US20100179080A1 - Process for recovering used lubricating oils using clay and centrifugation - Google Patents

Process for recovering used lubricating oils using clay and centrifugation Download PDF

Info

Publication number
US20100179080A1
US20100179080A1 US12731366 US73136610A US2010179080A1 US 20100179080 A1 US20100179080 A1 US 20100179080A1 US 12731366 US12731366 US 12731366 US 73136610 A US73136610 A US 73136610A US 2010179080 A1 US2010179080 A1 US 2010179080A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
lubricating oil
process
clay
used
used lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12731366
Inventor
Pablo Martin de Julian
Leonardo Ramon Padrino Torres
Pedro Adolfo Torres Fonseca
Original Assignee
Martin De Julian Pablo
Leonardo Ramon Padrino Torres
Pedro Adolfo Torres Fonseca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0008Working-up used lubricants to recover useful products ; Cleaning with the use of adsorbentia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0058Working-up used lubricants to recover useful products ; Cleaning by filtration and centrifugation processes; apparatus therefor

Abstract

A process for recovering used lubricating oils, and oils recovered using the process. In a first embodiment (for used industrial oils), the used lubricating oil is mixed with clay in a reactor. The mixture is preferably heated to between 80 and 200 degrees Celsius. The temperature should not be too great, to avoid “cracking” the oil (i.e., breaking molecular chains in the oil). After a certain period of time, the mixture is pumped through filters. Cakes of clay and contaminants remain in the filters, while the oil emerges without the contaminants. A second embodiment (for removing ash or soot, very fine carbon particles and other organic compounds from used motor oils) is the same as the first embodiment, except that before the mixture is passed through the filters, a centrifuge is used to remove most of the clay contaminated with soot, so that it will not block the filters.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a Continuation-In-Part of U.S. Regular Utility patent application Ser. No. 11/856,813, filed Sep. 18, 2007, which claimed priority from and included a certified copy and translation of Venezuelan patent application 06-02147, filed in Venezuela on Sep. 18, 2006, which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to the removal of contaminants from industrial used lubricating oils and used motor oils by treatment of the used oil with clay at high temperatures, but at lower temperatures than that of “cracking”, and later removing the contaminated clay by filtration and centrifugation.
  • 2. Description of the Prior Art
  • The recycling of used lubricating oils coming from industrial processes, car motors, transmissions and other sources is an important process, because it avoids contamination by lubricating oils, and allows the recovery of lubricating base oils, which are a scarce product. The oils form a mono-molecular layer on the surface of the water, which it means that a small quantity of oil can contaminate a great volume of water.
  • The recovered lubricating oil bases have all the properties of the first refining, and they can be used to produce new oils. The recycling process can be done several times.
  • The contaminants in industrial oils, besides water, are usually iron, chromium, cadmium, nickel, copper, calcium, barium, zinc, aluminum, and phosphorus. Motor oils also have soot, contaminants due to degraded additives, and other contaminants coming from the gasoline, and for that reason they are more difficult to be re-refined.
  • Several techniques have been used to re-refine used oils, mainly by distillation and treatment with chemical reactives to precipitate the coagulants (principally sulfuric acid and other solvents, which are also contaminants that produce environmental problems).
  • The treatments with clays at very high temperature have the problem that the later separation becomes difficult because the pores of the felt (cloths, cellulose, synthetic materials or others) of the filter press become plugged, mainly due to soot, colloidal coal, and organic compounds.
  • The distillation systems require large investments, and the re-refining cost is usually expensive. This is also the case of the other used treatments with sulfuric acid, sulfates, phosphates and other chemicals, which are difficult to extract later on. For example in the separation of sulfuric acid with clays there is the inconvenience of the great production of sludge, besides the large volumes of corrosive acids and the great lost of used original oils. It is necessary to take into account that the pre-heating of the mixtures must not be higher than 250° C. to 300° C., if one wants to avoid the “cracking” of the lubricating oils. (Excessive heat causes hydrocarbon chains in the oil to “crack” and break into smaller chains, which are not suitable for lubricating oil, though they may be suitable for fuel oil.) Other more economic systems use inorganic catalysts mixed with clays in continuous feeding systems.
  • The present invention has important advantages with respect to these processes.
  • U.S. Pat. No. 3,625,881, issued on Dec. 7, 1971, to John M. Chambers and Herbert A. Hadley, discloses a process for reclaiming lubricating oils, including flash vaporization to remove water, mixing the used oil with a hydrocarbon oil, using a centrifuge to remove solid precipate, and two fractional distillations. The instant invention is distinguishable, in that in it the used oil is mixed with clay rather than another oil.
  • U.S. Pat. No. 3,639,229, issued on Feb. 1, 1972, to Darrell W. Brownawell and Remi H. Renard, discloses a process of refining used lubricating oils, in which the used oil is mixed with aliphatic alcohol. There may be a final clay treating step (see claim 9). The instant invention is distinguishable, in that it does not require the use of alcohol.
  • U.S. Pat. No. 3,819,508, issued on Jun. 25, 1974, to Morton Fainman and Charles Stouse McCauley, discloses a method of purifying lubricating oils, in which the oil is mixed with a predominantly hydrocarbon liquid diluent, then with an alcohol and water mixture, and centrifuging is used to remove sludge and metal compounds. The instant invention is distinguishable, in that in it the used oil is mixed with clay.
  • U.S. Pat. No. 3,919,076, issued on Nov. 11, 1975, to Louis E. Cutler, discloses a process for re-refining used automotive lubricating oil, including treatment with a saturated hydrocarbon solution, followed by vacuum distillation, followed by catalytic hydrogenation, which are not required in the instant invention.
  • U.S. Pat. No. 3,930,988, issued on Jan. 6, 1976, to Marvin M. Johnson, discloses a process for reclaiming used motor oil using an aqueous solution of ammonium sulfate or bisulfate, that is not required in the instant invention.
  • U.S. Pat. No. 4,033,859, issued on Jul. 5, 1977, to Donald Douglas Davidson and Bjorn I. Engesvik, discloses thermal treatment of used petroleum oils under pressure at temperatures to above about 400 to 800 degrees Fahrenheit (or 190 to 412 degrees Celsius). Although there is a small overlap in the temperature range, the instant invention does not require pressure during its heating step.
  • U.S. Pat. No. 4,383,915, issued on May 17, 1983, to Conrad B. Johnson, discloses a clay contacting process for removing contaminants from waste lubricating oil, in which the oil is contacted with decolorizing clay at a temperature in the range of 650 to 725 degrees Fahrenheit (or 329 to 370 degrees Celsius). The instant invention is distinguishable, in that it uses a lower temperature range, and a different type of clay (see column 3, lines 21 to 31).
  • U.S. Pat. No. 4,502,948, issued on Mar. 5, 1985, to Donald C. Tabler, discloses a procedure for treating demetallized used oil using an acid such as sulfuric acid. In the instant invention, no sulfuric or other acid is used.
  • U.S. Pat. No. 5,112,479, issued on May 12, 1992, to Vichai Srimongkolkul, discloses an oil purification unit with a cyclonic (centrifuge) reservoir section and a filtration section. The second embodiment of the instant invention is distinguishable, in that in it the oil is first mixed with clay before being centrifuged.
  • U.S. Pat. No. 5,759,385, issued on Jun. 2, 1998, to Marcel Aussillous et al., discloses a process and plant for purifying spent oil, including vacuum distillation, which is not required by the instant invention.
  • U.S. Pat. No. 5,968,370, issued on Oct. 19, 1999, to Mark E. Trim, discloses a process for removing hydrocarbons bound to solid particles in contaminated sludge, such as from oil refineries, supertankers, and drill cuttings. A treatment fluid is applied, comprising water, a silicate, a nonionic surfactant, an anionic surfactant, a phosphate builder and a caustic compound. Later, the treatment fluid is removed, to be used again. In the instant invention, the products to be treated are different, namely lubricating oils contaminated with small amounts of metals and other products, as a result of their use as lubricants. In the instant invention, only clay is used; no fluid treatment is used, and no treatment fluid is recovered, but only the lubricating oils themselves.
  • U.S. Patent Application Publication No. 2006/0000787, published on Jan. 5, 2006, to Louis Galasso III et al., discloses purification of impure oil by centrifugation, without first mixing the oil with clay as in the instant invention.
  • U.S. Patent Application Publication No. 2002/0166794, published on Nov. 14, 2002, inventors Alexander P. Bronhstein, Moshe Gewertz and Vladimir M. Rozhansky, discloses a process for producing standard and used fuels from lubricating oils and several other waste products. It produces a mixture of water and other products to be added to petroleum-based waste. Later, dewatered matter is skimmed, and what remains is processed by thermocatalytic cracking. The instant invention produces a lubricating oil basis (not fuel) from used lubricating oils. In the instant invention, no water as a carrier of products is used. Instead, most of the water is taken out by methods such as decanting and heating, before treatment with clay in the reactor. In the instant invention, no skimming of a watered mixture is performed, nor is thermocatalytic cracking used, thus it has a final product different from that of Bronhstein et al. Instead of fuel products, it obtains a lubricating oil basis, which can be used to obtain new lubricating oil by adding appropriate additives.
  • French Patent No. 2 690 924, published on Nov. 12, 1993, to Virgulino Antonio Digilo, discloses a method of re-cycling of used or contaminated lubricating oils, including adding clay to the oil in a reactor, and also adding water containing a dissolved sulphur based catalyst and filtration aid. The instant invention is distinguishable, in that it does not require adding water containing a catalyst.
  • Japanese Patent No. 2-4898, published on Jan. 9, 1990, to Kyoho Seisakusho and Toyota Jidosha, discloses a process of reclaiming lubricating waste oil, including a thermal reaction treatment in which an aqueous solution of caustic alkali is added to the oil, a centrifugation process after diatomaceous earth and activated clay are added to the oil, and a filtration process. The instant invention is distinguishable, in that it does not require that the addition of a solution of caustic alkali to the oil.
  • Clay Amended Soilless Substrates: Increasing Water and Nutrient Efficiency in Containerized Crop Production by James Stetter Owen, Jr. (2006) (cited by the Examiner in the parent application) does not disclose the use of clay for cleaning used lubricating oils, as in the instant invention.
  • None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed.
  • We can summarize the prior art process for recovering used lubricating oil as having three parts or stages:
  • First there is the adaptation or preparation process, which consists in the separation of solids and water, usually by filtration and flash distillation, respectively, or other process.
  • In a second stage there is a treatment to eliminate the contaminant products, such as metals, soot, organic refuse, additives, oligogenic compounds, etc. This elimination process is done: i) by chemical methods, such as adding sulfuric acid, calcium sulfate, hydroxides, phosphoric acid, etc.; ii) by physical-chemical methods as vacuum distillation; or iii) by other methods.
  • The third stage is the process of whitening and taking out the smell. Here there are also use different methods, but the most common is the use of clay or activated carbon.
  • SUMMARY OF THE INVENTION
  • The main difference of our method compared with the prior art, is that the second and third stages are integrated in a unique process using only clays, and there is not any chemical process or vacuum distillation. In this way there is only two process or stages: the first one and a second one using only clays. The separation of the clays from the recovered lubricating oil is performed by filtering as in the prior art. Filtering is adequate for industrial used lubricating oil. However for used lubricating oil with contaminant soot, as in the case of used oil coming from the cars and other vehicles, the soot usually plugs the pores of the filters, and it is necessary to use an additional centrifugation process in order to avoid this problem.
  • In our search for a process for the recovery of used lubricating oils that was economic and did not require high investments, a fact to be considered appeared immediately. It was necessary to separate the treatment of industrial oils, with mainly watery and metallic contaminants, from those with organic contaminants and soot, such as those coming from the internal combustion motors. For this reason, the present invention has two preferred embodiments: the first for recovery of used industrial lubricating oils, and the second for recovery of oils coming from internal combustion motors (including used lubricants oils of explosion and diesel motors, automatic transmissions, and in general, every kind of oils coming from filling and service stations for cars).
  • The first preferred embodiment of the present invention is suitable for used industrial oils, and it includes the steps of: (a) Mixing the used lubricating oils with clay in a reactor, and heating the mixture to temperatures from 80° C. to 200° C., in a batch type system. The temperatures are low enough that the cracking of the lubricating oils in the mixture does not take place or at least is minimized. (b) Keeping the mixture of clay and used lubricating oil for a certain residence time in the reactor. (c) Filtration by a system of filter presses, wherein the clay sticks to the filtering cloths, and the filtered oil goes through free of impurities. This system is shown in FIG. 1, which corresponds to the first preferred embodiment.
  • An important observation in this process is that, if this is performed in a continuous way, with feeding of used oil and preheated clay through the bottom of the reactor and gathering of recovered oil from the upper side, then the oil still contains a large amount of contaminants, and is not suitable for future use. In continuous systems in the prior art, they use catalysts or chemical reactives to obtain suitable results, which complicate and increase the cost of the process.
  • On the other hand, it is important also to point out that the amount of water contained in some oils is high, and in these cases before adding the clay it is convenient to eliminate the water with a “flash” distillation process from 80° C. to 100° C., prior to treatment with the clay.
  • The second preferred embodiment of the invention is designed for the removal of metallic contaminants, soot and organic contaminants from the used lubricating oils coming from automotive market. It includes the steps of: (a) Mixing the used lubricating oils with clay in a reactor, and heating the mixture to temperatures from 80° C. to 200° C. Again, the temperatures are low enough that the cracking of the lubricating oils in the mixture does not take place or at least is minimized. (b) Keeping the mixture of clay and used lubricating oil is for a certain residence time in the reactor. (c) Using a centrifuge to separate a large part of the oils to be recovered from the clay containing organic and metallic contaminants. (c) Filtration of the oils coming from the centrifuge, by passing them through a filter press as described above for the industrial used oils. The second preferred embodiment is illustrated in FIG. 2.
  • For both embodiments, the heating system which was found most economic for the process of the present invention, consists of a boiler heated with gas and a transference fluid (e.g., hydraulic oil), which carries the heat from the boiler to a heating jacket in the reactor containing the used oil and clay. The heating is done by conduction. The used lubricating oils are loaded in the reactor with movable and diaphragm electric pumps, or by gravity. Before the used oils are placed into the reactor, they may be passed through a gross filter (for instance, 200 mesh) to remove large particles. After passing them through the gross filter, there can also be a flash distillation from 80° C. to 120° C. to remove excessive quantities of water. Next, the right amount of clay is added, and after some residence time determined by the type of oil and laboratory analysis, the mixture in the reactor is discharged. During the residence time the clay reacts with the contaminants, creating chemical bonds between them. For this, it is necessary to have good control of the temperature (in order to avoid cracking the oils) and of the amount of clay and the residence time in the reactor. All these conditions are previously determined by the laboratory analysis. After that the filtering process is performed.
  • Accordingly, it is a principal object of the invention to provide an improved process for recycling industrial lubricating oils.
  • It is another object of the invention to provide an improved process for recycling automotive lubricating oils.
  • It is a further object of the invention to reduce pollution to the environment from discarded used lubricating oils.
  • Still another object of the invention is to reduce the depletion of nonrenewable resources used in making lubricating oils.
  • It is an object of the invention to provide improved elements and arrangements thereof in an apparatus for the purposes described which is inexpensive, dependable and fully effective in accomplishing its intended purposes.
  • These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of the first preferred embodiment of the invention.
  • FIG. 2 is a schematic diagram of the second preferred embodiment of the invention.
  • Similar reference characters denote corresponding features consistently throughout the attached drawings.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention an improved process for recycling used lubricating oils, having two preferred embodiments.
  • FIG. 1 depicts the first preferred embodiment of the process of the invention, which is its simplest form. The concept discussed is a “batch” or “semi-batch” type process, wherein the used contaminated lubricating oil 10, which may be filtered before going to the reactor 12, is mixed with activated clay 14 to high temperature, obtained by means of a heating jacket 16 in the reactor. To maintain the temperature of the heating jacket, hot hydraulic oil can be used as a heat transference fluid, which is heated in a boiler (not shown in the drawings). The operation of mixing oil with clay and heating can be done in a continuous way, but the best results are obtained with the “batch” or “semi-batch” non-continuous system. The reactor, where the interaction between the clays and the oil to be recovered is taken place, usually has stirring rods 18, which allow a faster process and decrease the residence time. The residence time can be from several minutes to several hours, depending on the type of oil and contaminants. Before loading the reactor, it may be desirable to perform a flash distillation, to eliminate the water that is coming with the used oils, as well as a pre-filtration to eliminate contaminants of large size. From the reactor, the heated oil-clay mixture is pumped using pump 20 through a filter press 22 where the clay and trapped contaminants are separated from the oil. The clay is left in the filters 24 as a “cake”, and the recovered oil without contaminants is carried out to a pipe system 26, which retake the filtered oil from the filter press. After loosening the filtered frame with its filters, the clay cake sticks to the filters, but is separated from them, in order to recover the filters, leaving the clay as waste material 28. The recovered oil, now without contaminants, can be used as lubricating base oil.
  • In FIG. 2, showing the second preferred embodiment of the invention, the process is similar to that depicted in FIG. 1, but now there is an industrial centrifuge 30 between the reactor12 and the filter press 22. The reason for this centrifugal system is that for the used oils coming from explosion motors, an important contaminant is the soot, which comprises very small particles of carbon and other organic compounds, such as the additives of the lubricants. The problem with these contaminants is that when they are taken directly to the filter press, they plug the pores of the filter felts (cloths, cellulose, synthetic, etc.), stopping or decreasing very strongly the filtered flow. It is for this reason that a centrifugal operation is needed prior to filtration, in order to remove most of the clay contaminated with soot 32, in order to allow a filtered operation later without problems.
  • The system described in FIG. 1 is suitable for the recovery of industrial oils with low or no contamination with soot or organic products, and the system described in FIG. 2 is mainly appropriate for used oils coming from cars and motor vehicles, where there is a high percentage of soot contamination. However, this more complete second system can be also used for industrial oils or any kinds of used oils, e.g., oil used in internal combustion motors, or in industrial or other motors.
  • Once the recovered bases are obtained, the corresponding analysis has to be performed in order to determine that the amount of contaminants is below the wanted level, as well as to determine the characteristics of the recovered base lubricating oils, such as their viscosity, total basic number (TBN), flash point, etc.
  • The following examples are given for illustration:
  • Example 1
  • A treatment of 1,800 liters of used oil of industrial origin was performed, to show the effectiveness of the present invention.
  • Process of Recovery of Used Industrial Oils Example Industrial Plant Materials.—
  • 1,800 liters of lubricating oils for industrial gears coming from Carbonorca Enterprise C.A.
  • Initial Characteristics of the Used Oils.—
  • 1. Color: Opaque brown, non-translucent.
    2. Presence of free water and/or in emulsion: (10-50% v/v).
    3. Presence of solid suspended particles (>1000 mg/Kg, 0-30% v/v)
    4. pH: >7
    5. Aromatics: <1 mg/Kg.
  • 6. Solvents: 0-10% v/v. System of Absorbent/Adsorbent.—
  • Activated clays, hybrid type of hormite and smectite, with acid characteristic, with pH (5% solids diluted in H2O) equal to 2.5-3.0, density of 336-416 g/l, and particle size, by sieve analysis (Tyler Standard), particles with sizes less than 150 μm: 100%, and particles with sizes less than 45 μm: of 73-76%.
  • Procedure Description.—
    • 1) Pre-filtration: The used industrial oil goes through mobile filtering equipment to eliminate big particles that could be present in the oils. Polyester sleeve filters with holes of 10-100 microns were used.
    • 2) Reactor load: Mobile pumps were used for the process of loading the 1,800 liter batch.
    • 3) Distillation flash: The oil was heated with a system of thermal oil recirculation coming from a boiler, with the aim of eliminating the water and the residual part of the solvents. The temperature reached oscillates between 105-115° C., measured and controlled with instruments installed in the reactor (i.e., thermocouples and flow control valves). Time of heating averaged two hours. In this stage the oil is recirculated and there is a continuous mechanical stirring. Once the distillation temperature is reached and the water eliminated, a crackling test (ECC001) is performed to be sure that there is no water remaining.
    • 4) Absorption/Adsorption Process: Once the crackling test is performed, the absorbent/adsorbent elements, namely the clays, are added in the reactor. The amount to be used is determined previously by the laboratory tests. The addition of these different elements varies between 0.5-2% v/v for a batch of 1800 liters. (By “v/v” is meant the volume of clay divided by the total volume of the mixture in the reactor.) For lower loads of this amount and/or more contaminants the clays added could be in the range of 2-5% v/v. There is stirring during the addition of the clays, and once they are added, the stirring continues simultaneously with the recirculation to get an optimums contact between the oil and clay. This process lasts for a period of five to fifteen minutes. (Note that absorption means drawing into the interior of the clay particles, adsorption means attachment to the surface of the clay particles, and absorption and adsorption are collectively referred to as “sorption”.)
    • 5) Filtration Process: Once the period of clay-oil mixture is finished, the filtration process is started. This is performed with a filter press of vertical plates provided with a series of 100% cotton cloths with openings between 10-40 microns and a 100% cellulose filter of 8-20 microns holes. The operation pressures are 30-100 psi at the entrance of the filter and 10-15 psi at the exit. The amount of solid particles in the filtration process is analyzed to guarantee that the final oil does not contain any solids.
  • Once the removal of contaminants is finished the procedure is:
    • 1) Passing the recovered lubricating base oil to the observation tank (checking previously that there are not solid particles). The observation tank has a preventive function, since it enables the determination of the location of any possible contamination with solid particles or high levels of metals, if the removal process becomes inefficient for any reason.
    • 2) There is a metallic characterization by the method of atomic absorption to determine if the product is good to be used to produce lubricants.
    • 3) Once the two preceding steps are done, viscosity and viscosity index are determined with the aim of storing in lubricating plant tanks, to decide which kind of use will be assigned. There is a pumping system connected to a series of pipes and valves, wherein the recovered lubricating base oils go through post-filters, to insure that there is not any type of residue or solid particle.
  • Table 1 shows the analysis of properties of industrial used oil:
  • TABLE 1
    Initial Properties of Used Oil Before the Process
    Parameter Unit* Value Method
    Cadmium and composites mg/Kg <0.10 ASTM D 5185
    Chromium and composites mg/Kg 14.4 ASTM D 5185
    Soluble copper composites mg/Kg 22.1 ASTM D 5185
    (salts and acids)
    Nickel and composites mg/Kg 3.51 ASTM D 5185
    (salts and acids)
    Lead and composites mg/Kg 534.9 ASTM D 5185
    (salts and oxides)
    Vanadium and composites mg/Kg 8.9 ASTM D 5185
    (salts and oxides)
    PCBs ppm <0.10 HGPC
    Sediments ml/L <0.10 ASTM D 473
    R2—Cl** ppm 800 9077
    Cinematic Viscosity to cSt 18.6
    100° C.
    Density g/cm3 ASTM D 1298
    Flash Point ° C. 195 NVC 372
    H2O by distillation % p/v 0.00 ASTM D95
    Total Sulfur % p/p 0.60 ASTM D 1552
    *1 mg/Kg = 1 ppm
    **R2—Cl = Organic Radical
  • Table 2 presents the properties of the recovered lubricating base oils obtained through this process:
  • TABLE 2
    Final Properties of Recovered Oil (Lubricating Bases) After the Process
    Obtained
    Parameter Unit Specification value Method
    Flash Point ° C. 210-260 219 Covenin 372
    Method of open cup
    Cinematic Viscosity to cSt 15-19 17.4 Covenin 424
    100° C.
    Viscosity Index 90 Covenin 889
    Calcium ppm <0.01 0.005 Covenin 2044
    Magnesium ppm <0.014 0.009 Covenin 2044
    Zinc ppm <0.1 0.02 Covenin 2044
    Crepitating, crackle S/N Negative Covenin
    Specific Gravity to g/ml 0.8685 0.8703 Covenin
    15.6° C.
    Amount of clay S/N Negative Method EC-
    B05
  • Example 2
  • A laboratory experiment was performed, with a sample of used motor oil. The following is a description of the details of the experiment:
  • Materials:
  • 800 ml of used oil, coming from a Fiat “Ritmo” car, 1987 model, 1600 ml motor, with 45 days of running, and a total of 55,000 km passed over. The original oil was PDV (Petroleum of Venezuela) brand, 20W-50W multigrade (Experiment No. 1). There was also used 800 ml of a mixture of used oils coming from an workshop for oil change, located in Maracay, Aragua State-Venezuela (Experiment No. 2).
  • System of Absorbent:
  • Activated clays, hybrid type of hormite and smectite, with acid characteristic.
  • Experimental Process and Preparation of Samples for Analysis:
  • A sample of 800 grams of used motor oil was put in a glass beaker, with a magnetic stirrer inside, and was placed on an electric heating plate with continuous magnetic stirring.
  • The heating of the sample was between 100-120° C. during 30 minutes, in order to eliminate the water, until the crepitating or crackling test was negative. The amount of clay was prepared in approximately 20% m/m of used oil. (By “m/m” is meant the mass of the clay divided by mass of the used oil.) The oil was added with stirring of 800 to 1200 rpm, during one hour, and reaching temperatures of 180° C.
  • The mixture oil-clay was passed through a filtration process at vacuum with a Buchnner funnel, using two cycles of filtering: first with 35 mesh, and second with Watman No. 5 cellulose. In this way, the contaminants retained with the clay are separated from the filtered oil.
  • Tables 3 and 4 show the results obtained, giving the characteristics of the used oils in the experiments, and the recovered lubricating base oils after applying the experimental procedure.
  • TABLE 3
    Initial Properties of the Used Motor Oil
    Flash
    Exp. point Density μ (cSt) Metals (ppm)
    Number (° C.) (gr/ml) 100° C. Ca Mg Zn Fe Cu Al Color Odor
    1 203 0.81 13.2 1768 112 841 98 3 17 Dark Burned oil
    brown
    2 183 0.83 14.9 1826 129 972 96 5 12 Dark Burned oil
    black
  • TABLE 4
    Final Properties of the Recovered Motor Oil After the Process
    Flash
    Exp. point μ (cSt) Metals (ppm)
    Number (° C.) 100° C. Ca Mg Zn Color Odor
    1 196 11.2 50.2 3.1 12.4 Light Lubricating
    brown to base oil
    yellow
    2 180 12.8 45.6 4.1 23.2 Reddish Lubricating
    chestnut base oil
  • CONCLUSION
  • The laboratory tests have shown that with the process described, a removal takes place of metallic and organic contaminants of used industrial lubricating oils and those oils coming from internal combustion motors. The level of removal is such that the recovered lubricating oil bases can be used again with confidence in motor oils, automatic transmissions and other required uses. Our system is simple and economic compared to other systems, and the quality of the recovered oils is similar. Note that in our system, only clay (without the use of other substances) is used to remove contaminants from the oil.
  • It is clear that the process and the product of the present invention will find wide use in the recovery and recycling of used industrial oils as well as those oils coming as wastes from internal combustion motors and transmissions. The foregoing describes only some embodiments of the present invention and obvious modifications to those skilled in the art can be made thereto without departing from the scope of the invention. It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.

Claims (17)

  1. 1. A process for recovering used lubricating oil, comprising the steps of:
    a) placing used lubricating oil and clay in a container where they are put together in contact to form a mixture;
    b) heating the mixture to a suitable temperature for good sorption, with low effect of cracking; and
    c) removing and separating the lubricating oil from waste products containing the clay and contaminants of the used lubricating oil;
    wherein a filter press system is used to separate the lubricating oil from the clay and contaminants, to form a clay cake that is discarded, obtaining oil essentially free from contaminants, without the use of other substances to remove the contaminants from the used lubricating oil.
  2. 2. The process for recovering used lubricating oil according to claim 1, wherein the used lubricating oil is pre-filtered before forming the mixture with the clay.
  3. 3. The process recovering used lubricating oil according to claim 2, wherein the used lubricating oil is pre-treated with a flash type distillation, to separate a water residue from the used lubricating oil.
  4. 4. The process for recovering used lubricating oil according to claim 3, wherein the mixture is heated with a system including a heating jacket, wherein hot hydraulic fluid circulates to transfer heat.
  5. 5. The process for recovering used lubricating oil according to claim 4, wherein the clay is acid-activated.
  6. 6. The process for recovering used lubricating oil according to claim 5, wherein the clay is a hybrid of hormite and smectite.
  7. 7. The process for recovering used lubricating oil according to claim 6, wherein the container is a reactor, the hydraulic oil comes from a boiler, and a residence time in which the mixture remains in the reactor varies according the type of used lubricating oil.
  8. 8. The process for recovering used lubricating oil according to claim 7, wherein the mixture is heated to temperatures lower than 300 degrees Celsius.
  9. 9. The process for recovering used lubricating oil according to claim 8, wherein the mixture is heated to temperatures from 80 degrees Celsius to 200 degrees Celsius.
  10. 10. The process for recovering used lubricating oil according to claim 9, wherein after the residence time in the reactor, the mixture is poured out, and treated by a separation process.
  11. 11. The process for recovering used lubricating oil according to claims 10, wherein stirring rods are used to decrease the residence time of the mixture in the reactor.
  12. 12. The process for recovering of used lubricating oil according to claim 11, wherein the volume of the clay is lower than 60% of the volume of the used lubricating oil.
  13. 13. The process for recovering used lubricating oil according to claim 12, wherein the volume of clay is from 2% to 25% of the volume of the used lubricating oil.
  14. 14. A process for recovering used lubricating oil, comprising the steps of:
    a) placing used lubricating oil and clay in a container where they are put together in contact to form a mixture;
    b) heating the mixture to a suitable temperature for good sorption, with low effect of cracking; and
    c) removing and separating the lubricating oil from waste products containing the clay and contaminants of the used lubricating oil;
    wherein a centrifuge is used to separate the lubricating oil from the clay and contaminants, to form a clay cake that is discarded, obtaining oil essentially free from contaminants, without the use of other substances to remove the contaminants from the used lubricating oil.
  15. 15. The process for recovering used lubricating oil according to claim 14, wherein a filter press system is used to separate the lubricating oils from the clays and contaminants, to form a clay cake that is discarded, obtaining oil essentially free from contaminants.
  16. 16. The process for recovering used lubricating oil according to claim 15, wherein the centrifuge is an industrial centrifugal machine.
  17. 17. The process for recovering used lubricating oil according to claim 16, wherein the centrifuge has a rotating screw, which allows it to separate most of the clay from the lubricating oil to be recovered.
US12731366 2006-09-18 2010-03-25 Process for recovering used lubricating oils using clay and centrifugation Abandoned US20100179080A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
VE214706 2006-09-18
VE06-02147 2006-09-18
US11856813 US20080070816A1 (en) 2006-09-18 2007-09-18 Process for recovering used lubricating oils using clay and centrifugation
US12731366 US20100179080A1 (en) 2006-09-18 2010-03-25 Process for recovering used lubricating oils using clay and centrifugation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12731366 US20100179080A1 (en) 2006-09-18 2010-03-25 Process for recovering used lubricating oils using clay and centrifugation
US13525262 US8299001B1 (en) 2006-09-18 2012-06-15 Process for recovering used lubricating oils using clay and centrifugation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11856813 Continuation-In-Part US20080070816A1 (en) 2006-09-18 2007-09-18 Process for recovering used lubricating oils using clay and centrifugation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13525262 Continuation-In-Part US8299001B1 (en) 2006-09-18 2012-06-15 Process for recovering used lubricating oils using clay and centrifugation

Publications (1)

Publication Number Publication Date
US20100179080A1 true true US20100179080A1 (en) 2010-07-15

Family

ID=42319503

Family Applications (1)

Application Number Title Priority Date Filing Date
US12731366 Abandoned US20100179080A1 (en) 2006-09-18 2010-03-25 Process for recovering used lubricating oils using clay and centrifugation

Country Status (1)

Country Link
US (1) US20100179080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129425A1 (en) * 2010-11-19 2012-05-24 Lf Usa Inc. Shapewear garment

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625881A (en) * 1970-08-31 1971-12-07 Berks Associates Inc Crank case oil refining
US3639229A (en) * 1970-06-29 1972-02-01 Exxon Research Engineering Co Refining of used lubricating oils
US3819508A (en) * 1973-06-04 1974-06-25 C Mccauley Method of purifying lubricating oils
US3919076A (en) * 1974-07-18 1975-11-11 Pilot Res & Dev Co Re-refining used automotive lubricating oil
US3930988A (en) * 1975-02-24 1976-01-06 Phillips Petroleum Company Reclaiming used motor oil
US4033859A (en) * 1975-04-24 1977-07-05 Witco Chemical Corporation Thermal treatment of used petroleum oils
US4383915A (en) * 1980-05-06 1983-05-17 Turbo Resources Ltd. Clay contacting process for removing contaminants from waste lubricating oil
US4502948A (en) * 1984-03-30 1985-03-05 Phillips Petroleum Company Reclaiming used lubricating oil
US5112479A (en) * 1990-05-30 1992-05-12 Micropure Filtration, Inc. Oil purification unit with cyclonic reservoir section and filtration section
US5288413A (en) * 1991-10-24 1994-02-22 Shell Oil Company Treatment of a waste sludge to produce a non-sticking fuel
US5759385A (en) * 1994-10-17 1998-06-02 Institut Francais Du Petrole Process and plant for purifying spent oil
US5968370A (en) * 1998-01-14 1999-10-19 Prowler Environmental Technology, Inc. Method of removing hydrocarbons from contaminated sludge
US20020166794A1 (en) * 2001-01-29 2002-11-14 Bronshtein Alexander P. Apparatus and process for converting refinery and petroleum-based waste to standard fuels
US20060000787A1 (en) * 2004-07-02 2006-01-05 Galasso Louis Iii Purification of impure oil by centrifugation

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639229A (en) * 1970-06-29 1972-02-01 Exxon Research Engineering Co Refining of used lubricating oils
US3625881A (en) * 1970-08-31 1971-12-07 Berks Associates Inc Crank case oil refining
US3819508A (en) * 1973-06-04 1974-06-25 C Mccauley Method of purifying lubricating oils
US3919076A (en) * 1974-07-18 1975-11-11 Pilot Res & Dev Co Re-refining used automotive lubricating oil
US3930988A (en) * 1975-02-24 1976-01-06 Phillips Petroleum Company Reclaiming used motor oil
US4033859A (en) * 1975-04-24 1977-07-05 Witco Chemical Corporation Thermal treatment of used petroleum oils
US4383915A (en) * 1980-05-06 1983-05-17 Turbo Resources Ltd. Clay contacting process for removing contaminants from waste lubricating oil
US4502948A (en) * 1984-03-30 1985-03-05 Phillips Petroleum Company Reclaiming used lubricating oil
US5112479A (en) * 1990-05-30 1992-05-12 Micropure Filtration, Inc. Oil purification unit with cyclonic reservoir section and filtration section
US5288413A (en) * 1991-10-24 1994-02-22 Shell Oil Company Treatment of a waste sludge to produce a non-sticking fuel
US5759385A (en) * 1994-10-17 1998-06-02 Institut Francais Du Petrole Process and plant for purifying spent oil
US5968370A (en) * 1998-01-14 1999-10-19 Prowler Environmental Technology, Inc. Method of removing hydrocarbons from contaminated sludge
US20020166794A1 (en) * 2001-01-29 2002-11-14 Bronshtein Alexander P. Apparatus and process for converting refinery and petroleum-based waste to standard fuels
US20060000787A1 (en) * 2004-07-02 2006-01-05 Galasso Louis Iii Purification of impure oil by centrifugation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120129425A1 (en) * 2010-11-19 2012-05-24 Lf Usa Inc. Shapewear garment

Similar Documents

Publication Publication Date Title
US6214236B1 (en) Process for breaking an emulsion
US5215596A (en) Separation of oils from solids
US5928522A (en) Method for processing oil refining waste
US5269906A (en) Process for the recovery of oil from waste oil sludges
Rajakovic et al. Efficiency of oil removal from real wastewater with different sorbent materials
US4101414A (en) Rerefining of used motor oils
US4454027A (en) Arsenic removal method
US6024880A (en) Refining of used oils using membrane- and adsorption-based processes
US4151072A (en) Reclaiming used lubricating oils
US3692668A (en) Process for recovery of oil from refinery sludges
US3923644A (en) Process and apparatus for re-refining used petroleum products
US3696021A (en) Continuous process for separating oily sludges
US6537443B1 (en) Process for removing mercury from liquid hydrocarbons
US5271851A (en) Integrated treatment system for refinery oily sludges
US4073720A (en) Method for reclaiming waste lubricating oils
US6808621B1 (en) Fuel additive and fuel refining process
US4247389A (en) De-ashing lubricating oils
US6174431B1 (en) Method for obtaining base oil and removing impurities and additives from used oil products
US4381992A (en) Reclaiming used lubricating oil
US4522729A (en) Filtration of oil
US5556548A (en) Process for contaminated oil reclamation
US4264453A (en) Reclamation of coking wastes
US4342645A (en) Method of rerefining used lubricating oil
US5942457A (en) Process for regenerating spent clay
US5141628A (en) Method of cleaning and regenerating used oils