal layer (so-called tie-coat layer) of 5 to 300 nm is formed on the surface of the polyimide film.
  • the sputtered metal layer is selected from one type among nickel, chromium, cobalt, nickel alloy, chromium alloy, and cobalt alloy.
  • a polyimide film having a thickness of 12.5 ⁇ m to 50 ⁇ m can be used, but this thickness is required to the circuit board, and there is no particular limitation regarding the thickness.
  • Upilex by Ube Industries, Kapton by DuPont-Toray, Apical by Kaneka or the like is used, but there is also no particular limitation regarding the type of polyimide film to be used.
  • the tie-coat layer has the function of increasing the adhesive strength between the metal layer and the polyimide [film], and increasing the stability under a heat-resistant and moisture-resistant environment.
  • a copper layer of 150 to 500 nm to become the metal seed layer is formed on the tie-coat layer by sputtering.
  • the sputtered copper layer will become the conductor of the cathode/current in the subsequent electroplating process.
  • an electroplated layer formed from copper or copper alloy is formed on the metal seed layer.
  • the electroplating apparatus shown in FIG. 1 is used as the plating system.
  • This electroplating apparatus comprises an electroplating bath, a plating drum in which a part thereof (approximately half) is dipped in the electroplating bath, a unit for feeding a polyimide film plated around the plating drum, a unit for supplying current to the plated surface of the polyimide film, and one or more anodes facing the drum.
  • these anodes are so-called insoluble anodes, and the supply of copper ions for copper plating is performed by supplying an electrolytic solution, in which copper is separately dissolved and in which the copper concentration is adjusted, to the electrolytic bath.
  • the copper or copper alloy plating system that is used in the present invention is a one or two bath-type plating system.
  • Cell A a bath
  • Cell B the other bath
  • the one bath-type plating system only has Cell A.
  • Anodes are set to face the drum for each of these zones.
  • the solution sending method where the electroplating solution is supplied from the lower part of the electroplating bath and overflows from the upper part of the electroplating bath is adopted. This supply method is able to control the flow velocity and is necessary to form a uniform plated layer. Moreover, the current of each anode zone can be adjusted independently.
  • a plating method of arranging numerous plating baths in parallel and repeatedly dipping a continuously wound polyimide film in a plating bath was adopted.
  • a copper plated layer was conventionally formed according to the foregoing method. Based on this method, since there is no limit in the number of plating baths, plating can be performed to multiple layers as many as plating baths.
  • the copper layer of the metal covered polyimide composite obtained as described above is etched with an etching solution to form a conductive circuit. Then, tin plating is formed on the copper circuit and solder resist, resin or the like is used additionally to cover the same. In the foregoing case, peeling between the copper circuit layer and tin plated layer and cracks in the tin layer will become a problem.
  • the Kirkendall voids do not arise easily at room temperature, diffusion will advance due to the foregoing mechanism, and the Kirkendall voids are generated thereby during the heat treatment at roughly 80 to 150° C. after the tin plating, and the heat treatment at roughly 150 to 160° C. in the processes of solder resist, resin seal and the like.
  • the foregoing heat treatment processes are indispensible in producing wiring boards, and it can be said that this is an unavoidable problem so as long as discontinuous portions of the interface exists.
  • the drum-based two-bath copper plating system if a once-plated surface is exposed to the atmosphere and additionally plated again, a copper layer boundary (discontinuous layer) will be formed.
  • a drum-based two-bath plating system it is difficult to completely inhibit the Kirkendall voids.
  • the present invention provides an apparatus for producing a metal covered polyimide composite in a drum plating system comprising an electroplating bath, a plating drum in which a part thereof (approximately half) is dipped in the electroplating bath, a unit for feeding a polyimide film to be plated around the plating drum, a unit for supplying current to the plated surface of the polyimide film, and one or more anodes facing the drum, wherein the plating zone is divided into three zones to one zone, and the copper layer or copper alloy layer is formed as three layers to one layer.
  • the present invention additionally provides a method and apparatus for producing a metal covered polyimide composite in which the number of boundaries between the respective copper layers or copper alloy layers is two to zero.
  • the distance L between zone 3 and zone 4 (or distance L between zone 7 and zone 8) is adjusted to be preferably double or less than the distance d between the anode and the plating object, and more preferably 1 ⁇ 2 or less.
  • the number of copper or copper alloy electroplating baths is few as possible, which is because an unavoidable discontinuous interface will occur as described.
  • the use of one or two baths would be a desirable condition.
  • the material used as the polyimide film there is no particular limitation in the material used as the polyimide film.
  • Upilex by Ube Industries, Kapton by DuPont-Toray, Apical by Kaneka are commercially available, and any one of these polyimide films can be applied in the present invention.
  • the present invention is not limited to this kind of specific variety.
  • Upilex-SGA by Ube Industries is used as the polyimide film.
  • the polyimide film was placed in a vacuum apparatus and, after evacuation, the polyimide film was subject to surface modification treatment using plasma.
  • a tie-coat layer (Ni-20 wt % Cr) of 25 nm was formed on the foregoing polyimide film surface subject to the plasma treatment by way of sputtering.
  • a metal seed layer (copper layer) of 300 nm was formed by sputtering.
  • the drum-based two bath-type electroplating apparatus shown in FIG. 1 was used to form a metal conductor layer (total thickness of approximately 8 ⁇ m) formed of copper on the surface of the foregoing metal seed layer by way of electroplating using a copper sulfate plating bath, whereby a two-layer flexible laminate was prepared.
  • a metal conductor layer total thickness of approximately 8 ⁇ m
  • the anodes in zone 3 and zone 4 were electrically connected, and the distance L between zone 3 and zone 4 was adjusted to be approximately 1 ⁇ 2 of the distance d between the anode and the plating object in order to form the copper plated layer.
  • a copper plated layer of 3.90 ⁇ m was formed in zone 3+zone 4, that of 2.07 ⁇ m in zone 7, and that of 2.20 ⁇ m in zone 8.
  • a copper plated layer of 0.05 ⁇ m was formed in zone 1, that of 0.27 ⁇ m in zone 2, and that of 0 ⁇ m in zone 5 and zone 6, respectively.
  • FIG. 2 is a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • zone 3+zone 4 the thickness of the copper layer was approximately two zones' worth, and the thickness of the copper layers formed in other zone 7+zone 8 has hardly any difference, so it is evident that a uniform layer was formed.
  • this copper layer was etched to form a circuit, and a tin plated layer of approximately 0.3 ⁇ m was additionally formed on the copper circuit by dipping it into a tin plating bath of AT-501 manufactured by Nikko Mining & Metals at 50° C. for 3 minutes.
  • the copper layer was annealed at 120° C. ⁇ 12 hours, and the cross section was observed. This cross section is similarly a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%. The results are shown in FIG. 3 .
  • the drum-based two bath-type electroplating apparatus shown in FIG. 1 was used to form the copper plated layer wherein, in order to reduce the number of zones, in Cell A, zone 3 and zone 4 were electrically connected, and the distance L between zone 3 and zone 4 was adjusted to be approximately 1 ⁇ 2 of the distance d between the anode and the plating object in order to form the copper plated layer; and, in Cell B, zone 7 and zone 8 were electrically connected, and the distance L between zone 7 and zone 8 was adjusted to be approximately 1 ⁇ 2 of the distance d between the anode and the plating object.
  • a copper plated layer of 0.05 ⁇ m was formed in zone 1, that of 0.27 ⁇ m in zone 2, and that of 0 ⁇ m in zone 5 and zone 6, respectively.
  • FIG. 4 is a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • zone 3+zone 4 the thickness of the copper layer was approximately two zones' worth, and so was the thickness of the copper layers formed in other zone 7+zone 8, but the thickness of the copper layers has hardly any difference, so it is evident that a uniform layer was formed.
  • this copper layer was etched to form a circuit, and a tin plated layer of approximately 0.3 ⁇ m was additionally formed on the copper circuit by dipping it into a tin plating bath of AT-501 manufactured by Nikko Mining & Metals at 50° C. for 3 minutes.
  • the copper layer was annealed at 120° C. ⁇ 12 hours, and the cross section was observed. This cross section is similarly a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • the copper plated layer was formed upon turning off the current of zone 1 and zone 2.
  • dummy anodes prepared with an insulating material in the same shape was disposed in place of the normal anodes in zone 1 and zone 2.
  • zone 1 and zone 2 were 0 ⁇ m in zone 1 and zone 2 and 0 ⁇ m in zone 5 and zone 6.
  • FIG. 6 is a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • zone 3+zone 4 the thickness of the copper layer was approximately two zones' worth, and so was the thickness of the copper layers formed in other zone 7+zone 8, but the thickness of the copper layers has hardly any difference, so it is evident that a uniform layer was formed.
  • this copper layer was etched to form a circuit, and a tin plated layer of approximately 0.3 ⁇ m was additionally formed on the copper circuit by dipping it into a tin plating bath of AT-501 manufactured by Nikko Mining & Metals at 50° C. for 3 minutes.
  • the copper layer was annealed at 120° C. ⁇ 12 hours, and the cross section was observed. This cross section is similarly a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • a drum-based one bath-type electroplating apparatus was used and a copper plated layer was formed with only one cell and with only one zone in order to reduce the number of zones. Specifically, there is only one copper layer.
  • this copper layer was etched to form a circuit, and a tin plated layer of approximately 0.3 ⁇ m was additionally formed on the copper circuit by dipping it into a tin plating bath of AT-501 manufactured by Nikko Mining & Metals at 50° C. for 3 minutes.
  • the copper layer was annealed at 125° C. ⁇ 10.5 hours, and the cross section was observed. This cross section is similarly a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • a polyimide film was continuously introduced into conventional ten copper plating baths, and ten copper layers were formed on the surface of the polyimide film in a zigzag.
  • the observation of the Kirkendall voids are shown.
  • the average thickness of one layer was approximately 0.5 ⁇ m, and a copper layer of approximately 8 ⁇ m was formed as the ten copper plated layers.
  • FIG. 10 is a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • the other conditions were the same as Example 1.
  • this copper layer was etched to form a circuit, and a tin plated layer of approximately 0.3 ⁇ m was additionally formed on the copper circuit by dipping it into a tin plating bath of AT-501 manufactured by Nikko Mining & Metals at 50° C. for 3 minutes.
  • the copper layer was annealed at 125° C. ⁇ 10.5 hours, and the cross section was observed. This cross section is similarly a result of performing chemical polishing of dipping the copper layer for 15 seconds in an aqueous solution of NH 3 :29%, H 2 O 2 :1%.
  • the number of abundant Kirkendall voids that arise in the ten copper layers is so high that peeling occurred between the copper layer and the tin plated layer.
  • the metal covered polyimide composite, method of producing the composite and apparatus for producing the composite of the present invention can effectively prevent peeling in a non-adhesive flexible laminate (especially a two-layer flexible laminate), particularly can effectively inhibit peeling from the interface of a copper layer and a tin plating, and yield a superior effect of being able to improve the adhesion strength.
  • the present invention is useful as a non-adhesive flexible laminate that is used as a mounting material of electronic components such as a flexible print substrate, TAB, COF.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
US12/738,095 2007-10-18 2008-09-16 Metal Covered Polyimide Composite, Process for Producing the Composite, and Apparatus for Producing the Composite Abandoned US20100215982A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-270922 2007-10-18
JP2007270922 2007-10-18
PCT/JP2008/066644 WO2009050970A1 (ja) 2007-10-18 2008-09-16 金属被覆ポリイミド複合体、同複合体の製造方法及び同複合体の製造装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066644 A-371-Of-International WO2009050970A1 (ja) 2007-10-18 2008-09-16 金属被覆ポリイミド複合体、同複合体の製造方法及び同複合体の製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/365,429 Division US8721864B2 (en) 2007-10-18 2012-02-03 Process and apparatus for producing a metal covered polyimide composite

Publications (1)

Publication Number Publication Date
US20100215982A1 true US20100215982A1 (en) 2010-08-26

Family

ID=40567246

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/738,095 Abandoned US20100215982A1 (en) 2007-10-18 2008-09-16 Metal Covered Polyimide Composite, Process for Producing the Composite, and Apparatus for Producing the Composite
US13/365,429 Active US8721864B2 (en) 2007-10-18 2012-02-03 Process and apparatus for producing a metal covered polyimide composite

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/365,429 Active US8721864B2 (en) 2007-10-18 2012-02-03 Process and apparatus for producing a metal covered polyimide composite

Country Status (6)

Country Link
US (2) US20100215982A1 (ko)
JP (1) JP4477098B2 (ko)
KR (1) KR101199817B1 (ko)
CN (1) CN101827957A (ko)
TW (1) TWI450816B (ko)
WO (1) WO2009050970A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040873A1 (en) * 2006-11-29 2010-02-18 Nippon Mining & Metals Co., Ltd. Two-Layered Copper-Clad Laminate
US20100221563A1 (en) * 2007-10-18 2010-09-02 Nippon Mining And Metals Co., Ltd. Metal Covered Polyimide Composite, Process for Producing the Composite, and Process for Producing Electronic Circuit Board
US20110233320A1 (en) * 2008-11-25 2011-09-29 Jx Nippon Mining & Metals Corporation Method of winding up copper foil or copper clad laminate
CN102209437A (zh) * 2010-10-19 2011-10-05 博罗县精汇电子科技有限公司 具有聚酰亚胺和铝基板复合结构的电路板及其制作方法
US8487191B2 (en) 2008-12-26 2013-07-16 Jx Nippon Mining & Metals Corporation Flexible laminate and flexible electronic circuit board formed by using the same
US8524378B2 (en) 2008-11-25 2013-09-03 Jx Nippon Mining & Metals Corporation Copper foil for printed circuit
WO2016205137A1 (en) * 2015-06-16 2016-12-22 3M Innovative Properties Company Plated polymeric article including tin/copper tie/seed layer
US9992874B2 (en) 2008-12-24 2018-06-05 Jx Nippon Mining & Metals Corporation Metal foil with carrier

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050970A1 (ja) * 2007-10-18 2009-04-23 Nippon Mining & Metals Co., Ltd. 金属被覆ポリイミド複合体、同複合体の製造方法及び同複合体の製造装置
JP5440410B2 (ja) * 2010-06-21 2014-03-12 住友金属鉱山株式会社 金属化樹脂フィルムの製造方法及び製造装置
KR101803165B1 (ko) * 2013-03-29 2017-11-29 제이엑스금속주식회사 캐리어 부착 동박, 프린트 배선판, 구리 피복 적층판, 전자 기기 및 프린트 배선판의 제조 방법
TWI573687B (zh) * 2013-12-31 2017-03-11 財團法人工業技術研究院 積層板及其製作方法
JP2019038136A (ja) * 2017-08-23 2019-03-14 住友金属鉱山株式会社 両面金属積層板及びその製造方法
CN110418512A (zh) * 2019-08-02 2019-11-05 合肥奕斯伟材料技术有限公司 一种提升COF Film耐折性的制作方法
CN114075653B (zh) * 2020-08-22 2023-06-23 昆山鑫美源电子科技有限公司 导电薄膜、导电薄膜的制备方法、电流汇集传输材料以及能量存储装置
TWI791303B (zh) * 2021-10-12 2023-02-01 大陸商常州欣盛半導體技術股份有限公司 載帶金屬線路的製作方法、載帶

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231848A (en) * 1978-05-08 1980-11-04 Nippon Mining Co., Ltd. Method for making a raw board for use in printed circuits
US6171714B1 (en) * 1996-04-18 2001-01-09 Gould Electronics Inc. Adhesiveless flexible laminate and process for making adhesiveless flexible laminate
US20020182432A1 (en) * 2000-04-05 2002-12-05 Masaru Sakamoto Laser hole drilling copper foil
US6638642B2 (en) * 2000-02-03 2003-10-28 Nikko Materials Company, Limited Copper foil excellent in laser beam drilling performance and production method therefor
US20040084206A1 (en) * 2002-11-06 2004-05-06 I-Chung Tung Fine pad pitch organic circuit board for flip chip joints and board to board solder joints and method
US20040209109A1 (en) * 2001-10-30 2004-10-21 Katsuyuki Tsuchida Surface-treated copper foil
US6833198B2 (en) * 2000-04-05 2004-12-21 Nikko Materials Company, Limited Copper clad laminate
US6835241B2 (en) * 2001-10-18 2004-12-28 Nikko Materials Co., Ltd. Surface treatment for copper foil
US6960391B2 (en) * 2001-09-26 2005-11-01 Nikko Materials Co., Ltd. Carrier-attached copper foil and printed board using the copper foil
JP2006253185A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc ポリイミドフィルム、及びこれを用いた耐熱性樹脂積層フィルム、金属層付き積層フィルム
US20070145584A1 (en) * 2003-12-26 2007-06-28 Mitsui Mining & Smelting Co., Ltd. Printed wiring board, method for manufacturing same, and circuit device
US7341796B2 (en) * 2004-02-17 2008-03-11 Nippon Mining & Metals Co., Ltd Copper foil having blackened surface or layer
US20090162685A1 (en) * 2006-06-12 2009-06-25 Nippon Mining & Metals Co., Ltd. Rolled Copper or Copper Alloy Foil with Roughened Surface and Method of Roughening Rolled Copper or Copper Alloy Foil
US20090208762A1 (en) * 2005-06-23 2009-08-20 Nippon Mining & Metals Co., Ltd. Copper Foil for Printed Wiring Board
US20100018273A1 (en) * 2006-12-28 2010-01-28 Nippon Mining & Metals Co., Ltd. Roll Unit for use in Surface Treatment of Copper Foil
US20100040873A1 (en) * 2006-11-29 2010-02-18 Nippon Mining & Metals Co., Ltd. Two-Layered Copper-Clad Laminate
US20100051451A1 (en) * 2006-12-28 2010-03-04 Nippon Mining & Metals Co., Ltd. Roll Unit Dipped in Surface Treatment Liquid
US20100221563A1 (en) * 2007-10-18 2010-09-02 Nippon Mining And Metals Co., Ltd. Metal Covered Polyimide Composite, Process for Producing the Composite, and Process for Producing Electronic Circuit Board
US20120132531A1 (en) * 2007-10-18 2012-05-31 Jx Nippon Mining And Metals Corporation Process and Apparatus for Producing a Metal Covered Polyimide Composite

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112462A (en) * 1990-09-13 1992-05-12 Sheldahl Inc. Method of making metal-film laminate resistant to delamination
US5685970A (en) * 1992-07-01 1997-11-11 Gould Electronics Inc. Method and apparatus for sequentially metalized polymeric films and products made thereby
JPH06120630A (ja) 1992-10-07 1994-04-28 Ulvac Japan Ltd プリント配線基板用の銅箔
JP3265027B2 (ja) 1993-01-20 2002-03-11 三菱伸銅株式会社 金属膜付きポリイミドフィルム
JPH1192579A (ja) * 1997-09-19 1999-04-06 Nitto Denko Corp 有機基材のプラズマ処理方法及び有機基材への金属層形成方法
US6103135A (en) * 1999-03-26 2000-08-15 Ga-Tek Inc. Multi-layer laminate and method of producing same
JP3258296B2 (ja) * 1999-08-06 2002-02-18 ジーエイテック インコーポレイテッド 非金属の電気絶縁性基板上に金属を電着させる方法およびこの方法によって製造される金属コートされたポリマーフィルム、非導電性材料のストリップ上にプリント配線回路を形成する方法およびこの方法によって製造されたプリント配線回路基板
JP2002252257A (ja) * 2000-12-18 2002-09-06 Mitsui Mining & Smelting Co Ltd 半導体キャリア用フィルム及びその製造方法
KR100656246B1 (ko) 2004-11-30 2006-12-11 한국화학연구원 표면개질된 폴리이미드 필름을 이용한 동박 적층 필름의 제조방법 및 그로 제조된 2층 구조의 동박 적층필름
JP4560726B2 (ja) 2005-05-16 2010-10-13 ダイソー株式会社 フレキシブル銅張積層板の製造方法
KR100787279B1 (ko) * 2006-02-02 2007-12-20 엘에스전선 주식회사 도금 장치 및 이를 이용한 도금 방법
JP2007214519A (ja) * 2006-02-13 2007-08-23 Sumitomo Metal Mining Co Ltd 金属被覆ポリイミド基板およびこれを用いた錫めっき法
JP4793720B2 (ja) * 2006-03-15 2011-10-12 東レフィルム加工株式会社 めっき法2層回路基材の製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231848A (en) * 1978-05-08 1980-11-04 Nippon Mining Co., Ltd. Method for making a raw board for use in printed circuits
US6171714B1 (en) * 1996-04-18 2001-01-09 Gould Electronics Inc. Adhesiveless flexible laminate and process for making adhesiveless flexible laminate
US6638642B2 (en) * 2000-02-03 2003-10-28 Nikko Materials Company, Limited Copper foil excellent in laser beam drilling performance and production method therefor
US20020182432A1 (en) * 2000-04-05 2002-12-05 Masaru Sakamoto Laser hole drilling copper foil
US6833198B2 (en) * 2000-04-05 2004-12-21 Nikko Materials Company, Limited Copper clad laminate
US6960391B2 (en) * 2001-09-26 2005-11-01 Nikko Materials Co., Ltd. Carrier-attached copper foil and printed board using the copper foil
US6835241B2 (en) * 2001-10-18 2004-12-28 Nikko Materials Co., Ltd. Surface treatment for copper foil
US20040209109A1 (en) * 2001-10-30 2004-10-21 Katsuyuki Tsuchida Surface-treated copper foil
US20040084206A1 (en) * 2002-11-06 2004-05-06 I-Chung Tung Fine pad pitch organic circuit board for flip chip joints and board to board solder joints and method
US20070145584A1 (en) * 2003-12-26 2007-06-28 Mitsui Mining & Smelting Co., Ltd. Printed wiring board, method for manufacturing same, and circuit device
US7341796B2 (en) * 2004-02-17 2008-03-11 Nippon Mining & Metals Co., Ltd Copper foil having blackened surface or layer
JP2006253185A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc ポリイミドフィルム、及びこれを用いた耐熱性樹脂積層フィルム、金属層付き積層フィルム
US20090208762A1 (en) * 2005-06-23 2009-08-20 Nippon Mining & Metals Co., Ltd. Copper Foil for Printed Wiring Board
US20090162685A1 (en) * 2006-06-12 2009-06-25 Nippon Mining & Metals Co., Ltd. Rolled Copper or Copper Alloy Foil with Roughened Surface and Method of Roughening Rolled Copper or Copper Alloy Foil
US20100040873A1 (en) * 2006-11-29 2010-02-18 Nippon Mining & Metals Co., Ltd. Two-Layered Copper-Clad Laminate
US20100018273A1 (en) * 2006-12-28 2010-01-28 Nippon Mining & Metals Co., Ltd. Roll Unit for use in Surface Treatment of Copper Foil
US20100051451A1 (en) * 2006-12-28 2010-03-04 Nippon Mining & Metals Co., Ltd. Roll Unit Dipped in Surface Treatment Liquid
US20100221563A1 (en) * 2007-10-18 2010-09-02 Nippon Mining And Metals Co., Ltd. Metal Covered Polyimide Composite, Process for Producing the Composite, and Process for Producing Electronic Circuit Board
US20120132531A1 (en) * 2007-10-18 2012-05-31 Jx Nippon Mining And Metals Corporation Process and Apparatus for Producing a Metal Covered Polyimide Composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English Machine Translation of JP2006-253185, translated July 15, 2009. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040873A1 (en) * 2006-11-29 2010-02-18 Nippon Mining & Metals Co., Ltd. Two-Layered Copper-Clad Laminate
US20100221563A1 (en) * 2007-10-18 2010-09-02 Nippon Mining And Metals Co., Ltd. Metal Covered Polyimide Composite, Process for Producing the Composite, and Process for Producing Electronic Circuit Board
US8568899B2 (en) * 2007-10-18 2013-10-29 Jx Nippon Mining & Metals Corporation Metal covered polyimide composite, process for producing the composite, and process for producing electronic circuit board
US20110233320A1 (en) * 2008-11-25 2011-09-29 Jx Nippon Mining & Metals Corporation Method of winding up copper foil or copper clad laminate
US8524378B2 (en) 2008-11-25 2013-09-03 Jx Nippon Mining & Metals Corporation Copper foil for printed circuit
US9992874B2 (en) 2008-12-24 2018-06-05 Jx Nippon Mining & Metals Corporation Metal foil with carrier
US8487191B2 (en) 2008-12-26 2013-07-16 Jx Nippon Mining & Metals Corporation Flexible laminate and flexible electronic circuit board formed by using the same
CN102209437A (zh) * 2010-10-19 2011-10-05 博罗县精汇电子科技有限公司 具有聚酰亚胺和铝基板复合结构的电路板及其制作方法
WO2016205137A1 (en) * 2015-06-16 2016-12-22 3M Innovative Properties Company Plated polymeric article including tin/copper tie/seed layer
US11066753B2 (en) 2015-06-16 2021-07-20 3M Innovative Properties Company Plated polymeric article including tin/copper tie/seed layer

Also Published As

Publication number Publication date
WO2009050970A1 (ja) 2009-04-23
KR101199817B1 (ko) 2012-11-09
US8721864B2 (en) 2014-05-13
TWI450816B (zh) 2014-09-01
CN101827957A (zh) 2010-09-08
JPWO2009050970A1 (ja) 2011-03-03
US20120132531A1 (en) 2012-05-31
JP4477098B2 (ja) 2010-06-09
KR20100061549A (ko) 2010-06-07
TW200930561A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US8721864B2 (en) Process and apparatus for producing a metal covered polyimide composite
US8568899B2 (en) Metal covered polyimide composite, process for producing the composite, and process for producing electronic circuit board
EP1276358B1 (en) Production method of a copper foil excellent in laser beam drilling performance
JP5194602B2 (ja) 金属被覆ポリイミド基板の製造方法
KR20150003854A (ko) 2층 플렉시블 배선용 기판 및 플렉시블 배선판 및 이들의 제조 방법
JP5769030B2 (ja) 金属化樹脂フィルムおよびその製造方法
KR20120053195A (ko) 내열접착력을 개선한 연성회로기판용 동박 적층 구조체 및 그의 제조방법
US8487191B2 (en) Flexible laminate and flexible electronic circuit board formed by using the same
JP5440386B2 (ja) 金属化樹脂フィルム基板の製造方法
JP5858286B2 (ja) 長尺導電性基板の電解めっき方法および銅張積層板の製造方法
JP5751530B2 (ja) 長尺導電性基板の電解めっき方法および銅張積層板の製造方法
JP2019038136A (ja) 両面金属積層板及びその製造方法
JPH0722473A (ja) 連続めっき方法
JP6360659B2 (ja) キャリア付き銅箔、当該キャリア付き銅箔を用いてプリント配線板を製造する方法、当該キャリア付き銅箔を用いて銅張積層板を製造する方法、及びプリント配線板の製造方法
JP2013229502A (ja) プリント配線基板およびその製造方法
JP2013018245A (ja) 金属化ポリイミドフィルム及びプリント配線基板
JP5188823B2 (ja) 金属被覆ポリイミド複合体、同複合体の製造方法及び同複合体の製造装置
JP2022182453A (ja) 銅張積層板および銅張積層板の製造方法
JP2019057684A (ja) フレキシブル配線基板及びその製造方法
JP2015141950A (ja) フレキシブル配線板
JP2019057683A (ja) 配線基板用積層体及びその製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIPPON MINING & METALS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOHIKI, MICHIYA;MICHISHITA, NAONORI;MAKINO, NOBUHITO;SIGNING DATES FROM 20100401 TO 20100402;REEL/FRAME:024239/0836

AS Assignment

Owner name: NIPPON MINING HOLDINGS, INC., JAPAN

Free format text: MERGER;ASSIGNOR:NIPPON MINING & METALS CO., LTD.;REEL/FRAME:025115/0675

Effective date: 20100701

AS Assignment

Owner name: JX NIPPON MINING & METALS CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NIPPON MINING HOLDINGS, INC.;REEL/FRAME:025123/0420

Effective date: 20100701

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION