US20100105386A1 - Method and apparatus for accessing old network through temporary id of evloved network - Google Patents

Method and apparatus for accessing old network through temporary id of evloved network Download PDF

Info

Publication number
US20100105386A1
US20100105386A1 US12/649,942 US64994209A US2010105386A1 US 20100105386 A1 US20100105386 A1 US 20100105386A1 US 64994209 A US64994209 A US 64994209A US 2010105386 A1 US2010105386 A1 US 2010105386A1
Authority
US
United States
Prior art keywords
mme
information
tmsi
network
old
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/649,942
Inventor
Xiaolong GUO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40590570&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100105386(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Assigned to HUAWEI TECHNOLOGIES CO., LTD. reassignment HUAWEI TECHNOLOGIES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUO, XIAOLONG
Publication of US20100105386A1 publication Critical patent/US20100105386A1/en
Priority to US13/314,612 priority Critical patent/US8483166B2/en
Priority to US13/915,457 priority patent/US9084159B2/en
Priority to US14/752,426 priority patent/US9838918B2/en
Priority to US15/819,176 priority patent/US10873883B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4588Network directories; Name-to-address mapping containing mobile subscriber information, e.g. home subscriber server [HSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/10Reselecting an access point controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/005Data network PoA devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a method and apparatus for accessing an old network through a temporary ID of an evolved network.
  • a Universal Mobile Telecommunication System is a 3G wireless communication network standard defined by the Third Generation Partnership Project (3GPP).
  • a UMTS network consists of a Core Network (CN) and an Access Network (AN).
  • the CN consists of a Circuit Switched (CS) domain and a Packet Switched (PS) domain.
  • the CS domain provides CS-based services such as voice services.
  • the PS domain provides PS-based services such as Internet access.
  • a terminal used by a mobile subscriber is a User Equipment (UE).
  • UE User Equipment
  • FIG. 1 shows a structure of a UMTS network in a prior art.
  • the CN consists of a PS domain and a CS domain.
  • the PS domain in the CN consists of a Serving GPRS Support Node (SGSN), a Gateway GPRS Support Node (GGSN), and a Home Location Register (HLR).
  • the CS domain on the CN consists of a Mobile Switching Center (MSC), a Visitor Location Register (VLR), and a Gateway Mobile Switching Center (GMSC).
  • the AN consists of a Radio Network Controller (RNC) and a NodeB. Each RNC is connected to several NodeBs.
  • Each SGSN is connected to several RNCs.
  • An Iu interface is a key interface between the AN and the CN. Management and control of radio resources are isolated on the AN by the Iu interface, and thus the CN focuses solely on the service provision.
  • FIG. 2 shows a configuration of a pool area in a prior art. When a many-to-many relationship between AN devices and CN devices exists on an Iu interface, the Iu interface is called Iu-flex.
  • an RNC is connected to multiple SGSNs, and an SGSN is connected to multiple RNCs.
  • SGSNs form a pool.
  • multiple CN nodes such as SGSNs are connected to all Radio Access Network (RAN) nodes (such as RNCs) in the pool, which is different from a traditional mode where one AN node is connected to only one CN node.
  • RAN Radio Access Network
  • RNCs Radio Access Network
  • an RAN node can select one CN node according to load sharing principles.
  • the UE moves or accesses the network in the pool, the UE is always anchored at the selected CN node. Therefore, single point failure and frequent relocation of CN nodes can be prevented because the UE does not need to change the CN node in the pool.
  • a network allocates a Temporary Mobile Station Identity (TMSI, which is allocated by an MSC in a CS domain) or a P-TMSI (which is allocated by an SGSN in a PS domain) to a UE after the UE is attached to the network.
  • TMSI Temporary Mobile Station Identity
  • P-TMSI which is allocated by an SGSN in a PS domain
  • FIG. 3 shows a network with TMSI/P-TMSI design in a prior art.
  • the network includes four pools that have overlapped parts.
  • Each pool includes five CN devices, which are differentiated with different Network Resource Identifiers (NRIs).
  • NRIs Network Resource Identifiers
  • a Non Access Stratum (NAS) Node Selection Function (NNSF) and the TMSI uniqueness of a UE in a paging area are not affected, and therefore, duplicate NRIs can be used in non-adjacent pools.
  • NRIs Network Resource Identifiers
  • NAS Non Access Stratum
  • NSF Node Selection Function
  • FIG. 4 shows a structure of the flex on an SAE network in a prior art.
  • the flex is designed on the SAE network.
  • multiple CN nodes such as Mobility Management Entities (MMEs) are connected to all RAN nodes such as eNodeBs (ENBs), which is similar to the method of a prior art.
  • MMEs Mobility Management Entities
  • ENBs eNodeBs
  • an RAN node can select one CN node according to load sharing principles.
  • the UE moves or accesses the network in this pool, the UE is always anchored at the selected CN node.
  • pools may also be overlapped.
  • the SAE network specifies that an MME pool or an S-GW pool includes a complete Tracking Area (TA, which is similar to a Location Area (LA) or a Routing Area (RA) on a UMTS network).
  • TA Tracking Area
  • a UE is allocated one TA once.
  • MME pool 1 hereinafter referred to as MP 1
  • the UE selects one MME from MP 1 .
  • the UE moves from ENB 1 to ENB 2 and then to ENB 3 , the UE does not need to change the MME.
  • the UE moves to ENB 4 that is not connected to the source MME and belongs to only MP 2 , the UE needs to reselect an MME in MP 2 .
  • ENB 2 and ENB 3 belong to two MME pools; that is, ENB 2 and ENB 3 are connected to all MMEs in the two MME pools.
  • ENB 2 and ENB 3 are overlapped parts of MP 1 and MP 2 .
  • the advantage of overlapping is as follows: because ENB 3 is connected to MP 2 , when the UE returns from ENB 4 to ENB 3 , the UE does not need to reselect an MME until the UE returns to ENB 1 , thus preventing ping-pong MME relocation. If ENB 3 is not connected to MP 2 , the UE moves between ENB 3 and ENB 4 , and as a result, ping-pong MME relocation occurs.
  • TA multiple TAs can be allocated to a UE, which is different from the practice in a UMTS network where only one LA or RA can be allocated to a UE.
  • FIG. 4 if a UE is registered in a pool, and if the TA list includes TA 1 and TA 2 , the UE does not need to initiate an update when moving between ENB 1 and ENB 2 . That is, the UE does not need to initiate an update when moving in the allocated TA list.
  • SAE TMSI Radio Access Technologies
  • the inventor finds at least the following problem in the prior art: when a UE moves from an SAE network to an old network, the old network cannot identify the SAE-TMSI, and therefore, the newly selected SGSN cannot find the old MME on the SAE network; as a result, the new SGSN cannot obtain the context of the UE.
  • Embodiments of the invention provide a method and apparatus for accessing an old network through a temporary ID of an evolved network to rectify a technical defect in the prior art that a newly selected SGSN cannot obtain the context of a UE because the new SGSN cannot find the old MME on an SAE network.
  • An embodiment of the invention provides a method for accessing an old network through a temporary ID of an evolved network.
  • the method includes:
  • An embodiment of the invention further provides a UE, which includes an access message sending module and an MME information adding module.
  • the access message sending module is adapted to send an access message to an old network when the UE accesses the old network through a temporary user ID of an evolved network.
  • the MME information adding module is adapted to add MME information for identifying an MME accessed by the UE in the evolved network, to the access message sent by the access message sending module.
  • An embodiment of the invention further provides a method for accessing an old network through a temporary ID of an evolved network.
  • the method includes:
  • an old network receiving, by an old network, an access message sent by a UE that accesses the old network though a temporary ID of an evolved network, where the access message includes MME information for uniquely identifying an MME accessed by the UE in the evolved network;
  • MME information for uniquely identifying an MME is added to an access message sent to the old network; therefore, the old network can determine and find the MME that is accessed by the UE in the evolved network without changing the RNC and SGSN on the old network.
  • FIG. 1 shows a structure of a UMTS network in a prior art
  • FIG. 2 shows a configuration of a pool area in a prior art
  • FIG. 3 shows a network with TMSI/P-TMSI design in a prior art
  • FIG. 4 shows a structure of the flex on an SAE network in a prior art
  • FIG. 5 shows a structure of a TMSI/P-TMSI in a prior art
  • FIG. 6 is a flowchart of accessing a 2G/3G network in a prior art
  • FIG. 7 is a flowchart of a method for accessing an old network through a temporary ID of an evolved network in a first embodiment of the invention
  • FIG. 8 shows how to select a combined MME/SGSN in an embodiment of the invention
  • FIG. 9 shows how to add a Pool-id and an MME-id to Routing Area Update (RAU) information and P-TMSI information in an embodiment of the invention
  • FIG. 10 shows how to add a TAI, a Pool-id, and an MME-id to RAU information and P-TMSI information in an embodiment of the invention
  • FIG. 11 shows how to occupy a Radio Resource Control (RRC) message in an embodiment of the invention
  • FIG. 12 shows how to occupy a P-TMSI Signature in an embodiment of the invention.
  • FIG. 13 shows a structure of a UE in an embodiment of the invention.
  • a TMSI/P-TMSI is introduced to prevent a permanent ID, namely, an International Mobile Subscriber Identity (IMSI), from being exposed on an air interface and thus being tracked, so as to protect subscriber privacy.
  • IMSI International Mobile Subscriber Identity
  • the TMSI is unique in an LA or RA of a UE (LA in a CS domain and RA in a PS domain; one LA may include several RAs).
  • the TMSI/P-TMSI is taken as the user ID.
  • the TMSI/P-TMSI has the following function: when the UE accesses a new CN node and the flex concept is not introduced, the new CN node searches old nodes for the context of the UE through a Location Area Identity (LAI) or Routing Area Identity (RAI).
  • LAI Location Area Identity
  • RAI Routing Area Identity
  • the TMSI/P-TMSI has another function, that is, an RAN can find a node where the UE is registered according to the TMSI or P-TMSI information in the case of the flex.
  • the specific method is as follows: the configurable bits 0 - 10 available in the TMSI or P-TMSI are used to identify a Network Resource Identifier (NRI) which is used to differentiate different CN nodes in a pool.
  • NTI Network Resource Identifier
  • the CN node allocates one TMSI or P-TMSI to the UE and the TMSI or P-TMSI carries an NRI that represents the CN node.
  • an Initial Direct Transfer message sent by the UE carries the TMSI or P-TMSI.
  • the RAN node finds and selects the CN node where the UE is originally registered.
  • the UE does not change the CN node.
  • the RAN node reselects a new CN node because it cannot find the corresponding NRI. Subsequently, when the UE moves in the new pool, the UE still does not change the new CN node.
  • a TMSI or P-TMSI in the prior art consists of 32 bits, namely, several bits used to differentiate a PS domain from a CS domain (two bits generally), configurable bits 0 - 10 used to identify an NRI (Bit 0 indicates no flex), several bits used as a restart ID, and several other bits. These bits may be allocated according to the network deployment situation.
  • FIG. 5 shows a structure of the TMSI or P-TMSI in a prior art. Two bits are used to differentiate the TMSI from the P-TMSI.
  • a 5-bit restart ID is used to prevent that the allocated TMSI is reallocated because of node restart; the 5-bit restart ID may be associated with the time to prevent duplicate TMSIs from being allocated. Seven bits are used to identify an NRI. The remaining 18 bits may be used as an ID allocated to the UE by each CN device.
  • FIG. 6 is a flowchart of accessing a 2G/3G network in a prior art.
  • an RNC selects a new SGSN for a UE, and the new SGSN requests the context of the UE from the old SGSN according to the RAI+P-TMSI.
  • the process is as follows: The UE initiates an RAU process and sends an RRC message (Initial Direct Transfer message) to the RNC.
  • the message includes an RAU Request carrying the old RAI and old P-TMSI, where the RAU Request is located in the Non Access Stratum (NAS) information element (IE) of the RRC message.
  • the RNC can see only the RRC message but does not parse the NAS message.
  • NAS Non Access Stratum
  • the RNC selects the corresponding SGSN, establishes a connection with the SGSN, and forwards the NAS message to the SGSN. If the RNC does not find the corresponding SGSN, it selects a new SGSN (in this process, the RNC selects a new SGSN).
  • NE Intra Domain NAS Node Selector Network Element
  • the new SGSN queries the address of the old SGSN in its configuration or domain name server (DNS). Then, the new SGSN sends a SGSN Context Request carrying the old RAI and old P-TMSI to the old SGSN to request the context of the UE. According to the old RAI and old P-TMSI information, the old SGSN finds the corresponding UE and returns the context of the UE to the new SGSN. After executing other processes such as updating a location to a Home Subscriber Server (HSS), the new SGSN allocates a new RAI and P-TMSI to the UE.
  • HSS Home Subscriber Server
  • the old network cannot identify the SAE-TMSI, and therefore, the newly selected SGSN cannot find the old MME on the SAE network. As a result, the context of the UE cannot be obtained.
  • the UE when the UE moves from an evolved network such as an SAE network to an old network such as a 2G/3G network, the UE notifies the MME information of the MME where the UE is registered on the evolved network to the old network by sending an access message such as RAU or Attach to the old network.
  • the MME information can uniquely identify the MME accessed by the UE in the evolved network.
  • the new SGSN determines and finds the MME according to the MME information in the access message, and then sends a Context Request or Identification Request to the MME to obtain the context (in the RAU process) or IMSI information (in the Attach process) of the UE. If a combined MME/SGSN exists, when the UE is registered with the combined node, and the UE moves from an SAE system to a 2G/3G pool or from a 2G/3G pool to an SAE system, it is better to select the old combined node if possible to prevent context transfer.
  • Embodiments of the invention can also implement the function.
  • embodiments of the invention provide different methods for adding the MME information to an access message. For example, if one MME corresponds to one MME-id on an evolved network, the MME-id can uniquely identify the MME; therefore, only the MME-id needs to be added to the P-TMSI or RAI information in the access message. If a pool exists on the evolved network, an MME has a unique MME-id in the pool; therefore, the Pool-id+MME-id should be used to determine the MME. If Pool-ids on different Public Land Mobile Networks (PLMNs) are duplicate, the PLMN-id+Pool-id+MME-id can uniquely determine the MME.
  • PLMNs Public Land Mobile Networks
  • TAI+Pool-id+MME-id or PLMN-id+TAI+Pool-id+MME-id may also uniquely determine the MME.
  • the pool is an area where a UE moves and the serving MME does not need to be changed.
  • embodiments of the invention provide a structure of the SAE-TMSI, which includes the Pool-id, MME-id, UE temporary id, optional restart ID, and optional other IDs (the PLMN-id may be or may not be taken as one part of the SAE-TMSI). That is, the SAE-TMSI contains at least the Pool-id, MME-id, and UE-id.
  • the Pool-id indicates the ID of a pool or area where the MME is located.
  • the MME-id indicates the ID of an MME in the pool.
  • the UE-id indicates an ID that uniquely identifies a UE in an MME. That is, the MME-id of the entire network is indicated by the Pool-id+MME-id.
  • the Pool-id may be unique or duplicate on the entire PLMN.
  • the IDs of non-adjacent pools may be the same.
  • the SAE-TMSI and TAI information should be used together to identify an MME.
  • the MME-id is a unique ID in the pool.
  • the UE temporary id is an ID that may be allocated to the UE by each MME.
  • a restart-id may also be added to the SAE-TMSI.
  • the function of the restart-id is similar to the restart-id in a P-TMSI in a prior art; that is, the function is to prevent the same SAE-TMSIs from being allocated in the same MME.
  • an ID used to differentiate a UMTS/SAE network or other IDs used to differentiate networks can be added to the SAE-TMSI.
  • the SAE-TMSI is secure and not easy to track.
  • An RAN selects an old CN node.
  • a new CN node finds the old CN node to obtain the context or ID of a UE through an LA or through an LA and a TMSI.
  • the corresponding UE is found in an old CN node when the SAE-TMSI functions as an index.
  • FIG. 7 is a flowchart of a method for accessing an old network through a temporary ID of an evolved network in the first embodiment of the invention. The flowchart includes the following steps:
  • Step 5701 When a UE accesses an evolved network initially, the evolved network selects the corresponding MME for the UE. For example, the evolved network selects the MME according to load sharing principles. After the UE is registered with the MME, the MME allocates an SAE-TMSI for the UE.
  • Step 5702 If the UE moves from the evolved network to an old network (such as a 2G/3G network) and accesses the old network through the SAE-TMSI allocated by the evolved network, MME information for uniquely identifying the MME accessed by the UE in the evolved network is added to an access message sent from the UE to the old network. Because the SAE network configurations are different, MME information has several modes. The following describes different modes of MME information.
  • the MME On the evolved network, the MME has a unique MME-id, based on which the old network can determine and find the MME that is accessed by the UE in the evolved network.
  • the UE adds the MME-id to the RAI information and/or P-TMSI information carried in the access message.
  • the UE adds the MME-id to the P-TMSI information.
  • the UE may also add the MME-id to the P-TMSI Signature of the access message.
  • an MME and an SGSN may be combined generally.
  • the old network may reselect another SGSN rather than the combined MME/SGSN for the UE when the UE moves from the evolved network to the old network (2G/3G network) in the same pool as the evolved network, and accesses the old network.
  • This causes unnecessary node reselection and context transfer. Therefore, the NRI and the MME-id of the combined MME/SGSN must be the same.
  • the NRI information in the P-TMSI information carried in the access message is set as the MME-id.
  • FIG. 8 shows how to select a combined MME/SGSN in an embodiment of the invention.
  • 4 and 6 indicate a combined MME/SGSN whose NRI or MME-id is equal to 4 and 6 respectively
  • 1, 2, and 3 indicate a pure MME or SGSN whose NRI or MME-id is equal to 1, 2, and 3 respectively.
  • node 6 a combined MME/SGSN
  • the UE When moving to a 2G/3G network in pool 2, the UE initiates an RAU process.
  • a BSC or an RNC receives an Initial Direct Transfer message.
  • the SGSN queries information in the configuration or DNS according to the RAI and P-TMSI information. If the DNS is upgraded or the configuration is changed, the corresponding old MME address may be found according to the MME-id (or Pool-id+MME-id or
  • the new SGSN sends a Context Request carrying RAI and P-TMSI information to the MME.
  • the old MME finds the corresponding UE and returns the context of the UE to the new SGSN.
  • placing the MME-id part of the SAE-TMSI to the NRI part of the P-TMSI is a preferred solution of the embodiment of the invention.
  • unnecessary node reselection can be avoided efficiently.
  • the UE accesses the SAE network through the P-TMSI.
  • the MME-id is unique in the same pool, but duplicate IDs may exist on the entire evolved network.
  • the Pool-id is unique on the entire evolved network (PLMN). Therefore, the Pool-id+MME-id can uniquely identify the MME accessed by the UE in the evolved network.
  • the SAE-TMSI contains the unique Pool-id on the PLMN, unique MME-id in a pool, and unique UE-id (and other possible fields) in an MME. That is, the MME can be identified by the unique Pool-id on the PLMN and the unique MME-id in the pool.
  • the UE adds the Pool-id and the MME-id to the RAI and/or P-TMSI information carried in the access message; that is, the Pool-id and the MME-id are mapped to the RAI and/or P-TMSI field.
  • the Pool-id and the MME-id are added to the RAI information and the P-TMSI information.
  • FIG. 9 shows how to add the Pool-id and the MME-id to RAI information and P-TMSI information in an embodiment of the invention.
  • the NRI information of the P-TMSI information in the access message is set as the MME-id, and the Pool-id is added to other information except the NRI (such as the other part of the P-TMSI or the LAC and/or RAC part of the RAI, or other part of the RAI except the Mobile Country Code (MCC) and the Mobile Network Code (MNC) and other part of the P-TMSI except the NRI); other information includes P-TMSI information, RAI information, or P-TMSI Signature.
  • the RAI or P-TMSI information may also carry other IEs of the SAE-TMSI. For example, in FIG. 9 , the Pool-id is added to the RAI.
  • the Pool-id may also occupy the P-TMSI or a part of RAI and a part of P-TMSI.
  • the MME-id part of the SAE-TMSI is placed to the NRI part of the P-TMSI (the NRI and the MME-id of the combined MME/SGSN must be the same).
  • the SAE-TMSI is longer than the P-TMSI (for example, the length is 40 bits or 56 bits)
  • the other part needs to occupy certain bits of the RAI and/or certain bits of the P-TMSI Signature.
  • only certain bits of the RAI are occupied to prevent the SGSN and the RNC from being changed.
  • the Pool-id and other part of the SAE-TMSI may be placed to the P-TMSI information except the NRI. If the SAE-TMSI is longer than the P-TMSI, the LAC and/or RAC part of the RAI can also be occupied. Thus, the length of the SAE-TMSI can be extended to a maximum of 56 bits. Therefore, the mode does not limit the number of MMEs on the PLMN. That is, the number of MMEs depends on the Pool-id+MME-id. The maximum number of MMEs in a pool is 1024 (2 10 because the maximum MME-id is the length of the NRI, namely, 10 bits). If no interaction with the 2G/3G network is required, the number of MMEs in a pool is not limited by the length of the NRI.
  • the UE accesses the SAE network through the P-TMSI.
  • an embodiment of the invention provides an optimized mode: in the case of a pure SAE network, it is required that Pool-ids should not be duplicate on the PLMN and that MME-ids should not be duplicate in a pool; in the case of a hybrid network of an SAE network and a 2G/3G network, the NRI of the SGSN of the combined MME/SGSN must be equal to the MME-id of the MME of the combined MME/SGSN, and the MME-id of a pure MME should not be the same as the NRI of a pure SGSN in adjacent pools.
  • the SGSN needs to search the DNS or configuration for the old node according to the P-TMSI and the RAI (SAE-TMSI information actually from the SGSN point of view). If the DNS or configuration is upgraded, the old MME address can be uniquely determined and found according to the PLMN-id (MCC+MNC in the RAI) in the SAE-TMSI information, Pool-id, and MME-id.
  • the SGSN sends a Context Request or Identification Request message carrying the P-TMSI and the old RAI (including the SAE-TMSI actually from the SGSN point of view). After receiving the message, the MME finds the UE according to the SAE-TMSI and returns the context of the UE.
  • Mode 3 In this mode, the PLMN-id belongs to a part of the SAE-TMSI. On the evolved network, the MME-id is unique in a pool, but duplicate IDs may exist on the entire evolved network. A Pool-id is not unique on different PLMNs. Therefore, the PLMN-id (MCC+MNC) should be used with the Pool-id+MME-id to identify the MME accessed by the UE in the evolved network. That is, the MME is uniquely identified by the PLMN-id+Pool-id+MME-id. As shown in FIG. 9 , the NRI information of the P-TMSI information in the access message is set as the MME-id.
  • the RAI, P-TMSI, and P-TMSI Signature can carry the PLMN-id and the Pool-id.
  • the PLMN-id is added to the RAI information
  • the Pool-id is added to the other part of the P-TMSI information except the NRI
  • the PLMN-id and the Pool-id can be added to the RAI information or P-TMSI Signature information.
  • a preferred mode is to set the NRI information as the MME-id.
  • the RAI, P-TMSI Signature, and P-TMSI can separately carry or together carry the PLMN-id and the Pool-id.
  • another preferred embodiment of the invention places the MME-id part of the SAE-TMSI to the NRI part of the P-TMSI (the NRI and the MME-id of the combined MME/SGSN must be the same).
  • Mode 4 When the Pool-id and the MME-id are not unique on the PLMN, for example, Pool-ids on the PLMN may be duplicate (Pool-ids of adjacent pools should be different), the old MME may be determined by combining the Pool-id and the MME-id with the TAI; that is, the MME is uniquely identified by the TAI+Pool-id+MME-id.
  • FIG. 10 shows how to add a TAI, a Pool-id, and an MME-id to RAU information and P-TMSI information in an embodiment of the invention. The UE needs to provide the TAI information to the old network.
  • the SAE-TMSI+TAI needs to occupy the position of the old RAI+P-TMSI. If the TAC occupies 20 bits, four bits may be provided for the SAE-TMSI. Thus, the SAE-TMSI has 36 bits. (The P-TMSI field is 32 bits in length, and the LAC+RAC is 24 bits in length.) If the UE accesses a 2G/3G network through the SAE-TMSI, the MME selects a proper SGSN at the NRI position, and the SGSN searches the updated DNS or configuration for the old MME and finds the old MME through the TAI+Pool-id+MME-id.
  • the Pool-id may be combined with the MME-id into one MME-id.
  • the NRI information in the P-TMSI information of the access message is set as the MME-id, and the TAI and the Pool-id are added to the RAI information.
  • another preferred embodiment of the invention places the MME-id part of the SAE-TMSI to the NRI part of the P-TMSI (the NRI and the MME-id of the combined MME/SGSN must be the same).
  • Step S 703 The old network selects the corresponding SGSN for the UE according to the access message. According to the NRI of the P-TMSI information carried in the received access message, the old network selects the corresponding SGSN. If no corresponding SGSN exists, the old network selects a new SGSN. If the UE accesses the new SGSN, the UE sends the RAI IE and P-TMSI information carried in the NAS message to the new SGSN.
  • Step S 704 If the selected SGSN is a new node, the selected SGSN determines an MME according to the MME information carried in the access message and requests the UE information from the MME. Specifically, the configuration information or DNS of the SGSN is upgraded, and the SGSN searches the configuration information or DNS for the MME according to the MME information.
  • the corresponding address of the old MME can be found through the MME-id (or Pool-id+MME-id or PLMN-id+Pool-id+MME-id), and the new SGSN sends a Context Request carrying the RAI and P-TMSI information to the MME; the old MME finds the corresponding UE according to the implicit SAE-TMSI information in the RAI and P-TMSI and returns the context of the UE to the new SGSN.
  • an embodiment of the invention provides mode 5 of carrying SAE-TMSI information:
  • the mode for a UE to access an old network such as a 2G/3G network in the prior art is as follows: P-TMSI information is placed in a received RRC message (Initial Direct Transfer message), and an RAN node such as an RNC or a BSC finds the corresponding SGSN according to the NRI information in the P-TMSI information; in addition, the NAS message in the RRC message carries P-TMSI information, that is, two P-TMSIs; the P-TMSI (and the old RAI, as well as the possible P-TMSI Signature) in the NAS message is transferred to an SGSN, and the RAN node such as the RNC or BSC does not parse the P-TMSI information in the NAS message.
  • the method of this mode is as follows: only the P-TMSI in the RRC message is changed; the NRI information is set as the MME-id; and the information of the P-TMSI in the RRC message except the NRI information may not be processed, for example, may be set to zero.
  • the P-TMSI, RAI, and P-TMSI Signature in the NAS message it is required to place the MME information to the P-TMSI and/or the RAI only, and thus the old MME address can be found in the DNS or SGSN configuration.
  • the MME-id does not need to be placed in the NRI information of the P-TMSI information in the NAS message.
  • FIG. 11 is an embodiment of the invention.
  • the NRI information of the P-TMSI information in an RRC message is set to MME information, such as the MME-id.
  • MME information such as the MME-id.
  • the NAS message it is required that the old MME should be found according to the old RAI and the P-TMSI only.
  • the Pool-id and the MME-id are set in the old RAI, the UE-id and other bytes are placed in the P-TMSI, but the MME-id does not need to be placed in the NRI information of the P-TMSI information in the NAS message.
  • Other implementation modes may also be adopted.
  • the global MME-id is placed to the old RAI, or the TAI is placed to the P-TMSI, or a duplicate MME-id is placed to the old RAI, and even the P-TMSI Signature can be used (for example, the global MME-id is placed to the old RAI and the P-TMSI, and the UE-id is placed to the P-TMSI Signature).
  • the length of the SAE-TMSI can be further extended.
  • the MME information such as the Pool-id, MME-id, and TAI are placed to the old RAI and/or P-TMSI, thus reducing the configurations of DNSs or SGSNs.
  • the old MME/SGSN can be found. It is possible that the found old MME/SGSN is not the actual old MME/SGSN of the UE. For example, if the UE accesses an SGSN that is not configured with the flex, of another PLMN, and the SGSN searches for the address of the default MME/SGSN according to only the RAI information, the new SGSN sends a Context Request or Identity Request message carrying RAI and P-TMSI information to the MME/SGSN. After receiving the message, the default MME/SGSN finds the actual MME/SGSN according to the RAI and P-TMSI information, and then forwards the message to the actual MME/SGSN.
  • an ENB can select the old MME according to the MME-id or Pool-id of the SAE-TMSI and the MME-id. If there is no corresponding MME, the ENB selects a new MME. The new MME finds the old MME according to the Pool-id and the MME-id in the SAE-TMSI. The old MME finds the UE according to the SAE-TMSI and returns the context of the UE to the new MME.
  • an embodiment of the invention further provides mode 6 of carrying SAE-TMSI information:
  • the PLMN-id, TAI, and Pool-id may be added to the access message by occupying the P-TMSI Signature.
  • the method for occupying the P-TMSI Signature is mainly described, but it does not means that this mode can be implemented by occupying the P-TMSI Signature only.
  • the embodiment can be used with other information, such as RAI information and/or P-TMSI information.
  • the P-TMSI Signature is used to ensure the security.
  • the UE can carry the old RAI, P-TMSI, and P-TMSI Signature to the access network.
  • the new SGSN uses the old RAI and the P-TMSI to query the address of the old SGSN. Then, the new SGSN sends an Identification Request and a Context Request that may carry the optional parameter P-TMSI Signature besides the old RAI and P-TMSI, to the old SGSN.
  • the SAE-TMSI may occupy the P-TMSI Signature only if the new SGSN finds the address of the old MME according to the old RAI and the P-TMSI.
  • FIG. 12 shows how to occupy the P-TMSI Signature in an embodiment of the invention.
  • the SAE-TMSI in the embodiment consists of at least the Pool-id (the Pool-id is unique on the entire PLMN), MME-id, and UE-id.
  • the Pool-id and the MME-id must be placed to the old RAI and/or P-TMSI information.
  • the MME-id still needs to be placed in the NRI (in mode 5, the MME-id of the P-TMSI information in the NAS message does not need to be placed in the NRI information).
  • Other fields occupy not only the old RAI and P-TMSI information but also certain bits of the P-TMSI Signature.
  • the P-TMSI Signature has 24 bits, where ten bits are used for SAE security, and the remaining part may occupy certain bits (information necessary for querying the address of the old MME, such as the Pool-id and the MME-id cannot be placed in these bits) such as six bits according to the configuration length of the SAE-TMSI.
  • the new SGSN queries the address of the old MME according to the old RAI and the P-TMSI.
  • the new SGSN can find the address of the old MME according to the PLMN-id+Pool-id+MME-id if the configuration of the DNS or SGSN is upgraded.
  • the new SGSN sends a Context Request carrying the old RAI, P-TMSI, P-TMSI Signature to the address of the old MME.
  • the MME finds the corresponding UE through the SAE-TMSI formed by these parameters, and returns the context of the UE.
  • the Pool-id may not be unique or is even not required, and the corresponding MME is determined by a combination of the TAI information and the MME-id.
  • the UE accesses a 2G/3G network through the SAE-TMSI and the old TAI.
  • the SAE-TMSI includes an MME-id (The MME-id may be unique on the entire PLMN or unique in a pool. In the embodiment, assume that the MME-id is unique in a pool).
  • the UE places the TAI information to the old RAI information and places the MME-id to the NRI information.
  • the remaining information occupies the position of other remaining information of the old RAI and the P-TMSI, and even occupies the P-TMSI Signature that does not participate in query of the old MME. If the old MME can be queried according to the old RAI and the P-TMSI (the TAI and the MME-id actually), the other part of the SAE-TMSI that does not participate in query of the old MME may occupy the P-TMSI Signature.
  • the new SGSN sends a request to the found MME address.
  • the MME finds the UE according to a regrouped SAE-TMSI according to the parameters that are sent and returns a response.
  • the length of the SAE-TMSI may reach 80 bits by occupying the P-TMSI Signature. (Note that the information such as the MME-id, Pool-id, and TAI information used to query the MME cannot be placed to the P-TMSI Signature.)
  • MME information for uniquely identifying an MME is added to an access message sent to the old network; therefore, the old network can determine and find the MME that is accessed by the UE in the evolved network without changing an RNC and an SGSN on the old network.
  • unnecessary mode reselection can be avoided efficiently by setting the MME-id of the MME in the combined node to be the same as the NRI of the SGSN. (A configuration method can also be used, and therefore, the MME-id may be different from the NRI.)
  • FIG. 13 shows a structure of a UE 100 in an embodiment of the invention.
  • the UE 100 includes an access message sending module 110 and an MME information adding module 120 .
  • the access message sending module 110 is adapted to send an access message to an old network when the UE 100 moves from an evolved network to the old network.
  • the MME information adding module 120 is adapted to add MME information for uniquely identifying an MME accessed by the UE 100 on the evolved network to the access message sent by the access message sending module 110 .
  • the MME information adding module 120 includes a P-TMSI information adding submodule 121 , which is adapted to add the MME-id in an SAE-TMSI to the P-TMSI information of the access message.
  • the MME information adding module 120 includes an RAI information adding submodule 122 , which is adapted to add the Pool-id, and PLMN-id or TAI or PLMN in the SAE-TMSI to the RAI information of the access message.
  • the MME information adding module 120 further includes an NRI setting submodule 123 , which is adapted to set the NRI information in the P-TMSI information of the access message as the MME-id, thus avoiding unnecessary node reselection when a combined MME/SGSN exists.
  • the UE 100 further includes a P-TMSI Signature adding module 130 , which is adapted to add other information in the SAE-TMSI except the MME information to the P-TMSI Signature.
  • the SAE-TMSI of a UE consists of an MCC, an MNC, a Pool-id, an MME-id, and an M-TMSI (remaining SAE-TMSI bits).
  • a global MME ID is composed of the MCC+MNC+Pool-id+MME-id.
  • the SAE-TMSI can uniquely identify a UE globally.
  • the temporary ID of a UE is a P-TMSI.
  • the P-TMSI uniquely identifies a UE in an RA.
  • the P-TMSI and the RAI can uniquely identify a UE globally.
  • a standalone SGSN and a standalone MME exist, and a combined MME/SGSN also exists.
  • a P-TMSI and an RAI are allocated to the UE, and a P-TMSI Signature may also be allocated to the UE.
  • the following RAI and P-TMSI combination includes the P-TMSI Signature.
  • an SAE-TMSI is allocated to the UE.
  • the combined node may allocate an SAE-TMSI or an RAI/P-TMSI combination to the UE.
  • the SAE-TMSI and the RAI/P-TMSI can be mutually mapped; for example, the MCC+MNC+Pool-id+MME-id in the SAE-TMSI and the RAI can be mutually mapped, and the M-TMSI in the SAE-TMSI and the P-TMSI can be mutually mapped, or any other mapping method may be used (Certain bits are mapped to the P-TMSI Signature).
  • the RAI and the P-TMSI are allocated to the UE.
  • a combined node allocates an SAE-TMSI to the UE.
  • SAE-TMSI if available
  • An ENB finds the old MME through the MME-id information in an RRC message or selects a new MME (if the MME corresponding to the MME-id does not exist). If a new MME is accessed, the new MME may find the old MME and the UE context according to the SAE-TMSI, thus obtaining the context of the UE.
  • the RAI/P-TMSI is mapped to an SAE-TMSI for access. That is, when the UE accesses the SAE network, the network considers that the ID carried by the UE is the SAE-TMSI, which is the same as the SAE-TMSI that is actually carried by the UE.
  • the UE carries the mapped SAE-TMSI in an RRC Connection Complete message; the ENB finds the old MME (such as a combined node) according to the mapped MME-id or selects a new MME; the new MME finds the old SGSN and the UE context according to the mapped SAE-TMSI, thus obtaining the context of the UE.
  • the UE accesses the 2G/3G network, the UE uses a P-TMSI and an RAI (if available) for access.
  • An RNC finds the old SGSN according to the NRI in the P-TMSI information of an RRC message or selects a new SGSN (if the SGSN corresponding to the NRI does not exist).
  • the UE accesses the network by mapping the SAE-TMSI to the RAI/P-TMSI.
  • the foregoing mapping method may be used to access the old SGSN (a combined node) or a new SGSN.
  • the new SGSN finds the old MME and the UE according to the mapped RAI/P-TMSI to obtain the context of the UE.
  • the combined node may allocate two IDs (the SAE-TMSI and the RAI/P-TMSI combination) to the UE only when the Idle mode Signaling Reduction (ISR) feature is enabled.
  • ISR Idle mode Signaling Reduction
  • the UE can know whether the ISR feature is enabled according to one or two IDs received rather than extra signaling or an extra parameter.
  • a combined node obtains the RAT capability supported by the UE; for example, it may obtain the RAT capability from the UE or the context of the UE to determine how to allocate an ID. For example, the combined node allocates an RAI/P-TMSI combination to a UE that supports only the 2G/3G access technology, allocates an SAE-TMSI to a UE that supports only the LTE access technology, and allocates an SAE-TMSI and an RAI/P-TMSI combination to a UE that supports the 2G/3G access technology and the LTE access technology.
  • the objective of the invention may be achieved through at least the following steps: setting the NRI of the P-TMSI information in the RRC message as the MME-id; and setting the MME address information to the old RAI and/or P-TMSI of the NAS message so that other information may occupy the old RAI, and/or P-TMSI, and/or P-TMSI Signature of the NAS message.
  • the settings may not be sequential settings or unique settings. For example, certain bits of the Pool-id can be set to the old RAI and certain bits of the Pool-id can be set to the P-TMSI.
  • the MME-id may be set both in the old RAI and in the NRI, and the information in the two positions can be the same or duplicate.
  • the old network when the MME information for uniquely identifying an MME is added to the access message sent to the old network, the old network can determine and find the MME that is accessed by the UE in the evolved network without changing the RNC and the SGSN on the old network.
  • Each network node that communicates with the UE, such as an MME and an SGSN, may be described as the network.
  • An embodiment of the invention also proposes a method for providing a Temporary Logical Link Identity (TLLI) when a UE accesses a 2G network:
  • the network receives an access message sent by the UE.
  • the access message contains two TLLIs, namely, the first TLLI and the second TLLI.
  • the TLLI information When the first TLLI information carries the TMSI information (if the RAT adopted for the last access is 2G/3G, the TLLI is formed by removing the first two bits of the P-TMSI; if the RAT adopted for the last access is SAE, the TLLI is formed by removing the first two bits of the M-TMSI) of the RAT of the network that is accessed by the UE at the last time, the RAT is called the first RAT.
  • the second TLLI information carries the TMSI information (if the RAT adopted by the current access is 2G/3G, the TLLI is formed by removing the first two bits of the P-TMSI; if the RAT adopted by the current access is SAE, the TLLI is formed by removing the first two bits of the M-TMSI) of the RAT of the network that is accessed by the UE currently, the RAT is called the second RAT. If the two RATs are the same, the UE may carry only the information of one TLLI. If the RAT adopted for the last access is SAE, the old RAI in an NAS message sent by the UE also needs to be mapped by other information of the SAE-TMSI except the M-TMSI.
  • the NAS message sent by the UE further carries the old RAI of the RAT or the remaining information of the SAE-TMSI except the M-TMSI.
  • the NAS message sent by the UE may not carry the old RAI of the RAT or the remaining information of the SAE-TMSI except the M-TMSI.
  • the first TLLI is formed by removing the first two bits of an M-TMSI and is placed at the normal TLLI position
  • the second TLLI is formed by removing the first two bits of a P-TMSI on the 2G network and is placed at a new position
  • Other information of the SAE-TMSI except the M-TMSI carried in the NAS message sent by the UE is mapped to the normal old RAI position and the old RAI information of the 2G network carried in the NAS message is placed at a new position.
  • the first TLLI is formed by removing the first two bits of a P-TMSI and is placed at the normal TLLI position
  • the second TLLI is formed by removing the first two bits of the P-TMSI and is placed at a new position (The usage is different from the usage in Release 7).
  • the UE may also carry only one TLLI.
  • the RAN node may use the second TLLI to select a CN node. If only one TLLI is available, the RAN node selects a CN node according to the TLLI. If an RAN node is connected to a 2G CN of an earlier version (such as Release 7 or earlier versions), the RAN node selects a CN node according to the first TLLI.
  • the UE When a UE accesses an SGSN of a network earlier than 3GPP R8 (Pre-R8), the UE needs to carry the ID allocated for the RAT adopted for the last access, in the TLLI.
  • the ID allocated for the RAT of a 2G/3G network that is last accessed by the UE is a P-TMSI.
  • the UE removes the first two bits of a P-TMSI and places the P-TMSI to the TLLI.
  • the SGSN According to the received TLLI, the SGSN generate a P-TMSI of the NAS. For example, the SGSN adds two bits whose values are 1 before the TLLI.
  • the UE needs to remove the first two bits of the M-TMSI in the SAE-TMSI that is allocated to the UE by the MME and places the M-TMSI to the TLLI, and places other bits in the SAE-TMSI to the old RAI.
  • the UE When the UE accesses a 2G network, the UE provides the information of two TLLIs if the UE has two TMSIs.
  • the first TLLI carries the latest TMSI information of the UE, such as the TMSI information used when the UE accesses the network at the last time.
  • the second TLLI carries the TMSI information that supports the same RAT when the UE accesses the network currently. If the UE finds that the two TMSIs are the same, the UE provides the information of only one TMSI.
  • the access node selects a CN node according to only the second TLLI carrying the TMSI information that supports the same RAT when the UE accesses the network currently. If only one TLLI is available, the access node selects a CN node according to the TLLI. If the RAN node is connected to an old system, such as an SGSN of Pre-R8, the RAN node selects a CN node according to the first TLLI. With the embodiment, the RAN node can select a proper CN node according to the feature of the connected CN node. Thus, the old CN node can obtain the latest context information without being upgraded.
  • a new system such as an SGSN of 3GPP R8
  • the embodiments of the invention may be implemented through software and a necessary general hardware platform or through hardware only. However, in most cases, software and a general hardware platform are preferred. Based on such understandings, the technical solution of the invention or contributions to the prior art can be embodied by software products.
  • the software products are stored in a storage medium and incorporate several instructions to instruct a computer device, for example, a personal computer, a server, or a network device, to execute the method provided by each embodiment of the invention.

Abstract

A method for accessing an old network through a temporary ID of an evolved network includes these steps: a User Equipment (UE) adds Mobility Management Entity (MME) information for uniquely identifying an MME accessed by the UE on an evolved network to an access message sent to an old network when the UE accesses the old network through a temporary ID of the evolved network; and the old network selects a corresponding Serving GPRS Support Node (SGSN) for the UE according to the access message. After the MME information for uniquely identifying an MME is added to the access message sent to the old network, the old network can determine and find the MME that is accessed by the UE in the evolved network without changing a Radio Network Controller (RNC) and an SGSN on the old network. In addition, with the method for accessing the evolved network through a temporary ID of the old network, a combined SGSN/MME can be accessed to prevent unnecessary node relocation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of International Application No. PCT/CN2008/072864, filed on Oct. 28, 2008, which claims priority to Chinese Patent Application No. 200710166066.8, filed on Nov. 1, 2007 and Chinese Patent Application No. 200810091433.7, filed on Apr. 11, 2008, all of which are hereby incorporated by reference in their entireties.
  • FIELD OF THE INVENTION
  • The present invention relates to mobile communication technologies, and in particular, to a method and apparatus for accessing an old network through a temporary ID of an evolved network.
  • BACKGROUND OF THE INVENTION
  • A Universal Mobile Telecommunication System (UMTS) is a 3G wireless communication network standard defined by the Third Generation Partnership Project (3GPP). A UMTS network consists of a Core Network (CN) and an Access Network (AN). The CN consists of a Circuit Switched (CS) domain and a Packet Switched (PS) domain. The CS domain provides CS-based services such as voice services. The PS domain provides PS-based services such as Internet access. A terminal used by a mobile subscriber is a User Equipment (UE).
  • FIG. 1 shows a structure of a UMTS network in a prior art. The CN consists of a PS domain and a CS domain. The PS domain in the CN consists of a Serving GPRS Support Node (SGSN), a Gateway GPRS Support Node (GGSN), and a Home Location Register (HLR). The CS domain on the CN consists of a Mobile Switching Center (MSC), a Visitor Location Register (VLR), and a Gateway Mobile Switching Center (GMSC). The AN consists of a Radio Network Controller (RNC) and a NodeB. Each RNC is connected to several NodeBs. Each SGSN is connected to several RNCs. An Iu interface is a key interface between the AN and the CN. Management and control of radio resources are isolated on the AN by the Iu interface, and thus the CN focuses solely on the service provision.
  • On a traditional network such as an R99 system, one RNC is connected to only one CN node. For example, one RNC is connected to only one SGSN. Thus, problems such as single point failure exist. If an SGSN is down, a UE in the service area of the SGSN cannot access the network, and thus cannot perform communications. To rectify the foregoing defect, a concept of flex is introduced. FIG. 2 shows a configuration of a pool area in a prior art. When a many-to-many relationship between AN devices and CN devices exists on an Iu interface, the Iu interface is called Iu-flex. In FIG. 2, an RNC is connected to multiple SGSNs, and an SGSN is connected to multiple RNCs. These SGSNs form a pool. In a pool, multiple CN nodes such as SGSNs are connected to all Radio Access Network (RAN) nodes (such as RNCs) in the pool, which is different from a traditional mode where one AN node is connected to only one CN node. When a UE enters a pool initially, an RAN node can select one CN node according to load sharing principles. Thus, when the UE moves or accesses the network in the pool, the UE is always anchored at the selected CN node. Therefore, single point failure and frequent relocation of CN nodes can be prevented because the UE does not need to change the CN node in the pool.
  • In a prior art, a network allocates a Temporary Mobile Station Identity (TMSI, which is allocated by an MSC in a CS domain) or a P-TMSI (which is allocated by an SGSN in a PS domain) to a UE after the UE is attached to the network.
  • FIG. 3 shows a network with TMSI/P-TMSI design in a prior art. The network includes four pools that have overlapped parts. Each pool includes five CN devices, which are differentiated with different Network Resource Identifiers (NRIs). A Non Access Stratum (NAS) Node Selection Function (NNSF) and the TMSI uniqueness of a UE in a paging area are not affected, and therefore, duplicate NRIs can be used in non-adjacent pools. Assume that each CN device can attach a maximum of 1,000,000 subscribers, while the overlapped pool areas have 12,000,000 subscribers, and other areas have few subscribers.
  • On the preceding network, 20 CN devices are sufficient to attach 12,000,000 subscribers. An NRI may be set to 5 bits (25=32, which can be used to identify 20 CN devices). The independently allocated ID of each device is 21 bits (1000000=220, which can be used to identify 2,000,000 subscribers), two bits are used to differentiate a PS domain from a CS domain, and the remaining four (32−5−21−2=4) bits are used for restart.
  • FIG. 4 shows a structure of the flex on an SAE network in a prior art. The flex is designed on the SAE network. In a pool, multiple CN nodes such as Mobility Management Entities (MMEs) are connected to all RAN nodes such as eNodeBs (ENBs), which is similar to the method of a prior art. When a UE enters the pool initially, an RAN node can select one CN node according to load sharing principles. Thus, when the UE moves or accesses the network in this pool, the UE is always anchored at the selected CN node. On the SAE network, pools may also be overlapped. In addition, the SAE network specifies that an MME pool or an S-GW pool includes a complete Tracking Area (TA, which is similar to a Location Area (LA) or a Routing Area (RA) on a UMTS network).
  • Assume that a UE is allocated one TA once. When the UE enters MME pool 1 (hereinafter referred to as MP1) for the first time, for example, when the UE enters ENB1, the UE selects one MME from MP1. When the UE moves from ENB1 to ENB2 and then to ENB3, the UE does not need to change the MME. When the UE moves to ENB4 that is not connected to the source MME and belongs to only MP2, the UE needs to reselect an MME in MP2. In FIG. 4, ENB2 and ENB3 belong to two MME pools; that is, ENB2 and ENB3 are connected to all MMEs in the two MME pools. Therefore, ENB2 and ENB3 are overlapped parts of MP1 and MP2. The advantage of overlapping is as follows: because ENB3 is connected to MP2, when the UE returns from ENB4 to ENB3, the UE does not need to reselect an MME until the UE returns to ENB1, thus preventing ping-pong MME relocation. If ENB3 is not connected to MP2, the UE moves between ENB3 and ENB4, and as a result, ping-pong MME relocation occurs.
  • With respect to the TA concept, it should be noted that on an SAE network, multiple TAs can be allocated to a UE, which is different from the practice in a UMTS network where only one LA or RA can be allocated to a UE. In FIG. 4, if a UE is registered in a pool, and if the TA list includes TA1 and TA2, the UE does not need to initiate an update when moving between ENB1 and ENB2. That is, the UE does not need to initiate an update when moving in the allocated TA list.
  • Currently, a TMSI problem about the SAE is as follows: the SAE needs to support multiple Radio Access Technologies (RATs), and therefore, several types of terminals access the network; to keep the system capacity, an SAE-TMSI (namely, SAE TMSI) may need to be extended to support more subscribers, to expand the capacity, and to simplify the network.
  • When implementing the invention, the inventor finds at least the following problem in the prior art: when a UE moves from an SAE network to an old network, the old network cannot identify the SAE-TMSI, and therefore, the newly selected SGSN cannot find the old MME on the SAE network; as a result, the new SGSN cannot obtain the context of the UE.
  • SUMMARY OF THE INVENTION
  • Embodiments of the invention provide a method and apparatus for accessing an old network through a temporary ID of an evolved network to rectify a technical defect in the prior art that a newly selected SGSN cannot obtain the context of a UE because the new SGSN cannot find the old MME on an SAE network.
  • An embodiment of the invention provides a method for accessing an old network through a temporary ID of an evolved network. The method includes:
  • adding, by a UE, MME information for uniquely identifying an MME accessed by the UE on an evolved network, to an access message;
  • sending the access message to an old network when the UE accesses the old network through a temporary ID of the evolved network; and
  • selecting, by the old network, a corresponding SGSN for the UE according to the access message.
  • An embodiment of the invention further provides a UE, which includes an access message sending module and an MME information adding module.
  • The access message sending module is adapted to send an access message to an old network when the UE accesses the old network through a temporary user ID of an evolved network.
  • The MME information adding module is adapted to add MME information for identifying an MME accessed by the UE in the evolved network, to the access message sent by the access message sending module.
  • An embodiment of the invention further provides a method for accessing an old network through a temporary ID of an evolved network. The method includes:
  • receiving, by an old network, an access message sent by a UE that accesses the old network though a temporary ID of an evolved network, where the access message includes MME information for uniquely identifying an MME accessed by the UE in the evolved network; and
  • selecting, by the old network, a corresponding SGSN for the UE according to the access message.
  • The technical solution in embodiments of the invention has the following advantage:
  • when a UE moves from an evolved network to an old network, MME information for uniquely identifying an MME is added to an access message sent to the old network; therefore, the old network can determine and find the MME that is accessed by the UE in the evolved network without changing the RNC and SGSN on the old network.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a structure of a UMTS network in a prior art;
  • FIG. 2 shows a configuration of a pool area in a prior art;
  • FIG. 3 shows a network with TMSI/P-TMSI design in a prior art;
  • FIG. 4 shows a structure of the flex on an SAE network in a prior art;
  • FIG. 5 shows a structure of a TMSI/P-TMSI in a prior art;
  • FIG. 6 is a flowchart of accessing a 2G/3G network in a prior art;
  • FIG. 7 is a flowchart of a method for accessing an old network through a temporary ID of an evolved network in a first embodiment of the invention;
  • FIG. 8 shows how to select a combined MME/SGSN in an embodiment of the invention;
  • FIG. 9 shows how to add a Pool-id and an MME-id to Routing Area Update (RAU) information and P-TMSI information in an embodiment of the invention;
  • FIG. 10 shows how to add a TAI, a Pool-id, and an MME-id to RAU information and P-TMSI information in an embodiment of the invention;
  • FIG. 11 shows how to occupy a Radio Resource Control (RRC) message in an embodiment of the invention;
  • FIG. 12 shows how to occupy a P-TMSI Signature in an embodiment of the invention; and
  • FIG. 13 shows a structure of a UE in an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiments of the invention are hereinafter described in detail with reference to the accompanying drawings.
  • A TMSI/P-TMSI is introduced to prevent a permanent ID, namely, an International Mobile Subscriber Identity (IMSI), from being exposed on an air interface and thus being tracked, so as to protect subscriber privacy. The TMSI is unique in an LA or RA of a UE (LA in a CS domain and RA in a PS domain; one LA may include several RAs). Thus, when the UE accesses a network, the TMSI/P-TMSI is taken as the user ID. In addition, the TMSI/P-TMSI has the following function: when the UE accesses a new CN node and the flex concept is not introduced, the new CN node searches old nodes for the context of the UE through a Location Area Identity (LAI) or Routing Area Identity (RAI). A many-to-many relationship between AN devices and CN devices exists on the flex, and therefore, it is insufficient to search old nodes according to the LAI or RAI. Old nodes must be determined according to the LAI/RAI and the TMSI/P-TMSI.
  • The TMSI/P-TMSI has another function, that is, an RAN can find a node where the UE is registered according to the TMSI or P-TMSI information in the case of the flex. The specific method is as follows: the configurable bits 0-10 available in the TMSI or P-TMSI are used to identify a Network Resource Identifier (NRI) which is used to differentiate different CN nodes in a pool. Thus, when the UE accesses the pool for the first time, an RAN node selects a proper CN node for the UE according to the NNSF and load sharing principles. When the UE moves in the pool, the UE does not change the selected node. The principle is as follows: the CN node allocates one TMSI or P-TMSI to the UE and the TMSI or P-TMSI carries an NRI that represents the CN node. When the UE accesses the pool, an Initial Direct Transfer message sent by the UE carries the TMSI or P-TMSI. According to the NRI in the TMSI or P-TMSI, the RAN node finds and selects the CN node where the UE is originally registered. Thus, when the UE moves in the pool, the UE does not change the CN node. When the UE moves out of the pool, the RAN node reselects a new CN node because it cannot find the corresponding NRI. Subsequently, when the UE moves in the new pool, the UE still does not change the new CN node.
  • A TMSI or P-TMSI in the prior art consists of 32 bits, namely, several bits used to differentiate a PS domain from a CS domain (two bits generally), configurable bits 0-10 used to identify an NRI (Bit 0 indicates no flex), several bits used as a restart ID, and several other bits. These bits may be allocated according to the network deployment situation. FIG. 5 shows a structure of the TMSI or P-TMSI in a prior art. Two bits are used to differentiate the TMSI from the P-TMSI. A 5-bit restart ID is used to prevent that the allocated TMSI is reallocated because of node restart; the 5-bit restart ID may be associated with the time to prevent duplicate TMSIs from being allocated. Seven bits are used to identify an NRI. The remaining 18 bits may be used as an ID allocated to the UE by each CN device.
  • FIG. 6 is a flowchart of accessing a 2G/3G network in a prior art. In the flowchart, an RNC selects a new SGSN for a UE, and the new SGSN requests the context of the UE from the old SGSN according to the RAI+P-TMSI. The process is as follows: The UE initiates an RAU process and sends an RRC message (Initial Direct Transfer message) to the RNC. The message includes an RAU Request carrying the old RAI and old P-TMSI, where the RAU Request is located in the Non Access Stratum (NAS) information element (IE) of the RRC message. The RNC can see only the RRC message but does not parse the NAS message. According to the NRI information in the P-TMSI field carried on an Intra Domain NAS Node Selector Network Element (NE) of the RRC message, the RNC selects the corresponding SGSN, establishes a connection with the SGSN, and forwards the NAS message to the SGSN. If the RNC does not find the corresponding SGSN, it selects a new SGSN (in this process, the RNC selects a new SGSN).
  • According to the RAI and P-TMSI information carried in the received RAU Request, the new SGSN queries the address of the old SGSN in its configuration or domain name server (DNS). Then, the new SGSN sends a SGSN Context Request carrying the old RAI and old P-TMSI to the old SGSN to request the context of the UE. According to the old RAI and old P-TMSI information, the old SGSN finds the corresponding UE and returns the context of the UE to the new SGSN. After executing other processes such as updating a location to a Home Subscriber Server (HSS), the new SGSN allocates a new RAI and P-TMSI to the UE.
  • When the UE moves from an SAE network to an old network, the old network cannot identify the SAE-TMSI, and therefore, the newly selected SGSN cannot find the old MME on the SAE network. As a result, the context of the UE cannot be obtained. In embodiments of the invention, when the UE moves from an evolved network such as an SAE network to an old network such as a 2G/3G network, the UE notifies the MME information of the MME where the UE is registered on the evolved network to the old network by sending an access message such as RAU or Attach to the old network. The MME information can uniquely identify the MME accessed by the UE in the evolved network. Thus, after the old network selects a new SGSN for the UE, the new SGSN determines and finds the MME according to the MME information in the access message, and then sends a Context Request or Identification Request to the MME to obtain the context (in the RAU process) or IMSI information (in the Attach process) of the UE. If a combined MME/SGSN exists, when the UE is registered with the combined node, and the UE moves from an SAE system to a 2G/3G pool or from a 2G/3G pool to an SAE system, it is better to select the old combined node if possible to prevent context transfer. Embodiments of the invention can also implement the function.
  • According to different cases of MME information, embodiments of the invention provide different methods for adding the MME information to an access message. For example, if one MME corresponds to one MME-id on an evolved network, the MME-id can uniquely identify the MME; therefore, only the MME-id needs to be added to the P-TMSI or RAI information in the access message. If a pool exists on the evolved network, an MME has a unique MME-id in the pool; therefore, the Pool-id+MME-id should be used to determine the MME. If Pool-ids on different Public Land Mobile Networks (PLMNs) are duplicate, the PLMN-id+Pool-id+MME-id can uniquely determine the MME. In addition, the TAI+Pool-id+MME-id or PLMN-id+TAI+Pool-id+MME-id may also uniquely determine the MME. The pool is an area where a UE moves and the serving MME does not need to be changed.
  • The following describes the preceding cases provided in embodiments of the invention in detail.
  • In embodiments of the invention, it is assumed that the UE accesses an old network (such as a 2G/3G network) through a temporary user ID (SAE-TMSI) of an evolved network. In a preferred solution, embodiments of the invention provide a structure of the SAE-TMSI, which includes the Pool-id, MME-id, UE temporary id, optional restart ID, and optional other IDs (the PLMN-id may be or may not be taken as one part of the SAE-TMSI). That is, the SAE-TMSI contains at least the Pool-id, MME-id, and UE-id. The Pool-id indicates the ID of a pool or area where the MME is located. The MME-id indicates the ID of an MME in the pool. The UE-id indicates an ID that uniquely identifies a UE in an MME. That is, the MME-id of the entire network is indicated by the Pool-id+MME-id.
  • The Pool-id may be unique or duplicate on the entire PLMN. The IDs of non-adjacent pools may be the same. Thus, if Pool-ids are duplicate, the SAE-TMSI and TAI information should be used together to identify an MME. The MME-id is a unique ID in the pool. The UE temporary id is an ID that may be allocated to the UE by each MME. A restart-id may also be added to the SAE-TMSI. The function of the restart-id is similar to the restart-id in a P-TMSI in a prior art; that is, the function is to prevent the same SAE-TMSIs from being allocated in the same MME. In addition, an ID used to differentiate a UMTS/SAE network or other IDs used to differentiate networks can be added to the SAE-TMSI.
  • The foregoing SAE-TMSI structure is a preferred solution provided in embodiments of the invention, where an RNC and an SGSN on a prior network do not need to be changed. However, the major concern of embodiments of the invention is that an old network can uniquely determine and find an MME that is accessed by the UE on an evolved network, and thus obtain the context of the UE after the UE accesses the old network through the SAE-TMSI. When the following requirements are met, any change of the SAE-TMSI structure should be covered in the scope of protection of the invention. Embodiments of the invention raise the following requirements for the SAE-TMSI:
  • 1. The SAE-TMSI is secure and not easy to track.
  • 2. An RAN selects an old CN node.
  • 3. If a CN node changes, a new CN node finds the old CN node to obtain the context or ID of a UE through an LA or through an LA and a TMSI.
  • 4. The corresponding UE is found in an old CN node when the SAE-TMSI functions as an index.
  • Obviously, the IDs that meet the preceding requirements for the SAE-TMSI are still in the SAE-TMSI range although their names are different.
  • FIG. 7 is a flowchart of a method for accessing an old network through a temporary ID of an evolved network in the first embodiment of the invention. The flowchart includes the following steps:
  • Step 5701: When a UE accesses an evolved network initially, the evolved network selects the corresponding MME for the UE. For example, the evolved network selects the MME according to load sharing principles. After the UE is registered with the MME, the MME allocates an SAE-TMSI for the UE.
  • Step 5702: If the UE moves from the evolved network to an old network (such as a 2G/3G network) and accesses the old network through the SAE-TMSI allocated by the evolved network, MME information for uniquely identifying the MME accessed by the UE in the evolved network is added to an access message sent from the UE to the old network. Because the SAE network configurations are different, MME information has several modes. The following describes different modes of MME information.
  • Mode 1: On the evolved network, the MME has a unique MME-id, based on which the old network can determine and find the MME that is accessed by the UE in the evolved network. In an embodiment of the invention, the UE adds the MME-id to the RAI information and/or P-TMSI information carried in the access message. Preferably, the UE adds the MME-id to the P-TMSI information. The UE may also add the MME-id to the P-TMSI Signature of the access message.
  • On the evolved network, an MME and an SGSN may be combined generally. In this case, the old network may reselect another SGSN rather than the combined MME/SGSN for the UE when the UE moves from the evolved network to the old network (2G/3G network) in the same pool as the evolved network, and accesses the old network. This causes unnecessary node reselection and context transfer. Therefore, the NRI and the MME-id of the combined MME/SGSN must be the same. In addition, when the UE moves from the evolved network to the old network, the NRI information in the P-TMSI information carried in the access message is set as the MME-id. Thus, when the old network selects an SGSN for the UE, it selects the old combined MME/SGSN, thus avoiding node reselection. FIG. 8 shows how to select a combined MME/SGSN in an embodiment of the invention. Assume that 4 and 6 indicate a combined MME/SGSN whose NRI or MME-id is equal to 4 and 6 respectively, and that 1, 2, and 3 indicate a pure MME or SGSN whose NRI or MME-id is equal to 1, 2, and 3 respectively. When the UE is registered with node 6 (a combined MME/SGSN) in pool 1, the UE is still in pool 1 when it moves from the SAE network to the 2G/3G network. When the UE initiates access in the 2G/3G network, it uses an access message of the 2G/3G network and places the MME-id part of the SAE-TMSI to the NRI part of the P-TMSI. Thus, upon reception of the message, a BSC or an RNC forwards the message to node 6 to establish a connection with node 6 through the information of NRI=6, and therefore, the combined SGSN/MME (6) can still be selected, and the node does not change. When moving to a 2G/3G network in pool 2, the UE initiates an RAU process. A BSC or an RNC receives an Initial Direct Transfer message. According to the information of NRI=6, the BSC or RNC cannot find the corresponding node, and therefore, it initiates node selection and selects a new SGSN with NRI=2. After receiving the RAU Request, the SGSN queries information in the configuration or DNS according to the RAI and P-TMSI information. If the DNS is upgraded or the configuration is changed, the corresponding old MME address may be found according to the MME-id (or Pool-id+MME-id or
  • PLMN-id+Pool-id+MME-id). The new SGSN sends a Context Request carrying RAI and P-TMSI information to the MME. According to the implicit SAE-TMSI information in the RAI and P-TMSI, the old MME finds the corresponding UE and returns the context of the UE to the new SGSN.
  • According to the foregoing descriptions, placing the MME-id part of the SAE-TMSI to the NRI part of the P-TMSI is a preferred solution of the embodiment of the invention. Thus, unnecessary node reselection can be avoided efficiently.
  • In addition, if the UE moves from the 2G/3G network (old network) to the SAE network (evolved network), the UE accesses the SAE network through the P-TMSI. An ENB (RAN node of the evolved network) selects the MME with MME-id=NRI preferentially. For example, if the UE moves from the SAE network to the 2G/3G network, and the UE has been registered with the combined node 6 in pool 1, the accessed 2G/3G network still belongs to pool 1. Then, the ENB still selects the old combined MME/SGSN (6). If the ENB cannot find the corresponding MME, it triggers a new MME selection process and selects a new MME for the UE.
  • Mode 2: On the evolved network, the MME-id is unique in the same pool, but duplicate IDs may exist on the entire evolved network. The Pool-id is unique on the entire evolved network (PLMN). Therefore, the Pool-id+MME-id can uniquely identify the MME accessed by the UE in the evolved network. In a preferred embodiment of the invention, the SAE-TMSI contains the unique Pool-id on the PLMN, unique MME-id in a pool, and unique UE-id (and other possible fields) in an MME. That is, the MME can be identified by the unique Pool-id on the PLMN and the unique MME-id in the pool. The UE adds the Pool-id and the MME-id to the RAI and/or P-TMSI information carried in the access message; that is, the Pool-id and the MME-id are mapped to the RAI and/or P-TMSI field. Preferably, in an embodiment of the invention, the Pool-id and the MME-id are added to the RAI information and the P-TMSI information. FIG. 9 shows how to add the Pool-id and the MME-id to RAI information and P-TMSI information in an embodiment of the invention. The NRI information of the P-TMSI information in the access message is set as the MME-id, and the Pool-id is added to other information except the NRI (such as the other part of the P-TMSI or the LAC and/or RAC part of the RAI, or other part of the RAI except the Mobile Country Code (MCC) and the Mobile Network Code (MNC) and other part of the P-TMSI except the NRI); other information includes P-TMSI information, RAI information, or P-TMSI Signature. The RAI or P-TMSI information may also carry other IEs of the SAE-TMSI. For example, in FIG. 9, the Pool-id is added to the RAI. The Pool-id may also occupy the P-TMSI or a part of RAI and a part of P-TMSI. To avoid unnecessary node reselection when a combined MME/SGSN exists, in another preferred embodiment of the invention, the MME-id part of the SAE-TMSI is placed to the NRI part of the P-TMSI (the NRI and the MME-id of the combined MME/SGSN must be the same). If the SAE-TMSI is longer than the P-TMSI (for example, the length is 40 bits or 56 bits), the other part needs to occupy certain bits of the RAI and/or certain bits of the P-TMSI Signature. In a preferred embodiment of the invention, only certain bits of the RAI are occupied to prevent the SGSN and the RNC from being changed.
  • The Pool-id and other part of the SAE-TMSI may be placed to the P-TMSI information except the NRI. If the SAE-TMSI is longer than the P-TMSI, the LAC and/or RAC part of the RAI can also be occupied. Thus, the length of the SAE-TMSI can be extended to a maximum of 56 bits. Therefore, the mode does not limit the number of MMEs on the PLMN. That is, the number of MMEs depends on the Pool-id+MME-id. The maximum number of MMEs in a pool is 1024 (210 because the maximum MME-id is the length of the NRI, namely, 10 bits). If no interaction with the 2G/3G network is required, the number of MMEs in a pool is not limited by the length of the NRI.
  • Similarly, if the UE moves from the 2G/3G network to the SAE network, the UE accesses the SAE network through the P-TMSI. In this case, the RAN node such as the ENB of the evolved network tries to select the MME with MME-id=NRI. For example, if the UE moves from the SAE network to the 2G/3G network, and the UE has been registered with the combined node 6 in pool 1, the accessed 2G/3G network still belongs to pool 1. Then, the ENB still selects the old combined MME/SGSN (6). If the ENB cannot find the corresponding MME, it triggers a new MME selection process and selects a new MME for the UE.
  • Therefore, an embodiment of the invention provides an optimized mode: in the case of a pure SAE network, it is required that Pool-ids should not be duplicate on the PLMN and that MME-ids should not be duplicate in a pool; in the case of a hybrid network of an SAE network and a 2G/3G network, the NRI of the SGSN of the combined MME/SGSN must be equal to the MME-id of the MME of the combined MME/SGSN, and the MME-id of a pure MME should not be the same as the NRI of a pure SGSN in adjacent pools.
  • It should be noted that after the UE accesses the 2G/3G network through the SAE-TMSI and selects a new SGSN, the SGSN needs to search the DNS or configuration for the old node according to the P-TMSI and the RAI (SAE-TMSI information actually from the SGSN point of view). If the DNS or configuration is upgraded, the old MME address can be uniquely determined and found according to the PLMN-id (MCC+MNC in the RAI) in the SAE-TMSI information, Pool-id, and MME-id. The SGSN sends a Context Request or Identification Request message carrying the P-TMSI and the old RAI (including the SAE-TMSI actually from the SGSN point of view). After receiving the message, the MME finds the UE according to the SAE-TMSI and returns the context of the UE.
  • Mode 3: In this mode, the PLMN-id belongs to a part of the SAE-TMSI. On the evolved network, the MME-id is unique in a pool, but duplicate IDs may exist on the entire evolved network. A Pool-id is not unique on different PLMNs. Therefore, the PLMN-id (MCC+MNC) should be used with the Pool-id+MME-id to identify the MME accessed by the UE in the evolved network. That is, the MME is uniquely identified by the PLMN-id+Pool-id+MME-id. As shown in FIG. 9, the NRI information of the P-TMSI information in the access message is set as the MME-id. The RAI, P-TMSI, and P-TMSI Signature can carry the PLMN-id and the Pool-id. For example, the PLMN-id is added to the RAI information, and the Pool-id is added to the other part of the P-TMSI information except the NRI; the PLMN-id and the Pool-id can be added to the RAI information or P-TMSI Signature information. In an embodiment of the invention, a preferred mode is to set the NRI information as the MME-id. The RAI, P-TMSI Signature, and P-TMSI can separately carry or together carry the PLMN-id and the Pool-id.
  • To avoid unnecessary node reselection when a combined MME/SGSN exists, another preferred embodiment of the invention places the MME-id part of the SAE-TMSI to the NRI part of the P-TMSI (the NRI and the MME-id of the combined MME/SGSN must be the same).
  • Mode 4: When the Pool-id and the MME-id are not unique on the PLMN, for example, Pool-ids on the PLMN may be duplicate (Pool-ids of adjacent pools should be different), the old MME may be determined by combining the Pool-id and the MME-id with the TAI; that is, the MME is uniquely identified by the TAI+Pool-id+MME-id. FIG. 10 shows how to add a TAI, a Pool-id, and an MME-id to RAU information and P-TMSI information in an embodiment of the invention. The UE needs to provide the TAI information to the old network. Because the SAE-TMSI may be extended, the SAE-TMSI+TAI needs to occupy the position of the old RAI+P-TMSI. If the TAC occupies 20 bits, four bits may be provided for the SAE-TMSI. Thus, the SAE-TMSI has 36 bits. (The P-TMSI field is 32 bits in length, and the LAC+RAC is 24 bits in length.) If the UE accesses a 2G/3G network through the SAE-TMSI, the MME selects a proper SGSN at the NRI position, and the SGSN searches the updated DNS or configuration for the old MME and finds the old MME through the TAI+Pool-id+MME-id. The Pool-id may be combined with the MME-id into one MME-id. In an embodiment of the invention, the NRI information in the P-TMSI information of the access message is set as the MME-id, and the TAI and the Pool-id are added to the RAI information. To avoid unnecessary node reselection when a combined MME/SGSN exists, another preferred embodiment of the invention places the MME-id part of the SAE-TMSI to the NRI part of the P-TMSI (the NRI and the MME-id of the combined MME/SGSN must be the same).
  • Step S703: The old network selects the corresponding SGSN for the UE according to the access message. According to the NRI of the P-TMSI information carried in the received access message, the old network selects the corresponding SGSN. If no corresponding SGSN exists, the old network selects a new SGSN. If the UE accesses the new SGSN, the UE sends the RAI IE and P-TMSI information carried in the NAS message to the new SGSN.
  • Step S704: If the selected SGSN is a new node, the selected SGSN determines an MME according to the MME information carried in the access message and requests the UE information from the MME. Specifically, the configuration information or DNS of the SGSN is upgraded, and the SGSN searches the configuration information or DNS for the MME according to the MME information. For example, the corresponding address of the old MME can be found through the MME-id (or Pool-id+MME-id or PLMN-id+Pool-id+MME-id), and the new SGSN sends a Context Request carrying the RAI and P-TMSI information to the MME; the old MME finds the corresponding UE according to the implicit SAE-TMSI information in the RAI and P-TMSI and returns the context of the UE to the new SGSN.
  • According to the foregoing embodiments, an embodiment of the invention provides mode 5 of carrying SAE-TMSI information: The mode for a UE to access an old network such as a 2G/3G network in the prior art is as follows: P-TMSI information is placed in a received RRC message (Initial Direct Transfer message), and an RAN node such as an RNC or a BSC finds the corresponding SGSN according to the NRI information in the P-TMSI information; in addition, the NAS message in the RRC message carries P-TMSI information, that is, two P-TMSIs; the P-TMSI (and the old RAI, as well as the possible P-TMSI Signature) in the NAS message is transferred to an SGSN, and the RAN node such as the RNC or BSC does not parse the P-TMSI information in the NAS message. Therefore, the method of this mode is as follows: only the P-TMSI in the RRC message is changed; the NRI information is set as the MME-id; and the information of the P-TMSI in the RRC message except the NRI information may not be processed, for example, may be set to zero. With regard to the P-TMSI, RAI, and P-TMSI Signature in the NAS message, it is required to place the MME information to the P-TMSI and/or the RAI only, and thus the old MME address can be found in the DNS or SGSN configuration. The MME-id does not need to be placed in the NRI information of the P-TMSI information in the NAS message. FIG. 11 is an embodiment of the invention. When a UE accesses an old 2G/3G network through the SAE-TMSI, the NRI information of the P-TMSI information in an RRC message is set to MME information, such as the MME-id. In the NAS message, it is required that the old MME should be found according to the old RAI and the P-TMSI only. For example, the Pool-id and the MME-id are set in the old RAI, the UE-id and other bytes are placed in the P-TMSI, but the MME-id does not need to be placed in the NRI information of the P-TMSI information in the NAS message. Other implementation modes may also be adopted. For example, the global MME-id is placed to the old RAI, or the TAI is placed to the P-TMSI, or a duplicate MME-id is placed to the old RAI, and even the P-TMSI Signature can be used (for example, the global MME-id is placed to the old RAI and the P-TMSI, and the UE-id is placed to the P-TMSI Signature). Thus, the length of the SAE-TMSI can be further extended. The MME information such as the Pool-id, MME-id, and TAI are placed to the old RAI and/or P-TMSI, thus reducing the configurations of DNSs or SGSNs.
  • According to the DNS or configuration, the old MME/SGSN can be found. It is possible that the found old MME/SGSN is not the actual old MME/SGSN of the UE. For example, if the UE accesses an SGSN that is not configured with the flex, of another PLMN, and the SGSN searches for the address of the default MME/SGSN according to only the RAI information, the new SGSN sends a Context Request or Identity Request message carrying RAI and P-TMSI information to the MME/SGSN. After receiving the message, the default MME/SGSN finds the actual MME/SGSN according to the RAI and P-TMSI information, and then forwards the message to the actual MME/SGSN.
  • If the UE accesses the SAE network again through the allocated SAE-TMSI, an ENB can select the old MME according to the MME-id or Pool-id of the SAE-TMSI and the MME-id. If there is no corresponding MME, the ENB selects a new MME. The new MME finds the old MME according to the Pool-id and the MME-id in the SAE-TMSI. The old MME finds the UE according to the SAE-TMSI and returns the context of the UE to the new MME.
  • According to the foregoing embodiments, an embodiment of the invention further provides mode 6 of carrying SAE-TMSI information: In the foregoing modes, the PLMN-id, TAI, and Pool-id (or MME-id) may be added to the access message by occupying the P-TMSI Signature. In this mode, the method for occupying the P-TMSI Signature is mainly described, but it does not means that this mode can be implemented by occupying the P-TMSI Signature only. The embodiment can be used with other information, such as RAI information and/or P-TMSI information.
  • The P-TMSI Signature is used to ensure the security. When a UE accesses a 2G/3G network, the UE can carry the old RAI, P-TMSI, and P-TMSI Signature to the access network. If an SGSN changes, the new SGSN uses the old RAI and the P-TMSI to query the address of the old SGSN. Then, the new SGSN sends an Identification Request and a Context Request that may carry the optional parameter P-TMSI Signature besides the old RAI and P-TMSI, to the old SGSN. Therefore, when the UE accesses the old network through the SAE-TMSI, the SAE-TMSI may occupy the P-TMSI Signature only if the new SGSN finds the address of the old MME according to the old RAI and the P-TMSI. FIG. 12 shows how to occupy the P-TMSI Signature in an embodiment of the invention. Assume that the SAE-TMSI in the embodiment consists of at least the Pool-id (the Pool-id is unique on the entire PLMN), MME-id, and UE-id. The Pool-id and the MME-id must be placed to the old RAI and/or P-TMSI information. The MME-id still needs to be placed in the NRI (in mode 5, the MME-id of the P-TMSI information in the NAS message does not need to be placed in the NRI information). Other fields occupy not only the old RAI and P-TMSI information but also certain bits of the P-TMSI Signature. For example, the P-TMSI Signature has 24 bits, where ten bits are used for SAE security, and the remaining part may occupy certain bits (information necessary for querying the address of the old MME, such as the Pool-id and the MME-id cannot be placed in these bits) such as six bits according to the configuration length of the SAE-TMSI. Thus, after the UE accesses a new SGSN, the new SGSN queries the address of the old MME according to the old RAI and the P-TMSI. The new SGSN can find the address of the old MME according to the PLMN-id+Pool-id+MME-id if the configuration of the DNS or SGSN is upgraded. The new SGSN sends a Context Request carrying the old RAI, P-TMSI, P-TMSI Signature to the address of the old MME. The MME finds the corresponding UE through the SAE-TMSI formed by these parameters, and returns the context of the UE.
  • The Pool-id may not be unique or is even not required, and the corresponding MME is determined by a combination of the TAI information and the MME-id. For example, the UE accesses a 2G/3G network through the SAE-TMSI and the old TAI. The SAE-TMSI includes an MME-id (The MME-id may be unique on the entire PLMN or unique in a pool. In the embodiment, assume that the MME-id is unique in a pool). The UE places the TAI information to the old RAI information and places the MME-id to the NRI information. The remaining information occupies the position of other remaining information of the old RAI and the P-TMSI, and even occupies the P-TMSI Signature that does not participate in query of the old MME. If the old MME can be queried according to the old RAI and the P-TMSI (the TAI and the MME-id actually), the other part of the SAE-TMSI that does not participate in query of the old MME may occupy the P-TMSI Signature. The new SGSN sends a request to the found MME address. The MME finds the UE according to a regrouped SAE-TMSI according to the parameters that are sent and returns a response.
  • The length of the SAE-TMSI may reach 80 bits by occupying the P-TMSI Signature. (Note that the information such as the MME-id, Pool-id, and TAI information used to query the MME cannot be placed to the P-TMSI Signature.)
  • In the foregoing embodiments, when a UE moves from an evolved network to an old network, MME information for uniquely identifying an MME is added to an access message sent to the old network; therefore, the old network can determine and find the MME that is accessed by the UE in the evolved network without changing an RNC and an SGSN on the old network. Especially, when a combined MME/SGSN exists, unnecessary mode reselection can be avoided efficiently by setting the MME-id of the MME in the combined node to be the same as the NRI of the SGSN. (A configuration method can also be used, and therefore, the MME-id may be different from the NRI.)
  • FIG. 13 shows a structure of a UE 100 in an embodiment of the invention. The UE 100 includes an access message sending module 110 and an MME information adding module 120. The access message sending module 110 is adapted to send an access message to an old network when the UE 100 moves from an evolved network to the old network. The MME information adding module 120 is adapted to add MME information for uniquely identifying an MME accessed by the UE 100 on the evolved network to the access message sent by the access message sending module 110.
  • The MME information adding module 120 includes a P-TMSI information adding submodule 121, which is adapted to add the MME-id in an SAE-TMSI to the P-TMSI information of the access message.
  • The MME information adding module 120 includes an RAI information adding submodule 122, which is adapted to add the Pool-id, and PLMN-id or TAI or PLMN in the SAE-TMSI to the RAI information of the access message.
  • The MME information adding module 120 further includes an NRI setting submodule 123, which is adapted to set the NRI information in the P-TMSI information of the access message as the MME-id, thus avoiding unnecessary node reselection when a combined MME/SGSN exists.
  • The UE 100 further includes a P-TMSI Signature adding module 130, which is adapted to add other information in the SAE-TMSI except the MME information to the P-TMSI Signature.
  • In addition, corresponding to the methods provided in the foregoing embodiments, the following case exists: The SAE-TMSI of a UE consists of an MCC, an MNC, a Pool-id, an MME-id, and an M-TMSI (remaining SAE-TMSI bits). A global MME ID is composed of the MCC+MNC+Pool-id+MME-id. The SAE-TMSI can uniquely identify a UE globally.
  • In a UMTS PS domain or GPRS system, the temporary ID of a UE is a P-TMSI. The P-TMSI uniquely identifies a UE in an RA. The P-TMSI and the RAI can uniquely identify a UE globally.
  • In addition, the following scenario may exist when a 2G/3G network and an SAE network are deployed: a standalone SGSN and a standalone MME exist, and a combined MME/SGSN also exists. When a UE accesses a standalone SGSN, a P-TMSI and an RAI are allocated to the UE, and a P-TMSI Signature may also be allocated to the UE. The following RAI and P-TMSI combination includes the P-TMSI Signature. When the UE accesses a standalone MME, an SAE-TMSI is allocated to the UE. When the UE accesses a combined MME/SGSN, the combined node may allocate an SAE-TMSI or an RAI/P-TMSI combination to the UE. The SAE-TMSI and the RAI/P-TMSI can be mutually mapped; for example, the MCC+MNC+Pool-id+MME-id in the SAE-TMSI and the RAI can be mutually mapped, and the M-TMSI in the SAE-TMSI and the P-TMSI can be mutually mapped, or any other mapping method may be used (Certain bits are mapped to the P-TMSI Signature). If the UE accesses a 2G/3G network, the RAI and the P-TMSI are allocated to the UE. If the UE accesses an LTE network, a combined node allocates an SAE-TMSI to the UE. Thus, when the UE accesses an SAE network, the UE uses the SAE-TMSI (if available) for access. An ENB finds the old MME through the MME-id information in an RRC message or selects a new MME (if the MME corresponding to the MME-id does not exist). If a new MME is accessed, the new MME may find the old MME and the UE context according to the SAE-TMSI, thus obtaining the context of the UE. If the UE has only the RAI/P-TMSI and accesses the SAE network, the RAI/P-TMSI is mapped to an SAE-TMSI for access. That is, when the UE accesses the SAE network, the network considers that the ID carried by the UE is the SAE-TMSI, which is the same as the SAE-TMSI that is actually carried by the UE. Specifically, the UE carries the mapped SAE-TMSI in an RRC Connection Complete message; the ENB finds the old MME (such as a combined node) according to the mapped MME-id or selects a new MME; the new MME finds the old SGSN and the UE context according to the mapped SAE-TMSI, thus obtaining the context of the UE. When the UE accesses the 2G/3G network, the UE uses a P-TMSI and an RAI (if available) for access. An RNC finds the old SGSN according to the NRI in the P-TMSI information of an RRC message or selects a new SGSN (if the SGSN corresponding to the NRI does not exist). If the UE has only an SAE-TMSI and accesses the 2G/3G network, the UE accesses the network by mapping the SAE-TMSI to the RAI/P-TMSI. The foregoing mapping method may be used to access the old SGSN (a combined node) or a new SGSN. The new SGSN finds the old MME and the UE according to the mapped RAI/P-TMSI to obtain the context of the UE.
  • In the foregoing method, the combined node may allocate two IDs (the SAE-TMSI and the RAI/P-TMSI combination) to the UE only when the Idle mode Signaling Reduction (ISR) feature is enabled. Thus, the UE can know whether the ISR feature is enabled according to one or two IDs received rather than extra signaling or an extra parameter.
  • Furthermore, there is another solution: when the UE accesses a standalone SGSN, a P-TMSI and an RAI are allocated; when the UE accesses a standalone MME, an SAE-TMSI is allocated; when the UE accesses a combined MME/SGSN, the combined node allocates an SAE-TMSI and an RAI/P-TMSI combination, which cannot be mutually mapped, to the UE. The problem is as follows: when a UE supports only one RAT, for example, the UE belongs to the old network and supports only the 2G/3G access technology, and when the ID of an RAT that is not supported is allocated to the UE, the UE cannot use or even cannot save the ID. Therefore, when the UE accesses a network, it needs to carry the RAT capability supported by the UE. A combined node obtains the RAT capability supported by the UE; for example, it may obtain the RAT capability from the UE or the context of the UE to determine how to allocate an ID. For example, the combined node allocates an RAI/P-TMSI combination to a UE that supports only the 2G/3G access technology, allocates an SAE-TMSI to a UE that supports only the LTE access technology, and allocates an SAE-TMSI and an RAI/P-TMSI combination to a UE that supports the 2G/3G access technology and the LTE access technology.
  • According to the foregoing descriptions, when the UE accesses an MME through the SAE-TMSI, the objective of the invention may be achieved through at least the following steps: setting the NRI of the P-TMSI information in the RRC message as the MME-id; and setting the MME address information to the old RAI and/or P-TMSI of the NAS message so that other information may occupy the old RAI, and/or P-TMSI, and/or P-TMSI Signature of the NAS message. It should be noted that the settings may not be sequential settings or unique settings. For example, certain bits of the Pool-id can be set to the old RAI and certain bits of the Pool-id can be set to the P-TMSI. In addition, the MME-id may be set both in the old RAI and in the NRI, and the information in the two positions can be the same or duplicate.
  • In the foregoing embodiments of the invention, when the MME information for uniquely identifying an MME is added to the access message sent to the old network, the old network can determine and find the MME that is accessed by the UE in the evolved network without changing the RNC and the SGSN on the old network. Each network node that communicates with the UE, such as an MME and an SGSN, may be described as the network.
  • An embodiment of the invention also proposes a method for providing a Temporary Logical Link Identity (TLLI) when a UE accesses a 2G network: The network receives an access message sent by the UE. The access message contains two TLLIs, namely, the first TLLI and the second TLLI. When the first TLLI information carries the TMSI information (if the RAT adopted for the last access is 2G/3G, the TLLI is formed by removing the first two bits of the P-TMSI; if the RAT adopted for the last access is SAE, the TLLI is formed by removing the first two bits of the M-TMSI) of the RAT of the network that is accessed by the UE at the last time, the RAT is called the first RAT. When the second TLLI information carries the TMSI information (if the RAT adopted by the current access is 2G/3G, the TLLI is formed by removing the first two bits of the P-TMSI; if the RAT adopted by the current access is SAE, the TLLI is formed by removing the first two bits of the M-TMSI) of the RAT of the network that is accessed by the UE currently, the RAT is called the second RAT. If the two RATs are the same, the UE may carry only the information of one TLLI. If the RAT adopted for the last access is SAE, the old RAI in an NAS message sent by the UE also needs to be mapped by other information of the SAE-TMSI except the M-TMSI. In addition, the NAS message sent by the UE further carries the old RAI of the RAT or the remaining information of the SAE-TMSI except the M-TMSI. When the two RATs are the same, the NAS message sent by the UE may not carry the old RAI of the RAT or the remaining information of the SAE-TMSI except the M-TMSI.
  • For example, when the UE moves from an MME of an evolved network to a 2G network, the first TLLI is formed by removing the first two bits of an M-TMSI and is placed at the normal TLLI position, and the second TLLI is formed by removing the first two bits of a P-TMSI on the 2G network and is placed at a new position (The usage is different from the usage in Release 7). Other information of the SAE-TMSI except the M-TMSI carried in the NAS message sent by the UE is mapped to the normal old RAI position and the old RAI information of the 2G network carried in the NAS message is placed at a new position.
  • When the UE moves from a 2G network to another 2G network, or when the latest context of the UE is on the 2G network, the first TLLI is formed by removing the first two bits of a P-TMSI and is placed at the normal TLLI position, and the second TLLI is formed by removing the first two bits of the P-TMSI and is placed at a new position (The usage is different from the usage in Release 7). The UE may also carry only one TLLI.
  • If an RAN node is connected to a 2G CN of a later version (such as Release 8), the RAN node may use the second TLLI to select a CN node. If only one TLLI is available, the RAN node selects a CN node according to the TLLI. If an RAN node is connected to a 2G CN of an earlier version (such as Release 7 or earlier versions), the RAN node selects a CN node according to the first TLLI.
  • The following provides the details.
  • When a UE accesses an SGSN of a network earlier than 3GPP R8 (Pre-R8), the UE needs to carry the ID allocated for the RAT adopted for the last access, in the TLLI. For example, the ID allocated for the RAT of a 2G/3G network that is last accessed by the UE is a P-TMSI. When the UE accesses an SGSN of Pre-R8, the UE removes the first two bits of a P-TMSI and places the P-TMSI to the TLLI. According to the received TLLI, the SGSN generate a P-TMSI of the NAS. For example, the SGSN adds two bits whose values are 1 before the TLLI.
  • If the last accessed MME of the UE is on an evolved network, the UE needs to remove the first two bits of the M-TMSI in the SAE-TMSI that is allocated to the UE by the MME and places the M-TMSI to the TLLI, and places other bits in the SAE-TMSI to the old RAI.
  • When the UE accesses a 2G network, the UE provides the information of two TLLIs if the UE has two TMSIs. The first TLLI carries the latest TMSI information of the UE, such as the TMSI information used when the UE accesses the network at the last time. The second TLLI carries the TMSI information that supports the same RAT when the UE accesses the network currently. If the UE finds that the two TMSIs are the same, the UE provides the information of only one TMSI. When an RAN node is connected to a new system, such as an SGSN of 3GPP R8, the access node selects a CN node according to only the second TLLI carrying the TMSI information that supports the same RAT when the UE accesses the network currently. If only one TLLI is available, the access node selects a CN node according to the TLLI. If the RAN node is connected to an old system, such as an SGSN of Pre-R8, the RAN node selects a CN node according to the first TLLI. With the embodiment, the RAN node can select a proper CN node according to the feature of the connected CN node. Thus, the old CN node can obtain the latest context information without being upgraded.
  • Through the foregoing descriptions, it is understandable to those skilled in the art that the embodiments of the invention may be implemented through software and a necessary general hardware platform or through hardware only. However, in most cases, software and a general hardware platform are preferred. Based on such understandings, the technical solution of the invention or contributions to the prior art can be embodied by software products. The software products are stored in a storage medium and incorporate several instructions to instruct a computer device, for example, a personal computer, a server, or a network device, to execute the method provided by each embodiment of the invention.
  • Although the invention has been described through preferred embodiments, the invention is not limited to such embodiments. It is apparent that those skilled in the art can make various modifications and variations to the invention without departing from the spirit and scope of the invention. The invention is intended to cover the modifications and variations provided that they fall in the scope of protection defined by the following claims or their equivalents.

Claims (20)

1. A method for accessing old network through temporary ID of evolved network, comprising:
adding, by a User Equipment, UE, Mobility Management Entity information, MME information, for uniquely identifying an MME accessed by the UE in an evolved network, to an access message;
sending the access message to an old network when the UE accesses the old network through a temporary ID of the evolved network; the access message being used for selecting, by the old network, a corresponding Serving GPRS Support Node, SGSN, for the UE.
2. The method of claim 1, wherein after the selecting, by the old network, a corresponding Serving GPRS Support Node, SGSN, the method further comprises:
determining, by the SGSN, the MME according to the MME information added to the access message if the SGSN is not a node registered by the UE; and
requesting the UE information from the MME.
3. The method of claim 2, wherein the determining, by the SGSN, the MME according to the MME information comprises:
upgrading configuration information or DNS of the SGSN; and
finding, by the SGSN, the MME in the configuration information or DNS according to the MME information.
4. The method of claim 1, wherein the MME information comprises an MME-id in an SAE-TMSI, accordingly, adding, by the UE, MME information to an access message sent to an old network comprises: adding the MME-id to the P-TMSI information of the access message and/or the RAI information of the access message.
5. The method of claim 4, wherein the adding the MME-id to the P-TMSI information of the access message comprises: setting the NRI information in the P-TMSI information carried in the access message as the MME-id.
6. The method of claim 5, wherein the method further comprises: setting the NRI information of a combined MME/SGSN the same as the MME-id; and
selecting, by the old network, the combined MME/SGSN for the UE when the UE enters the old network from the evolved network within the same pool as the old network.
7. The method of claim 4, wherein the method further comprises:
adding the information of the SAE-TMSI other than the MME information of the SAE-TMSI to the signature of the P-TMSI.
8. The method of claim 1, wherein the MME information comprises the Pool-id and the MME-id in an SAE-TMSI, accordingly, adding, by a UE, MME information for uniquely identifying an Mobility Management Entity to an access message sent to an old network comprises: adding the MME-id and the Pool-id to the P-TMSI information of the access message and/or the RAI information of the access message.
9. The method of claim 1, wherein the MME information comprises a PLMN-id and the Pool-id and MME-id in an SAE-TMSI,
and accordingly, the adding, by a UE, MME information for uniquely identifying an Mobility Management Entity, MME, accessed by the UE on an evolved network, to an access message sent to an old network comprises: adding the PLMN-id, Pool-id and MME-id to the P-TMSI information and/or RAI information.
10. The method of claim 9, wherein the adding the PLMN-id, Pool-id and MME-id to the P-TMSI information and/or RAI information comprises: setting the NRI information of the P-TMSI information as MME-id; and adding the PLMN-id to the RAI information; adding the Pool-id to the RAI information and/or P-TMSI information.
11. The method of claim 1, wherein the method further comprises: selecting, by the evolved network, for the UE, the MME preferentially of which the MME-id is the NRI value of the P-TMSI.
12. The method of claim 1, wherein the access message comprises Radio Resource Control message, RRC message, and the MME information comprises MME-id; accordingly, the adding, by a User Equipment, UE, Mobility Management Entity, MME information for uniquely identifying an Mobility Management Entity, MME, accessed by the UE on an evolved network, to an access message sent to an old network comprises:
adding the MME-id to the NRI information in the P-TMSI information carried in the RRC message.
13. The method of claim 12, wherein the method further comprises:
adding the MME information to the P-TMSI and/or RAI of NAS information in the RRC message and mapping the information of SAE-TMSI other than MME information into the P-TMSI, RAI or P-TMSI Signature of the NAS information.
14. A user equipment, UE, wherein the UE comprises an access message sending module and an MME information adding module;
the access message sending module is adapted to send access message to an old network when the UE is accessing an evolved network; and
the MME information adding module is adapted to add MME information to the access message sent by the access message sending module, and the MME information is used for identifying an MME accessed by the UE in the evolved network.
15. The UE of claim 14, wherein the MME information adding module comprises a P-TMSI information adding submodule, adapted to add the MME-id in an SAE-TMSI to the P-TMSI information of the access message.
16. The UE of claim 14, wherein the MME information adding module comprises an RAI information adding submodule, adapted to add Pool-id, PLMN-id or TAI in the SAE-TMSI to the RAI information adding submodule.
17. The UE of claim 14, wherein the MME information adding module further comprises an NRI setting submodule, adapted to set the NRI information in the P-TMSI information of the access message as the MME-id.
18. The UE of claim 14, wherein the UE further comprises P-TMSI signature adding module, adapted to add other information in the SAE-TMSI except the MME information to the P-TMSI Signature.
19. A method for enabling a UE to access an old network, wherein the method comprises:
receiving, by the old network, an access message sent by a UE that accesses the old network though a temporary ID of an evolved network, where the access message comprises Mobility Management Entity information, MME information, for uniquely identifying an MME accessed by the UE in the evolved network; and
selecting, by the old network, a corresponding SGSN for the UE according to the access message.
20. The method of claim 19, wherein the MME information comprises Pool-id and MME-id of PLMN-id and S-TMSI, and the PLMN-id, the Pool-id, and the MME-id are contained in P-TMSI information and/or RAI information.
US12/649,942 2007-11-01 2009-12-30 Method and apparatus for accessing old network through temporary id of evloved network Abandoned US20100105386A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/314,612 US8483166B2 (en) 2007-11-01 2011-12-08 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US13/915,457 US9084159B2 (en) 2007-11-01 2013-06-11 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US14/752,426 US9838918B2 (en) 2007-11-01 2015-06-26 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US15/819,176 US10873883B2 (en) 2007-11-01 2017-11-21 Method and apparatus for accessing legacy networks through temporary ID of evolved network

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN200710166066 2007-11-01
CN200710166066.8 2007-11-01
CN200810091433.7 2008-04-11
CN2008100914337A CN101511079B (en) 2007-11-01 2008-04-11 Method and device for accessing original network through evolution network temporary mark
PCT/CN2008/072864 WO2009056073A1 (en) 2007-11-01 2008-10-28 A method and device for accessing an original network by using a temporary identifier of an evolution network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072864 Continuation WO2009056073A1 (en) 2007-11-01 2008-10-28 A method and device for accessing an original network by using a temporary identifier of an evolution network

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/314,612 Continuation US8483166B2 (en) 2007-11-01 2011-12-08 Method and apparatus for accessing legacy networks through temporary ID of evolved network

Publications (1)

Publication Number Publication Date
US20100105386A1 true US20100105386A1 (en) 2010-04-29

Family

ID=40590570

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/649,942 Abandoned US20100105386A1 (en) 2007-11-01 2009-12-30 Method and apparatus for accessing old network through temporary id of evloved network
US13/314,612 Active US8483166B2 (en) 2007-11-01 2011-12-08 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US13/915,457 Active 2029-02-19 US9084159B2 (en) 2007-11-01 2013-06-11 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US14/752,426 Active US9838918B2 (en) 2007-11-01 2015-06-26 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US15/819,176 Active US10873883B2 (en) 2007-11-01 2017-11-21 Method and apparatus for accessing legacy networks through temporary ID of evolved network

Family Applications After (4)

Application Number Title Priority Date Filing Date
US13/314,612 Active US8483166B2 (en) 2007-11-01 2011-12-08 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US13/915,457 Active 2029-02-19 US9084159B2 (en) 2007-11-01 2013-06-11 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US14/752,426 Active US9838918B2 (en) 2007-11-01 2015-06-26 Method and apparatus for accessing legacy networks through temporary ID of evolved network
US15/819,176 Active US10873883B2 (en) 2007-11-01 2017-11-21 Method and apparatus for accessing legacy networks through temporary ID of evolved network

Country Status (8)

Country Link
US (5) US20100105386A1 (en)
EP (5) EP2159972B1 (en)
JP (1) JP5038503B2 (en)
CN (1) CN101511079B (en)
ES (1) ES2400254T3 (en)
PL (1) PL2528367T3 (en)
PT (1) PT2575394E (en)
WO (1) WO2009056073A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176530A1 (en) * 2009-06-25 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Core network node selection in radiocommunication systems having home gateways
JP2013539931A (en) * 2010-09-09 2013-10-28 サムスン エレクトロニクス カンパニー リミテッド Communication support method and apparatus using non-access layer protocol in mobile communication system
US20140133460A1 (en) * 2011-07-20 2014-05-15 Huawei Technologies Co., Ltd Handover Method and Device
US8744474B1 (en) * 2012-07-16 2014-06-03 Sprint Spectrum L.P. System and method for adjusting tracking area size based on redundancy
US9532292B2 (en) 2011-09-16 2016-12-27 Nec Corporation Communication system
US20170150416A1 (en) * 2015-08-14 2017-05-25 Sprint Communications Company L.P. Long term evolution communication system to perform a mobility management entity reselection
TWI587727B (en) * 2011-08-12 2017-06-11 Nec Corp Mobile communication systems, mobile stations, exchange stations and mobile stations
US20180317218A1 (en) * 2016-01-07 2018-11-01 Huawei Technologies Co.,Ltd. Data scheduling method, base station, and system
US20190045570A1 (en) * 2016-02-05 2019-02-07 Zte Corporation A method and apparatus for connection processing between a terminal and base station
US10462716B2 (en) 2016-04-01 2019-10-29 China Academy Of Telecommunications Technology Network access method, relevant device and system
CN112995958A (en) * 2016-01-07 2021-06-18 华为技术有限公司 Data scheduling method, base station and system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511079B (en) * 2007-11-01 2010-10-27 华为技术有限公司 Method and device for accessing original network through evolution network temporary mark
MX2010006449A (en) 2007-12-13 2010-08-06 Interdigital Patent Holdings Registration scenarios between new and legacy wireless communication networks.
CN102821382B (en) 2008-06-18 2015-09-23 上海华为技术有限公司 A kind of device for accessing
JP5657653B2 (en) * 2009-06-30 2015-01-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Handling of access capability information in mobile networks
US8358593B2 (en) * 2009-10-22 2013-01-22 Cisco Technology, Inc. Systems and methods for selecting serving gateways to service user equipment
CN102056273A (en) * 2009-11-02 2011-05-11 中兴通讯股份有限公司 Method and device for home evolved node B to select core network
CN102438282A (en) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 Method and system for information transmission
CN103329580B (en) 2010-11-05 2016-12-28 瑞典爱立信有限公司 Method and apparatus for communication
CN102469550B (en) * 2010-11-16 2016-04-20 华为技术有限公司 The processing method of signaling congestion and equipment
EP2666314B1 (en) * 2011-01-21 2019-05-15 BlackBerry Limited Network apparatus and process to determine the connection context for connections used for (local) offloading
US8532006B2 (en) 2011-03-25 2013-09-10 Renesas Mobile Corporation Discontinuous reception with user equipment based mobility
GB2489413B (en) * 2011-03-25 2016-08-03 Broadcom Corp Discontinuous reception with user equipment based mobility
US8989719B2 (en) * 2011-12-20 2015-03-24 Verizon Patent And Licensing Inc. Non-access stratum (NAS) transparent messaging
WO2013185311A1 (en) 2012-06-13 2013-12-19 华为技术有限公司 Service gateway obtaining method and mobile management node, data gateway and system
WO2014107855A1 (en) * 2013-01-09 2014-07-17 华为技术有限公司 Method and device for selecting long term evolution (lte) network
KR102236317B1 (en) * 2013-08-08 2021-04-06 삼성전자 주식회사 Method and apparatus for retrieving authentication information
US9398447B2 (en) * 2014-03-24 2016-07-19 T-Mobile Usa, Inc. Mobile terminating network failure forwarding for LTE circuit-switched fallback
US10123276B2 (en) 2014-12-31 2018-11-06 Bandwidthx Inc. Systems and methods for optimizing mobile device radio management for user experience
EP3535995A2 (en) * 2016-11-03 2019-09-11 Nokia Technologies Oy Network selection with stateless network functions
CN108882364A (en) * 2017-05-08 2018-11-23 电信科学技术研究院 A kind of processing method and processing device that UE Idle state AMF changes
US10136318B1 (en) 2017-06-21 2018-11-20 At&T Intellectual Property I, L.P. Authentication device selection to facilitate authentication via an updateable subscriber identifier
US20190014095A1 (en) 2017-07-06 2019-01-10 At&T Intellectual Property I, L.P. Facilitating provisioning of an out-of-band pseudonym over a secure communication channel
CN109525979B (en) * 2017-09-20 2021-01-29 华为技术有限公司 Context information management method and device
CN107465784A (en) * 2017-09-21 2017-12-12 珠海市魅族科技有限公司 Mobile terminal
US11516693B2 (en) 2018-04-04 2022-11-29 Sony Corporation Method and apparatus for management of extended mobile device identity information
CN114342440A (en) 2019-07-12 2022-04-12 三星电子株式会社 Method and apparatus for identifying user in RAN communication system
US11706607B1 (en) 2021-06-16 2023-07-18 T-Mobile Usa, Inc. Location based routing that bypasses circuit-based networks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408182B1 (en) * 1999-07-16 2002-06-18 Ericsson, Inc. Redundant mobile switching center (MSC) architecture for a radio telecommunications network
US20070117575A1 (en) * 2005-11-07 2007-05-24 Alcatel Method for connection re-establishment in a mobile communciation system
US20070293249A1 (en) * 2006-06-19 2007-12-20 Huawei Technologies Co., Ltd. Method and system for implementing multimedia broadcast/multicast service
US20080184032A1 (en) * 2006-10-20 2008-07-31 Changhong Li Generating keys for protection in next generation mobile networks
US20080233947A1 (en) * 2007-03-22 2008-09-25 Christian Herrero-Veron Mobility management (mm) and session management (sm) for sae/lte
US20080268842A1 (en) * 2007-04-30 2008-10-30 Christian Herrero-Veron System and method for utilizing a temporary user identity in a telecommunications system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0011913D0 (en) * 2000-05-17 2000-07-05 Nokia Networks Oy Connections in a communication system
ES2364747T3 (en) 2001-08-24 2011-09-13 Telefonaktiebolaget L M Ericsson (Publ) PROCEDURE AND MEANS FOR REDISTRIBUTION OF SUBSCRIBER INFORMATION IN UMTS NETWORKS IN WHICH THE NODES ARE ARRANGED IN GROUPINGS.
WO2006010953A2 (en) 2004-07-30 2006-02-02 Andrew Richardson A local network node
US20060089146A1 (en) 2004-10-26 2006-04-27 Cingular Wireless, Llc Method and apparatus for controlling call routing when testing nodes of a network in which mobile services switching centers and serving GPRS support nodes are pooled
US8072948B2 (en) 2005-07-14 2011-12-06 Interdigital Technology Corporation Wireless communication system and method of implementing an evolved system attachment procedure
GB0520254D0 (en) 2005-10-05 2005-11-16 Vodafone Plc Telecommunications networks
US20070207806A1 (en) 2006-01-30 2007-09-06 Interdigital Technology Corporation Wireless communication method and system for performing dual mode paging
JP5059096B2 (en) 2006-03-31 2012-10-24 サムスン エレクトロニクス カンパニー リミテッド System and method for optimizing authentication procedure during handover between access systems
CN100527872C (en) * 2006-03-31 2009-08-12 华为技术有限公司 Implementing of reattachment in radio evolution network
CN101051968A (en) 2006-04-04 2007-10-10 华为技术有限公司 Method and device for keeping terminal online forever
DE102006016520A1 (en) * 2006-04-07 2007-10-18 Siemens Ag Establishing a connection to a mobile terminal in case of failure of the relevant exchange
TWM322686U (en) 2006-04-19 2007-11-21 Interdigital Tech Corp Apparatus for supporting routing area update procedures in a long term evolution general packet radio service tunneling protocol-based system
CN100589637C (en) 2006-04-30 2010-02-10 中兴通讯股份有限公司 Register method for mobile communication system and the used bimodule terminal
US20070280177A1 (en) 2006-05-31 2007-12-06 Nokia Corporation Managing user profile information in a mobile telecommunications network
CN100584093C (en) * 2006-08-15 2010-01-20 华为技术有限公司 A method and system transferring user device in mobile communication system
US8917698B2 (en) * 2006-08-18 2014-12-23 Telefonaktiebolaget L M Ericsson (Publ) Intersystem change involving mapping between different types of radio bearers
EP2081396B1 (en) * 2006-11-03 2012-12-12 Huawei Technologies Co., Ltd. Mobile communication method and access entity
FI20070157A0 (en) 2007-02-23 2007-02-23 Nokia Corp Fast authentication of update messages with key differentiation on mobile IP systems
CN101330425B (en) 2007-06-19 2011-03-02 中兴通讯股份有限公司 Method for establishing tunnel from SGSN to service gateway
CN101355793B (en) * 2007-07-27 2011-08-31 华为技术有限公司 Method and apparatus for recognizing user equipment as well as method for transferring and distributing temporary mark
KR101002810B1 (en) 2007-08-10 2010-12-21 삼성전자주식회사 Method and apparatus for registering terminal in packet switching domain
ES2375594T3 (en) 2007-10-29 2012-03-02 Nokia Corporation SYSTEM AND PROCEDURE FOR THE AUTHENTICATION OF A CONTEXT TRANSFER.
CN101511079B (en) * 2007-11-01 2010-10-27 华为技术有限公司 Method and device for accessing original network through evolution network temporary mark
CN102821382B (en) * 2008-06-18 2015-09-23 上海华为技术有限公司 A kind of device for accessing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408182B1 (en) * 1999-07-16 2002-06-18 Ericsson, Inc. Redundant mobile switching center (MSC) architecture for a radio telecommunications network
US20070117575A1 (en) * 2005-11-07 2007-05-24 Alcatel Method for connection re-establishment in a mobile communciation system
US20070293249A1 (en) * 2006-06-19 2007-12-20 Huawei Technologies Co., Ltd. Method and system for implementing multimedia broadcast/multicast service
US20080184032A1 (en) * 2006-10-20 2008-07-31 Changhong Li Generating keys for protection in next generation mobile networks
US20080233947A1 (en) * 2007-03-22 2008-09-25 Christian Herrero-Veron Mobility management (mm) and session management (sm) for sae/lte
US20080268842A1 (en) * 2007-04-30 2008-10-30 Christian Herrero-Veron System and method for utilizing a temporary user identity in a telecommunications system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176530A1 (en) * 2009-06-25 2011-07-21 Telefonaktiebolaget L M Ericsson (Publ) Core network node selection in radiocommunication systems having home gateways
US10045198B2 (en) * 2009-06-25 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Core network node selection in radiocommunication systems having home gateways
JP2013539931A (en) * 2010-09-09 2013-10-28 サムスン エレクトロニクス カンパニー リミテッド Communication support method and apparatus using non-access layer protocol in mobile communication system
US10313869B2 (en) 2010-09-09 2019-06-04 Samsung Electronics Co., Ltd. Communication supporting method and apparatus using non-access stratum protocol in mobile telecommunication system
US9277393B2 (en) 2010-09-09 2016-03-01 Samsung Electronics Co., Ltd. Communication supporting method and apparatus using non-access stratum protocol in mobile telecommunication system
US9584999B2 (en) 2010-09-09 2017-02-28 Samsung Electronics Co., Ltd. Communication supporting method and apparatus using non-access stratum protocol in mobile telecommunication system
US20140133460A1 (en) * 2011-07-20 2014-05-15 Huawei Technologies Co., Ltd Handover Method and Device
US9215627B2 (en) * 2011-07-20 2015-12-15 Huawei Technologies Co., Ltd. Handover method and device
US10034163B2 (en) 2011-08-12 2018-07-24 Nec Corporation Mobile communication system, mobile station, switching station, and location registration method for mobile station
US10231115B2 (en) 2011-08-12 2019-03-12 Nec Corporation Mobile communication system, mobile station, switching station, and location registration method for mobile station
US9867031B2 (en) 2011-08-12 2018-01-09 Nec Corporation Mobile communication system, mobile station, switching station, and location registration method for mobile station
TWI587727B (en) * 2011-08-12 2017-06-11 Nec Corp Mobile communication systems, mobile stations, exchange stations and mobile stations
US10045199B2 (en) 2011-08-12 2018-08-07 Nec Corporation Mobile communication system, mobile station, switching station, and location registration method for mobile station
US9532292B2 (en) 2011-09-16 2016-12-27 Nec Corporation Communication system
US8744474B1 (en) * 2012-07-16 2014-06-03 Sprint Spectrum L.P. System and method for adjusting tracking area size based on redundancy
US20170150416A1 (en) * 2015-08-14 2017-05-25 Sprint Communications Company L.P. Long term evolution communication system to perform a mobility management entity reselection
US9949198B2 (en) * 2015-08-14 2018-04-17 Sprint Communications Company L.P. Long term evolution communication system to perform a mobility management entity reselection
US20180317218A1 (en) * 2016-01-07 2018-11-01 Huawei Technologies Co.,Ltd. Data scheduling method, base station, and system
CN112995958A (en) * 2016-01-07 2021-06-18 华为技术有限公司 Data scheduling method, base station and system
US11632788B2 (en) * 2016-01-07 2023-04-18 Huawei Technologies Co., Ltd. Data scheduling method, base station, and system
US20190045570A1 (en) * 2016-02-05 2019-02-07 Zte Corporation A method and apparatus for connection processing between a terminal and base station
US10609751B2 (en) * 2016-02-05 2020-03-31 Zte Corporation Method and apparatus for connection processing between a terminal and base station
US10973073B2 (en) * 2016-02-05 2021-04-06 Zte Corporation Method and apparatus for connection processing between a terminal and base station
US10462716B2 (en) 2016-04-01 2019-10-29 China Academy Of Telecommunications Technology Network access method, relevant device and system

Also Published As

Publication number Publication date
US20180317138A1 (en) 2018-11-01
EP2159972B1 (en) 2012-12-19
US20140051448A1 (en) 2014-02-20
US9084159B2 (en) 2015-07-14
PL2528367T3 (en) 2015-07-31
US10873883B2 (en) 2020-12-22
EP2528367B1 (en) 2015-02-25
JP2010537523A (en) 2010-12-02
JP5038503B2 (en) 2012-10-03
CN101511079A (en) 2009-08-19
EP2897397A1 (en) 2015-07-22
EP2575394A1 (en) 2013-04-03
US20150365853A1 (en) 2015-12-17
EP3588999A1 (en) 2020-01-01
EP2575394B1 (en) 2014-07-30
EP2897397B1 (en) 2019-07-31
EP2528367A1 (en) 2012-11-28
US8483166B2 (en) 2013-07-09
ES2400254T3 (en) 2013-04-08
WO2009056073A1 (en) 2009-05-07
CN101511079B (en) 2010-10-27
US9838918B2 (en) 2017-12-05
US20120077498A1 (en) 2012-03-29
EP2159972A4 (en) 2010-08-18
EP2159972A1 (en) 2010-03-03
PT2575394E (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US10873883B2 (en) Method and apparatus for accessing legacy networks through temporary ID of evolved network
US11350317B2 (en) Method and device for accessing and obtaining user equipment context and user equipment identity

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUAWEI TECHNOLOGIES CO., LTD.,CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUO, XIAOLONG;REEL/FRAME:023718/0912

Effective date: 20091230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION