US20100094965A1 - Erasure-coded content assembly and retransmission - Google Patents

Erasure-coded content assembly and retransmission Download PDF

Info

Publication number
US20100094965A1
US20100094965A1 US12579386 US57938609A US2010094965A1 US 20100094965 A1 US20100094965 A1 US 20100094965A1 US 12579386 US12579386 US 12579386 US 57938609 A US57938609 A US 57938609A US 2010094965 A1 US2010094965 A1 US 2010094965A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
fragments
servers
erasure
server
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12579386
Inventor
Gal Zuckerman
Gil Thieberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PatentVC Ltd
Original Assignee
PatentVC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1002Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers, e.g. load balancing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1097Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for distributed storage of data in a network, e.g. network file system [NFS], transport mechanisms for storage area networks [SAN] or network attached storage [NAS]

Abstract

Methods and systems for erasure-coded content assembly and retransmission, including assembling servers located at or close to edges of the Internet and spread over a wide area, fractional-storage CDN servers located close to or on the Internet backbone, and client devices spread over a wide area. Each assembling server obtains from the CDN servers erasure-coded fragments associated with segments of streaming content according to an order that enables the assembling server to start streaming the content to its associated clients shortly after reconstructing the first segment.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application No. 61/105,683, filed Oct. 15, 2008.
  • BACKGROUND
  • In computer networks, data may be transmitted directly between the source and destination servers, or transmitted via an intermediary server, such as a proxy server or a gateway server. When using a proxy server, a client connects to the proxy server, and requests data from the proxy server. The proxy server processes the request according to its rules, and may provide the data by requesting the data from a relevant server. The proxy server may modify the client's request or the server's response, and sometimes it may cache responses and provide the data without contacting the relevant server. Some distributed content delivery systems enhance performance by using erasure coding. However, obtaining and decoding the erasure-coded distributed content may require certain capabilities from an end user's device. These capabilities are considered non-standard, and may add complexity to end users' devices.
  • BRIEF SUMMARY
  • In one embodiment, a streaming system comprising: assembling servers located at or close to the edges of the Internet and spread over a wide area, fractional-storage CDN servers located close to or on the Internet backbone, and client devices spread over a wide area; each assembling server is configured to obtain from the CDN servers erasure-coded fragments associated with segments of streaming content according to an order that enables the assembling server to start streaming the content to its associated clients shortly after reconstructing the first segment.
  • In one embodiment, a apparatus comprising: an assembling server configured to obtain from fractional-storage CDN servers located close to or on the Internet backbone at least most of the erasure-coded fragments needed to reconstruct a segment of content comprising multiple segments; the assembling server is further configured to reconstruct the segment and transmit the reconstructed segment or a transcoded version of the segment to a client device.
  • In one embodiment, a method comprising: receiving, by a first device from fractional-storage servers, erasure-coded fragments associated with segments of streaming content; reconstructing approximately sequential segments from fragments comprising the received fragments; and streaming the reconstructed segments or a transcoded version of the segments to a second device shortly after reconstructing the first segment; wherein the steps of receiving and streaming at least partially overlap in time.
  • Implementations of the disclosed embodiments involve performing or completing selected tasks or steps manually, semi-automatically, fully automatically, and/or a combination thereof. Moreover, depending upon actual instrumentation and/or equipment used for implementing the disclosed embodiments, several embodiments could be achieved by hardware, by software, by firmware, or a combination thereof. In particular, with hardware, embodiments of the invention could exist by variations in the physical structure. Additionally, or alternatively, with software, selected functions of the invention could be performed by a data processor, such as a computing platform, executing software instructions or protocols using any suitable computer operating system. Moreover, features of the embodiments may be combined.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments are herein described, by way of example only, with reference to the accompanying drawings. No attempt is made to show structural details of the embodiments in more detail than is necessary for a fundamental understanding of the embodiments. In the drawings:
  • FIG. 1 illustrates one embodiment of segmenting content, encoding the segments into erasure-coded fragments, distributing the fragments to fractional-storage servers, and obtaining the fragments by assembling devices and assembling servers.
  • FIG. 2 illustrates assembling content utilizing a proxy server.
  • FIG. 3 illustrates assembling content utilizing a proxy server.
  • FIG. 4 is a flow diagram of one method in accordance with one embodiment.
  • FIG. 5 illustrates fractional-storage servers located on the Internet backbone.
  • FIG. 6 illustrates an assembling server located at a network juncture.
  • FIG. 7 and FIG. 8 illustrate different embodiments of content segmentation.
  • FIG. 9 illustrates distribution and storage of erasure-coded fragments on fractional-storage servers.
  • FIG. 10 illustrates three examples of changes made to redundancy factors according to changes in demand.
  • FIG. 11 illustrates an assembling device obtaining erasure-coded fragments from fractional-storage servers.
  • FIG. 12 illustrates real-time content segmentation, encoding, and distribution.
  • FIG. 13 illustrates real time fragment retrieval, segment reconstruction, and content presentation.
  • FIG. 14 illustrates fast real time fragment retrieval.
  • FIG. 15 to FIG. 18 illustrate various embodiments of fragment pull protocols.
  • FIG. 19 illustrates various aggregated and non-aggregated fragment request messages.
  • FIG. 20 illustrates retrieving fragments and compensating for failures.
  • FIG. 21 illustrates fractional-storage servers having the same bandwidth capability.
  • FIG. 22 illustrates fractional-storage servers having different bandwidth capabilities.
  • FIG. 23 and FIG. 24 illustrate a case where a fractional-storage server has failed.
  • FIG. 25 illustrates a server failure due to network congestion.
  • FIG. 26 illustrates retrieving fragments according to locality.
  • FIG. 27 illustrates a broadcast-like effect.
  • FIG. 28 illustrates utilization of the entire aggregated bandwidth of fractional-storage servers for multiple content delivery.
  • FIG. 29 to FIG. 31 illustrate changes in content consumption.
  • FIGS. 32 to 34 illustrate retrieval and presentation of data objects pointed to by a master object.
  • FIG. 35 illustrates HTML code comprising data object identification and a list of associated fractional storage servers.
  • FIGS. 36 to 38 illustrate a system comprising fractional-storage servers, contact servers, and assembling devices operating to facilitate data objects retrieval and presentation.
  • FIG. 39 illustrates a server array managing a pool of bandwidth amplification devices.
  • FIG. 40 illustrates real-time content segmentation, encoding, and distribution.
  • FIG. 41 illustrates boosting fractional-storage servers' bandwidth using P2P devices.
  • FIG. 42 illustrates operation of hybrid pull and push protocols.
  • FIG. 43 illustrates one embodiment of encoding content into erasure-coded fragments, distributing the fragments to fractional-storage servers, and obtaining the fragments from the fractional-storage servers.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates one embodiment of a fractional-storage system storing erasure-coded fragments. Content 100, which may optionally be streaming content, is segmented into content segments 101 a, 101 b to 101 j (for brevity referred to as segments). Each of the segments is encoded into erasure-coded fragments. For example, segment 101 a is encoded into erasure-coded fragments 390 a to 390(N). The erasure-coded fragments are distributed to the fractional-storage servers 399 a to 399(N) and/or to the bandwidth amplification devices 610 aa. The erasure-coded fragments are then obtained by assembling devices like 661 or proxy servers like proxy server 661 s from the fractional-storage servers 399 a to 399(N) and/or the bandwidth amplification devices 610 aa. The obtained erasure-coded fragments are decoded to reconstruct the segments. The proxy server 661 s may broadcast/multicast and/or re-stream the reconstructed content, optionally using standard streaming technique, to its client(s) 6610, optionally over network 300 n.
  • In one embodiment, device 6610 is a non-assembling Customer Premises Equipment (CPE), such as an STB, PC or gaming console, capable of performing standard request, reception, and decoding of video over IP network. In one embodiment, server 661 s—also referred to as proxy server, assembling server, and in some cases assembling device—performs three primary functions: (i) receipt of content requests from non-assembling client device 6610; (ii) assembly of content, as requested by client 6610, from the fractional-storage servers and optionally from the bandwidth amplification devices; (iii) optionally, conversion of the assembled content into a streaming format; and (iv) transmission of the streaming content to the requesting client 661 o. Client 6610 can then store the content, or present it. In one embodiment, the assembled content is a general web content, including HTML, FLASH or any other data format that can be found in a web-based site.
  • In one embodiment, although server 661 s is illustrated as being connected to network 300 on one side and to network 300 n on the other, server 661 s may also be connected to another network element, such as a router, which makes the topological connection between networks 300 and 300 n. In that case, server 661 s communicates with both networks 300 and 300 n via the other network element.
  • Similarly to content 100, additional contents are segmented, encoded into erasure-coded fragments, and distributed to the fractional-storage servers and/or to the bandwidth amplification devices. Each segment may be reconstructed independently of other segments by obtaining and decoding enough erasure-coded fragments generated from that segment.
  • In some embodiments, the encoding scheme is erasure codes and/or rateless codes. In some embodiments, the fractional-storage servers 399 a to 399(N) are Content Delivery Network (CDN) servers, optionally accessed over the public Internet. In some embodiments, the control, management, content reception, content segmentation, segment encoding, erasure-coded fragment distribution, allocation of bandwidth amplification devices, and/or other kind of central supervision and operation may be performed by managing server(s) 393, which may be a part of the CDN network. It is noted that the term “fractional-storage server” is not limited to a large server and, according to the context, may include a fractional-storage bandwidth amplification device, a fractional-storage peer server, or other types of fractional-storage servers.
  • The term “assembling device” as used herein denotes a computing device that retrieves erasure-coded fragments from servers over a network. The assembling device may perform one or more of the following: (i) Decode the retrieved erasure-coded fragments into segments. (ii) Present the content reconstructed from the retrieved erasure-coded fragments. (iii) Act as a bandwidth amplification device, by receiving, storing, and forwarding erasure-coded fragments. In some embodiments, the assembling device may be any device located at the user premises, like an STB, PC, gaming console, DVD player, PVR device, or any other device able to retrieve erasure-coded fragments from a communication network. In some embodiments, the assembling device may be an assembling server. In some embodiments, the assembling device may be any computational device with access to a communication network, located at a central office, data center, BRAS location, ISP premises, or any other place with direct network connectivity. In one embodiment, the assembling device is coupled to a display device used for content presentation.
  • The abbreviation CDN denotes “Content Delivery Network”. The term “CDN server” as used herein denotes a server having one or more of the following characteristics: (i) A bandwidth (CDN_BW) that is much greater than the average bandwidth consumed by a user premises device (User_BW) receiving video streaming content. In some examples, the CDN_BW is at least 10 times, 100 times, 1,000 times, or 10,000 times greater than the User_BW. (ii) The server is located outside the last mile communication infrastructure of the end users, such that the CDN server and the end users are located in different networks. For example, the CDN server is not located under a BRAS, while the end users are located under a BRAS. Moreover, in some embodiments, the CDN servers are deployed over a wide area across the Internet and optionally located close to or on the Internet backbone. In some embodiments, the CDN server does not usually retrieve and play streaming content. In some embodiments, the CDN server has a much greater storage space than the storage space of an average player of streaming content.
  • The term “fractional-storage server” in the context of erasure-coded fragments (also applicable to “fractional-storage CDN server”), as used herein denotes a server that (i) stores less than the minimum quantity of erasure-coded fragments required to decode the erasure-coded fragments, and (ii) where at least a meaningful quantity of the stored erasure-coded fragments is not stored in order to be consumed by the fractional-storage server.
  • FIG. 2 illustrates one embodiment of assembling content utilizing a proxy server. The client 6610 requests a specific content from server 661 s (both illustrated in FIG. 1). Server 661 s then initiates a real time process of obtaining erasure-coded fragments 720 a to 720(K) at time T1 and subsequent erasure-coded fragments 730 a to 730(K) at time T2. Server 661 s then decodes the erasure-coded fragments into segments 710 a, 710 b at time T2 b and T4. The segments are then integrated into the original requested content 763 at time T5. Optionally, the integrated content 763 is made available to the next processes in real time, such that it aggregates segments at an average rate no lower than the rate of segment presentation, in order to keep the entire process in real time. Meaning that since T5, the content is available for continuous on-the-fly presentation, up to the end of the content being assembled. In one embodiment, fragments 720 a to 720(K) and 730 a to 730(K) are retrieved using a fragment pull protocol. In another embodiment, fragments 720 a to 720(K) and 730 a to 730(K) are obtained using a push protocol, wherein multiple sub-transmissions may be used to deliver the fragment sequences to server 661 s.
  • Optionally, at time T7, server 661 s starts a process 764 of transcoding content 763, optionally into a suitable format supported by the client 661 o, and then encapsulating the result into a streaming format to be delivered to client 661 o. This is done in real time, such that since T7, the content is ready to be streamed continuously up to the end of the content. Then, at time T8, content 764 is streamed 765 to client 661 o.
  • In one embodiment, server 661 s is co-located with a Broadband Remote Access Server (BRAS). In one embodiment, server 661 s is located in a Central Office (“CO”) or in an Internet Exchange Point (“IX/IXP”). In one embodiment, server 661 s is: one of servers 399 a to 399(N), all or some of servers 399 a to 399(N) operating in the mode of server 661 s, an IP aggregation network, a last mile network, part of network 300, and/or a private network. In one embodiment, network 300 n is an ISP network. In one embodiment, network 300 belongs to one Internet backbone provider, and network 300 n belongs to a second Internet backbone provider. In one embodiment, some or all of clients 610 aa are connected to network 300 n, and not to network 300. In one embodiment, client 6610 requests and controls content interaction with server 661 s using standard RTCP. In one embodiment, server 661 s streams 765 content 764 to client 6610 using standard RTP/RTSP. In one embodiment, server 661 s progressively downloads 765 content 764 to client 6610 using FLASH over TCP/IP.
  • In one embodiment, client 6610 interacts with server 661 s as if the server stores the content locally. In this case, the server converts the standard stream control instructions, received from the client, to corresponding interactions with the fractional-storage CDN servers, and creates a corresponding stream. The instructions may comprise start-stop commands, and trick play commands.
  • FIG. 3 illustrates one embodiment similar to the description of FIG. 1 and FIG. 2, with the following emphasis and differences: (i) the fractional-storage servers 399(a) to 399(N) are mostly connected to network locations 687(a) to 687(N). These network locations are connected to the Internet 300 on one side, and to operator's last mile networks 300(a) to 300(N) on the other. Examples of such locations include Central Offices, the location of a BRAS, the location of the last router that spans the last-mile aggregation network, the location at which the ISP is paying transit fees for data going/coming from the Internet on one side and is paying last-mile fees for data going/coming from the aggregation networks belonging to local Cable/Telco/PON/Wireless operators on the other side. (ii) Non-assembling clients 661 o(a) to 661 o(N) receive content services from the fractional-storage servers (each one optionally from the corresponding server connected to the corresponding aggregation network). As an example, non-assembling client 661 o(a) receives standard content streams from server 399(a). The content for the non-assembling clients is assembled by the servers, such that each server is both a content assembler and content server (in one embodiment, these two functions can be separated into two different servers. In that case, the assembling part may also stream to the non-assembling clients). (iii) Optionally, some of the fractional-storage servers 399(b) do not necessarily function as assemblers and streamers, and just function as erasure-coded fragment suppliers. These servers are not necessarily connected to locations 687(a) to 687(N). (iv) Assembling devices 661(N) and 669 do not have to use the assembling and streaming services of servers connected to locations 687(a) to 687(N) because they are able to assemble the content, with direct access to the fractional-storage servers 399(a) to 399(N). The non-assembling client and the assembling devices may all operate at the same time.
  • Still referring to FIG. 3, in one embodiment, the operator of the fractional-storage servers pays only transit fees for data moving between elements of the fractional-storage system (in use by servers that assemble content for non-assembling clients) and transit fees for data moving between the servers and the assembling devices. No Internet transit fees are paid for streaming data moving from servers to non-assembling clients, since this traffic is contained within networks 661 o(a) to 661(N), which belong to local operators, and not to Internet transit providers.
  • FIG. 4 is a flow diagram illustrating one method, comprising the following steps: In step 7320, receiving, by a first device from fractional-storage servers, erasure-coded fragments associated with segments of streaming content. In step 7321, reconstructing approximately sequential segments from fragments comprising the received fragments. In step 7322, streaming the reconstructed segments or a transcoded version of the segments to a second device shortly after reconstructing the first segment; wherein the steps of receiving and streaming at least partially overlap in time. And in optional step 7323, receiving the fragments by the first device comprises receiving the fragments using a fragment pull protocol for high latency; and further comprising the second device interacting with the first device as if the first device stores the content locally; and the first device converting the interactions with the second device into corresponding interactions with the fractional-storage CDN servers. Optionally, the fractional-storage servers are fractional-storage CDN servers located close to or on the Internet backbone. Optionally, the erasure-coding is rateless-coding potentially resulting in fragments having a limitless redundancy factor; and receiving the fragments by the first device comprises receiving the fragments using a fragment pull protocol for high latency. Optionally, the interactions between the second device and the first device comprise requests to start streaming content and trick-play instructions.
  • In one embodiment, a CDN is created by the aggregated bandwidth and storage capacity of the participating erasure-coded fractional-storage servers. In one example, a large scale CDN includes several hundreds or thousands of fractional-storage servers connected to the Internet. These servers send erasure-coded fragments to a large number, potentially millions, of assembling devices. In order to keep costs low for sending a large number of fragments from fractional-storage servers to assembling devices, the servers are located on the Internet backbone, or close to it.
  • The current Internet backbone primarily comprises different Tier one ISP (or other) networks that interconnect at various Internet Exchange Points (IX or IXP), using peering agreements. Tier one ISPs, or other backbone-forming network entities, can reach any portion of the Internet via other Tier one ISPs or other backbone-forming networks, without paying any Internet transit fee, and solely by utilizing mutual peering agreements. In order to gain access to large amounts of inexpensive bandwidth, the fractional-storage servers are typically located on the Internet backbone. This means that the servers are either co-located (and connected) with a core switching router that interconnects the Internet backbone networks at an IXP, or, alternatively, co-located (and connected) with a router which is part of the backbone network, typically located at a data center or co-location center. Fractional-storage servers can also be located close to the Internet backbone, which means that they are co-located (and connected) with a router which is part of a Tier two ISP network, which has a high bandwidth connection with at least one Tier one operator, to which it pays transit fees in order to potentially reach all portions of the Internet.
  • FIG. 5 illustrates one example of a fractional-storage server 3001, which is one of a plurality of servers forming a large-scale CDN, located on the Internet backbone by being connected to the Internet backbone via IXP 3091. In a second example, fractional-storage server 3002 is located on the Internet backbone by being connected to a Tier one backbone network 3080. In a third example, fractional-storage server 3011 is located close to the Internet backbone by being connected to a Tier two ISP network 3070, which is connected to the backbone via Tier one ISP network 3081. In one embodiment, a typical fractional-storage server is located on the backbone or close to the backbone by being attached to a switching router via a high bandwidth port, such as a 1 Gbps, 10 Gbps, or a higher bandwidth port, such as high-speed Ethernet port, usually carried over a fiber, or suitable short-distance copper lines. In one embodiment, in a typical deployment using high bandwidth connections (in 2009 terms), each of about 1,000 fractional-storage servers is located on the backbone or close to the backbone and is connected to the backbone via a dedicated (guaranteed bandwidth) 1 Gbps Ethernet port, resulting in an aggregated throughput of 1,000 Gbps, which can serve about one million subscribers of standard definition streaming video, such as client device 3020, simultaneously. Such aggregated bandwidths would have required a substantially larger number of fractional-storage servers, had they been connected to other locations in the Internet, such as at edges of the Internet (close to last mile networks), Tier 3 ISPs, or at the user premises. Moreover, in some embodiments, the cost of streaming the mentioned 1,000 Gbps when the fractional-storage servers are located on the Internet backbone, or close to the Internet backbone, is expected to be significantly lower than what is expected when the servers are located elsewhere as mentioned before.
  • FIG. 6 illustrates one example where an assembling server 4020 is located at the juncture 4010 between two networks: the first network is an ISP transit network 4014 that connects the juncture to the Internet and provides Internet transit via a switching router 4015, and the second is a last mile network 4041 that connects end users 4051 to the Internet via a switch 4031 (located, for example, inside a Central Office, a Head-End, or a street-level cabinet). In one embodiment, the juncture 4010 is a network operated by a local ISP that pays transit fees for Internet traffic passing through the transit network 4014, and last mile fees for traffic passing through the last mile network 4041. A unique property of the juncture 4010 is that it is possible for an assembling server 4020 located at the juncture to receive erasure-coded fragments sent by fractional-storage servers, such as 4001 and 4002, to assemble content, and to stream the content to a client 4051 via the last mile network 4041, without incurring any additional costs in comparison to other scenarios, such as where Internet packets flow from the Internet backbone to a Tier two ISP network to the Internet backbone and to the last mile network. In other words, since the assembling server 4020 is located at the juncture, it does not create any extra traffic via networks 4014 and 4041. The assembling server can also be located at or close to an edge of the Internet, which may include the juncture, or a point above server 4015, such as at the transit network 4014 connecting the juncture to the Internet. When located at or close to an edge of the Internet, the assembling server has the potential not to incur additional transit fees as a result of the relaying operation, since approximately the same traffic would have to pass via the same transit network in a normal scenario. Another beneficial location for the assembling server is at the home premises, since, clearly, a relaying operation performed there does not add any significant traffic to higher levels of the network. In this case, and according to one example, the fragments pass through a network connecting the assembling server to its servicing ISP, and the reconstructed segments are streamed through a home network. In contrast to the above-suggested locations, in some cases an assembling server may be located at an arbitrary point on the backbone, or at other high-level points of the Internet, where it incurs additional transit fees, as fragments assembled by the server flow once over an Internet transit network going from a fractional-storage server to the assembling server, and then a second time when streamed by the assembling server to a destination client over an Internet transit network.
  • In one embodiment, an assembling server communicates with a plurality of fractional-storage servers via the Internet on one hand, and with a client device on the other hand. The fractional-storage servers store erasure-coded fragments associated with several contents, such that each content can be completely reconstructed by assembling enough fragments. The assembling server may quickly reconstruct one of the contents, such that from the time it is knows which content to reconstruct, it takes the assembling server no more than several seconds to retrieve enough fragments and reconstruct the specific content. In one example, the assembling server is connected to the Internet via a guaranteed 10 Gbps line, such that it can completely retrieve a 1 GByte standard-definition movie file in approximately 1 [GByte]×8 [bits per byte]/10[Gbps]=0.8 seconds, plus at most 0.3 seconds communication latency=1.2 seconds. In this example, the assembling server communicates approximately in parallel with 1,000 fractional-storage servers (out of a possible several thousands), possibly using a pull protocol or using a push protocol (optionally implemented by multiple sub-transmissions), such that each of the selected 1,000 servers sends a unique 1 MBytes erasure-coded fragment to the assembling server. The entire reconstructed content occupies one segment, and the fractional-storage server needs to send only one erasure-coded fragment to the assembling server. Other configurations in which the content is segmented into multiple segments, and/or in which the 1 MBytes erasure-coded fragment includes many fragments are also possible. After quickly reconstructing the content, the assembling server may stream the 1 GByte content to a requesting client having approximately a 1 Mbps download link over a period of two hours. In the described embodiment, the assembling server quickly obtains a large file stored as multiple erasure-coded fragments over multiple fractional-storage servers, and, potentially, slowly transmits the reconstructed file to a client via a much slower connection than the connection used for assembling the content. In one embodiment, the client requests a file from the assembling server, the assembling server quickly obtains the requested file from fractional-storage servers, and briefly following the client's request (optionally a matter of seconds), starts streaming the newly obtained file to the requesting client. It is noted that the assembling server need not store the requested file internally, as it can quickly fetch it (or part/s of it) when needed. In the above example, the 1,000 fractional-storage servers share the bandwidth load of providing the requested file, such that each fractional-server sends a fragment, or several fragments, to the assembling server at a rate of approximately 10[Gbps]/1,000 [servers]=10 Mbps. The fractional-storage servers, as mentioned in the last example, may serve multiple assembling servers in parallel, each requiring a 10 Mbps bandwidth. In one example, the fractional-storage servers are fractional-storage CDN servers located close to or on the Internet backbone, each servicing dozens of assembling servers in parallel. The placement of the CDN servers close to or on the Internet backbone provides low cost and high bandwidth Internet transit.
  • FIG. 43 illustrates one embodiment of a server array including fractional-storage servers 399 a to 399(N) storing erasure-coded fragments 390 a to 390(N) associated with content. In order for assembling device 661 to reconstruct the content, it has to retrieve from the N servers sufficient number of erasure-coded fragments, for example 390 a, 390 c, 390 m and 390(N), which are noted as group 574. If the assembling device 661 cannot reconstruct the content, it retrieves one or more additional unique erasure-coded fragments, and tries again.
  • The term “erasure coding” as used herein denotes a process in which a sequence of erasure-coded fragments can be generated from a segment such that the segment can be reconstructed from any or almost any subset of the erasure-coded fragments of size equal to or somewhat larger than the size of the segment (sometimes may be referred to as “enough erasure-coded fragments” or “sufficient subset of fragments”). Examples of erasure codes include, but are not limited to, rateless codes, Reed-Solomon codes, Tornado codes, Viterbi codes, Turbo codes, any Block codes, any Convolutional codes, and any other codes that are usually used for forward error correction (FEC).
  • The term “rateless coding” as used herein denotes a type of erasure coding in which a very long, potentially limitless, sequence of rateless-coded fragments can be generated from a segment such that the segment can be reconstructed from any or almost any subset of the rateless-coded fragments of size equal to or somewhat larger than the size of the segment (sometimes may be referred to as “enough rateless-coded fragments”). Examples of rateless codes include, but are not limited to, Raptor codes, LT codes, online codes, any Fountain codes, and any other Rateless codes.
  • The term “erasure-coded fragment” denotes a fragment comprising data encoded with an erasure code (which may also be a rateless code in some embodiments). The term “rateless-coded fragment” denotes a fragment comprising data encoded with a rateless code.
  • The term “streaming content” as used herein denotes any type of content that can begin playing as it is being delivered. Streaming content may be delivered using a streaming protocol, a progressive download protocol, or any other protocol enabling a client to begin playing the content as it is being delivered. Moreover, the term “streaming protocol” includes “progressive download protocol”. In addition, the verb “streaming” refers to using a streaming protocol, using a progressive download protocol, or using any other protocol enabling the receiver to begin playing the content as it is being delivered.
  • In some embodiments, expressions like “approximately sequential segments” may denote one or more of the following non-limiting options: segments that are sequential (in time or according to a file's order), segments that are approximately sequential (such as segments with some interlace, or segments without a great amount of non-sequential data), segments generated sequentially and/or approximately sequentially from different components of content (such as storing the i-frames and p-frames of a compressed content in different segments), and/or other sequential or approximately sequential segmentation after classification or separation into different components and/or elements.
  • The term “redundancy factor” as used herein denotes the following ratio: (total size of the unique erasure-coded fragments generated from a segment and actually stored on the servers)/(size of the segment).
  • Assuming all segments have approximately the same size and all fragments generated from the segments have approximately the same size (without limiting any of the embodiments), the term “storage gain” as used herein denotes the following ratio: (size of a segment)/(size of an erasure-coded fragment). If the server stores more than one erasure-coded fragment per segment, the storage gain denotes the following ratio: (size of segment)/((size of erasure-coded fragment)*(number of stored erasure-coded fragments per segment)).
  • The term “approximately random” as used herein refers to, but is not limited to, random, pseudo random, and/or based on a long list of numbers featuring very low autocorrelation and very low correlation with other similar lists of numbers.
  • In one embodiment, different quantities of erasure-coded fragments are generated per different segments. In one embodiment, some segments store data that is considered more important than data stored in other segments, and relatively more erasure-coded fragments are generated from the segments storing the more important data than from the segments storing the less important data.
  • In one example, a compressed video content is segmented into segments storing i-frames and segments storing p-frames. Optionally, all segments are approximately of the same size, and more erasure-coded fragments are generated from the segments storing the i-frames than from the segments storing the p-frames. Alternatively, the segments storing the i-frames are shorter than the segments storing the p-frames, and approximately the same quantity of erasure-coded fragments are generated from the segments storing the i-frames and from the segments storing the p-frames.
  • In one example, a DCT content is segmented into segments storing low frequencies and segments storing high frequencies. Optionally, all segments are approximately of the same size, and more erasure-coded fragments are generated from the segments storing the low frequencies than from the segments storing the high frequencies, where in addition, the size of the erasure-coded fragments generated from the segments storing the low frequencies is smaller than the size of the erasure-coded fragments generated from the segments storing the high frequencies. Alternatively, the segments storing the low frequencies are shorter than the segments storing the high frequencies, and approximately the same quantity of erasure-coded fragments are generated from the segments storing the low frequencies and from the segments storing the high frequencies.
  • In some embodiments, the content is segmented into a plurality of segments to enable beginning to play the content as it is being obtained, and optionally enable trick play. The different segments may or may not be of the same size.
  • The following embodiments discuss different methods for segmenting the content. In one embodiment, at least one portion of the content is segmented into multiple segments in sizes within a first size range, and the remainder of the content is segmented into a plurality of segments in sizes within a second size range (additional size/s may be added similarly). The sizes included in the second size are larger than the sizes included in the first size range. Pluralities of erasure-coded fragments are generated from each of the segments. The segments of sizes within the first size range are better suited for fast retrieval, and the segments of sizes within the second size range are better suited for high-gain storage. In one example, the segments in sizes within the first size range belong to approximately the beginning of the content. In one example, the segments in sizes within the first size range belong to locations within the content requiring trick play access. In one embodiment, the segments of the first type are encoded into fewer fragments than the segments of the second type. This allows a fast retrieval of the shorter segments.
  • In one example, the content 100 is a 1 GByte encoded H.264 file, storing a 2-hour motion picture, and is segmented into approximately 10,000 segments of approximately 100 Kbytes each. In another example, the content 100 is a 4 MByte web-site information (HTML, FLASH, or any other combination of information that encodes the presentation of a website), and is segmented into 4 segments of approximately 1 MByte each.
  • In one example, the content supports streaming presentation, and the segments are small enough to enable presentation shortly after beginning the reception of the first segment(s). For example, each segment may include 96 KByte, allowing a 5 Mbps receiver to download the segment in approximately 0.2 seconds, and optionally begin the presentation shortly thereafter. In one embodiment, the time to play is reduced by segmenting certain portions of the content into smaller segments, while the remaining portions are segmented into larger segments. A smaller segment can be retrieved faster, while a larger segment may be better optimized for storage gain and/or efficient transmission.
  • In one embodiment, the short segments are 96 Kbytes in size, and the long segments are 960 Kbytes in size. The redundancy factors used for encoding short and long segments into fragments are 100 and 5 respectively. 1500 Bytes fragments are used for both sizes. The short segments are therefore encoded into (96K/1500)×100=6,400 fragments, from which only about 64 are needed for reconstruction, and the long segments are encoded into (960K/1500)×5=3,200 fragments, from which only about 640 are needed for reconstruction. Short segments are reconstructed more quickly than long ones, as they require fewer fragments to be decoded. Optionally, each fragment is stored on a different server, resulting in a storage gain of 64 for short segments, and 640 for long segments.
  • FIG. 7 illustrates one example in which the content 100 is segmented into segments, such that the first segment 104 a is smaller than the consecutive segment 104 b, which is smaller than following segments 104 c and 104 d. In another example, the content 100 is segmented into segments, such that the first several segments (e.g. 104 aa and 104 bb, which are the same size), are smaller than consecutive segments (e.g. 104 cc and 104 dd, which are the same size).
  • FIG. 8 illustrates one example in which the content 100 is segmented into cyclic sets of successive segments increasing in size. For example, 105 b is equal or larger in size than 105 a, and so on, up to segment 105 d; 105 f is equal or larger in size than 105 e, and so on, up to segment 105 h. In one example, segment 105 e is equal in size to segment 105 a. Point 105EP represents the ending of the first set, and the beginning of the second set.
  • In one embodiment, some of the content is segmented approximately sequentially, and the rest non-sequentially. For example, dividing the beginning of a video content sequentially in time, and the rest of the video content non-sequentially in time.
  • In one embodiment, a scalable, secured, moderate storage space, and durable wide-area storage system is achieved by erasure-encoding the content, then chopping the encoded content into a plurality of erasure-coded fragments, and then distributing the erasure-coded fragments to the fractional-storage servers. In this embodiment, the retrieving clients may retrieve the stored erasure-coded fragments using their maximum incoming bandwidth until approaching the server's aggregated bandwidth, the content may be any type of data file, and the chopping may be performed according to any reproducible method.
  • In one embodiment, segments are created on-the-fly, such as during a live event or when the content is made available to the segmentation process as an on-going stream. In one embodiment, the content supports streaming presentation, and the segments are of the small size, to enable content presentation shortly after beginning the reception of the first segment (or any other segment). In addition, the erasure-coded fragments are kept as small as possible, while still enabling efficient transport over an IP network. For example, each erasure-coded fragment is about 1500 Bytes and can be transported using one IP packet.
  • It is to be noted that streaming content may also be manifested as an intermediate product of a process. For example, in a case where a video camera outputs erasure-coded fragments that can be decoded into streaming content, the intermediate data from which the erasure-coded fragments are generated is considered to be streaming content (even if the video camera does not output that intermediate data). Moreover, streaming content may include: content that is produced and then immediately transmitted to a receiving server, content that is produced but stored for any length of time before being transmitted to a receiving server, content that is transmitted to a receiving server and then immediately sent from the receiving server to a client, content that is transmitted to a receiving server, then buffered for some time at the receiving server and then sent from the receiving server to a client, content that is solely played at a client, and content that is manipulated or changed or reacted to at the client while a continuation of the content is still being played at the client.
  • FIG. 9 (without the fragments marked with dashed lines) illustrates one example of distributing the erasure-coded fragments to ‘M’ CDN servers 399 a to 399(M), connected to a network 300. Encoded fragments 310 a to 310(M) of a first segment are sent for storage in servers 399 a to 399(M) respectively. Similarly, erasure-coded fragments 320 a to 320(M) of a second segment are sent for storage in servers 399 a to 399(M) respectively. In addition, other erasure-coded fragments associated with other segments of other contents, illustrated as erasure-coded fragments 390 a to 390(M), are sent for storage in servers 399 a to 399(M) respectively. The number of unique erasure-coded fragments from each segment that are stored on the servers (399 a to 399(M)) is equal to M in this example, where M may be smaller than the maximum number of unique erasure-coded fragments, meaning that only a subset of the potential erasure-coded fragments are actually stored. It is also possible to store the maximum number of unique erasure-coded fragments, or store more than one unique erasure-coded fragment per segment per server. The network 300 may be the Internet for example, or any other data network connecting multiple nodes, such as a private IP network, or a Wide Area Network (“WAN”). In one embodiment, the fragments marked with dashed lines illustrate one example where (N−M) additional servers are added to the array, and (N−M) new unique erasure-coded fragments per segment per content (310(M+1) to 310(N), 320(M+1) to 320(N), and 390(M+1) to 390(N)) are generated and added to the array. In one embodiment, only M out of the maximum possible erasure-coded fragments (L) are actually generated for storage in the first place. In one embodiment, when the additional N-M erasure-coded fragments are needed for storage (e.g., when additional servers are made available), the remainder of the N-M erasure-coded fragments are actually generated. Any time that additional unique erasure-coded fragments are needed, this process of calculating the additional erasure-coded fragments is repeated, up to the point that all L possible erasure-coded fragments are used.
  • In one embodiment, and especially when using rateless coding, L may be chosen as a sufficiently large number to account for any realistic future growth of the server array. For example, a segment of 96 Kbytes is expanded using a rateless code with a ratio of 1 to 2̂16 original symbols to encoded data, into an encoding symbol of potential size 6.29 GBytes. Assuming a 1500 Bytes erasure-coded fragment size, then potentially 4.19 million unique erasure-coded fragments can be generated. Now, it is safe to assume that for all practical uses, the server array will not grow to more than 4.19 million nodes, and may contain several thousands of servers, meaning that the encoded data can be used in all cases where additional unique erasure-coded fragments are needed, by generating new erasure-coded fragments out of the segment. Optionally, a server may store erasure-coded fragments for only some of the segments.
  • In one example of redundancy factor and storage gain (without the fragments marked with dashed lines), server 399 a stores only erasure-coded fragment 310 a from a first segment, erasure-coded fragment 320 a from a second segment, and erasure-coded fragment 390 a from a third segment. Assuming that: (i) the segment size is 1024 Kbytes; (ii) the segment is encoded using erasure code into a 4096 KByte encoded segment; (iii) the encoded segment is segmented into 256 erasure-coded fragments of size 4096/256=16 KByte; and (iv) the erasure-coded fragments are stored on 256 servers (M=256); it turns out that each server stores only a 1/64 portion of the original size of the segment. This means that each server can manage with only 1/64 of the storage requirements in comparison to a situation where it had to store the entire segment. In addition, there are 256 erasure-coded fragments altogether from each encoded segment, meaning that an assembling device that is assembling the erasure-coded fragments from the servers need only select slightly more than 64 erasure-coded fragments in order to completely reconstruct the segment, and it can select whichever slightly more than 64 erasure-coded fragments it desires out of the 256 possibly available. The redundancy factor in this example is approximately 256/64=4. All contents in this example enjoy a factor of 64 in storage gains, meaning that server 399 a, for example, stores only 1/64 of the information associated with the first segments and any additional segments belonging to other contents. In one example, each server supports high volume storage of between about 500 GByte and 500 TBytes, optionally utilizing hard drive, Solid State Drive, or any other high volume storage device(s). In these cases, each server may store many millions of erasure-coded fragments, associated with millions of segments, belonging to hundreds of thousands of different contents, and possibly more.
  • In one embodiment, new content initially encoded with a low redundancy factor is distributed to an initial number of fractional-storage servers. As the content is distributed to more servers, additional unique fragments are encoded and therefore the redundancy factor increases. Optionally, as the content's popularity increases, and/or as the load on the fractional-storage servers increases, the redundancy factor is increased, and vice versa.
  • In one embodiment, multiple unique erasure-coded fragments per segment of a new content are distributed to an initial number of fractional-storage servers with a low storage gain (i.e. each server stores multiple unique erasure-coded fragments per encoded segment). As the content is distributed to more fractional-storage servers, some of the erasure-coded fragments stored on the initial number of fractional-storage servers are removed and thereby the storage gain is increased. Optionally, as the demand for the content increases, the storage gain is decreased, and vice versa.
  • FIG. 10 illustrates three examples (each depicted by one of the columns A-C) of changing the redundancy factor according to the demand. Column A illustrates one simplified example of a storage array including 16 servers (1001 to 1016). Each server stores up to 2 different erasure-coded fragments, and can service an erasure-coded fragment transmission bandwidth of up to B. Assuming three contents (#1, #2, and #3) processed to segments and erasure-coded fragments with a storage gain of 4.
  • Assuming content #1 is the most popular, and requires a peak bandwidth of 11×B. Since each server can service up to bandwidth B, at least 11 servers are needed to service content #1 bandwidth requirements. Content #1 is therefore encoded into 11 unique erasure-coded fragments per segment, illustrated as group g1 of erasure-coded fragments stored on servers 1001 to 1011. Out of these 11 erasure-coded fragments, it is sufficient to obtain slightly more than 4 erasure-coded fragments in order to reconstruct a segment of content #1. Therefore, the resulting redundancy factor of the stored fragments associated with content #1 is approximately 11/4=2.75. Content #2 requires less bandwidth, and manages with a peak of 7×B. It is therefore encoded into 7 unique erasure-coded fragments per segment, illustrated as group g2 of erasure-coded fragments on servers 1010 to 1016. Therefore, the redundancy factor of the stored fragments associated with content #2 is 7/4=1.75. Content #3 requires a peak bandwidth of 5×B, but for some reason (for example, being a more critical content), it is encoded into 14 erasure-coded fragments per segment, illustrated as group g3 of erasure-coded fragments on servers 1001 to 1009 and 1012 to 1016. Therefore, the redundancy factor of the stored fragments associated with content #3 is 14/4=3.5. This concludes the storage availability of the servers in this example, as every server stores two erasure-coded fragments.
  • Column B illustrates an example where content #2 becomes more popular than content #1, and therefore requires more bandwidth and hence more of a redundancy factor. This is achieved by eliminating 5 erasure-coded fragments associated with content #1 that were previously stored on servers 1001 to 1005, and replacing them with 5 new unique erasure-coded fragments g4 associated with content #2. This brings the total number of erasure-coded fragments per segments of content #1 and #2 to 6 and 12 respectively. In column C, new content #4 is stored on servers 1001 to 1003 and 1014 to 1016 (illustrated as g5), by eliminating 3 erasure-coded fragments of content #1 and 3 erasure-coded fragments of content #2.
  • Throughout the examples of FIG. 10, a record of “what erasure-coded fragments are stored where” may be: (i) kept in each of the servers 1001 to 1016. In this case, when an assembling device is assembling content #2, it will send a query to servers 1001 to 1016, asking which one is storing erasure-coded fragments of content #2; (ii) kept in a control server. In this case, an assembling device will ask the control server to send back a list of all servers storing erasure-coded fragments of its required content.
  • FIG. 11 illustrates one embodiment of a server array including fractional-storage servers 399 a to 399(N) storing erasure-coded fragments 390 a to 390(N) associated with content. In order for assembling device 661 to reconstruct a segment 101 a of the content, it has to retrieve at least K erasure-coded fragments. In one example, k=4 and the assembling device 661 chooses approximately randomly from which servers to retrieve the 4 different erasure-coded fragments. It chooses to retrieve fragments 390 a, 390 c, 390(N−1) and 390(N), which are noted as group 573, and reconstruct the segment 101 a. Consequent segments of the content are reconstructed in a similar fashion, and the content may eventually be fully retrieved by combining all relevant segments. If the assembling device 661 cannot reconstruct the segment 101 a, it retrieves one or more additional unique erasure-coded fragments, and tries again.
  • In one embodiment, the content being distributed supports stream presentation, and segment 101 a is of small size, to enable content presentation by assembling device 661 shortly after beginning the reception of the segment (or any other segment of the content). For example, segment 101 a is 96 KByte, allowing a 5 Mbps download speed receiver to obtain the entire segment (by requesting enough erasure-coded fragments to enable the reconstruction of the segment, and such that the total size received of all requested erasure-coded fragments is slightly larger than the segment) after approximately 0.2 seconds from request, and beginning the presentation shortly or right after the successful decoding and reconstruction of segment 101 a.
  • In some embodiments, the fragments are small enough to be contained in one packet. In one embodiment, each fragment is about 1400 bytes, and can fit into one UDP or RTP packet transmitted over Ethernet. The stateless nature of UDP and RTP allows the servers to send one packet with one fragment very quickly, without the need for any acknowledgement or hand shaking. In some embodiments, the fragment pull protocol requests use one stateless packet, like UDP or RTP. In one embodiment, the assembling device requests about 100 fragments approximately in parallel, using 100 separate requests or one or few aggregated requests. About 100 servers respond by sending about 100 fragments, each encapsulated in one stateless packet, after a short delay, and the assembling device receives the fragments within a fraction of a second. Assuming an Internet round trip delay of 100 ms, and server processing latency of 100 ms, then after 200 ms the assembling device starts receiving all 100 fragments. With a modem of 5 Mbps, and assuming 1400 bytes per fragment, all 100 fragments are received 1400×100×8/5 Mbps=224 ms after the initial delay, meaning that content can be presented 200+224=424 ms after request (decoding and other process time has been ignored in this example).
  • The following embodiments describe processes for on-the-fly erasure-coded fragment retrieval from fractional-storage servers.
  • In one embodiment, a method for obtaining erasure-coded fragments from fractional-storage servers to reconstruct a segment includes the following steps: (i) identifying the next segment to be obtained; optionally, the segments are approximately sequential segments of streaming content obtained according to their sequential order; (ii) optionally, determining the minimum number of fragments needed to reconstruct the segment; (iii) are enough identified relevant servers (i.e. servers storing the required fragments) available from the process of obtaining prior segment/s? (iv) if no, identifying enough relevant servers; (v) if yes, requesting enough fragments from the identified relevant servers; if less than enough fragments are obtained from the identified relevant servers, go back to step iv and identify additional relevant server/s; (vi) reconstruct the segment from the obtained fragments; and (vii) optionally, go back to step i to obtain the next segment.
  • In one embodiment, a method for obtaining erasure-coded fragments from fractional-storage servers to reconstruct multiple segments includes the following steps: (i) identifying multiple segments to be obtained, optionally according to their sequential order; (ii) optionally, determining the minimum number of fragments needed to reconstruct the segment; (iii) optionally, determining the number of fragments to be obtained approximately in parallel; (iv) are enough identified relevant servers available from the process of obtaining prior segment/s? (v) if no, identifying enough relevant servers; (vi) if yes, requesting enough fragments from the identified relevant servers, optionally in parallel and according to the sequential order of the segments; (vii) if less than enough fragments are obtained from the identified relevant servers, go back to step iv and identify additional relevant server/s; (viii) reconstructing the segment/s from the obtained fragments; and (ix) optionally, go back to step i to obtain the next segments.
  • In one embodiment, a method for obtaining erasure-coded fragments from fractional-storage servers to reconstruct a segment in a burst mode includes the following steps: (i) identifying the next segment to be obtained; (ii) optionally, determining the minimum number of fragments needed to reconstruct the segment; (iii) are more than the minimum number of relevant servers available from the process of obtaining prior segment/s? (iv) if no, identifying more than the minimum relevant servers; (v) if yes, requesting more than the minimum number of fragments needed to reconstruct the segment; if less than enough fragments are obtained, go back to step iv and identify additional relevant server/s; (vi) reconstructing the segment from the obtained fragments; and (vii) optionally, go back to step i to obtain the next segment.
  • The various methods for obtaining erasure-coded fragments from the fractional-storage servers for reconstructing one or more segments may be combined as needed. In one example, the initial segment/s are obtained using a burst mode and the following segments are retrieved without requesting extra fragments. In another example, the initial segment/s are obtained approximately in parallel and optionally using a burst mode, and the following segments are obtained one by one and optionally without requesting extra fragments. The fragments may be obtained using a pull protocol and/or a push protocol. Moreover, the servers from which to retrieve the fragments may be selected according to one or more of the various discussed methods for selecting the servers and/or load balancing the servers.
  • In some embodiments, a push protocol is used to obtain fragments. A push protocol may be implemented using one transmission carrying fragments from a source server to a destination receiver, or may be implemented using a plurality of sub-transmissions. When using sub-transmissions, each sub-transmission transports a fraction of the fragments needed for segment reconstruction. Segments may be reconstructed from fragments received via sub-transmissions after obtaining decodable sets of erasure-coded fragments; optionally one set per segment. A sub-transmission may be transported using an IP stream such as RTP, an HTTPS session, or any other protocol suitable for transporting a sequence of fragments between a source server and a destination assembling device.
  • FIG. 11 illustrates one embodiment, in which content is segmented and erasure-coded. Fragments 390 a to 390(N), belonging to a first segment, are distributed to servers 399 a to 399(N) respectively. Other fragments belonging to subsequent segments are similarly distributed to servers 399 a to 399(N). The servers may use a push protocol to transport the fragments to an assembling device. A push protocol sub-transmission may comprise a sequence of fragments associated with multiple segments. In one example, the fragments are ordered according to the sequential order of the segments in a streaming content. Server 399 a sends a first sub-transmission to a destination assembling-device. Optionally, the first sub-transmission comprises a sequence of fragments starting with fragment 390 a, associated with the first segment, and continuing with fragments belonging to subsequent segments. Server 399 c sends a second sub-transmission to the destination assembling-device, optionally starting with fragment 390 c, associated with the first segment, and continuing with fragments belonging to subsequent segments. In a similar fashion, servers 399(N−1) and 399(N) send additional sub-transmissions to the destination assembling-device, each comprising a unique fragment sequence.
  • When using a push transmission, the assembling device does not explicitly ask for each fragment, but instead instructs each of the different servers to start sending it a fragment sequence using a sub-transmission. The destination assembling-device receives the sub-transmissions sent by servers 399 a, 399 c, 399(N−1) and 399(N). It gathers 573 the first fragment from each sub-transmission to reconstruct the first segment 101 a. In a similar fashion, additional fragments belonging to subsequent segments are obtained from the sub-transmissions, and used to reconstruct the segments. It is noted that any combination of sub-transmissions may be used, as long as a decodable set of fragments is obtained per each segment. It is also noted that FIG. 11 illustrates a non-limiting embodiment and a sub-transmission may include two or more unique erasure-coded fragments per segment.
  • In one embodiment, the push sub-transmissions is synchronous (all servers sending the fragments of each segment at approximately the same time). In another embodiment, the push sub-transmission is asynchronous and the arrival of different fragments associated with a specific segment at the assembling device side may be spread over a long period. This may occur, as an example, when some push servers are faster than others. In one embodiment using asynchronous sub-transmissions, the assembling device aggregates whatever fragments it can before presentation time of each segment, and then optionally supplements fragments using a pull retrieval process. A server that does not send fragments fast enough, and therefore usually causes supplemental requests, may be ordered to stop the sub-transmission. Another server may be requested, optionally by the assembling device, to replace the slow server by initiating a new sub-transmission.
  • In one embodiment, the push-transmissions carry more erasure-coded fragments than needed for segment reconstruction. In one embodiment, the push transmissions carry fewer erasure-coded fragments than needed for segment reconstruction, and the remaining fragments are pulled by the assembling device.
  • In some embodiments, a broadcast-like effect is achieved by distributing to and retrieving from fractional-storage servers a broadcast channel/live content in real time, using a combination of real time distribution and real time retrieval techniques. In a broadcast-like effect, a given channel or content for broadcasting is distributed to at least one assembling device, optionally by means of pushing relevant fragments to the assembling device, or by pulling the relevant fragments by the assembling device, and potentially to many assembling devices at approximately the same time, which creates a similar effect to traditional broadcasting.
  • FIG. 12 illustrates one embodiment of processing a content source 700 for real time presentation. Content examples include, but are not limited to, a live video broadcast event, a pre-recorded show, or any real time conditioned source. The content 700 is available at time T1=0. The content 700 is segmented in real time into multiple segments, such that the first segment 710 a is available at T3. T3 is determined by the size of the segment and the selected compression scheme. For example, if an H.264 compression is used to generate an average stream of 1 Mbps, and the size of the segment is 96 Kbytes, then T3 minus T2 equals 96 KByte ×8(Bits/Byte)/1 Mbps=0.77 seconds on average, where T2 is the process delay. If T2 is about 0.2 second, then the first segment 710 a can be ready for the next step after about 1 second from the time that content 700 is first made available. Subsequent segments 710 b to 710J are made available sequentially in time.
  • Next, at T4, erasure-coded fragments 720 a to 720(N) are being encoded from segment 710 a. At T6, the encoding process is performed for segment 710 a, and all the erasure-coded fragments 720 a to 720(N) are made available. In one example, the time between T4 and T6 is equal to or less than the average segment creation time, in order to allow the process to maintain real time performance, such that at any point in time during the on-going availability of segments, the encoding process generates all erasure-coded fragments without picking up any delay above T6 minus T3 (which is the latency between segment availability and erasure-coded fragment availability). T6 minus T1 may be typically 2-3 seconds if T3 minus T2 is 0.77 seconds. T4 minus T3 may be typically a fraction of a second. Similarly, erasure-coded fragments 730 a to 730(N) are being encoded from segment 710 b, and are made available at time T9. The process of fragment encoding is repeated in real time up to the last segment 710J of content 700.
  • Next, at T5 (which can potentially occur before T6, but also after T6) the erasure-coded fragments 720 a to 720(N) are distributed 740 a to a server array. The distribution process 740 a ends at T8. In one example, T8 minus T5 is equal to or less than the average segment creation time, in order not to have delays. The process of distributing the erasure-coded fragment is repeated 740 b for erasure-coded fragments 730 a to 730(N), and for all subsequent erasure-coded fragments associated with the next segments.
  • Optionally, at T7, the erasure-coded fragments 720 a to 720(N) are distributed 750 a from the servers to groups of bandwidth amplification devices. In one example, the distribution ends at T10, such that T10 minus T7 is equal to or less than the average segment creation time, in order not to have delays. Subsequent erasure-coded fragments associated with the next segment are distributed 750 b, and the process continues until the erasure-coded fragments associated with the last segment 710J are distributed.
  • FIG. 13 illustrates one embodiment of real time streaming content retrieval from fractional-storage servers. An assembling device begins a process of obtaining streaming content 700 for presentation. Starting at T1, the assembling device requests erasure-coded fragments 720 a to 720(K). By T2, all K erasure-coded fragments are obtained, and at time T2 b until T4, erasure-coded fragments 720 a to 720(K) are decoded into segment 710 a. The retrieval time of the erasure-coded fragments and the segment decoding time should be equal to or faster than the corresponding presentation time, in order to enable a continuous presentation, once presentation begins at T5. T2 b minus T2 is a short delay, and can be fractions of a second. Subsequent erasure-coded fragments 730 a to 730(K) are retrieved between T2 and T3, and are decoded into subsequent segment 710 b between T4 and T6.
  • In one example, the streaming content 700 is encoded at 1 Mbps, and the segment size is 96 Kbytes. The presentation of each segment takes about 0.77 seconds. Retrieving fragments 720 a to 720(K) takes no more than 0.77 seconds, meaning that the assembling device's connection bandwidth must be 1 Mbps or higher. Decoding segment 710 a takes no more than 0.77 seconds. If a small delay of 0.2 seconds is assumed for both T2 b minus T2 and T5 minus T4, then T5 can start at 0.77+0.2+0.77+0.2=1.94 seconds after T1, meaning that presentation can begin about 2 seconds following request of the first erasure-coded fragment. In another example, the retrieval process and the decoding process are performed faster than the real time presentation bounds, therefore enabling a shorter time to play and a download rate that exceeds the presentation rate.
  • In one embodiment, the erasure-coded fragments 720 a to 720(K) are retrieved in approximately random order, or any other order, as long as at least the K erasure-coded fragments needed for decoding the segment 710 a are available until time T2.
  • In one embodiment, the fragments associated with sequential segments of streaming content are delivered to an assembling device as a plurality of sub-transmissions. In this case, each fractional-storage server participating in the delivery of the fragments to the assembling device sends a transmission to the assembling device comprising a sequence of erasure-coded fragments. This transmission is referred to as a sub-transmission. In one example, each sub-transmission contains at least one fragment per each sequential segment of the streaming content. In one example, the sub-transmission starts at a segment indicated by the assembling device, and continues from that point onwards, approximately according to the sequential order of segments, until the assembling device instructs the server to stop, or until reaching the last segment of the content. Each sub-transmission carries only a fraction of the fragments (per segment) needed to reconstruct the segments of the streaming content, such that the combination of at least two sub-transmissions received by the assembling device from the servers allows the assembling device to obtain enough fragments needed to reconstruct each segment.
  • In one embodiment, each sub-transmission is delivered to the assembling device via a streaming session, such as an RTP session, wherein the RTP packets transport the fragment sequence approximately according to the order of the sequential segments. In one embodiment, each sub-transmission is delivered to the assembling device via an HTTP connection, or other closed-loop data transfer mechanisms over TCP/IP. In one embodiment, the assembling device may change one or more transmitting servers on the fly, by instructing the server(s) to stop sending an already active sub-transmission—as may be needed in a case of an RTP session, and initiating new sub-transmissions from other servers instead. Replacement of transmitting servers on the fly may be needed in a case of a server failure, network failure, or high load or latency conditions.
  • In one embodiment, a distributed system is located in a few to dozens of data centers (also known as server farm or datacenter), located close to or on the Internet backbone, together housing at least 100 fractional-storage CDN servers. The servers store erasure-coded fragments associated with approximately sequential segments of streaming contents, with a storage gain of at least 5, and transmit the stored fragments on demand to assembling devices approximately according to the sequential order of the segments. In many cases, the data centers provide a convenient place to place the CDN servers close to or on the Internet backbone. A data center can be also a collocation center, or an Internet Exchange Point. In one example, a single data center can house many fractional-storage CDN servers.
  • In one example, a streaming system comprising at least several hundreds of fractional-storage CDN servers located close to or on the Internet backbone, storing erasure-coded fragments encoded with a redundancy factor greater than one, and associated with approximately sequential segments of streaming contents. At least 100,000 assembling devices concurrently obtain fragments from the CDN servers, wherein the system achieves efficient load balancing and fault tolerance between the various CDN servers by determining for each of the assembling devices from which servers to obtain the fragments.
  • In one example, a system comprising at least 1,000 fractional-storage CDN servers is connected to the public Internet. The servers store erasure-coded fragments associated with approximately sequential segments of streaming contents, with a storage gain greater than 5, and transmit the stored fragments on demand to assembling devices approximately according to the sequential order of the segments. Wherein the aggregated bandwidth utilized by the servers for transmitting the fragments to the assembling devices exceeds 1 Giga bit per second times the number of the CDN servers. In one optional example, the system comprises at least 10,000 fractional-storage CDN servers and the aggregated bandwidth utilized by the servers exceeds 10 Giga bit per second times the number of the CDN servers.
  • FIG. 14 illustrates one embodiment of real time streaming content retrieval from fractional-storage servers, wherein erasure-coded fragments 720 a to 720(K) are retrieved in a fast cycle, meaning that several erasure-coded fragments are obtained approximately in parallel. As a result, the interval T2 minus T1 is more or less limited only by the download bandwidth of the assembling device's modem. Referring to the example of FIG. 13, T2 minus T1 can be reduced from 0.77 seconds to 0.15 seconds, if the modem operates at 5 Mbps (instead of 1 Mbps).
  • In one embodiment, T1 to T2 represents a fragment fetch cycle that corresponds to the beginning of streaming content to be presented (in that case, segment 710 a is the first segment of the content, and presentation 700 corresponds to the beginning of the streaming content), or corresponds to a certain point within the streaming content to be presented starting this point onwards (in that case, segment 710 a is a segment within the content, and presentation 700 corresponds to playing the content starting not from the beginning, but rather from segment 710 a, located somewhere within the content). This is also known as trick play. In one embodiment, erasure-coded fragments 720(a) to 720(K) are obtained such as to result in approximately a maximum utilization of the download capabilities of the assembling device, and such that the rate of requesting erasure-coded fragments results in a data arrival rate that on average utilizes the assembling device's maximum download bandwidth.
  • FIG. 15 illustrates one embodiment of a fragment pull protocol. Assembling device 861 (also represented by protocol diagram element 810 b) obtains erasure-coded fragments from fractional-storage servers 899 a to 899(N) (also represented by protocol diagram element 898), utilizing the following steps: (i) deciding 810 a which segment to retrieve; (ii) device 861 sending requests to some of the fractional-storage servers for erasure-coded fragments associated with the desired segment. For example, requests 880 a to 880(K) for erasure-coded fragments 890 a to 890(K), from servers 899(a) to 899(K), correspondingly; and (iii) the servers respond by sending the requested erasure-coded fragments. For example, servers 899 a to 899(K) send 881 a to 881(K) erasure-coded fragments 890 a to 890(K) to device 861. The fragment request and receipt process begins at T1 c and ends at T1 d. At time T1 d, device 861 has enough erasure-coded fragments (K) to reconstruct the segment selected at 810 a. In one embodiment, the process from T1 c to T1 d occurs in real time, in support of streaming content presentation.
  • FIG. 16 illustrates a similar process to FIG. 15, where request 890 b fails to result in a reception of erasure-coded fragment 890 b for any reason (such as a server fault, network congestion, or abnormal latency conditions). Assembling device 861 therefore issues another request 882(K+1) for erasure-coded fragment 890(K+1) in response, and receives 883(K+1) the additional erasure-coded fragment 890(K+1) needed to reconstruct the segment.
  • FIG. 17 illustrates a similar process to FIG. 15, where one or more extra erasure-coded fragments (in addition to the needed K) are requested in advance (illustrated as request 880(K+1) for erasure-coded fragment 890(K+1)), such that if, as an example, request 890 b fails to result in a reception of erasure-coded fragment 890 b, assembling device 861 does not have to request new erasure-coded fragments to reconstruct the segment, since there are still at least K erasure-coded fragments that were successfully received and therefore the segment can be reconstructed.
  • In one embodiment, more fragments than needed to reconstruct a segment are requested, such that the additional requested fragments approximately compensate for fragment failure conditions. If, statistically, F fragment requests are expected not to result in the reception of a fragment (i.e. fragment loss), out of a total number of K+F fragment requests (wherein K is the minimal number of fragments needed to reconstruct a segment), then it is possible to request K+F fragments instead of just K. In one embodiment, more than K+F fragments are requested, since the quantity of the received fragments is a statistical variable. In this case, K+F+S fragments are requested, wherein S is a safeguard amount of additional requests to assure that at least K fragments are received. In one embodiment, the fragment loss F changes over time, and the assembling device handles the change by increasing or decreasing the number of fragments requested per segment. In one embodiment, the assembling device may determine F based on previous fragment failure rates.
  • FIG. 18 illustrates a similar process to FIG. 15, where requests for erasure-coded fragments are loaded into one aggregated request 870, that is sent to one of the fractional-storage servers (the receiving server is illustrated as protocol diagram element 888 a, and will be also referred to as a “relay server”). In one example, if the relay server is 899(N), then, it will forward the request to additional servers 899 a to 899 c (protocol element 888 b) via new requests 870 a to 870 c (on behalf of assembling device 861). Servers 899 a to 899 c will then respond by sending the erasure-coded fragments 890 a to 890 c (871 a to 871 c) to the assembling device 861. Server 899(N) will send 871(N) fragment 890(N) to the assembling device.
  • The term “fragment pull protocol for high latency” as used herein denotes a protocol enabling an assembling device to request one or more fragments from one or more providing sources, wherein the time to transmit the one or more fragments in response to the assembling device request, through the slowest communication link connecting the responding source and the assembling device, is smaller than the round trip communication delay between the assembling device and the responding source, excluding the processing time of the providing source. For example, if the round trip communication delay between Israel and the USA is about 200 ms, the assembling device requests one fragment sized about 1500 bytes, and the slowest communication link is an ADSL line connecting the assembling device at 1.5 Mbps, then the time it takes to transmit the requested fragment through the slowest communication link is about 1500*8/1500000=8 ms, which is much smaller than the round trip delay. Many of the disclosed embodiments using fragment pull protocol may use fragment pull protocol for high latency for retrieving the fragments.
  • In one embodiment, a method includes the steps of obtaining, by an assembling device from fractional-storage servers, erasure-coded fragments associated with a segment of streaming content; detecting a first quantity of at least one fragment associated with the segment, which have failed to arrive at the assembling; requesting via a fragment pull protocol for high latency approximately the first quantity fragments; and repeating the steps of detecting and requesting until enough fragments have been obtained for reconstructing the segment. Optionally, the steps are repeated approximately sequentially on the segments. Optionally, the streaming content comprises approximately sequential segments. Optionally, detecting the failure comprises determining which fragment has failed after not obtaining the fragment within a predetermined period from issuing its request, and/or receiving a message that does not contain the actual fragment's payload. And optionally, the fragments are obtained via sub-transmissions transmitted by the servers.
  • In one embodiment, a method for retrieving erasure-coded fragments includes the steps of: determining, by an assembling device, the time remaining to reconstruct a segment of streaming content; estimating the probability of receiving a sufficient quantity of already-ordered erasure-coded fragments to reconstruct the segment during the remaining time; and if the estimated probability is below a predefined threshold, issuing one or more additional fragment requests, using a fragment pull protocol, until the estimated probability equals or passes the predefined threshold. Optionally, the already-ordered fragments and the additional fragment requests are received from fractional-storage CDN servers. Optionally, the already-ordered fragments are received via at least two sub-transmissions transmitted by the servers. Optionally, the already-ordered fragments are received via a fragment pull protocol. And, optionally, estimating the probability includes considering the probability of each request to result in a fragment reception during the remaining time.
  • In one embodiment, an assembling device may aggregate several fragment requests into one message. The aggregated message is then sent to a fractional-storage server, possibly in a payload of a single packet, and optionally in order to conserve outgoing bandwidth and/or to reduce the number of packets needed to convey the requests. The fractional-storage server may then read the aggregated message and act accordingly by sending a plurality of fragment responses to the assembling device. The fragment responses may include one fragment at each payload, as is the case of responding to a single fragment request, or it may include an aggregated response including multiple fragments at each payload.
  • In one embodiment, fragment aggregation is used for retrieving fragments associated with segments of streaming content, and each aggregated message requests fragments associated with a specific segment. For example, three fractional-storage servers store together 12 fragments associated with a certain segment, such that each stores four fragments. The assembling device needs the 12 fragments in order to reconstruct the segment and therefore issues three aggregated fragment request messages—one for each server. The three servers receive the aggregated request messages, and each server responds by sending its four fragments to the assembling device. Therefore, only three aggregated request messages were needed to retrieve the 12 fragments. The assembling device may request fragments associated with the next segment(s) in a similar manner using additional aggregated requests, optionally until receiving all required segments.
  • FIG. 19 illustrates various examples of aggregated fragment request messages. In one example, the aggregated fragment request messages 503, which may be transported using one packet payload, uses a format (or a data structure) comprising a segment identification 802 and the number-of-fragments 803 requested by the assembling device. The receiving fractional-storage server uses the segment identification information to locate the relevant fragments associated with the identified segment, and then uses the number-of-fragments parameter 803 to determine how many fragments, out of the located fragments, should be transmitted to the requesting device as a response.
  • In one embodiment, the fragments are erasure-coded fragments and the fractional-storage servers store unique erasure-coded fragments. The assembling device receives multiple erasure-coded fragments from multiple servers, such that the number of received fragments is at most the sum of all number-of-fragments 803 values as has appeared in all of the aggregated requests messages. In this case, the various fractional-storage servers need no inter-coordination to respond to message 503, as the assembling device does not care which of the fragments associated with the identified segment were received, as long as at least the requested number of unique erasure-coded fragments were received. In some embodiments, aggregated fragment request messages and single fragment requests are used concurrently.
  • In another example, an aggregated fragment request message 502 further comprises a content identification field 801. In still another example, an aggregated fragment request message may comprise requests for fragments associated with different segments of streaming content. In this case, and according to one example, the aggregated request 505 comprises a sequence of identified segments 902 containing the identification of all segments for which the assembling device requests fragments. Optionally, in the absence of additional information in the aggregated message, the fractional-storage server may assume that one fragment per each of the segments identified in sequence 902 is required. In this case, the server will locate such fragment per each of the identified segments, and will send them to the requesting device. The requesting device may include information regarding how many fragments are required per identified segment, as a number-of-fragments parameter 903. The number-of-fragments 903 may be a scalar value that indicates how many fragments are requested per each identified segment, or it may be a vector value, indicating the number of required fragments per each of the identified segments in the sequence.
  • In one embodiment, fractional-storage server responds to a message, comprising aggregated requests for fragments associated with multiple segments, by sending all of the requested fragments to the requesting device, or by sending all of the requested fragments to the requesting device in a certain order. The order may follow the sequential order of the segments in streaming content. In one example, the fractional-storage server first sends the fragments associated with the first identified segment, and then sends the fragments associated with the next identified segments. Packet payload 505 illustrates one example of an aggregated fragment request message comprising a transmission delay 909 instructing the fractional-storage servers to incorporate intended delays while transmitting the different fragment responses. In one example, the transmission delay 909 sets the desired time delay between transmission of each group of fragments associated with the segments identified in the sequence 902. In this case, the fractional-storage server responds to the aggregated request message by transmitting a sequence of fragments, associated with the identified segments, at a duty cycle determined by the transmission delay 909. In one example, the segments belong to streaming content and the effective rates at which the servers transmit their responses are controlled using the transmission delay 909.
  • In one embodiment, the fragments are erasure-coded fragments and the assembling device uses multiple aggregated fragment request messages for obtaining the required content. Each message comprises multiple fragment requests associated with one sequence of segment(s) and addressed to a different fractional-storage server storing the relevant fragments. Each such sequence of segments may be referred to as a portion of streaming content, whereby the assembling device uses multiple aggregated messages to obtain each portion of the streaming content at a time. In one embodiment, the assembling device uses a wireless interface, such as WiFi, to connect to the Internet and communicate with the fractional-storage servers, and the fragment request aggregation techniques may dramatically reduce the number of time such an assembling device needs to gain access to the outgoing wireless interface. Moreover, the fragment request aggregation techniques may be combined with many of the disclosed embodiments for retrieving erasure-coded fragments.
  • Still referring to FIG. 19, in one embodiment, requests for fragments are transmitted via an IP network, in the form of packet payloads. The packet payload may be, as an example, the payload of a UDP packet carried over IP. In one embodiment, packet payload 501 contains a fragment request comprising content identification 801 and segment identification 802. A server receiving such a request uses the content and segment identifications to locate a relevant erasure-coded fragment, and transmits it back to the requester. Optionally, if no references are made as to how many fragments are requested per the identified segment, the server may assume that only one fragment is requested.
  • In one embodiment, the fragment responses are transported over an IP network, using packet payloads. In one example, packet payload 701 includes an actual requested fragment payload 602, and, optionally, information regarding the segment 601 to which the fragment payload belongs. The segment information may be needed if the requester retrieves fragments associated with more than one segment, and therefore it must know to which segment the fragment payload belongs. In one example, the fragment response is transported over UDP/IP, or TCP/IP, such that the payload 701 is a UDP or TCP payload.
  • In one embodiment, multiple segments of content, which, in one example, is streaming content, are reconstructed by an assembling device retrieving multiple erasure-coded fragments associated with the multiple segments. Since a fragment request does not always result in a reception of the fragment, some requested fragments may fail to arrive at the assembling device. Therefore, the assembling device checks (from each of the segments for which fragments have already been requested) which requested fragments have failed to result in a correct reception of a fragment. For each such failure, the assembling device issues an additional request for a fragment. The additional requests are associated with segments for which fragments have already been requested before, and therefore, in one example, the resulting fragment retrieval process includes the following two sub-processes: a first sub-process of requesting fragments associated with new segments to be reconstructed, and a second sub-process of requesting additional fragments needed to complement already requested fragments, in order to reconstruct the segments. The first and second sub-processes work together, such that the second sub-process may complement fragments associated with a first segment, while the first sub-process runs ahead in an attempt to obtain fragments needed to reconstruct a second segment; wherein the second segment is located ahead of the first segment. The first and the second sub-processes can also be described as two different quantities of fragments being requested: a first quantity associated with the first sub-process requests, and a second quantity associated with the second sub-process requests.
  • FIG. 20 illustrates one example of retrieving fragments and compensating the failures. Content 100 is segmented into segments 102 a, 102 b, and 102 c, and each segment is erasure-coded into four fragments, as illustrated for segment 102 a, which is coded into fragments 391 a to 391 d. This example assumes that each segment can be reconstructed by obtaining any three fragments associated with it. Prior to time T1, the assembling device requests fragments 391 a, 391 b, and 391 c in order to reconstruct segment 102 a. At time T1, only two of the requested fragments 391 a and 391 c have resulted in fragment reception, and were placed 394 a, 394 c in the buffer 398. Fragment 391 b has not yet been received at time T1, but can still be received later, and therefore at time T1 the assembling device does not yet try to complete the missing fragment with an additional fragment request. Instead, it proceeds and requests fragments associated with segment 102 b. At time T2, all of the fragments requested for segment 102 b have arrived, and have been placed 395 a, 395 b, 395 d in the buffer 398. Prior to time T2, the assembling device transmits additional requests for fragments associated with segment 102 c, and at time T3 two out of the requested fragments have arrived, and have been placed 396 b, 396 c in the buffer 398. At time T3, the assembling device realizes that the chances on receiving the previously requested fragment 391 a (associated with segment 102 a) are too small. This may be concluded, for example, as a long time having elapsed since the request, or by receiving a message from a fractional-storage server saying it is too loaded to respond with a fragment. Either way, the assembling device chooses to request an additional fragment 391 d, instead of the previously requested 391 b. At time T4, the additional request is met with the reception of fragment 391 d, and with its placement 394 d in the buffer 398. At time T5, the third fragment previously requested for segment 102 c has finally arrived and has been placed 396 a in the buffer 398, so there is no need to complement with an additional fragment request. At time T5 all fragments needed to reconstruct segments 102 a to 102 c are stored in the buffer 398. It is noted that only one additional fragment request was needed in order to account for the lack of reception of fragment 391 b, and that this additional fragment request was issued after consequent fragments had already been requested for consequent segments.
  • In one embodiment, significant communication latency and/or other latencies between requesting and receiving a fragment exists. A significant latency may result in a case where the average latency in responding to fragment requests is in the order of magnitude of the total transmission time of all fragments needed to reconstruct a segment. As an example, if a segment needs 64 fragments of 1500 Bytes each to be reconstructed, and the assembling device has a 1.5 Mpbs incoming connection, then it takes about (64(fragments)×1500(bytes per fragment)×8(bits per byte))/1.5 Mbps=0.512 seconds to transmit the fragment via the incoming connection. If the average latency is 0.2 seconds (which is within the order of magnitude of 0.512 seconds), then from the time of requesting the first fragment to the time all fragments have arrived, a period of no less than 0.512+0.2=0.712 seconds may elapse. If the process takes 0.712 seconds, the resulting effective incoming throughput will be only (64(fragments)×1500(bytes per fragment)×8(bits per byte))/0.712(seconds)=1.07 Mbps, which is significantly less than the potentially 1.5 Mbps. In a case where some fragments are lost, and need to be requested again, the total time for segment retrieval may reach as high as 0.512+0.2+0.2=0.912, and the effective incoming throughput down to only 842 Kbps. The significant latency therefore adversely affects the effective incoming throughput. The effective throughput can be made to approach the incoming bandwidth available to the assembling device by utilizing the above-described fragment retrieving process comprising the two sub-processes of requesting fragments and complementing the failures. In this case, the first sub-process can be made to result in an average targeted fragment reception throughput, and span multiple segments, without handling the lost fragments. The second sub-process can then complement with additional needed requests, approximately per each fragment request that seems not to result in an actual fragment reception. According to another view, the first sub-process is an open loop retrieval process, in which the assembling device does not wait to check whether enough fragments have arrived per segment. And the second sub-process is the process, which closes the loop on fragments arrival, in order to make sure that every segment has enough fragments to enable reconstruction.
  • In one embodiment, an assembling device may control the erasure-coded fragment reception throughput by controlling the rate of fragment request. For example, each of n fragments has a known size S1 to Sn. Therefore, issuing n requests over a period of T will result in an average fragment reception throughput of (S1+S2 . . . +Sn)/T. In one example, if each fragment is 1500 Bytes, and 64 fragment requests are issued over a period of 0.5 seconds, then the average expected fragment arrival throughput is (64×1500×8)/0.5=1.53 Mbps. The fragment requests do not need to be uniformly spread over the period of 0.5 seconds, although such a spread may result in a more stable throughput, which means that less communication buffering will be needed. Using the above-described rate-control technique may result in one or more of the following: retrieving the content at a target fragment reception throughput; preventing communication buffer spill at the last mile network resulting from uncontrolled fragment requests; and/or reducing fragment loss due to averaging the fragment traffic.
  • In one embodiment, an assembling device transmits aggregated messages to a relay server, including the number of fragments needed per certain segment, but without identifying the storage servers from which fragments are to be requested. The relay server selects the appropriate storage servers to which the fragment requests are to be transmitted, and transmits discrete or aggregated fragment requests, corresponding to the number of fragments requested by the assembling device, to the selected storage servers. The storage servers receive the fragment requests from the relay server, and transmit the requested fragment to the assembling device. The relay server may select the storage servers according to one or more criteria, as long as the selected storage servers store relevant fragments. Optionally, the relay server forwards the address of the assembling device to the selected storage servers, and/or adds the address of the assembling device to the fragment requests transmitted to the selected servers, in order to enable the storage servers to transmit the fragment response to the assembling device.
  • In one embodiment, shifting the process of selecting the storage servers from the assembling device to the relay server enables the design of a relatively thin and simple assembling device, having a relatively simple software, since all the assembling device has to decide in order to issue an aggregated fragment request to the relay server is how many fragments it needs per segment and, optionally, when it needs them.
  • In one embodiment, an assembling device transmits aggregated messages to a relay server, comprising general information regarding a portion of streaming content for which fragments are needed. Optionally, the portion of the streaming content comprises several consecutive segments. In one embodiment, the portion is defined by a starting point and an ending point within the streaming content, and the relay server uses these points to determine the actual segments comprising the portion. Then the relay generates and transmits the corresponding fragment requests to the relevant storage servers.
  • FIG. 21 illustrates one example of a fractional-storage system comprising servers 699 a to 699(N) having a bandwidth capability 681. In other words, no server can send data at a rate higher than 681. Assembling device 661 can select from which servers to obtain erasure-coded fragments for reconstruction of a segment. In one example, each server stores one relevant, unique, erasure-coded fragment. Therefore, from the N servers storing N possible unique fragments, the assembling device needs only K erasure-coded fragments for complete reconstruction of the segment (K<N). Since it is not important which K fragments from the N are retrieved, the assembling device may retrieve from the least loaded servers, so as to keep the load between the different servers balanced. When many assembling devices assemble contents in parallel, and since all assembling devices can select the least loaded servers, the end effect is that the load on the servers is balanced, with the potential for most servers to approach their maximal bandwidth capabilities. Optionally, that load balancing is achieved without significant coordination between the servers.
  • In the example of FIG. 21, assuming that K=3, the assembling device 661 may select servers 699 b, 699(N−1), and 699 a for fragment retrieval, as they have the lowest load of all N servers. Servers 699 c and 699(N), as an example, will not be chosen, as they have relatively higher loads.
  • The assembling device may select the least loaded servers using any appropriate method, such as, but not limited to (i) accessing a central control server having data about the load conditions on the various servers, or (ii) periodically querying the various servers on their load conditions.
  • In one embodiment, instead of, or in addition to, selecting the least loaded servers, the assembling device 661 tries a random set of K servers from the N, and retrieves erasure-coded fragments from all servers reporting a load below a threshold, while higher loaded servers will be replaced by least loaded servers from the possible N servers. The end result is that the server array is balanced because the K erasure-coded fragments are retrieved from servers loaded below the threshold.
  • In one embodiment, the assembling device does not know which of the servers store erasure-coded fragments related to the content to be retrieved, but the assembling device knows over how many servers (from the total number) the erasure-coded fragments are distributed. Therefore, the assembling device compensates for the infertile requests by enlarging the number of requests for erasure-coded fragments. Optionally, the requested servers are selected based on approximately random algorithm.
  • FIG. 22 illustrates one embodiment of different servers 698 a to 698(N) having different bandwidth capabilities of 683 a to 683(N) correspondingly. Assembling device 661 selects from which K servers, out of the possible N, to retrieve the fragments for segment reconstruction, wherein each server may have different unutilized bandwidth and different bandwidth capability. When many assembling devices assemble contents in parallel, while rejecting servers with a high load, the end effect is that the server array is approximately balanced and most servers can approach their maximal bandwidth capabilities. In one embodiment, the server array is balanced by enabling many assembling devices to select the least loaded servers. In the example, and assuming that K=3, servers 698 a, 698(N−1) and 698(N) will be selected, as they have the highest unutilized bandwidth. In another example, the servers having the highest percentage of unutilized bandwidth will be selected.
  • In one embodiment, servers 698 a to 698(N) represent completely different types of server hardware, operating systems and capabilities, all put together in an array, and achieving load balance without the need for significant inter-server coordination. In one example, the fragments are distributed to at least two different classes of servers; the first class comprises high bandwidth CDN servers directly connected to the Internet backbone, and the second class comprises lower bandwidth CDN servers not directly connected to the Internet backbone.
  • In one embodiment, the servers are selected for fragment retrieval according to their unutilized fragment delivery bandwidth. For example, the servers report their unutilized bandwidth, and the assembling devices, or a control server, obtain the report and decide which servers to use for fragment delivery based on the unutilized bandwidth of each server.
  • In one embodiment, the servers are selected for fragment retrieval according to their ability to support additional fragment delivery load. For example, the servers report their ability to support additional fragment delivery loads. And the assembling devices, or a control server, obtain the report, and select the servers that report an ability to support additional fragment delivery loads.
  • In one embodiment, the assembling device, or a control server, looks for a pool of servers that may be used as replacements for servers that are loaded to a degree that does not allow continuation of fragment delivery. For example, the assembling device looks for potential unloaded servers, while retrieving fragments from other servers. The assembling device may sample relevant servers approximately randomly, and/or according to indications from a control server. The sampling process may comprise querying the potential server for load information, or measuring the latency or latency variance to the servers in order to estimate the current load on the server.
  • In one embodiment, it is desired to replace one or more servers by other servers for the delivery of erasure-coded fragments, wherein the replacement servers are selected using a second criterion from a pool of servers identified using a first criterion. For example, the first criterion for identifying the pool of replacement servers comprises looking for servers capable of increasing their fragment delivery throughputs, and the second criterion for selecting the replacement servers from the pool comprises selecting the best latency response server from the pool. In one example, the first criterion is a latency criterion, and the second criterion is a load criterion. In another example, the first criterion is a latency criterion, and the second criterion is a latency variance criterion. In another example, the second criterion is an approximately random selection. In one embodiment, a server selected using the second criterion is compared to the server to be replaced based on the second criterion. For example, the second criterion is latency, and the replacing server, selected from the pool, has a smaller latency than the server it replaces.
  • In one embodiment, the server to be replaced is identified by comparing the actual performance level of the server with a threshold performance level. For example, when the compared performance is latency, a server having response latency above a certain threshold is replaced. In another example, the compared performance is the load on the server, which may be measured in terms of the amount of the unutilized fragment delivery bandwidth, or in terms of the percent of the server's unutilized fragment delivery bandwidth, or measured by any other appropriate technique.
  • In some embodiments, the assembling devices use a fragment pull protocol to retrieve the fragments and approach the servicing servers. In some embodiments, the assembling devices use a push protocol to obtain the fragments and approach the servicing servers, possibly by obtaining multiple sub-transmissions comprising fragment sequences.
  • FIG. 23 illustrates one embodiment of a fractional-storage system. Assembling device group 661 g obtain erasure-coded fragments from the servers, such that the resulting outgoing bandwidth utilizations of each server in the array is 682 a to 682(N) correspondingly. FIG. 24 illustrates a case where server 698 b has failed, its bandwidth capability 682 b 1 is zero, and is therefore unable to provide erasure-coded fragments. The assembling devices from group 661 g, which previously obtained fragments from server 698 b, may attempt to access it again for additional fragments, but are now unable to get a response. These assembling devices therefore obtain fragments from alternative servers. The end effect is that bandwidth 682 b is now loaded on the still available servers, such that the total bandwidth 682 a 1 to 682(N)1 approximately increases by a total amount equal to 682 b, optionally with no inter-server coordination, and simply by the fact that each assembling device selects alternative available servers for obtaining fragment on-the-fly. In one example, instead of obtaining from server 682 b 1, the assembling devices obtain from the least loaded available servers. In one embodiment, a control server selects the alternative server/s for the assembling devices. In one embodiment, the assembling devices use a fragment pull protocol to obtain the fragments, and approach the alternative servers. In one embodiment, the assembling devices use a push protocol to obtain the fragments, and approach alternative servers, possibly by obtaining multiple sub-transmissions comprising fragment sequences. In this case, the sub-transmissions of the faulty server are discontinued and compensated for by other sub-transmissions from the alternative servers.
  • FIG. 25 illustrates an example similar to FIG. 24 with the difference that servers 698 a, 698 b, and 698 c to 698(N) reside within, or get serviced via, first, second, and third Internet backbone providers 300 j, 300 i, and 300 h correspondingly. The group of assembling devices 661 g is connected to the Internet via network 300 k, which has access to all three backbones, such that communication between the assembling devices and servers 698 a to 698(N) pass via at least one of the backbones, or more. If server 698 b is made unavailable to the assembling devices, optionally not due to a server failure, but rather due to congestion or a failure of the second Internet backbone provider 300 i, assembling devices 661 g compensate for the lost bandwidth by switching to the available servers on-the-fly. In one embodiment, networks 300 h, 300 i, and 300 j, are different physical sub-nets of one network connected to the Internet. In one embodiment, the assembling devices are connected to networks 300 h, 300 i, and 300 j, via network 300 k, and then via one or more Internet Exchange Points (“IX/IXP”).
  • FIG. 26 illustrates a few examples of retrieving fragments according to locality. In one example, the fractional-storage servers are connected to a data network or networks comprising the routers 201 to 209. Assembling devices 235, 237, and 238 are connected to the same data network or networks, and K=3, meaning that any assembling device needs to obtain 3 erasure-coded fragments per segment from optionally 3 different servers out of the 10 in order to successfully reconstruct the segment.
  • Each assembling device tries to obtain erasure-coded fragments from fractional-storage servers that are closest to it topologically. In one embodiment, the topological distance is a function of the number of separating routers. Assembling device 238 can select three servers from groups 242, 248 or 249. According to the minimal path criterion, it retrieves the erasure-coded fragments from servers 399 h to 399 i of group 248, since they are only one router 208 away. Groups 242 and 249 are three (208, 202, 203) and five (208, 202, 203, 201, 209) routers away, and are therefore not selected for retrieval. Similarly, device 237 selects three servers out of group 242, and device 235 can select any three servers from groups 242 and 249, since both are located four routers away.
  • In one embodiment, if topologically close servers do not respond to the assembling device, or report a bandwidth limitation, the assembling device will attempt to obtain an erasure-coded fragment from the next topologically closest server.
  • In one embodiment, an assembling device attempts to obtain erasure-coded fragments from servers featuring the lowest latency. Upon no response, for whatever reason, the assembling device will attempt to retrieve from the next lowest latency server. In one embodiment, the assembling device obtains information regarding the unutilized fragment delivery bandwidths of servers, and then attempts to retrieve from the lowest latency servers out of the servers having enough unutilized bandwidth. In one embodiment, the assembling device obtains information regarding the unutilized fragment delivery bandwidths of the servers, and then attempts to retrieve from the topologically closest servers out of the servers having enough unutilized bandwidth.
  • Still referring to FIG. 26, in one embodiment the assembling devices select servers according to a latency criterion, such as selecting servers with the shortest time between fragment request and fragment delivery, or selecting servers having latency below a dynamic or static threshold. Assembling device 237 assembles content from servers 399 c, 399 f, 399 g, and assembling device 235 assembles content from servers 399 b, 399 c, 399 g (both use a mixture of servers from groups 242 and 249). At a certain point in time, router 209 becomes congested or blocked, and prevents the erasure-coded fragments from servers 399 b and 399 c from arriving at assembling devices 235 and 237, or causes the fragments to arrive with an increased delay. Therefore, assembling device 235 switches to three servers of group 242, and assembling device 237 switches from server 399 c to server 399 e.
  • In one embodiment, the assembling device selects fractional-storage servers according to the following criterion: first, servers with adequate unutilized fragment delivery bandwidth are considered, then out of these, those with latency below a threshold are considered, and out of these, the servers with minimal topological routing path are selected.
  • In some embodiments, the assembling devices use a fragment pull protocol to retrieve the fragments, and approach servers having low latency or low hop count as compared to other servers. In some embodiments, the assembling devices use a push protocol to retrieve the fragments, and approach servers having low latency or low hop count as compared to other servers, optionally by obtaining multiple sub-transmissions comprising fragment sequences.
  • In one embodiment, a plurality of unsynchronized retrieving assembling devices, which optionally use fragment pull protocol, choose the least loaded servers from which to retrieve the erasure-coded fragments. Optionally, the servers have almost no inter-communication between them and the load balancing calculation is performed by the retrieving assembling devices. Because the assembling devices can select the least loaded servers, the assembling devices manage the load balancing. When the erasure-coded fragments stored by the servers are unique erasure-coded fragments, the retrieving assembling device may retrieve erasure-coded fragments from any relevant server. Therefore, it may be enough for the retrieving assembling device to have indication of the load on its targeted servers, and retrieve enough erasure-coded fragments from the least loaded servers.
  • In one embodiment, a server signals the retrieving assembling device that it is close to its bandwidth limit and the assembling device searches for an alternative server. Optionally, the assembling device selects the server according to one or more of the following parameters: locality, cost, latency, or reliability. In one embodiment, the servers register their loads on a central server, and the assembling device selects the server to retrieve from, from the registered servers. In one embodiment, a central server, holding the loads of the various servers, determines for the assembling devices from which server to retrieve the erasure-coded fragments.
  • In one embodiment, assembling devices measure the latency of the different servers in responding to fragment requests, and then use the latency information to estimate the loads on the servers. In one example, a high latency may indicate a high load on the server.
  • In one embodiment, the topological router hop count between an assembling device and fragment delivering servers is used to estimate the latency of the servers in responding to fragment requests.
  • In one embodiment, the latency of fragment delivering servers in responding to fragment requests by an assembling device is used to estimate the topological router hop count between an assembling device and the servers.
  • In one embodiment, the assembling devices perform several latency measurements for the different servers in responding to fragment requests, and then use the latency variance information to estimate the loads on the servers. In one example, a high latency variance may suggest a high load on server.
  • In one embodiment, fractional-storage servers, from which the fragments are obtained for reconstructing a segment, are selected based on an approximately random selection algorithm from all of the servers storing the relevant fragments. In one example, an approximately random selection algorithm weighted according to the unutilized bandwidth of the servers is used for the approximately random selection of servers. The weighted random selection algorithm assigns servers with selection probabilities proportional to the amount of unutilized bandwidth for fragment delivery in each of the servers, such that the probability to select a server having a larger amount of unutilized bandwidth is higher than the probability to select a server having a lower amount of unutilized bandwidth.
  • The following embodiments describe processes for on-the-fly selection and re-selection of fractional-storage servers from which to obtain erasure-coded fragments.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments, based on the unutilized bandwidth of the servers, includes the following steps: (i) accessing data regarding servers storing relevant fragments (referred to as the relevant servers); (ii) accessing data regarding the unutilized bandwidth of the relevant servers. Optionally, the data is received by the assembling device from the relevant servers; and (iii) obtaining fragments from enough of the relevant servers having approximately the highest unutilized bandwidth; or obtaining fragments from enough of the relevant servers selected randomly and having unutilized bandwidth above a certain threshold.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments, based on latency, includes the following steps: (i) accessing data regarding the relevant servers; (ii) accessing data regarding the latencies from the relevant servers to the assembling device; and (iii) obtaining fragments from enough of the relevant servers having the lowest latencies; or obtaining fragments from enough of the relevant servers selected randomly and having latencies below a certain threshold.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments, based on bandwidth and latency, includes the following steps: (i) accessing data regarding the relevant servers; (ii) accessing data regarding the unutilized bandwidth of the relevant servers; (iii) identifying more than enough relevant servers having the most unutilized bandwidth; or randomly identifying more than enough relevant servers having unutilized bandwidth above a certain threshold; (iv) accessing data regarding the latencies from the identified servers to the assembling device; and (v) obtaining fragments from enough of the identified servers having the lowest latencies; or obtaining fragments from enough of the relevant servers selected randomly and having latencies below a certain threshold.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments, based on latency and bandwidth, includes the following steps: (i) accessing data regarding the relevant servers; (ii) identifying more than enough relevant servers having latencies to the assembling device below a certain threshold; or randomly identifying more than enough relevant servers having latencies to the assembling device below a certain threshold; (iii) accessing data regarding the unutilized bandwidth of the identified servers; and (iv) obtaining fragments from enough of the identified servers having the highest unutilized bandwidth; or obtaining fragments from enough of the relevant servers selected randomly and having the highest unutilized bandwidth.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments, based on locality, includes the following steps: (i) accessing data regarding the relevant servers; (ii) accessing data regarding the network topology distance (locality) from the relevant servers to the assembling device; and (iii) obtaining fragments from enough of the topologically closest relevant servers; or obtaining fragments from enough of the relevant servers that are located in the same sub-network as the assembling device, or located in the closest sub-networks.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments, based on bandwidth and locality, includes the following steps: (i) accessing data regarding the relevant servers; (ii) accessing data regarding the unutilized bandwidth of the relevant servers; (iii) identifying more than enough relevant servers having the most unutilized bandwidth; or randomly identifying more than enough relevant servers having unutilized bandwidth above a certain threshold; (iv) accessing data regarding the network topology distance from the relevant servers to the assembling device; and (v) obtaining fragments from enough of the topologically closest relevant servers; or obtaining fragments from enough of the relevant servers that are located in the same sub-network as the assembling device, or located in the closest sub-networks.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments, based on latency and locality, includes the following steps: (i) accessing data regarding the relevant servers; (ii) identifying more than enough relevant servers having latencies to the assembling device below a certain threshold; or randomly identifying more than enough relevant servers having latencies to the assembling device below a certain threshold; (iii) accessing data regarding the network topology distance from the relevant servers to the assembling device; and (iv) obtaining fragments from enough of the topologically closest relevant servers; or obtaining fragments from enough of the relevant servers that are located in the same sub-network as the assembling device, or located in the closest sub-networks.
  • In one embodiment, a method for selecting enough new servers from which to obtain fragments is based on bandwidth, latency, locality, and, optionally, one or more additional relevant parameters. The method may weigh the different parameters in various ways, all of them are intended to be covered by the embodiments. For example, the method may include the following steps: (i) accessing data regarding the relevant servers; (ii) receiving data regarding the unutilized bandwidth latencies to the assembling device, and topology distances to the assembling device; (iii) weighting the received data and identifying a quantity of the most proper relevant servers, which can provide enough fragments to reconstruct content; and (iv) obtaining the fragments from the identified servers. In another example, the method may include the following steps: (i) accessing data regarding the relevant servers; (ii) identifying a set of more than enough relevant servers having the most unutilized bandwidth; or randomly identifying a set of more than enough relevant servers having unutilized bandwidth above a certain threshold; (iii) from the set, identifying a sub-set of more than enough relevant servers having latencies to the assembling device below a certain threshold; or randomly identifying more than enough relevant servers having latencies to the assembling device below a certain threshold; and (iv) obtaining fragments from enough of the topologically closest relevant servers out of the sub-set; or obtaining fragments from enough of the relevant servers out of the sub-sets, which are located in the same sub-network as the assembling device, or located in the closest sub-networks.
  • In some embodiments, approximately random selection of fractional-storage servers is utilized for dealing with changes in network conditions, such as packets loss and/or server failure, without affecting the user experience, and optionally without prior knowledge of the type of the change in network condition. Optionally, new erasure-coded fragments are requested from the randomly selected servers instead of failed requests. Optionally, failed servers are replaced with other servers. Optionally, the combination and/or the number of fractional-storage servers from which the fragments are obtained changes over time. Optionally, the number of redundant fragment requests changes over time.
  • In one embodiment, a method for reselecting one or more fractional-storage CDN servers on-the-fly, comprising: pulling erasure-coded fragments from the servers; estimating the servers' load, latency, network congestion, and packet loss; and operating a fuzzy algorithm on the estimations in order to replace at least one of the servers with at least one other fractional-storage server. Optionally, the method further comprising operating the fuzzy algorithm based on measurements of many assembling devices and recommendations received from a central server. Optionally, the method further comprising replacing the servers quickly after missing a fragment. And optionally, the fuzzy algorithm weighs many possible solutions and converges to a sufficient one.
  • FIG. 27 illustrates one example of creating a broadcast-like effect (i.e. retrieving the content while it is distributed). Streaming content 700 a, which may be ready in advance or received on-the-fly, is to be received and presented by multiple assembling devices at approximately the same time. Content 700 a is segmented into segments on-the-fly, such that the first segment 710 a is ready shortly after the data is available, and subsequent segment 710 b is ready right after that. Segments 710 a and 710 b are sequentially encoded into erasure-coded fragments 782 a and 782 b correspondingly, such that the average rate of encoding segments into erasure-coded fragments does not fall below the average rate of introducing new segments (as content 700 a is being received for broadcast).
  • As the erasure-coded fragments 782 a are ready, they are distributed 783 a to the fractional-storage servers. Subsequent erasure-coded fragments 782 b are similarly distributed 783 b to the servers, such that the average rate of distributing the erasure-coded fragments associated with each segment does not fall below the rate of introducing new segments (or in other words, such that there is approximately no piling-up of undistributed segments). Optionally, the erasure-coded fragments 782 a are also distributed 784 a by the servers to bandwidth amplification devices at an average distribution rate per segment that does not fall below the average rate of introducing new segments.
  • The assembling devices obtain erasure-coded fragments 785 a associated with segment 710 a from the fractional-storage servers, and optionally also from the bandwidth amplification devices. Subsequent erasure-coded fragments, such as 785 b associated with segment 710 b, are obtained at an average rate that does not fall below the average rate of introducing the new segments. The segment 710 a is then reconstructed from the obtained erasure-coded fragments 785 a. The subsequent segment 710 b is reconstructed from the obtained erasure-coded fragments 785 b, such that reconstructing each segment is performed at an average rate that does not fall below the average rate of introducing the new segments.
  • Then, the reconstructed segments are presented, optionally on-the-fly, as reconstructed content 700 b. In one embodiment, the entire process end-to-end is performed in real time, such that the presentation of 700 b starts at T2 minus T1 after the availability of content 700 a, and such that the delay of T2 minus T1 (between the availability of new segments and their subsequent presentation by the assembling device) is kept approximately constant throughout the entire presentation of the streaming content 700 b, once begun.
  • In one example, the content 700 a is a 4 Mbps video stream, and the segment size is 96 Kbytes, meaning that new segments 710 a, 710 b are made available at a rate of one every 0.19 seconds. Assuming that each process as described takes 0.19 seconds, and that all processes are performed sequentially (with no overlapping in time, which may be possible for some of the processes), then the accumulated process time, which includes 710 a, 782 a, 783 a, 784 a, 785 a and 710 a, takes about 6×0.19=1.14 seconds. This means that an assembling device may begin with content presentation 1.14 seconds after the content is first made available to the system.
  • Still referring to FIG. 27, in one embodiment, the fragments are obtained from the servers using multiple sub-transmissions, such that each transmitting server sends a fraction of the needed fragments to the assembling device, according to the sequential order of segments. Each sub-transmission transmits the fragments approximately at a rate at which the fragments are being created on-the-fly from segments of the content to be received by the assembling device. According to another embodiment, the fragments are obtained from the servers using fragment requests made by the assembling device using a fragment pull protocol.
  • The Audio/Video compression utilized in creating content 700 a is not necessarily a fixed rate compression, meaning that the various resulting segments do not necessarily contain the same amount of presentation time.
  • In one embodiment, once starting to retrieve a broadcast-like stream, the assembling device may use one of the following methods to synchronize the retrieval of the stream's segments with the ongoing availability of new segments of the stream: (i) The assembling device retrieves additional segments such that the average rate of obtaining new frames approximately equals the average rate of presenting frames. (ii) The assembling device retrieves additional segments such that it does not try to retrieve segments that are not yet indicated as being available. And (iii) The assembling device retrieves additional segments so as to approximately maintain a constant distance (in segments) between the most currently available segment and the segment currently being retrieved.
  • In one embodiment, the assembling device presents the broadcast-like stream at approximately the same frame rate as the rate of producing new frames for the broadcast-like stream. In one example, the frame rate is constant throughout the stream, such as the case of fixed 24, 25, 50, or 60 frames per second.
  • In one embodiment, the assembling device obtains an indication regarding the most newly available segment (per specific broadcast-like stream) for retrieval. The assembling device then starts to retrieve from the most newly available segment. In one example, the most newly available segment is the last segment that was distributed to the fractional-storage servers. In another example, the most newly available segment is a segment that was recently distributed to the fractional-storage servers, but wherein there are newer distributed segments, which are not yet indicated as being available.
  • In one embodiment, the broadcast-like stream is of a pre-recorded content, such that it is possible to distribute the entire content to the fractional-storage servers, and after any period of time allow the real time consumption of the content by any number of assembling devices. In such a case, an indication is made to the assembling devices regarding the real time allowance to retrieve the related segments. The allowance can start at a certain point in time (which corresponds to the beginning of the broadcast-like “transmission”) for the first segment, and then the allowance may continue for subsequent segments, at a rate that approximately corresponds to sustaining the frame rate of the broadcast-like stream.
  • FIG. 28 illustrates one embodiment of using the entire aggregated bandwidth of the fractional-storage servers for delivering multiple contents. Approximately any number of contents having any mixture of bandwidth demand per content may be delivered, as long as the aggregated bandwidth demand does not exceed the aggregated bandwidth of the fractional-storage servers. In one example, broadcast-like streams 3101, 3102, and 3103 are delivered to multiple assembling devices via multiple fractional-storage servers. Each stream is a live TV channel carrying multiple TV programs. For example, stream 3101 comprises TV programs 3110 to 3112, each spanning a specific time interval. The other streams comprise of multiple TV programs as well. Before time T1, stream 3130 has a bandwidth demand of 3130′ (meaning that all assembling devices that are currently retrieving stream 3130′ use a total bandwidth of 3130′ out of the fractional-storage servers). The other streams 3120 and 3110 have bandwidth demands of 3120′ and 3110′ respectively. The total bandwidth demand of the three streams 3130′+3120′+3110′ does not exceed the aggregated bandwidth of the fractional-storage servers 3150, and therefore all streams are fully delivered to the assembling devices. The load of the three streams is spread approximately equally among the participating fractional-storage servers, optionally because of a mechanism that selects the least-loaded servers to serve each assembling device, and/or a mechanism that approximately randomly selects servers to serve each assembling device. At time T1, TV program 3120 ends, and TV program 3121 starts. Program 3121s demand 3121′ is higher than the previous demand 3120′, and therefore a higher aggregated bandwidth is drawn from the fractional-storage servers. Still, the aggregated bandwidth demand of all three streams (3130′+3121′+3110′) is lower than the maximum possible 3150, and therefore the newly added bandwidth demand is fully supported by the servers. Optionally, the additional demand created by TV program 3121 (3121′ minus 3120′) is caused by the addition of new assembling devices that join stream 3102 and retrieving additional erasure-coded fragments. Additionally or alternatively, the additional demand created by TV program 3121 is caused by a higher bandwidth demand of TV program 3121, such as 3D data or higher resolution. Newly added assembling devices may choose fractional-storage servers from which to retrieve, according to a least-loaded server selection criterion and/or an approximately random server selection criterion, and therefore the total load is still spread approximately equally among the participating servers. At time T2, TV program 3110 ends, and a new program 3111 begins, which is less popular, and therefore creates a lower bandwidth demand 3111′. The result is a decrease in the total delivered bandwidth. At time T3 TV program 3130 ends, and TV program 3131 starts with a higher bandwidth demand of 3131′. At time T4 both TV programs 3111 and 3121 end, and two new programs 3112 and 3122 start. TV program 3112 is highly popular and therefore generates a large bandwidth demand 3112′. Program 3122 is not popular, and therefore generates a limited bandwidth demand 3122′. Some of the additional bandwidth needed by program 3112 is taken from servers that stop serving assembling devices previously retrieving program 3121, such that the aggregated bandwidth of all three streams (3131′+3122′+3112′) is still below the maximum possible bandwidth 3150, despite the fact that program 3112 is generating a large bandwidth demand. This example illustrates how the fractional-storage servers support almost any demand mixture, as long as the aggregated demand of all streams is kept below the aggregated maximum capacity of the servers 3150. Consequently, the distribution of all of the streams to the fractional-storage servers is approximately unrelated to the changes in bandwidth demand for programs carried by each stream; each stream can be regarded as a sequence that is segmented, erasure-encoded, and distributed to the participating servers. There is no need to account for demand variations during the distribution of each stream, nor is there a need to know in advance the bandwidth demand for each stream or for each program within each stream. It is noted that the demand variations are illustrated as instant variations, but may also be gradual and may occur during a program and not necessarily when one program ends and the other begins.
  • Referring to FIG. 27, in one embodiment, an assembling device is allowed to start assembling the erasure-coded fragments 785 a, not after the first segment is stored (as illustrated in FIG. 27), but only after several segments are already stored as erasure-coded fragments. In this case, the presentation begins with an intentional delay from the real time content storage process, which may be maintained throughout the content presentation process. In one embodiment, the average rate of assembling erasure-coded fragments is greater than the average rate of the real time content presentation, such that the data that separates the real time storage head from the presentation point is quickly accumulated in the content buffer at the assembling device side, allowing for a short loss of communication between the assembling device and the fractional-storage system without any interference in the continuous presentation process (as long as the loss of communication is resolved within a time shorter than the intentional delay).
  • In one embodiment, the intentional delay technique is used with a non-distributed server array, meaning that the fragments are stored on one location. In one embodiment, the intentional delay technique is utilized using a standard push protocol (like TCP/IP), and not a fragment pull protocol as suggested in the embodiments of FIG. 27.
  • Still referring to FIG. 27, in one embodiment the delay between the point that the erasure-coded fragments are distributed to the servers Td, and the point that the erasure-coded fragments begin to be obtained by an assembling device Tg (Tg minus Td), is controlled by the assembling device, such that any content can be viewed after it has been broadcast, constituting a Network Private Video Recording (nPVR). In one embodiment, the delay between the point that the erasure-coded fragments are distributed to servers Td, and the point that the erasure-coded fragments begin to be obtained by an assembling device Tg (Tg minus Td), starts at a minimum (fractions of seconds), and can increase as presentation progresses, at the assembling device's command, giving rise to presentation freeze capabilities and jumping backwards.
  • In one embodiment, a method comprising the following steps: distributing in real-time erasure-coded fragments, generated from a streaming input, to fractional-storage servers. And as long as the erasure-coded fragments are still stored on the servers, retrieving the erasure-coded fragments, by a retrieving device, at approximately any time shift relative to the current position of the real time erasure-coded fragment distribution. Optionally, a user controls the time shift. Optionally, the assembling device retrieves the erasure-coded fragments in a first time shift, then pauses the presentation of the reconstructed content, and then continues retrieving erasure-coded fragments in a second time shift, which is longer than the first time shift.
  • In one embodiment, the fractional-storage system is approximately insensitive to the mixture of the consumed contents as long as the aggregated throughput is below the total throughput of the fractional-storage servers.
  • FIG. 29 illustrates one example of a server array, including N fractional-storage servers (399 a to 399(N)), and storing content A, which includes erasure-coded fragments 310 a to 310(N), and content B, which includes erasure-coded fragments 320 a to 320(N). Each server is connected to the network 300 with a fragment delivery bandwidth capability B 339. Therefore, the N servers have an aggregated bandwidth of B×N. A first group of assembling devices 329 a consumes content A at an average bandwidth Ba 349 a. A second group of assembling devices 329 b consumes content B at an average bandwidth Bb 349 b. Since all of the servers participate in the transmission of the two contents, the first and second groups can potentially consume all server bandwidth, up to the limit where Ba+Bb=N×B, with any ratio of demand between the first and second contents, and with no special provisions to be made when storing the erasure-coded fragments related to the two contents in the fractional-storage server array.
  • FIG. 30 illustrates the case where the first group 328 a, which consumes content A, becomes larger than 329 a, with a larger bandwidth Ba 348 a. The second group 328 b, which consumes content B, becomes smaller than 329 b, with a smaller bandwidth Bb 348 b, such that Ba is about the same as Bb. In this case, the array can still be exploited up to the aggregated bandwidth, since, as before, Ba+Bb can still be almost as high as N×B. FIG. 31 illustrates the case where the first group has disappeared, allowing the second group 327 b, which consumes content B, to extract an aggregated bandwidth of Bb 347 b that can potentially reach the limits of the server array, such that Bb=N×B. Again, this is achieved without updating the erasure-coded fragments associated with content A and content B, and without using inter-server interaction.
  • In some embodiments, the ability to utilize the aggregated bandwidth of approximately all of the participating servers, for the delivery of about any mixture of contents with about any mixture of content bandwidth demand, is made possible by one or more of the following: (i) each assembling device selecting a subgroup of the least loaded fractional-storage servers from which to retrieve the necessary number of erasure-coded fragments to reconstruct a segment or several segments (least-loaded server selection criterion); or (ii) each assembling device approximately randomly selecting a subgroup from which to reconstruct a segment or several segments, such that when many assembling devices select at random, the various fractional-storage servers are selected approximately the same number of times (or in proportion to their available resources, such as unutilized bandwidth), which in turn balances the load between the participating servers (random server selection criterion). It is noted that (i) the selections may be made by either the assembling devices themselves, or may be made for the assembling devices by a control server, which then communicates the selections to each of the assembling devices; (ii) the selections may be made approximately for each segment, or for a group of segments, or only once per content at the beginning of the content; (iii) some assembling devices may use an approximately random server selection criterion, while other assembling devices may use least-loaded server selection criterion; (iv) the least-loaded selected servers may be selected out of a portion of all available fractional-storage servers. For example, the least-loaded servers may be selected from fractional-storage servers with low latency response or with low hop count to the assembling device; (v) the least-loaded servers may include servers having the most unutilized bandwidth. Additionally or alternatively, it may include servers having any unutilized bandwidth left to serve additional assembling devices; (vi) an approximately random or least-loaded selection of servers may be made such that all servers are selected to determine a subgroup, or it can be made such that every time selections are made, only some servers are selected, while the others remain as before. In these cases, the assembling device runs a process in which only a small portion of the servers currently in the serving subgroup are reselected. In the case of approximately random selection, the assembling device may randomly select the number of servers in the serving subgroup for random selection (reselection in this case, since they are replacing other servers already in the serving subgroup of the specific assembling device), such that eventually, over time, all servers within the serving subgroup have the chance to be randomly reselected. In the case of least-loaded server selection, only the most loaded servers within the serving subgroup may be selected and replaced by less-loaded servers.
  • In one embodiment, data objects required to render a presentation are reconstructed from erasure-coded fragments gathered from fractional-storage servers. The reconstructed data objects are combined with additional rendering data, to form the presentation. A master data object is used to point to the data objects, and may include addresses of relevant fractional-storage servers from which a renderer can obtain fragments needed to reconstruct the data objects.
  • In one embodiment, the additional rendering data required to render the presentation is embedded in the master data object.
  • In one embodiment, the addresses of the relevant servers are obtained from a source external to the master data object, such as by making an inquiry to a control server.
  • In one embodiment, the master data objects are obtained from one or several contact servers.
  • In one embodiment, the functionality of the contact servers is embedded in some of the fractional-storage servers.
  • FIG. 32 illustrates one embodiment, in which an HTML master data object 3800 (an HTML file) comprises data objects and data object pointers 3801 to 3808. Object 3801 points to a FLASH data object and comprises the identity of the FLASH object, optionally in standard URL notation, and the addresses of fractional-storage servers from which the renderer can obtain erasure-coded fragments needed to reconstruct the FLASH data object; the addresses are embedded in the HTML file optionally as HTML remarks accompanying the identity of the FLASH object. Data object 3802 comprises standard HTML text and HTML rendering instructions for the text. Object 3803 points to an audio-video data object, and comprises the identity of the audio-video object and addresses of servers from which to obtain relevant fragments. Data objects 3804 to 3807 comprise standard HTML buttons with all necessary rendering and functional HTML information. Object 3808 points to an image or animated image object, optionally a JPEG, GIF animation, or an Ad, and comprises the identity of the image object and addresses of servers from which to obtain relevant fragments.
  • FIG. 33 and FIG. 34 illustrate one embodiment, in which a renderer, such as an HTML enabled Internet browser, receives the HTML master data object 3800, and starts rendering a presentation of a window 3810 to its user accordingly. Data objects 3802 and 3804 to 3807 are rendered by the browser to following standard HTML visual objects: text window 3812, and buttons 3814 to 3817 respectively. The general appearance of window 3810 and related general rendering information are embedded as standard HTML instructions 3809. Data objects pointed to by objects 3801, 3803, 3808 are not rendered until the relevant objects are obtained by the browser, although their locations 3811, 3813, 3818 in window 3810 are already known, since relevant standard HTML window positioning instructions accompany objects 3801, 3803, 3808. The browser obtains erasure-coded fragments from some or all of the fractional-storage servers whose addresses have been specified in master HTML data object 3800. Each of the data objects 3801, 3803 and 3808 is optionally obtained separately from server addresses specified for it. Obtained fragments per each of data objects 3801, 3803 and 3808 are used to reconstruct the objects, which are then rendered and presented as windows 3811′, 3813′ and 3818′ displaying FLASH multimedia sequences, audio-video content, and images or animated images respectively.
  • It is noted that the master HTML data object 3800 may be several orders of magnitude smaller than objects 3801, 3803, 3808. In this case, the main load of delivering the objects goes to the fractional-storage servers, and not to the contact server or servers delivering the master data object.
  • Audio-video data object 3803 may comprise segments. In this case, segments are consecutively reconstructed from fragments in support of streaming presentation in accordance with some embodiments. The streaming presentation in window 3813′ starts almost instantly after the master HTML object 3800 is obtained by the browser. Other data objects, such as FLASH objects, may be segmented as well in facilitation of streaming presentation.
  • FIG. 35 illustrates one embodiment, in which the identification of the data object and the list of fractional-storage server addresses associated with that object are embedded in the master HTML data object as standard HTML text. HTML line 4010 describes a JPEG image data object identified by the URL “http://www.somewhere.com/image.JPG”, and includes the standard HTML position information: =“position:absolute; TOP:35px; LEFT: 170px; WIDTH:50px; HEIGHT:50px”. Following line 4010, N fractional-storage server addresses are specified as HTML remarks. Addresses IP_ADDRESS#1 to IP ADDRESS#N are the actual N Internet-Protocol addresses or URLs that can be used by renderers to obtain erasure-coded fragments relevant for reconstructing the image “http://www.somewhere.com/image.JPG”.
  • In one embodiment, an Internet browser parses and executes HTML lines 4010 to 4013 as follows: Line 4010 provides the browser with positioning and size information in a standard HTML format. This information is used by the browser to determine the position and size of the presentation window of image “http://www.somewhere.com/image.JPG”. The browser then parses lines 4011 to 4019, and extracts the N addresses of relevant servers. The browser then contacts the servers, and obtains a sufficient number of fragments needed to reconstruct the image. After reconstruction, the image is presented at the specified size and position.
  • In one embodiment, a plug-in to a standard browser performs the non-standard portions of parsing the server addresses, obtaining the fragments, and reconstructing the data object. All other aspects are performed by the standard browser.
  • In one embodiment, the URL identifying the data object points to an actual URL storing the data object. In one example, standard browsers that do not have the capability to obtain and decode fragment, parse HTML line 4010 and obtain the image “http://www.somewhere.com/image.JPG” from actual URL address http://www.somewhere.com/image.JPG. Standard browsers ignore lines 4011 to 4013, as they are HTML remarks transparent to standard HTML browsers.
  • In one embodiment, the fractional-storage servers are CDN servers. Optionally, the servers are located on the Internet backbone, or close to the backbone.
  • In one embodiment, the fractional-storage servers are P2P devices, located at user premises.
  • FIG. 36, FIG. 37, and FIG. 38 illustrate one embodiment, in which a large-scale distributed content delivery system is used to store web sites and to deliver web-pages and related content to users. The system comprises at least 100 fractional-storage servers 3901 to 3909 spread over a wide geographical area. The servers store and deliver erasure-coded fragments belonging to data objects via the Internet. At least one contact server 3929 stores and delivers master data objects to users 3951, 3952. The users' browsers approach contact server 3929 with a request for web pages. The contact server replies to approaching browsers with a master HTML or FLASH data object. The browsers, or browser plug-ins, parse the master HTML or FLASH data object, and obtain fragments from servers 3901 to 3909 accordingly.
  • In one embodiment, several small contact servers 3929 are used. These servers can have small communication bandwidths and small storage space as compared to the fractional-storage servers. Small contact servers are possible, as they only need to store and deliver master data objects. Master data objects are very small in comparison to typical media files stored on the fractional-storage servers. The small contact servers can be located anywhere on the Internet, as they do not carry the main traffic load required to transport data objects.
  • In one embodiment, many small contact servers 3931, 3932, are located on edges of the Internet or at junctures of Internet transit networks and aggregation networks leading to last mile connections. Location on Internet edges allow these contact servers to be close to the users, and thus allow a quick response to master HTML data objects requested by the users. A user's browser can quickly render HTML texts, background, and sometimes images conveyed as standard HTML data objects and URLs in master data objects. More data-intensive files, FLASH, and Video streams may be obtained from fractional-storage servers, possibly with higher latencies. User 3953 will prefer obtaining master data objects from contact server 3932, as it is closest. Similarly, user 3954 will prefer contacting server 3931. Both users 3953 and 3954 potentially use the same pool of fractional-storage servers 3901 to 3909 as fragment sources.
  • In one embodiment, the functionality of a contact server is embedded in a fractional-storage server. Fractional-storage server 3909′ includes contact server functionality. User 3955 contacts server 3909′ with a request for a master data object. The master data object and any other standard data objects are sent to the user by server 3909′. Fragments belonging to distributed data objects are sent to the user by fractional-storage servers 3901′, 3902′, 3909
  • In one embodiment, an assembling device external to a standard browser is used to obtain fragments of a data object, reconstruct the data object, and make the resulting data object available to the standard browser. The standard browser looks for the data objects at the identifying URL address, which leads to the assembling device. The assembling device receives the browser's request for the data object on one side, obtains relevant fragments from fractional-storage servers on the other side, reconstructs the data object, and sends it to the browser using standard HTTP.
  • In one embodiment, an assembling device starts obtaining fragments and reconstructing segments of the data object after receiving a request from a browser, then immediately starts sending the reconstructed segments to the browser on the fly while more segments are being reconstructed.
  • In one embodiment, the external assembling device is a software component residing inside the computer running the standard browser.
  • In one embodiment, the external assembling device is a software component residing in some fractional-storage servers.
  • In one embodiment, many small assembling devices are located on edges of the Internet or on junctures of Internet transit networks and aggregation networks leading to last mile connections. Location at Internet edges allows these assembling devices to be very close to the users, and thus send data objects via communication links that do not necessarily include Internet transit connections.
  • In one embodiment, a method for gathering objects required for content rendering comprising the following steps: identifying at least one data object pointed to by a master data object; obtaining erasure-coded fragments belonging to the identified data object from fractional-storage servers; decoding the fragments; and rendering a presentation using the decoded data object together with additional rendering data. Optionally, the master data object is a Markup Language file, or a FLASH file, and the at least one data object is an image file, a video file, an audio file, a multimedia object, or a FLASH object.
  • In one embodiment, a large scale distributed content delivery system comprising at least 100 fractional-storage servers spread over a wide geographical area, storing and delivering erasure-coded fragments belonging to data objects via the Internet, and contact servers delivering master data objects and addresses of the fractional-storage servers from which fragments belonging to data objects pointed to by the master data object can be obtained. Wherein a presentation is rendered based on the combined information obtained from a master data object and from at least one assembled data object. Optionally, the fractional-storage servers deliver fragments to client devices at a throughput of at least an order of magnitude higher than the throughput at which contact servers send master data objects to the client devices.
  • In one embodiment, a content delivery system comprising a plurality of fractional-storage servers storing and delivering erasure-coded fragments, and a client device identifying at least one data object pointed to by a master data object, obtaining the erasure-coded fragments belonging to the identified data object from the fractional-storage servers, decoding the fragments, and rendering a presentation using the decoded data object together with additional rendering data. Optionally, the content delivery system further comprising a contact server delivering the master data object to the client device, and providing the client device with data regarding the addresses of the fractional storage servers. Optionally, the master data object is a Markup Language file, or a FLASH file. Optionally, the client device comprises an Internet browser or an Internet browser plug-in that identify at least one data object pointed to by a master data object. The client device obtains erasure-coded fragments belonging to the identified data object from the fractional storage servers, and decodes the fragments. Optionally, the presentation is rendered at least partially by the Internet browser or the Internet browser plug-in.
  • By using a pull protocol or a push protocol with multiple sub-transmissions, the assembling device can obtain erasure-coded fragments from one, two or more different arrays of CDN servers and/or bandwidth amplification devices seamlessly.
  • FIG. 39 illustrates one embodiment in which fractional-storage servers 399 a and 399 b are part of a server array. Fractional-storage servers 399 a and 399 b store erasure-coded fragments 310 a and 310 b of a first content, and erasure-coded fragments 320 a and 320 b of a second content. Server 393 is a control server that manages a pool of twelve registered bandwidth amplification devices surrounded by ellipse 599. One or more of the twelve bandwidth amplification devices may be assigned to one or more of the fractional-storage servers participating in the array. In the initial stage, no assignments have been made, and the twelve bandwidth amplification devices in pool 599 are ready to receive instructions. Next, the control server 393 allocates six bandwidth amplification devices of group 610 aa to server 399 a, and six bandwidth amplification devices of group 610 bb to server 399 b. Registering the bandwidth amplification devices with the servers may be processed using any appropriate method. From groups 610 aa and 610 bb, three bandwidth amplification devices 610 a and 610 b are allocated to store erasure-coded fragments 310 a and 310 b respectively (and, optionally, other erasure-coded fragments associated with consequent segments of the content); and three bandwidth amplification devices 620 a and 620 b are allocated to store erasure-coded fragments 320 a and 320 b respectively (and, optionally, other erasure-coded fragments associated with consequent segments of the content). After these allocations have been made, fractional-storage server 399 a forwards erasure-coded fragment 310 a to group 610 a, and erasure-coded fragment 320 a to group 620 a. Fractional-storage server 399 b forwards erasure-coded fragment 310 b to group 610 b, and erasure-coded fragment 320 b to group 620 b. At the end of the allocation and forwarding process, the bandwidth amplification devices are ready to act as bandwidth amplifiers to the fractional-storage server array 399 a and 399 b. Optionally, the allocation of bandwidth amplification devices to specific contents is performed by either the control server 393, or each fractional-storage server 399 a and 399 b.
  • It is noted that each bandwidth amplification device is not restricted to storing and serving erasure-coded fragments associated with a single content, and it is possible for each bandwidth amplification device to store and serve multiple erasure-coded fragments associated with multiple contents. The tradeoff in this case is that the more erasure-coded fragments from more contents are stored and served, the lower the bandwidth amplification factor, since the rate of forwarding fragments from the server to the bandwidth amplification devices increases, while the outgoing bandwidth available for each bandwidth amplification device remains the same.
  • In one embodiment, when a CDN server receives a request for an erasure-coded fragment, it may supply the erasure-coded fragment or supply an address of a bandwidth amplification device having an image of the requested erasure-coded fragment. Optionally, a bandwidth amplification device storing one erasure-coded fragment of a specific content also stores an image of some or all other erasure-coded fragments associated with the specific content (which are stored on the specific CDN server). Alternatively, the bandwidth amplification device stores unique erasure-coded fragments generated from the same segments used for generating the erasure-coded fragments stored on the specific CDN server. In these cases, the assembling device may approach the bandwidth amplification devices instead of the CDN server for the relevant erasure-coded fragments of the specific content until (i) the end of the content; (ii) a predefined time period elapses; (iii) receiving an appropriate message; or (iv) a combination of the aforementioned.
  • In one embodiment, an assembling device tries to obtain an erasure-coded fragment or sub-transmission from the relevant server, and if the server does not have the necessary bandwidth to respond with fragment/s, the server relays the fragment request/s to relevant bandwidth amplification devices. The relevant bandwidth amplification devices can then send the fragment/s directly to the assembling device.
  • In one embodiment, unique erasure-coded fragments can be distributed between two types of devices: (i) high bandwidth fractional-storage servers, such as CDN servers, and (ii) relatively low bandwidth and storage devices acting as bandwidth amplification devices, such as peer-to-peer (P2P) devices. Since the fragments distributed between the two types of devices are unique, any combination of devices, from both types, can be used to obtain a decodable set of fragments, if the combination of devices stores a decodable set of fragments. In one embodiment, there are at least ten times more bandwidth amplification devices than high bandwidth servers, and the redundancy factor used in decoding the fragments is greater than 10. In this case, the servers can be used all or most of the time, and the bandwidth amplification devices can be used from time to time, according to bandwidth requirements, and according to the availability of the bandwidth amplification devices. In one embodiment, the processes of obtaining a fragment from a server and from a bandwidth amplification device are essentially the same, and the fragments are essentially identical in construction and format. In one embodiment, the high redundancy factor needed to support a large hybrid array of servers and bandwidth amplification devices is achieved using rateless coding techniques.
  • In one embodiment, the bandwidth amplification devices are used to supplement the streaming capabilities of the servers during peak traffic periods. In this case, the aggregated bandwidth of the fixed bandwidth lines connecting the servers to the Internet need not account for the full bandwidth demand. In one example, 1,000 CDN servers are connected to the Internet via fixed bandwidth lines having a total capacity of 10 Tbps. Demands above 10 Tbps, which occur during a 3-hour period in the evening, are met by utilizing additional fragment delivery bandwidth of P2P devices acting as bandwidth amplification devices.
  • In one embodiment, the content is streaming content comprising approximately sequential segments, and the assembling devices attempt to obtain decodable sets of fragments from the servers. Upon failure or an estimated failure to obtain the sets, the assembling devices obtain the additionally needed fragments from one or more of the bandwidth amplification devices.
  • In some embodiments, the assembling devices may obtain the fragments from the servers and/or from the P2P devices using a fragment pull protocol, a fragment pull protocol for high latency, and/or multiple sub-transmissions.
  • In one embodiment, the bandwidth amplification devices are located at the user premises, and are connected to the Internet via ISPs. In one embodiment, the fractional-storage servers are CDN servers directly connected to the Internet backbone, or located in close topological proximity to the backbone.
  • In one embodiment, the bandwidth amplification devices store both unique and replicated fragments.
  • In one embodiment, a distributed streaming system comprising: fractional-storage servers and bandwidth amplification devices configured to store, correspondingly, a first and a second portions of rateless-coded fragments associated with approximately sequential segments of streaming content, shortly after the segments are progressively made available by a streaming source. Decodable sets of fragments associated with the segments can be obtained from approximately any combination of servers and bandwidth amplification devices storing fragments associated with the segments shortly after the segments are made available by the streaming source.
  • FIG. 40 illustrates one example, in which real-time content source 700 is segmented 710 a, 710 b on the fly, each segment is rateless-coded on the fly 720 a to 720(N−1) and 730 a to 730(N−1), a first portion of the fragments is distributed on the fly to fractional-storage servers 740 a′, 740 b′ and a second portion of the fragments is distributed on the fly to P2P devices 750 a′, 750 b′ acting as bandwidth amplification devices. Each distributed fragment is unique. Any combination of fragments out of fragments 720 a to 720(N−1) as an example, that comprise a decodable set of fragments, may be used to reconstruct segment 710 a on the fly. This can be done regardless of whether the fragments belonging to the combination are stored on servers or a P2P device. In one embodiment, the fragments are distributed approximately at the same time, and a short while after being encoded, to both servers and P2P devices.
  • In one embodiment, the first and the second portions comprise unique rateless-coded fragments encoded with a redundancy factor that is determined according to the estimated popularity of the content being encoded, whereby the higher the popularity of the content, the higher the redundancy factor used to encode the content into fragments, and the larger the number of bandwidth amplification devices that store the fragments associated with the content.
  • In one example, two contents are encoded into fragments using rateless-coding. The first content is encoded with a redundancy factor greater than 100, and the second content, which is estimated to be more popular, with a redundancy factor greater than 1,000. Approximately all fragments are unique. The first content's fragments are distributed to 100 fractional storage servers and to about 10,000 bandwidth amplification devices. The second content's fragments are distributed to the same 100 fractional storage servers and to about 100,000 bandwidth amplification devices. Assuming that the fragment delivery bandwidths of each server and amplification device are 100 Mbps and 1 Mbps respectively, the first content has a potential delivery bandwidth of (100×100 Mbps)+(1,000×1 Mbps)=11 Gbps, and the second content has a potential delivery bandwidth of (100×100 Mbps)+(10,000×1 Mbps)=20 Gbps. If different popularities are expected, or alternatively different popularities are encountered during streaming of the contents, then different redundancy factors may be used, and different numbers of amplification devices per content may be utilized accordingly.
  • FIG. 41 illustrates one embodiment in which fractional-storage servers 3799 a to 3799 c store a first portion of rateless-coded fragments; and a large number of P2P bandwidth amplification devices 3799 d to 3799 j store a second portion of the rateless-coded fragments. Decodable sets of fragments can be obtained from combinations of fragments from the first and second portions of the fragments. Optionally, the fragments are obtained approximately only from P2P devices serviced by ISPs 3771, 3772 having communication lines estimated not to be overloaded by additional fragment traffic.
  • In one embodiment, the P2P devices are spread over different time zones spanning at least three hours, and the fragments are obtained approximately only from P2P devices located in time zones in which the current local Internet traffic is relatively low in comparison to peak local traffic.
  • In one example, ISP 3771 is located on the US west coast, and ISP 3772 is located in Europe. At 6 PM PST, the general Internet traffic associated with ISP 3771 is at its peak level, meaning that communication line 3781 used by ISP 3771 is at or close to its maximal traffic capacity. At that time, the local time in Europe is midnight, and the general Internet traffic associated with ISP 3772 is at a low level, meaning that communication line 3782 used by ISP 3772 has a significant unutilized bandwidth. In this case, fragments are obtained by assembling devices approximately only from device combinations comprising servers 3799 a to 3799 c, and amplification devices 3799 h to 3799 j. Fragment delivered by devices 3799 h to 3799 j pass via the uncongested communication line 3782, and thus pose no threat to ISP 3772. Communication line 3781 is not utilized for fragment delivery, and thus devices 3799 d to 3799 g do not contribute additional traffic loads to the already congested line 3781. At a different time of day the situation is reversed, the European ISP becomes congested while the US ISP is at low capacity, and the fragments are obtained accordingly.
  • In one embodiment, all fractional-storage servers within the server array are replaced with client devices residing in customers' premises (CPEs). The CPEs perform the exact same functions as the server array, and in that respect may be referred to as a CPE array.
  • FIG. 42 illustrates one embodiment, wherein segment 101 a of content 100 is encoded into erasure-coded fragments 390 a to 390(M), such that any sufficient subset of the fragments can be used to reconstruct segment 101 a. Fragments 390 a to 390(N) are stored in fractional-storage servers 399 a to 399(N) respectively, and fragments 390(N+1) to 390(M) are stored in streaming server 399S. In one example, fragments 390(N+1) to 390(M) form a group of fragments which are sufficient to reconstruct segment 101 a. Subsequent segments 101 b to 101 j of content 100 may be similarly encoded into additional fragments stored on the servers (not illustrated). Assembling device 309 uses two different protocols approximately simultaneously to retrieve fragments for segment reconstruction: (i) a push protocol, and (ii) a fragment pull protocol. The push protocol 301S is used to deliver fragments 390(N+1) to 390(M) to assembling device 309. The push protocol may be RTP based or TCP-connection based, or any other type of transmission that does not require assembling device 309 to explicitly ask for each of fragments 390(N+1) to 390(M). In one example, fragments 390(N+1) to 390(M) are delivered to the assembling device using a single RTP stream 301S, such that upon reception of the fragments from the stream, the assembling device can immediately reconstruct segment 101 a. The fragment pull protocol is used by the assembling device to retrieve additional fragments that may be needed to reconstruct segment 101 a if one or more fragments out of fragments 390(N+1) to 390(M) fail to reach the assembling device. In one example, fragment 390(N+2) fails to reach the assembling device due to Internet packet loss conditions (referred to as fragment loss). The assembling device, after concluding that fragment 390(N+2) is missing, uses a fragment pull protocol to retrieve a substitute fragment out of one of the fractional-storage servers 390 a to 390(N), and uses this fragment to complete the reconstruction of the segment 101 a (any one of fragments 390 a to 390(N) will do). For example, the assembling device chooses fragment 390 a as the one additional fragment, by requesting and receiving it 303 a from server 399 a, using a fragment pull protocol. If more fragments out of fragments 390(N+1) to 390(M) fail to reach the assembling device 309, it may compensate by pulling substitute fragments from some or all of servers 399 a to 399(N), illustrated as fragment pull protocol requests and responses 303 a to 303(N)).
  • In one embodiment, the fragment pull protocol requests for additional needed fragments are not made to fractional-storage servers 399 a to 399(N), but are rather made to server 399S. In this case, the assembling device asks server 399S to retransmit the fragment which has failed to arrive. In this embodiment, only fragments that fail to reach the assembling device via the push transmission 301S cause an added communication overhead in the form of explicit fragment pull protocol requests, such that if no fragments are actually lost over transmission 301S, there is no need for fragment pull requests 303 a to 303(N).
  • In some embodiments, the push protocol is implemented using one or more sub-transmissions. Optionally, a push protocol transmission is implemented using multiple sub-transmissions, each transporting a fraction of the fragments transmitted by the push protocol transmission. A sub-transmission may be transported using an IP stream such as RTP, an HTTPS session, or any other form of transporting a sequence of fragments between a source server and a destination assembling device.
  • In one embodiment, an assembling device starts retrieving fragments using only fragment pull protocol processes, and then, when concluding that a specific server is responsive enough, instructs it to start sending a push-transmission for the remaining segments. In this case, the assembling device may start with pure pull-protocol based fragment retrieval, and gradually switch to push-protocol transmissions, up to the point that approximately all fragments are delivered using push-transmissions, and using the pull requests only as a means to overcome failure of obtaining specific fragments by the assembling device. In one embodiment, the fragment pull protocol and the push protocol are used interchangeably to obtain enough fragments to reconstruct segments. In one embodiment, the assembling device may start to obtain fragments using a push protocol and then switch to a fragment pull protocol. In one embodiment, the assembling device may use both fragment pull protocol and push protocol to obtain fragments at the same time, wherein the assembling device may change the ratio Fpull/Fpush on-the-fly to any value between zero and infinity, where Fpull denotes the number of fragments associated with a certain segment that are obtained using a fragment pull protocol, and Fpush denotes the number of fragments associated with the certain segment that are obtained using a push protocol.
  • In the claims, sentences such as “wherein the assembling device is configured to use a fragment pull protocol to obtain the fragments” and “wherein the assembling device is configured to use sub-transmissions to obtain the fragments” are to be interpreted as open claim language. Therefore, an assembling device configured to use a fragment pull protocol to obtain fragments may also obtain fragments using sub-transmissions, and vice-versa.
  • In the claims, a sentence such as “the erasure-coded fragments support source-selection diversity” is to be interpreted as fragments encoded using any kind of erasure-code that can produce N unique fragments, from which C combinations of decodable sets of fragments can be selected, wherein C is much greater than N. Standard parity checks, standard checksums, and standard cyclic redundancy checks (CRC) are examples of codes that do not support source-selection diversity.
  • In this description, numerous specific details are set forth. However, the embodiments of the invention may be practiced without some of these specific details. In other instances, well-known hardware, software, materials, structures and techniques have not been shown in detail in order not to obscure the understanding of this description. In this description, references to “one embodiment” mean that the feature being referred to may be included in at least one embodiment of the invention. Moreover, separate references to “one embodiment” or “some embodiments” in this description do not necessarily refer to the same embodiment. Illustrated embodiments are not mutually exclusive, unless so stated and except as will be readily apparent to those of ordinary skill in the art. Thus, the invention may include any variety of combinations and/or integrations of the features of the embodiments described herein.
  • Although some embodiments may depict serial operations, the embodiments may perform certain operations in parallel and/or in different orders from those depicted. Moreover, the use of repeated reference numerals and/or letters in the text and/or drawings is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. The embodiments are not limited in their applications to the details of the order or sequence of steps of operation of methods, or to details of implementation of devices, set in the description, drawings, or examples. Moreover, individual blocks illustrated in the figures may be functional in nature and do not necessarily correspond to discrete hardware elements. While the methods disclosed herein have been described and shown with reference to particular steps performed in a particular order, it is understood that these steps may be combined, sub-divided, or reordered to form an equivalent method without departing from the teachings of the embodiments. Accordingly, unless specifically indicated herein, the order and grouping of the steps is not a limitation of the embodiments. Furthermore, methods and mechanisms of the embodiments will sometimes be described in singular form for clarity. However, some embodiments may include multiple iterations of a method or multiple instantiations of a mechanism unless noted otherwise. For example, when a controller or an interface are disclosed in an embodiment, the scope of the embodiment is intended to also cover the use of multiple controllers or interfaces.
  • Certain features of the embodiments, which may have been, for clarity, described in the context of separate embodiments, may also be provided in various combinations in a single embodiment. Conversely, various features of the embodiments, which may have been, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.
  • Embodiments described in conjunction with specific examples are presented by way of example, and not limitation. Moreover, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the embodiments. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and scope of the appended claims and their equivalents.

Claims (20)

  1. 1) A streaming system comprising: assembling servers located at or close to the edges of the Internet and spread over a wide area, fractional-storage CDN servers located close to or on the Internet backbone, and client devices spread over a wide area; each assembling server is configured to obtain from the CDN servers erasure-coded fragments associated with segments of streaming content according to an order that enables the assembling server to start streaming the content to its associated clients shortly after reconstructing the first segment.
  2. 2) The streaming system of claim 1, wherein the assembling servers are configured to obtain the fragments using a fragment pull protocol.
  3. 3) The streaming system of claim 2, wherein at least one of the assembling servers is located at a juncture of an Internet transit network and a last mile network coupled to at least one of the client devices.
  4. 4) The streaming system of claim 1, wherein the assembling servers are configured to operate a pull protocol to obtain the fragments from the fractional-storage CDN servers, operate a streaming protocol to stream the reconstructed segments to the client devices, and start streaming while obtaining the fragments.
  5. 5) The streaming system of claim 4, wherein the fragments pass through a transit network connecting an ISP servicing the client device to the Internet, and the reconstructed segments are streamed through a last mile network connecting the ISP to the client device that is located at a user premises.
  6. 6) The streaming system of claim 4, wherein the fragments pass through a network connecting the assembling server to its servicing ISP, and the reconstructed segments are streamed through a home network.
  7. 7) The streaming system of claim 4, wherein the erasure-coding is rateless-coding, and the assembling servers and the client devices are located at a user premises.
  8. 8) The streaming system of claim 1, wherein the client devices are associated with nearby assembling servers.
  9. 9) The streaming system of claim 8, wherein the erasure-coding is rateless-coding, the client devices are located at a user premises, and the assembling servers are configured to obtain the fragments using push protocol.
  10. 10) An apparatus comprising: an assembling server configured to obtain from fractional-storage CDN servers located close to or on the Internet backbone at least most of the erasure-coded fragments needed to reconstruct a segment of content comprising multiple segments; the assembling server is further configured to reconstruct the segment and transmit the reconstructed segment or a transcoded version of the segment to a client device.
  11. 11) The apparatus of claim 10, wherein the segments are approximately sequential segments of streaming content, the fragments are obtained and the segments are reconstructed according to an order that enables the assembling server to start transmitting the segments to the client device using a streaming protocol shortly after reconstructing the first segment, and the transmission at least partially overlaps in time with the obtainment.
  12. 12) The apparatus of claim 11, wherein the assembling server is configured to obtain the fragments using a fragment pull protocol, and the transmission starts shortly after reconstructing the first segment.
  13. 13) The apparatus of claim 11, wherein the assembling server is located at or close to the edge of the Internet, and is configured to obtain the fragments using a fragment pull protocol.
  14. 14) The apparatus of claim 11, wherein the assembling server is located at a juncture of an Internet transit network and a last mile network coupled to the client device, and is configured to obtain the fragments using a fragment pull protocol.
  15. 15) The apparatus of claim 10, wherein the erasure-coding is rateless-coding; and the assembling server communicates with the fractional-storage CDN servers via Internet infrastructure that requires an Internet transit fee, and communicates with the client device via a second network that does not require an additional Internet transit fee.
  16. 16) A method comprising: receiving, by a first device from fractional-storage servers, erasure-coded fragments associated with segments of streaming content; reconstructing approximately sequential segments from fragments comprising the received fragments; and streaming the reconstructed segments or a transcoded version of the segments to a second device shortly after reconstructing the first segment; wherein the steps of receiving and streaming at least partially overlap in time.
  17. 17) The method of claim 16, wherein the erasure-coded fragments support source-selection diversity, and the fractional-storage servers are fractional-storage CDN servers located close to or on the Internet backbone.
  18. 18) The method of claim 17, wherein the erasure-coding is rateless-coding potentially resulting in fragments having a limitless redundancy factor; and receiving the fragments by the first device comprises receiving the fragments using a fragment pull protocol for high latency.
  19. 19) The method of claim 17, wherein receiving the fragments by the first device comprises receiving the fragments using a fragment pull protocol for high latency; and further comprising the second device interacting with the first device as if the first device stores the content locally; and the first device converting the interactions with the second device into corresponding interactions with the fractional-storage CDN servers.
  20. 20) The method of claim 19, wherein the interactions between the second device and the first device comprise requests to start streaming content and trick-play instructions.
US12579386 2008-10-15 2009-10-14 Erasure-coded content assembly and retransmission Abandoned US20100094965A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10568308 true 2008-10-15 2008-10-15
US12579386 US20100094965A1 (en) 2008-10-15 2009-10-14 Erasure-coded content assembly and retransmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12579386 US20100094965A1 (en) 2008-10-15 2009-10-14 Erasure-coded content assembly and retransmission

Publications (1)

Publication Number Publication Date
US20100094965A1 true true US20100094965A1 (en) 2010-04-15

Family

ID=42099890

Family Applications (15)

Application Number Title Priority Date Filing Date
US12579384 Active US7818445B2 (en) 2008-10-15 2009-10-14 Methods and devices for obtaining a broadcast-like streaming content
US12579408 Active US7822855B2 (en) 2008-10-15 2009-10-14 Methods and systems combining push and pull protocols
US12579375 Abandoned US20100094962A1 (en) 2008-10-15 2009-10-14 Internet backbone servers with edge compensation
US12579314 Abandoned US20100094958A1 (en) 2008-10-15 2009-10-14 Systems and methods for aggregating erasure-coded fragments
US12579327 Active US7844712B2 (en) 2008-10-15 2009-10-14 Hybrid open-loop and closed-loop erasure-coded fragment retrieval process
US12579044 Active US7818441B2 (en) 2008-10-15 2009-10-14 Methods and systems for using a distributed storage to its maximum bandwidth
US12579337 Active US7853710B2 (en) 2008-10-15 2009-10-14 Methods and devices for controlling the rate of a pull protocol
US12579355 Active US7840679B2 (en) 2008-10-15 2009-10-14 Methods and systems for requesting fragments without specifying the source address
US12579391 Active US8819259B2 (en) 2008-10-15 2009-10-14 Fast retrieval and progressive retransmission of content
US12579403 Abandoned US20100094967A1 (en) 2008-10-15 2009-10-14 Large Scale Distributed Content Delivery Network
US12579386 Abandoned US20100094965A1 (en) 2008-10-15 2009-10-14 Erasure-coded content assembly and retransmission
US12579291 Active US7818430B2 (en) 2008-10-15 2009-10-14 Methods and systems for fast segment reconstruction
US12579380 Active US7840680B2 (en) 2008-10-15 2009-10-14 Methods and systems for broadcast-like effect using fractional-storage servers
US12579396 Active 2032-01-09 US8825894B2 (en) 2008-10-15 2009-10-14 Receiving streaming content from servers located around the globe
US12579273 Active US7827296B2 (en) 2008-10-15 2009-10-14 Maximum bandwidth broadcast-like streams

Family Applications Before (10)

Application Number Title Priority Date Filing Date
US12579384 Active US7818445B2 (en) 2008-10-15 2009-10-14 Methods and devices for obtaining a broadcast-like streaming content
US12579408 Active US7822855B2 (en) 2008-10-15 2009-10-14 Methods and systems combining push and pull protocols
US12579375 Abandoned US20100094962A1 (en) 2008-10-15 2009-10-14 Internet backbone servers with edge compensation
US12579314 Abandoned US20100094958A1 (en) 2008-10-15 2009-10-14 Systems and methods for aggregating erasure-coded fragments
US12579327 Active US7844712B2 (en) 2008-10-15 2009-10-14 Hybrid open-loop and closed-loop erasure-coded fragment retrieval process
US12579044 Active US7818441B2 (en) 2008-10-15 2009-10-14 Methods and systems for using a distributed storage to its maximum bandwidth
US12579337 Active US7853710B2 (en) 2008-10-15 2009-10-14 Methods and devices for controlling the rate of a pull protocol
US12579355 Active US7840679B2 (en) 2008-10-15 2009-10-14 Methods and systems for requesting fragments without specifying the source address
US12579391 Active US8819259B2 (en) 2008-10-15 2009-10-14 Fast retrieval and progressive retransmission of content
US12579403 Abandoned US20100094967A1 (en) 2008-10-15 2009-10-14 Large Scale Distributed Content Delivery Network

Family Applications After (4)

Application Number Title Priority Date Filing Date
US12579291 Active US7818430B2 (en) 2008-10-15 2009-10-14 Methods and systems for fast segment reconstruction
US12579380 Active US7840680B2 (en) 2008-10-15 2009-10-14 Methods and systems for broadcast-like effect using fractional-storage servers
US12579396 Active 2032-01-09 US8825894B2 (en) 2008-10-15 2009-10-14 Receiving streaming content from servers located around the globe
US12579273 Active US7827296B2 (en) 2008-10-15 2009-10-14 Maximum bandwidth broadcast-like streams

Country Status (1)

Country Link
US (15) US7818445B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120005356A1 (en) * 2009-04-01 2012-01-05 Nokia Siemens Networks Oy Optimized interface between two network elements operating under an authentication, authorization and accounting protocol
US20120084803A1 (en) * 2010-10-01 2012-04-05 Mobitv, Inc. Media convergence platform
US8510625B1 (en) * 2010-03-31 2013-08-13 Decho Corporation Multi-site data redundancy
US20130275557A1 (en) * 2012-04-12 2013-10-17 Seawell Networks Inc. Methods and systems for real-time transmuxing of streaming media content
CN103986976A (en) * 2014-06-05 2014-08-13 北京赛维安讯科技发展有限公司 Content delivery network (CDN)-based transmission system and method
US8972733B1 (en) * 2013-03-07 2015-03-03 Facebook, Inc. Techniques to prime a stateful request-and-response communication channel
US9244761B2 (en) 2013-06-25 2016-01-26 Microsoft Technology Licensing, Llc Erasure coding across multiple zones and sub-zones

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690387B2 (en) * 2004-03-22 2011-06-01 コデマテ エー/エス Preferably the distribution method applied to streaming system
CN1985490B (en) * 2004-07-09 2013-03-27 科德马特公司 Peer of peer-to-peer network and such network
US8050289B1 (en) * 2008-02-01 2011-11-01 Zenverge, Inc. Media transmission using aggregated bandwidth of disparate communication channels
WO2010001610A1 (en) 2008-07-02 2010-01-07 パナソニック株式会社 Loss correction encoding device and loss correction encoding method
US8850180B2 (en) * 2008-08-29 2014-09-30 Empire Technology Development, Llc Secure data communication system
US20100095015A1 (en) * 2008-10-15 2010-04-15 Patentvc Ltd. Methods and systems for bandwidth amplification using replicated fragments
US8775456B2 (en) * 2008-11-03 2014-07-08 Bmc Software, Inc. System and method for scheduled and collaborative distribution of software and data to many thousands of clients over a network using dynamic virtual proxies
CA2751554C (en) 2009-02-05 2015-07-21 Wwpass Corporation Centralized authentication system with safe private data storage and method
US8839391B2 (en) 2009-02-05 2014-09-16 Wwpass Corporation Single token authentication
US8713661B2 (en) 2009-02-05 2014-04-29 Wwpass Corporation Authentication service
US8751829B2 (en) 2009-02-05 2014-06-10 Wwpass Corporation Dispersed secure data storage and retrieval
US8752153B2 (en) 2009-02-05 2014-06-10 Wwpass Corporation Accessing data based on authenticated user, provider and system
US9769504B2 (en) * 2009-03-31 2017-09-19 Comcast Cable Communications, Llc Dynamic distribution of media content assets for a content delivery network
US20100257403A1 (en) * 2009-04-03 2010-10-07 Microsoft Corporation Restoration of a system from a set of full and partial delta system snapshots across a distributed system
US8935366B2 (en) * 2009-04-24 2015-01-13 Microsoft Corporation Hybrid distributed and cloud backup architecture
US8051194B2 (en) * 2009-05-27 2011-11-01 Ray-V Technologies, Ltd. Method for buffer management for video swarms in a peer-to-peer network
WO2010138972A3 (en) * 2009-05-29 2011-03-10 Abacast, Inc. Selective access of multi-rate data from a server and/or peer
US9009296B1 (en) 2009-08-07 2015-04-14 Google Inc. System and method of determining latency
US20110055312A1 (en) * 2009-08-28 2011-03-03 Apple Inc. Chunked downloads over a content delivery network
US9456226B2 (en) * 2009-09-15 2016-09-27 Weidong Mao Dynamic content packaging in a content delivery system
US7921150B1 (en) * 2009-10-23 2011-04-05 Eastman Kodak Company Method for viewing videos on distributed networks
US8464133B2 (en) * 2009-10-30 2013-06-11 Cleversafe, Inc. Media content distribution in a social network utilizing dispersed storage
US9507735B2 (en) * 2009-12-29 2016-11-29 International Business Machines Corporation Digital content retrieval utilizing dispersed storage
US20160314052A1 (en) * 2009-12-29 2016-10-27 International Business Machines Corporation Dispersed multi-media content for a centralized digital video storage system
GB2477513B (en) * 2010-02-03 2015-12-23 Orbital Multi Media Holdings Corp Redirection apparatus and method
US8843594B2 (en) 2010-03-26 2014-09-23 Dan Fiul Time shifted transcoded streaming (TSTS) system and method
US9170892B2 (en) 2010-04-19 2015-10-27 Microsoft Technology Licensing, Llc Server failure recovery
US8447833B2 (en) 2010-04-19 2013-05-21 Microsoft Corporation Reading and writing during cluster growth phase
US9454441B2 (en) 2010-04-19 2016-09-27 Microsoft Technology Licensing, Llc Data layout for recovery and durability
US8533299B2 (en) 2010-04-19 2013-09-10 Microsoft Corporation Locator table and client library for datacenters
US8181061B2 (en) 2010-04-19 2012-05-15 Microsoft Corporation Memory management and recovery for datacenters
US8438244B2 (en) 2010-04-19 2013-05-07 Microsoft Corporation Bandwidth-proportioned datacenters
US8930277B2 (en) * 2010-04-30 2015-01-06 Now Technologies (Ip) Limited Content management apparatus
US8631269B2 (en) * 2010-05-21 2014-01-14 Indian Institute Of Science Methods and system for replacing a failed node in a distributed storage network
KR20120010089A (en) 2010-07-20 2012-02-02 삼성전자주식회사 Method and apparatus for improving quality of multimedia streaming service based on hypertext transfer protocol
US20120054583A1 (en) * 2010-08-27 2012-03-01 Raytheon Company Method and system of sub-packet error correction
US8473778B2 (en) 2010-09-08 2013-06-25 Microsoft Corporation Erasure coding immutable data
US9444876B2 (en) * 2010-11-08 2016-09-13 Microsoft Technology Licensing, Llc Content distribution system
KR20120058782A (en) * 2010-11-30 2012-06-08 삼성전자주식회사 Terminal and intermediate node in content oriented network environment and method of commnication thereof
WO2012089701A1 (en) * 2010-12-27 2012-07-05 Amplidata Nv A distributed object storage system comprising performance optimizations
WO2012097015A3 (en) 2011-01-11 2012-10-04 A10 Networks Inc. Virtual application delivery chassis system
US8996611B2 (en) 2011-01-31 2015-03-31 Microsoft Technology Licensing, Llc Parallel serialization of request processing
US8984144B2 (en) 2011-03-02 2015-03-17 Comcast Cable Communications, Llc Delivery of content
JP5772132B2 (en) * 2011-03-25 2015-09-02 富士通株式会社 Data transfer apparatus, a data transfer method and an information processing apparatus
US9813529B2 (en) 2011-04-28 2017-11-07 Microsoft Technology Licensing, Llc Effective circuits in packet-switched networks
US9154577B2 (en) 2011-06-06 2015-10-06 A10 Networks, Inc. Sychronization of configuration file of virtual application distribution chassis
US8762479B2 (en) * 2011-06-06 2014-06-24 Cleversafe, Inc. Distributing multi-media content to a plurality of potential accessing devices
US8522292B2 (en) 2011-06-15 2013-08-27 Microsoft Corporation Streaming media bandwidth reduction
US8843502B2 (en) 2011-06-24 2014-09-23 Microsoft Corporation Sorting a dataset of incrementally received data
WO2013049603A1 (en) * 2011-09-30 2013-04-04 Interdigital Patent Holdings Inc. Method and apparatus for managing content storage subsystems in a communications network
US9270718B2 (en) * 2011-11-25 2016-02-23 Harry E Emerson, III Internet streaming and the presentation of dynamic content
US8972719B2 (en) 2011-12-06 2015-03-03 Wwpass Corporation Passcode restoration
US8656180B2 (en) 2011-12-06 2014-02-18 Wwpass Corporation Token activation
US8555079B2 (en) 2011-12-06 2013-10-08 Wwpass Corporation Token management
US9319321B2 (en) * 2011-12-16 2016-04-19 Netflix, Inc. Web server constraint support
JP5825359B2 (en) * 2011-12-19 2015-12-02 富士通株式会社 Load balancing system
EP2608558A1 (en) 2011-12-22 2013-06-26 Thomson Licensing System and method for adaptive streaming in a multipath environment
US20130179541A1 (en) * 2012-01-06 2013-07-11 Comcast Cable Communications, Llc Streamlined delivery of video content
US8850054B2 (en) * 2012-01-17 2014-09-30 International Business Machines Corporation Hypertext transfer protocol live streaming
US8949244B2 (en) * 2012-05-30 2015-02-03 SkyChron Inc. Using chronology as the primary system interface for files, their related meta-data, and their related files
US10009445B2 (en) * 2012-06-14 2018-06-26 Qualcomm Incorporated Avoiding unwanted TCP retransmissions using optimistic window adjustments
US9413801B2 (en) * 2012-06-28 2016-08-09 Adobe Systems Incorporated Media stream index merging
US9100460B2 (en) 2012-06-28 2015-08-04 Adobe Systems Incorporated Media stream fragment request
US9778856B2 (en) 2012-08-30 2017-10-03 Microsoft Technology Licensing, Llc Block-level access to parallel storage
US9356981B2 (en) * 2012-11-29 2016-05-31 Broadcom Corporation Streaming content over a network
US8983967B2 (en) 2013-03-15 2015-03-17 Datadirect Networks, Inc. Data storage system having mutable objects incorporating time
US9098446B1 (en) 2013-05-20 2015-08-04 Amazon Technologies, Inc. Recovery of corrupted erasure-coded data files
US9098447B1 (en) 2013-05-20 2015-08-04 Amazon Technologies, Inc. Recovery of corrupted erasure-coded data files
US9307441B1 (en) * 2013-05-24 2016-04-05 Sprint Spectrum L.P. Systems and methods of transferring information to a wireless device
EP3005694A4 (en) * 2013-05-31 2017-01-04 Level 3 Communications, LLC Storing content on a content delivery network
US9158927B1 (en) * 2013-06-24 2015-10-13 Amazon Technologies, Inc. Cross-region recovery of encrypted, erasure-encoded data
US9241044B2 (en) * 2013-08-28 2016-01-19 Hola Networks, Ltd. System and method for improving internet communication by using intermediate nodes
US9332046B2 (en) * 2013-10-17 2016-05-03 Cisco Technology, Inc. Rate-adapted delivery of virtual desktop image elements by an edge server in a computer network environment
US20150127845A1 (en) * 2013-11-01 2015-05-07 Ericsson Television Inc System and method for optimizing defragmentation of content in a content delivery network
US9516084B2 (en) 2013-11-01 2016-12-06 Ericsson Ab System and method for pre-provisioning adaptive bitrate (ABR) assets in a content delivery network
US9489252B1 (en) 2013-11-08 2016-11-08 Amazon Technologies, Inc. File recovery using diverse erasure encoded fragments
CN103596066B (en) * 2013-11-28 2017-02-15 中国联合网络通信集团有限公司 A data processing method and apparatus
US9219671B2 (en) * 2013-12-06 2015-12-22 Dell Products L.P. Pro-active MPIO based rate limiting to avoid iSCSI network congestion/incast for clustered storage systems
US9967199B2 (en) 2013-12-09 2018-05-08 Nicira, Inc. Inspecting operations of a machine to detect elephant flows
CN104702646A (en) * 2013-12-09 2015-06-10 腾讯科技(深圳)有限公司 Data transmission method and device and communication system
US20150163145A1 (en) 2013-12-09 2015-06-11 Nicira, Inc. Reporting elephant flows to a network controller
CN103747283B (en) * 2013-12-24 2017-02-01 中国科学院声学研究所 The method of downloading video slice
US9277002B2 (en) 2014-01-09 2016-03-01 International Business Machines Corporation Physical resource management
US9798631B2 (en) 2014-02-04 2017-10-24 Microsoft Technology Licensing, Llc Block storage by decoupling ordering from durability
US9344120B2 (en) * 2014-02-13 2016-05-17 Quantum Corporation Adjusting redundancy in an erasure code object store to account for varying data value
US9596218B1 (en) 2014-03-03 2017-03-14 Google Inc. Methods and systems of encrypting messages using rateless codes
US9350484B2 (en) 2014-03-18 2016-05-24 Qualcomm Incorporated Transport accelerator implementing selective utilization of redundant encoded content data functionality
US9626196B2 (en) * 2014-03-21 2017-04-18 Intel Corporation Broadcasting management information using fountain codes
US9961130B2 (en) * 2014-04-24 2018-05-01 A10 Networks, Inc. Distributed high availability processing methods for service sessions
CN105100008B (en) * 2014-05-09 2018-06-05 华为技术有限公司 The method of content-centric network content distribution and related equipment
JP6296316B2 (en) * 2014-05-13 2018-03-20 クロード クラウディング コーポレイション Distributed secure data storage, and transmission of streaming media content
US9753807B1 (en) 2014-06-17 2017-09-05 Amazon Technologies, Inc. Generation and verification of erasure encoded fragments
US9923970B2 (en) * 2014-08-22 2018-03-20 Nexenta Systems, Inc. Multicast collaborative erasure encoding and distributed parity protection
US20160062832A1 (en) * 2014-09-02 2016-03-03 Netapp. Inc. Wide spreading data storage architecture
US9767104B2 (en) 2014-09-02 2017-09-19 Netapp, Inc. File system for efficient object fragment access
US9823969B2 (en) 2014-09-02 2017-11-21 Netapp, Inc. Hierarchical wide spreading of distributed storage
US9871855B2 (en) * 2014-09-19 2018-01-16 Facebook, Inc. Balancing load across cache servers in a distributed data store
US9489254B1 (en) 2014-09-29 2016-11-08 Amazon Technologies, Inc. Verification of erasure encoded fragments
US9552254B1 (en) 2014-09-29 2017-01-24 Amazon Technologies, Inc. Verification of erasure encoded fragments
US9848034B2 (en) * 2015-02-17 2017-12-19 Aver Information Inc. File transfer method
US9817715B2 (en) 2015-04-24 2017-11-14 Netapp, Inc. Resiliency fragment tiering
US9431061B1 (en) 2015-04-24 2016-08-30 Netapp, Inc. Data write deferral during hostile events
CN104915600B (en) * 2015-04-28 2017-11-10 北京邮电大学 , An Android application security risk assessment method and device
US20170060700A1 (en) 2015-08-28 2017-03-02 Qualcomm Incorporated Systems and methods for verification of code resiliency for data storage
US10021184B2 (en) * 2015-12-31 2018-07-10 Dropbox, Inc. Randomized peer-to-peer synchronization of shared content items
US20170228285A1 (en) * 2016-02-10 2017-08-10 SwiftStack, Inc. Data durability in stored objects
US10055317B2 (en) 2016-03-22 2018-08-21 Netapp, Inc. Deferred, bulk maintenance in a distributed storage system
FR3051614A1 (en) * 2016-05-20 2017-11-24 Thales Sa System and data transmission PROCESS
FR3052944A1 (en) * 2016-06-15 2017-12-22 Hl2 Group Data Segmentation Method has high efficiency

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040117455A1 (en) * 2002-12-16 2004-06-17 Kaminsky David L. Parallel CDN-based content delivery
US7174385B2 (en) * 2004-09-03 2007-02-06 Microsoft Corporation System and method for receiver-driven streaming in a peer-to-peer network
US20070174192A1 (en) * 2005-09-30 2007-07-26 Gladwin S C Billing system for information dispersal system
US20080065975A1 (en) * 2005-09-05 2008-03-13 Laurent Massoulie Method for assigning multimedia data to distributed storage devices
US20080134258A1 (en) * 2005-08-12 2008-06-05 Stuart Goose Multi-Source and Resilient Video on Demand Streaming System for a Peer-to-Peer Subscriber Community
US20080155061A1 (en) * 2006-09-06 2008-06-26 Akamai Technologies, Inc. Hybrid content delivery network (CDN) and peer-to-peer (P2P) network
US20080189429A1 (en) * 2007-02-02 2008-08-07 Sony Corporation Apparatus and method for peer-to-peer streaming
US20080253564A1 (en) * 2007-04-11 2008-10-16 Kahn Raynold M Method and apparatus for file sharing of missing content between a group of user devices in a peer-to-peer network
US20080256418A1 (en) * 2006-06-09 2008-10-16 Digital Fountain, Inc Dynamic stream interleaving and sub-stream based delivery
US20080282112A1 (en) * 2000-03-16 2008-11-13 Akamai Technologies, Inc. Method and apparatus for testing request-response service using live connection traffic
US20080301746A1 (en) * 2007-05-30 2008-12-04 Wiser Philip R Programming content reconstruction in a content delivery system
US20080307107A1 (en) * 2007-06-08 2008-12-11 At&T Knowledge Ventures, Lp Peer-to-peer distributed storage for internet protocol television
US20090025048A1 (en) * 2005-03-09 2009-01-22 Wond, Llc Method and apparatus for sharing media files among network nodes
US20090024754A1 (en) * 2007-07-20 2009-01-22 Setton Eric E Assisted peer-to-peer media streaming
US20090077254A1 (en) * 2007-09-13 2009-03-19 Thomas Darcie System and method for streamed-media distribution using a multicast, peer-to- peer network
US20090083394A1 (en) * 2006-01-09 2009-03-26 Christophe Diot Multimedia Content Delivery Method and System
US20090106441A1 (en) * 2006-06-20 2009-04-23 Patentvc Ltd. Methods for high bandwidth utilization by a distributed storage system

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US560329A (en) * 1896-05-19 Stone-lewis
US5603029A (en) 1995-06-07 1997-02-11 International Business Machines Corporation System of assigning work requests based on classifying into an eligible class where the criteria is goal oriented and capacity information is available
US6031818A (en) * 1997-03-19 2000-02-29 Lucent Technologies Inc. Error correction system for packet switching networks
US6463454B1 (en) 1999-06-17 2002-10-08 International Business Machines Corporation System and method for integrated load distribution and resource management on internet environment
US7441045B2 (en) * 1999-12-13 2008-10-21 F5 Networks, Inc. Method and system for balancing load distribution on a wide area network
US6405219B2 (en) * 1999-06-22 2002-06-11 F5 Networks, Inc. Method and system for automatically updating the version of a set of files stored on content servers
US6760723B2 (en) * 2000-01-31 2004-07-06 Commvault Systems Inc. Storage management across multiple time zones
US6754709B1 (en) 2000-03-29 2004-06-22 Microsoft Corporation Application programming interface and generalized network address translator for intelligent transparent application gateway processes
US6996616B1 (en) * 2000-04-17 2006-02-07 Akamai Technologies, Inc. HTML delivery from edge-of-network servers in a content delivery network (CDN)
WO2001090903A1 (en) 2000-05-24 2001-11-29 Cohere Networks, Inc. Apparatus, system, and method for balancing loads to network servers
US7693992B2 (en) * 2000-06-14 2010-04-06 Disney Enterprises, Inc. Technique for providing access to data
JP2002044138A (en) * 2000-07-25 2002-02-08 Nec Corp Network system, cache server, relay server, router, cache server control method and recording medium
US6801947B1 (en) 2000-08-01 2004-10-05 Nortel Networks Ltd Method and apparatus for broadcasting media objects with guaranteed quality of service
EP1410215A4 (en) * 2000-08-22 2006-10-11 Akamai Tech Inc Dynamic content assembly on edge-of-network servers in a content delivery network
US6772217B1 (en) * 2000-08-23 2004-08-03 International Business Machines Corporation Internet backbone bandwidth enhancement by initiating an additional data stream when individual bandwidth are approximately equal to the backbone limit
US7151754B1 (en) * 2000-09-22 2006-12-19 Lucent Technologies Inc. Complete user datagram protocol (CUDP) for wireless multimedia packet networks using improved packet level forward error correction (FEC) coding
US7139242B2 (en) * 2001-03-28 2006-11-21 Proficient Networks, Inc. Methods, apparatuses and systems facilitating deployment, support and configuration of network routing policies
EP1410217A4 (en) * 2001-04-02 2006-09-20 Akamai Tech Inc Scalable, high performance and highly available distributed storage system for internet content
US7149797B1 (en) 2001-04-02 2006-12-12 Akamai Technologies, Inc. Content delivery network service provider (CDNSP)-managed content delivery network (CDN) for network service provider (NSP)
US7353252B1 (en) 2001-05-16 2008-04-01 Sigma Design System for electronic file collaboration among multiple users using peer-to-peer network topology
US6950895B2 (en) * 2001-06-13 2005-09-27 Intel Corporation Modular server architecture
US7292602B1 (en) 2001-12-27 2007-11-06 Cisco Techonology, Inc. Efficient available bandwidth usage in transmission of compressed video data
US20030204602A1 (en) * 2002-04-26 2003-10-30 Hudson Michael D. Mediated multi-source peer content delivery network architecture
US7395355B2 (en) * 2002-07-11 2008-07-01 Akamai Technologies, Inc. Method for caching and delivery of compressed content in a content delivery network
US7899932B2 (en) 2003-01-15 2011-03-01 Panasonic Corporation Relayed network address translator (NAT) traversal
US20040215806A1 (en) * 2003-04-22 2004-10-28 Idea Valley Do Brasil On the fly offering and allocation of bandwidth on demand
US7649895B2 (en) * 2003-12-30 2010-01-19 Airwide Solutions Inc. Apparatus and method for routing multimedia messages between a user agent and multiple multimedia message service centers
US20070174195A1 (en) * 2004-01-15 2007-07-26 Mitsubishi Denki Kabushiki Kaisha Key system, key device and information apparatus
WO2005077045A3 (en) 2004-02-06 2006-12-07 Arris Int Inc Method and system for replicating a video stream onto separate qam downstream channels
US7796517B2 (en) * 2004-06-28 2010-09-14 Minghua Chen Optimization of streaming data throughput in unreliable networks
US20060005224A1 (en) 2004-06-30 2006-01-05 John Dunning Technique for cooperative distribution of video content
CN1845611A (en) * 2005-04-08 2006-10-11 华为技术有限公司 Video transmission protection method based on H.264
US8108183B2 (en) * 2005-05-04 2012-01-31 Henri Hein System and method for load testing a web-based application
WO2007023321A1 (en) * 2005-08-25 2007-03-01 Tero Ltd Method and system for location based distribution of content on the internet
US20070133420A1 (en) * 2005-10-24 2007-06-14 Tuna Guven Multipath routing optimization for unicast and multicast communication network traffic
US7660296B2 (en) * 2005-12-30 2010-02-09 Akamai Technologies, Inc. Reliable, high-throughput, high-performance transport and routing mechanism for arbitrary data flows
US20070174792A1 (en) 2006-01-25 2007-07-26 Howard Richard D Graphic subselection in a computer aided design
US20070177739A1 (en) * 2006-01-27 2007-08-02 Nec Laboratories America, Inc. Method and Apparatus for Distributed Data Replication
US7480848B2 (en) * 2006-02-10 2009-01-20 The Directv Group, Inc. Methods and apparatus to select tornado error correction parameters
US7945694B2 (en) * 2006-03-27 2011-05-17 Rayv Inc. Realtime media distribution in a p2p network
KR100827229B1 (en) * 2006-05-17 2008-05-07 삼성전자주식회사 Apparatus and method for video retrieval
US20080059631A1 (en) * 2006-07-07 2008-03-06 Voddler, Inc. Push-Pull Based Content Delivery System
US20080016194A1 (en) * 2006-07-17 2008-01-17 International Business Machines Corporation Dispatching request fragments from a response aggregating surrogate
US20080098123A1 (en) * 2006-10-24 2008-04-24 Microsoft Corporation Hybrid Peer-to-Peer Streaming with Server Assistance
US20080140826A1 (en) * 2006-12-08 2008-06-12 Microsoft Corporation Monitoring and controlling electronic message distribution
US8090792B2 (en) * 2007-03-08 2012-01-03 Nec Laboratories America, Inc. Method and system for a self managing and scalable grid storage
US7945689B2 (en) * 2007-03-23 2011-05-17 Sony Corporation Method and apparatus for transferring files to clients using a peer-to-peer file transfer model and a client-server transfer model
US8051362B2 (en) * 2007-06-15 2011-11-01 Microsoft Corporation Distributed data storage using erasure resilient coding
US8606846B2 (en) * 2007-10-15 2013-12-10 Nbcuniversal Media, Llc Accelerating peer-to-peer content distribution
US20090177760A1 (en) * 2008-01-04 2009-07-09 Wireless Ventures, Inc. Data Distribution Network
US20090276402A1 (en) 2008-05-01 2009-11-05 Mobitv, Inc. Search system using media metadata tracks
US20090327079A1 (en) * 2008-06-25 2009-12-31 Cnet Networks, Inc. System and method for a delivery network architecture
US8180896B2 (en) 2008-08-06 2012-05-15 Edgecast Networks, Inc. Global load balancing on a content delivery network

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080282112A1 (en) * 2000-03-16 2008-11-13 Akamai Technologies, Inc. Method and apparatus for testing request-response service using live connection traffic
US20040117455A1 (en) * 2002-12-16 2004-06-17 Kaminsky David L. Parallel CDN-based content delivery
US7174385B2 (en) * 2004-09-03 2007-02-06 Microsoft Corporation System and method for receiver-driven streaming in a peer-to-peer network
US20070130361A1 (en) * 2004-09-03 2007-06-07 Microsoft Corporation Receiver driven streaming in a peer-to-peer network
US20090025048A1 (en) * 2005-03-09 2009-01-22 Wond, Llc Method and apparatus for sharing media files among network nodes
US20080134258A1 (en) * 2005-08-12 2008-06-05 Stuart Goose Multi-Source and Resilient Video on Demand Streaming System for a Peer-to-Peer Subscriber Community
US20080065975A1 (en) * 2005-09-05 2008-03-13 Laurent Massoulie Method for assigning multimedia data to distributed storage devices
US20070174192A1 (en) * 2005-09-30 2007-07-26 Gladwin S C Billing system for information dispersal system
US20090083394A1 (en) * 2006-01-09 2009-03-26 Christophe Diot Multimedia Content Delivery Method and System
US20080256418A1 (en) * 2006-06-09 2008-10-16 Digital Fountain, Inc Dynamic stream interleaving and sub-stream based delivery
US20090106441A1 (en) * 2006-06-20 2009-04-23 Patentvc Ltd. Methods for high bandwidth utilization by a distributed storage system
US20080155061A1 (en) * 2006-09-06 2008-06-26 Akamai Technologies, Inc. Hybrid content delivery network (CDN) and peer-to-peer (P2P) network
US20080189429A1 (en) * 2007-02-02 2008-08-07 Sony Corporation Apparatus and method for peer-to-peer streaming
US20080253564A1 (en) * 2007-04-11 2008-10-16 Kahn Raynold M Method and apparatus for file sharing of missing content between a group of user devices in a peer-to-peer network
US20080301746A1 (en) * 2007-05-30 2008-12-04 Wiser Philip R Programming content reconstruction in a content delivery system
US20080307107A1 (en) * 2007-06-08 2008-12-11 At&T Knowledge Ventures, Lp Peer-to-peer distributed storage for internet protocol television
US20090024754A1 (en) * 2007-07-20 2009-01-22 Setton Eric E Assisted peer-to-peer media streaming
US20090077254A1 (en) * 2007-09-13 2009-03-19 Thomas Darcie System and method for streamed-media distribution using a multicast, peer-to- peer network

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120005356A1 (en) * 2009-04-01 2012-01-05 Nokia Siemens Networks Oy Optimized interface between two network elements operating under an authentication, authorization and accounting protocol
US8949447B2 (en) * 2009-04-01 2015-02-03 Nokia Solutions And Networks Oy Optimized interface between two network elements operating under an authentication, authorization and accounting protocol
US8510625B1 (en) * 2010-03-31 2013-08-13 Decho Corporation Multi-site data redundancy
US20120084803A1 (en) * 2010-10-01 2012-04-05 Mobitv, Inc. Media convergence platform
US9277260B2 (en) * 2010-10-01 2016-03-01 Mobitv, Inc. Media convergence platform
US20130275557A1 (en) * 2012-04-12 2013-10-17 Seawell Networks Inc. Methods and systems for real-time transmuxing of streaming media content
US9712887B2 (en) * 2012-04-12 2017-07-18 Arris Canada, Inc. Methods and systems for real-time transmuxing of streaming media content
US8972733B1 (en) * 2013-03-07 2015-03-03 Facebook, Inc. Techniques to prime a stateful request-and-response communication channel
US9244761B2 (en) 2013-06-25 2016-01-26 Microsoft Technology Licensing, Llc Erasure coding across multiple zones and sub-zones
CN103986976A (en) * 2014-06-05 2014-08-13 北京赛维安讯科技发展有限公司 Content delivery network (CDN)-based transmission system and method

Also Published As

Publication number Publication date Type
US8825894B2 (en) 2014-09-02 grant
US20100094960A1 (en) 2010-04-15 application
US20100094968A1 (en) 2010-04-15 application
US7818445B2 (en) 2010-10-19 grant
US20100094958A1 (en) 2010-04-15 application
US7818441B2 (en) 2010-10-19 grant
US20100094957A1 (en) 2010-04-15 application
US20100094966A1 (en) 2010-04-15 application
US20100094956A1 (en) 2010-04-15 application
US8819259B2 (en) 2014-08-26 grant
US20100094963A1 (en) 2010-04-15 application
US20100094962A1 (en) 2010-04-15 application
US7840679B2 (en) 2010-11-23 grant
US7822855B2 (en) 2010-10-26 grant
US20100094961A1 (en) 2010-04-15 application
US20100094959A1 (en) 2010-04-15 application
US20100094955A1 (en) 2010-04-15 application
US20100094967A1 (en) 2010-04-15 application
US7853710B2 (en) 2010-12-14 grant
US7840680B2 (en) 2010-11-23 grant
US20100095012A1 (en) 2010-04-15 application
US7844712B2 (en) 2010-11-30 grant
US7827296B2 (en) 2010-11-02 grant
US7818430B2 (en) 2010-10-19 grant
US20100094964A1 (en) 2010-04-15 application

Similar Documents

Publication Publication Date Title
Padmanabhan et al. Distributing streaming media content using cooperative networking
US7047287B2 (en) Method and apparatus for automatically adapting a node in a network
US7174385B2 (en) System and method for receiver-driven streaming in a peer-to-peer network
US20120254456A1 (en) Media file storage format and adaptive delivery system
Li et al. Mutualcast: An efficient mechanism for one-to-many content distribution
US20100306373A1 (en) Data retrieval based on bandwidth cost and delay
Li et al. Two decades of internet video streaming: A retrospective view
US7299291B1 (en) Client-side method for identifying an optimum server
US20060069800A1 (en) System and method for erasure coding of streaming media
US6751673B2 (en) Streaming media subscription mechanism for a content delivery network
US20080307107A1 (en) Peer-to-peer distributed storage for internet protocol television
US20100228862A1 (en) Multi-tiered scalable media streaming systems and methods
US7664109B2 (en) System and method for distributed streaming of scalable media
US20130117413A1 (en) Content distribution device, content playback device, content distribution system, method for controlling a content distribution device, control program, and recording medium
US20080071907A1 (en) Methods and apparatus for data transfer
Yiu et al. VMesh: Distributed segment storage for peer-to-peer interactive video streaming
US20080037527A1 (en) Peer-to-Peer Interactive Media-on-Demand
Shen et al. Peer-to-peer media streaming: Insights and new developments
US7529198B2 (en) Scalable overlay network
US20130117418A1 (en) Hybrid platform for content delivery and transcoding
US20080189429A1 (en) Apparatus and method for peer-to-peer streaming
US20080016201A1 (en) Methods and apparatus for transferring data
Kontothanassis et al. A transport layer for live streaming in a content delivery network
Jurca et al. Enabling adaptive video streaming in P2P systems [Peer-to-Peer Multimedia Streaming]
US20120198506A1 (en) Multicast adaptive stream switching for delivery of over the top video content