New! View global litigation for patent families

US20100094196A1 - Systems and methods for delivering agents into targeted tissue of a living being - Google Patents

Systems and methods for delivering agents into targeted tissue of a living being Download PDF

Info

Publication number
US20100094196A1
US20100094196A1 US12567592 US56759209A US2010094196A1 US 20100094196 A1 US20100094196 A1 US 20100094196A1 US 12567592 US12567592 US 12567592 US 56759209 A US56759209 A US 56759209A US 2010094196 A1 US2010094196 A1 US 2010094196A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
instrument
tissue
agent
delivery
system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12567592
Inventor
John E. Nash
Douglas G. Evans
David M. Hoganson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kensey Nash Corp
Original Assignee
Kensey Nash Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • A61B17/32037Fluid jet cutting instruments for removing obstructions from inner organs or blood vessels, e.g. for atherectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3478Endoscopic needles, e.g. for infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00202Moving parts rotating
    • A61B2018/00208Moving parts rotating actively driven, e.g. by a motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00291Anchoring means for temporary attachment of a device to tissue using suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument instered into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2005Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with beam delivery through an interstitially insertable device, e.g. needle

Abstract

The systems basically comprise a delivery system for accessing the targeted tissue within the living being and introduction of at least one agent at select locations in the into the myocardium and other select tissues. The delivery systems are arranged to access the tissues of the heart. One or more of the systems can be utilized during transluminal, transthoracic and direct surgical access procedures. Where appropriate, for example in the case of intraventricular access, portions of the system are steerable to properly orient the device. The instruments may pierce the heart tissue and create channels extending from the endocardium, the epicardium, or the cardiac vessels. When tissue penetration is utilized, the device may include a feature to control the depth of penetration. To minimize bleeding through the channels the device can dilate small initial punctures that later contract down after device removal. When the formation of channels is required, this can be achieved, by way of example, with a rotary-tipped device, pressurized fluid jet devices, vibratory instruments and piercing needle-like tip devices. The system may utilize some form of mechanical action or application of energy (e.g. electrical, sonic, thermal, optical, pressurized fluid, radio frequency (RF), nuclear) in the process. The mechanical action or energy application may affect the surroundings tissues at a distance from the device. The agent delivered to the tissue may include one or more of pharmaceuticals, biologically active agents, radiopaque materials, etc.

Description

    RELATED APPLICATION
  • [0001]
    This application is a Continuation of U.S. patent application Ser. No. 10/124,359, filed on Apr. 17, 2002, entitled Systems And Methods For Delivering Agents Into Targeted Tissue Of A Living Being, which is a Continuation of U.S. patent application Ser. No. 09/368,410, filed on Aug. 5, 1999, entitled Systems And Methods For Delivering Agents Into Targeted Tissue Of A Living Being, both of which are assigned to the same assignee as this invention, and whose disclosures are incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • [0002]
    This invention relates generally to medical systems and procedures and more particularly to systems and procedures for delivering a flowable treatment agent into targeted tissues, e.g., cardiac tissue, of a living being.
  • [0003]
    Cardiovascular disease is the leading cause of death in the industrial world today. During the disease process, atherosclerotic plaques develop at various locations within the arterial system of those affected. These plaques restrict the flow of blood through the affected vessels. Of particular concern is when these plaques develop within the blood vessels that feed the muscles and other tissues of the heart. In healthy hearts, cardiac blood perfusion results from the two coronary arterial vessels, the left and right coronary arteries that perfuse the myocardium from the epicardial surface inward towards the endocardium. The blood flows through the capillary system into the coronary veins and into the right atrium via the coronary sinus. When atherosclerosis occurs within the arteries of the heart it leads to myocardial infarctions, or heart attacks, and ischemia due to reduced blood flow to the heart tissues. Over the past few years numerous devices and methods have been evaluated for treating cardiovascular disease, and for treating the resulting detrimental effects that the disease has upon the myocardium and the other heart tissues. They are: traditional surgical methods (e.g. open heart surgery), minimally invasive surgery, traditional interventional cardiology (e.g. angioplasty, atherectomy, stents), and advanced interventional cardiology (e.g. catheter based drug delivery). Other recent advances in cardiovascular disease treatment involve transmyocardial revascularization (TMR), and growth factor and gene delivery.
  • [0004]
    Traditional methods for treating cardiovascular disease utilize open surgical procedures to access the heart and bypass blockages in the coronary blood vessels. These procedures require an incision in the skin extending from the supra-sternal notch to the zyphoid process, the sawing of the sternum longitudinally in half, and the spreading of the rib-cage to surgically expose the patient's heart. Based upon the degree of coronary artery disease, a single, double, triple, or even greater number of vessels are bypassed. Each bypass is typically performed by creating a separate conduit from the aorta to a stenosed coronary artery at a location distal to the occluded site. In general, the conduits are either synthetic or natural bypass grafts. Grafting with the internal thoracic (internal mammary) artery directly to the blocked coronary site has been particularly successful with superior long-term patency results. During conventional cardiac surgery, the heart is stopped using cardioplegia solutions and the patient is put on cardiopulmonary bypass. The bypass procedure uses a heart-lung machine to maintain circulation throughout the body during the surgical procedure. A state of hypothermia may be induced in the heart tissue during the bypass procedure to preserve the tissue from necrosis. Once the procedure is complete, the heart is resuscitated and the patient is removed from bypass.
  • [0005]
    There are great risks associated with these traditional surgical procedures such as significant pain, extended rehabilitation time and high risk of mortality for the patient. The procedure is time-consuming and costly to perform. Traditional cardiac surgery also requires that the patient have both adequate lung and kidney function in order to tolerate the circulatory bypass associated with the procedure and a number of patients which are medically unstable are thus not a candidate for bypass surgery. As a result, over the past few years, minimally invasive techniques for performing bypass surgery have been developed and in some instances the need for cardiopulmonary bypass and extended recovery times are avoided. A number of companies, e.g., Heartport, Inc. of Redwood City, Calif. and Cardiothoracic Systems, Inc. of Cupertino, Calif., have developed devices that allow for cardiac surgical procedures that do not require a grossly invasive median sternotomy or traditional cardiopulmonary bypass equipment. The procedures result in a significant reduction in pain and rehabilitation time.
  • [0006]
    In addition, as an alternative to surgical methods, traditional interventional cardiology methods (e.g. angioplasty, atherectomy, and stents) non-surgical procedures, such as percutaneous transluminal coronary angioplasty (PTCA), rotational atherectomy, and stenting have been successfully used to treat this disease in a less invasive non-surgical fashion. In balloon angioplasty a long, thin catheter having a tiny inflatable balloon at its distal end is threaded through the cardiovascular system until the balloon is located at the location of the narrowed blood vessel. The balloon is then inflated to separate and expand the obstructing plaque and expand the arterial wall, thereby restoring or improving the flow of blood to the local and distal tissues. Rotational atherectomy utilizes a similarly long and thin catheter, but with a rotational cutting tip at its distal end for cutting through the occluding material. Stenting utilizes a balloon tipped catheter to expand a small coil-spring-like scaffold at the site of the blockage to hold the blood vessel open.
  • [0007]
    While many patients are successfully relieved of their symptoms and pain with traditional interventional procedures, in a significant number of patients the blood vessels eventually restenose or reocclude within a relatively short period of time. As such, researchers have explored advanced interventional cardiology methods (e.g., catheter based drug delivery, radiation therapy, etc.) to delay or prohibit the process of restenosis. As summarized by Raoul Bonan, Md. (“Local Drug Delivery for the Treatment of Thrombus and Restenosis, IAGS Proceedings, The Journal of Invasive Cardiology, 8:399-408, October 1996), the cardiology community has recently begun to augment standard catheter-based treatment techniques with devices that provide local delivery of medications to the treated site. This localized administration of drugs has shown promise for counteracting clotting, reducing inflammatory responses, and blocking proliferative responses.
  • [0008]
    Several devices are reported to be under evaluation for site specific drug delivery, such as the so-called “Channel Balloon” catheter of Boston Scientific (Natick, Mass.), the “Infiltrator” device of InterVentional Technologies (San Diego, Calif.), the “InfusaSleeve” device of LocalMed Inc. (Sunnyvale, Calif.), the “Dispatch” catheter of SciMed/Boston Scientific (Natick, Mass.), and an ultrasound enhanced catheter of EKOS (Bothell Wash.). The “Channel Balloon” catheter is an over-the-wire catheter with separated ports for balloon inflation and drug infusion. The “Infiltrator” device utilizes nipples in a balloon to force a drug into vessel wall.
  • [0009]
    U.S. Pat. No. 5,279,565 (Klein et al.) discloses a device for infusing a treatment site with a medicinal agent. The device has a flexible body and deflectable support frames that are deployed radially against the intended treatment site. The InfusaSleeve device of LocalMed, Inc. slides over existing balloons to position drug delivery ports against the artery wall. The Dispatch is an over the wire catheter with separate ports for drug infusion and balloon inflation.
  • [0010]
    U.S. Pat. No. 5,527,292 (Adams et al.) describes an intravascular device having an elongated flexible tube sized for insertion into a coronary vessel beyond a distal end of a guide catheter. In certain applications, the intravascular device is used as a drug (or other fluid) delivery device or as an aspiration device. In other applications, the intravascular device is used as a guiding means for placement of an angioplasty device, such as a guide wire or a balloon catheter. EKOS (Bothell, Wash.) has developed a site-specific catheter that uses ultrasound energy to enhance the performance of a thrombolytic drug. The ultrasound energy transports the drug molecules into the strands of fibrin bundles to dissolve clots more effectively than drugs alone. Several other drug delivery catheters have been described.
  • [0011]
    Balloon-tipped catheters, appropriate for drug delivery procedures, are also described in U.S. Pat. No. 5,087,244 (Wolinsky et al.). In particular, this patent describes a catheter having a balloon near its distal end is expanded with a medication that then flows through minute holes in the balloon surface at a low flow rate. The catheter pressurizes the medication so that it can be perfused at a controlled low flow rate to penetrate into the wall of the localized tissue.
  • [0012]
    U.S. Pat. No. 5,021,044 (Sharkawy) describes an intravascular treatment apparatus having a plurality of holes on the outer surface of the catheter body through which a drug may be delivered to a site within a vessel.
  • [0013]
    U.S. Pat. No. 5,112,305 (Barath et al.) describes a catheter for delivery of therapeutic chemical agents to an interior wall of a vessel, the catheter having a balloon near its distal end with tubular extensions projecting from its outer surface. The catheter is pressurized with a drug, which causes the balloon to expand. The drug then flows throughout the tubular extension into the vessel wall.
  • [0014]
    U.S. Pat. No. 4,406,656 (Hattler et al.) describes a collapsible multi-lumen venous catheter that can be used for drug injection.
  • [0015]
    U.S. Pat. No. 5,498,238 (Shapland et al.) discloses a method of simultaneous angioplasty and drug delivery to a localized portion of coronary or peripheral arteries or any other type of body passage that has a stricture. The drug delivery device is first positioned in a body passageway. The device is expanded in order to dilate the passage while simultaneously causing a selected drug to be transported across a drug transport wall of the device for direct contact with the passageway wall.
  • [0016]
    U.S. Pat. No. 5,415,637 (Khosravi) describes an intravascular catheter that is capable of delivering a drug, that is in the form of an already mixed solution or in the form of pellets, both intraluminally and endoluminally to an artery.
  • [0017]
    U.S. Pat. No. (Spears) describes a method for treating a lesion in an artery by bonding a bioprotective material to the arterial wall with thermal energy to provide localized drug delivery. The device can use drugs that are trapped within microspheres that can be thermally bonded to tissues.
  • [0018]
    U.S. Pat. No. 4,994,033 (Shockey et al.) describes an intravascular treatment apparatus having a pair of expansion members concentrically arranged near its distal end wherein a drug is delivered to the outer expansion member. The expansion member expands against the vessel wall forcing the drug through minute holes in the outer member to bathe the vessel wall.
  • [0019]
    U.S. Pat. No. 5,456,667 (Ham et al.) describes an intravascular catheter with an expandable region formed of a tubular material at the distal end of the catheter body in a one-piece configuration and is radially expanded and contracted by means of a control wire. The interior of the expandable region is in fluid communication with a lumen in the catheter body to allow the delivery of a fluid to the artery via openings in the surface of the expandable region. The catheter is particularly adapted to hold open an artery after a vascular procedure such as a balloon angioplasty, and if desired to introduce a therapeutic drug or other fluid to the site of the vascular procedure.
  • [0020]
    The assignee of this present invention is also the assignee of previously described catheter-based devices for the local delivery of drugs into the arterial system. See for example, U.S. Pat. No. 4,589,412 (Kensey) and U.S. Pat. No. 4,631,052 (Kensey) disclose atherectomy catheters that utilize a cutting tip that is driven by the application of fluid pressure. As described, the catheters can be used to deliver drugs, oxygen, nitrates, calcium channel blockers or contrast media through the catheter tip into the arterial lumen.
  • [0021]
    U.S. Pat. No. 4,747,406 (Nash) and U.S. Pat. No. 4,686,982 (Nash), which are assigned to the same assignee as this invention, describe recanalization catheters with a high speed working end that is driven by a flexible drive shaft mounted within a bearing. The specification describes the use of fluid to cool and lubricate the catheter, as well as reduce the incidence of snagging as a result of the positive pressure applied to the artery wall. The fluid can include nitrates, drugs, or contrast media.
  • [0022]
    U.S. Pat. No. 4,664,112 (Kensey), U.S. Pat. No. 4,679,558 (Kensey et al.), and U.S. Pat. No. 4,700,705 (Kensey), assigned to the same assignee as this invention, describe small diameter catheter devices with a high-speed working head used for dilating lumens and stopping arterial or other lumen spasm. The specifications describe the use of fluids to cool and lubricate the catheter. The fluid can carry contrast media or drugs. The catheters may be useful for opening restrictions in lumens by bombarding the restriction with propelled fluids at high pressure which may force the liquid into the lumen walls by increasing the local dynamic or hydrostatic pressure induced by the injected liquid or the moving working head.
  • [0023]
    U.S. Pat. No. 4,790,813 (Kensey), also assigned to the same assignee as this invention, describes an atherectomy catheter that utilizes a cutting tip that is driven by the application of fluid pressure. As described, that catheter has the potential for the delivery of drugs, oxygen, nitrates, calcium channel blockers or contrast media through the catheter tip into the arterial lumen.
  • [0024]
    U.S. Pat. No. 4,795,438 (Kensey et al.), also assigned to the same assignee as this invention, describes a flexible small diameter catheter for effecting the formation of a restriction in a vessel. The patent teaches of a rotary catheter that is used to deliver fluid, particles, sclerosing liquid, micron-sized particles, and adhesive agents. In one aspect of the invention, the particles are embedded into the tissue contiguous with the working head of the catheter. The embedded particles cause the tissue to change, e.g. form scar tissue, whereupon a restriction is formed. Another aspect of the invention describes the use of abrasive particles to sclerose or abrade tissue.
  • [0025]
    U.S. Pat. No. 4,749,376 (Kensey et al.), U.S. Pat. No. 5,042,984 (Kensey et al.), and U.S. Pat. No. 4,747,821 (Kensey et al.), all assigned to the same assignee of this invention, describe drive-wire driven rotary catheters for opening an arterial restriction. The devices utilize the rotation of a working head to cause fluid to be thrown radially outward from the working head to impact the artery wall.
  • [0026]
    In general, these previous devices are suited to deliver drugs and other therapeutic agents locally to the immediate lumen (e.g., artery) wall to address restenosis. However, they do not address the problem of treating other heart tissues (e.g., myocardium) located beyond the arterial wall.
  • [0027]
    It has been shown that some patients can receive significant benefits from recently developed medical treatments. Some of these treatments are applied to other tissues of the heart (e.g. the myocardium). In addition, although the non-surgical interventional cardiology procedures are much less costly and less traumatic to the patient than traditional coronary bypass surgery, there are a number of patients for which these procedures are not suitable. For certain types of patients the presence of extremely diffuse stenotic lesions and total occlusion in tortuous vessels prohibits them from being candidates for traditional cardiac surgery. For these patients, direct myocardial revascularization has been performed by inducing the creation of new channels, other than the coronary arteries themselves, which are designed to supply oxygenated blood and remove waste products from the heart tissue (e.g. myocardium). Myocardial revascularization is a technique that was conceived to supplement the blood supply delivered to the heart by providing the ischemic inner surface of the heart, known as the endocardium, with direct access to the blood within the ventricular chamber. Typically the endocardium receives its nutrient blood supply entirely from the coronary arteries that branch through the heart wall from the outer surface known as the epicardium.
  • [0028]
    Needle acupuncture approaches to direct myocardial revascularization have been made and were based upon the premise that the heart of reptiles achieve myocardial perfusion via small channels between the left ventricle and the coronary arterial tree as described by Sen et al. in their article entitled “Transmyocardial Acupuncture: A New Approach To Myocardial Revascularization” in the Journal of Thoracic and Cardiovascular Surgery, 50:181-187, August, 1965. In that article it was reported that researchers attempted to duplicate the reptilian anatomy to provide for better perfusion in human myocardium by perforating portions of the ventricular myocardium with 1.2 mm diameter needles in 20 locations per square centimeter. It has been shown that the perfusion channels formed by mechanical methods such as acupuncture generally close within two or three months due to fibrosis and scaring. Pifarre et al. evaluated the feasibility of direct myocardial revascularization from the left ventricle through artificially created channels. Their results are described in an article entitled “Myocardial Revascularization by Transmyocardial Acupuncture, A Physiologic Impossibility” in the Journal of Thoracic and Cardiovascular Surgery, 58:424-431, September, 1969. Pifarre et al. concluded that results were not encouraging. As a result, these types of mechanical approaches were abandoned in favor of other methods to effect the transmyocardial revascularization (TMR).
  • [0029]
    Similar revascularization techniques have involved the use of polyethylene tubes, endocardial incisions, and the creation of perforated or bored channels with various types of needles, and needle acupuncture. For example, T-shaped tubes have been implanted in the muscle, with the leg of the T-tube extending into the ventricular cavity as reported by Massimo et al. in an article entitled “Myocardial Revascularization by A New Method of Carrying Blood Directly From the Left Ventricular Cavity into the Coronary Circulation” appearing in J. Thorac. Surg., 34:257-264, August, 1957. In an article entitled “Experimental Method For Producing A Collateral Circulation To The Heart Directly From The Left Ventricle” by Goldman et al. in the Journal of Thoracic and Cardiovascular Surgery, 31:364-374, March 1965, several experimental methods for myocardial revascularization are described. One method involved the implantation of excised perforated carotid arteries into the left ventricular wall. Goldman et al. also examined the use of implanted perforated polyethylene tubing in a similar fashion.
  • [0030]
    U.S. Pat. No. 5,591,159 (Taheri) describes a device for effecting myocardial perfusion that utilizes slit needles to perforate the myocardium. The device uses a trans-femoral approach to position the device into the left ventricle of the patient. A plunger is activated to cause the needles to enter the myocardium several times. Perforation of the myocardium may be effected by means of a laser beam transmitted through the lumen of the needle or high velocity drill.
  • [0031]
    U.S. Pat. No. 5,655,548 (Nelson et al.) describes a method for perfusing the myocardium using a conduit disposed between the left ventricle and the coronary sinus. In one method, an opening is formed between the left ventricle and the coronary sinus, and the coronary ostium is partially occluded using a stent that prevents the pressure in the coronary sinus from exceeding a predetermined value. Blood ejected from the left ventricle enters the coronary sinus during cardiac systole. The apparatus limits the peak pressure in the coronary sinus to minimize edema of the venous system. The system utilizes retroperfusion via the coronary sinus of the venous system.
  • [0032]
    U.S. Pat. No. 5,755,682 (Knudson et al.) describes a device that establishes a channel leading directly from a chamber of a heart to a coronary artery. In one described method, a channel is created that extends through the deep coronary arterial wall through underlying cardiac musculature into the underlying chamber of the heart by using a scalpel, electro-surgical cutting blade, laser, or by radio-frequency ablation. A device is placed inside the channel to conduct blood from the heart chamber into the coronary artery.
  • [0033]
    Previous researchers had explored long term retroperfusion via the coronary sinus but found that its leads to edema of the cardiac veins which are incapable of sustaining long-term pressures above about 60 mm Hg. The procedure basically places a stent-like plug in the left ventricle so that blood flows into the coronary sinus and then into the myocardium via the venous system using retroperfusion, not into the myocardium directly. In the aforementioned Nelson et al. patent there is disclosed the use of a cutting instrument, such as a cannulated needle, a rotating blade, or medical laser to provide the required opening for the conduit. It is believed that when implanted in the heart, the plug and stent will result in long-term retrograde perfusion of the myocardium using the cardiac venous system and will cause a redistribution of the flow within the venous system so that a greater fraction of the deoxygenated blood will exit through the lymphatic stem and the Thebesian veins (any of the minute veins of the heart wall that drain directly into the cavity of the heart). The inventors also describe the use of a conduit that takes the place of the coronary sinus.
  • [0034]
    Researchers have also evaluated the used of lasers to create channels in the myocardium. U.S. Pat. No. 4,658,817 (Hardy) describes a surgical carbon dioxide laser with a hollow needle mounted on the forward end of the hand-piece. The needle is used to perforate a portion of the tissue, for instance the epicardium, to provide the laser beam direct access to distal tissue of the endocardium for lasering and vaporization. The device does not vaporize the tissue of the outer wall instead it separates the tissue which recoils to its native position after the needle's removal. This technique eliminates surface bleeding and the need for suturing the epicardium as is done with other techniques. The device includes a port that allows the needle to be cleaned via an injection of saline.
  • [0035]
    In U.S. Pat. No. 5,607,421 (Jeevanandam) discloses that laser channels remain open because carbonization associated with the laser energy inhibits lymphocyte, macrophage, and fibroblast migration. Thus, in contrast to channels created by needle acupuncture, laser channels heal more slowly and with less scar formation, which allows endothelialization and long term patency.
  • [0036]
    An article entitled “New Concepts in Revascularization of Myocardium” (by Mirhoseini et al. in Ann. Thor. Surg., 45:415-420, April 1988) discusses the work of investigators exploring several different approaches for direct revascularization of ischemic myocardium. One revascularization technique utilizes “myoepexy”, which consists of roughening of the myocardial surface to enhance capillarization. Another technique, known as “omentopexy” (the operation of suturing the omentum to another organ), consists of sewing the omentum over the heart to provide a new blood supply. Another approach involves implanting the left internal mammary artery directly into heart muscle so that blood flowing through the side branches of the artery will perfuse the muscle.
  • [0037]
    It has been reported by Moosdorf et al. in their article entitled “Transmyocardial Laser Revascularization—Morphologic Pathophysiologic And Historical Principles Of Indirect Revascularization Of The Heart Muscle” in Z Kardiol, 86(3): 147-164, March, 1997 that the transmyocardial laser revascularization results in a relevant reduction of clinical symptoms such as angina and an increase of exercise capacity in approximately two thirds of the patients treated. Objective data of enhanced myocardial perfusion as assessed by positron emission tomography, thallium scans, and stress echocardiography has also been presented in other studies. Some researchers have found that TMR channels created by CO2 lasers are surrounded by a zone of necrosis with an extent of about 500 microns. In heart patients who died in the early postoperative period (1 to 7 days) almost all channels were closed by fibrin clots, erythrocytes, and macrophages. At 150 days post procedure, they observed a string of cicatricial tissue (scar tissue resulting from the formation and contraction of fibrous tissue in a flesh wound) admixed with a polymorphous blood-filled capillary network and small veins, which very rarely had continuous links to the left ventricular cavity. At the 2-week post procedure point a granular tissue with high macrophage and monocyte activity was observable. See for example, the article by Krabatsch et al. entitled “Histological Findings After Transmyocardial Laser Revascularization” appearing in J. Card. Surg. 11:326-331, 1996, and the article by Gassier et al. entitled “Transmyocardial Laser Revascularization. Historical Features In Human Nonresponder Myocardium” appearing in Circulation, 95(2): 371-375, Jan. 21, 1997.
  • [0038]
    PLC MEDICAL's (Franklin, Mass.) Heart Laser and Eclipse's (Sunnyvale, Calif.) TMR 2000 laser revascularization system's have recently been clinically tested and neither device has shown significant survival benefit between laser-based transmyocardial revascularization and medical management. However, in general the use of the devices did result in a two-class reduction in angina symptoms in the months following the procedure. Recent data was reported with respect to functional improvement, long-term survival, and angina relief after three years in 70 patients suffering from refractory angina yet not amenable to conventional revascularization. The patients were treated with PLC's CO2 Heart Laser. After the revascularization procedure with the Heart Laser, the angina class reduction seen at the first year persisted for at least three years with an accompanying increase in exercise tolerance. A significant increase in long-term mortality was not observed, however.
  • [0039]
    To date, studies have shown that no matter which laser, CO2 or Holmium are used, the clinical results following a laser-based transmyocardial revascularization procedure were almost identical: patients had an increase in exercise tolerance, a two-class reduction in angina symptoms, and no significant alteration in left ventricular ejection. BAXTER, J&J, CARDIODYNE and BARD/CORMEDICA are other companies that are also exploring laser-based TMR systems.
  • [0040]
    In co-pending U.S. patent application Ser. No. 08/958,788, filed on Oct. 29, 1999, entitled Transmyocardial Revascularization System, which is assigned to the same assignee as this invention and whose disclosure is incorporated by reference herein, there is disclosed a system making use of mechanically created punctures to provide the same benefits as laser-created channels by initiating a healing response and effecting denervation in the myocardium. In particular, that system makes use of implants within the myocardial tissue to perpetuate a foreign body or healing response. That application additionally discloses the use of pharmaceuticals, growth factors and genetic material to provide the heart with an initial and perpetuating stimulus for healing itself.
  • [0041]
    More recently, other researchers have had related ideas Pelletier et al. examined myocardial channels created by lasers and the resulting injury that leads to an angiogenic response mediated by a number of growth factors. This work is described by Pelletier in “Angiogenesis and Growth Factor Expression in a Model of Transmyocardial Revascularization” (Annals of Thoracic Surgery, 66:12-18, 1998). With similar thoughts in mind, other companies are also investigating non-laser alternatives for myocardial revascularization. ANGIOTRAX (Sunnyvale, Calif.) is investigating a percutaneous device and flexible tip surgical handpiece for mechanically creating channels. BOSTON SCIENTIFIC (Natick, Mass.) is working with ARTHROCARE on the development of a radio-frequency (RF) system for percutaneous TMR. The device creates holes in the myocardium with needle electrodes that deliver RF energy at 450 kHz. The device utilizes a catheter that has been designed by SciMed. RADIUS MEDICAL (Maynard, Mass.) is exploring a percutaneous RF devices that utilizes a hollow guidewire, 0.021 or 0.035 inches in diameter that utilizes 13 kHz, that is passed through a 6 French diagnostic catheter. Contrast media is injected through the hollow wire to help position the device tip against the endocardial tissue. RADIUS believes that the hollow wire can be used to infuse proteins or genetic material into the myocardium. U.S. Pat. No. 5,810,836 (Hussein et al.) describes a stent for insertion into a heart wall for transmyocardial revascularization. The device generates needle-made, or drilled, channels in the heart wall. A stent is implanted in each channel to maintain the patency of the channel. In European Patent Application No. 97107784.7, assigned to United States Surgical of Norwalk, Conn., a coring device is described for removing tissue during a biopsy or transmyocardial procedures. The coring member is rotatable and linearly advanceable at coordinated predetermined rates to core body tissue. The tissue can be cauterized during the coring procedure. European Patent Application number 98201480.5 and PCT International application number PCT/US98/08819 of C. R. BARD in Murray Hill, N.J. describes a “TMR stent and delivery system.” That system includes a device which pierces the myocardial tissue and a stent which is implanted to permit the flow of blood from the left ventricle directly into the tissue for direct revascularization. Patent Cooperation Treaty (PTC) international application number PCT/US97/03523 of Energy Life Systems of Costa Mesa, Calif. describes a similar system. German patent number DE 296 19 029 U1 (Kletke) describes a needle for myocardial penetration. A needle is used to create a series of puncture canals. The canals are protected by the placement of continuous length of a resorbable suture, which is looped into each puncture.
  • [0042]
    In addition, researchers are exploring the percutaneous and direct surgical injection of growth factors and genetic material. Mack et al. describes experiments to improve myocardial perfusion in an article entitled “Biologic Bypass with the Use of Adenovirus-Medicated Gene Transfer of the Complementary Deoxyribonucleic Acid for Vascular Endothelial Growth Factor 121 Improves Myocardial Perfusion and Function in the Ischemic Porcine Heart” in The Journal of Thoracic and Cardiovascular Surgery 115:168-177, January 1998. Sanborn et al. described the potential injection of angiogenic proteins and genes directly into the heart via the endocardium with a percutaneous fluoroscopically guided system in an abstract entitled “Percutaneous Endocardial Gene Therapy: In Vivo Gene Transfer and Expression” in the Journal of the American College of Cardiology 33:262A, February 1999. Uchida et al. described growth factor injections in “Angiogenic Therapy of Acute Myocardial Infarction by Intrapericardial Injection of Basic Fibroblast Growth Factor and Heparin Sulfate: An Experimental Study” American Heart Journal 130:1182-1188, December 1995. Uchida utilized a catheter system for percutaneous transluminal administration of drugs through the right atrium into the pericardial cavity with a 23 gauge 4 mm long needle. U.S. Pat. No. 5,244,460 (Unger et al.) describes a method for inserting a catheter into a coronary artery and for infusing multiple coronary drug injections, containing blood vessel growth promoting peptides (i.e. fibroblast growth factor), through an infusion port into the catheter over a period of time.
  • [0043]
    In summary, there are a number of potential mechanisms which individually or in combination may be responsible for the improvements seen in patients subjected to the previously described myocardial revascularization techniques including: (1) new blood flow through the created channels, (2) angiogenesis (stimulation of the creation of new blood vessels), (3) cardiac denervation, (4) the placebo effect, (5) ablation of ischemic myocardium, and (6) formation of collateral circulation.
  • [0044]
    Currently it is believed that cardiac denervation and angiogenesis are the primary causes for post procedure angina relief and improved perfusion respectively. The injury damages nerves thereby minimizing the pain sensation and stimulates angiogenesis. While the aforementioned techniques and methods for revascularizing the myocardium offer some promise they never the less suffer from one disadvantage or another. As a first example, the lasers are very expensive to purchase. The aforementioned U.S. patent application, Ser. No. 08/958,788, filed on Oct. 29, 1997 is directed to the same or similar medical benefits achieved by use of non-laser devices, such as those disclosed and claimed therein. As a second example, the design of the interventional cardiology catheter-based drug delivery systems appear unable to delivery drugs to tissues located beyond the arterial walls. Significant benefit could be gained by the delivery of agents (e.g. foreign body particles, drugs, growth factors, genetic material, etc.) into heart tissues beyond the arterial wall. Those devices that have considered direct injection of drugs or genetic material into the myocardium simply deposit the material within a channel that is typically created by a needle. As the myocardium dynamically contracts, deposits of materials in these channels will likely migrate unless stabilized with a mechanical or chemical anchor of some sort. It is the intent of this invention to overcome these and other shortcomings of the prior art.
  • OBJECTS OF THE INVENTION
  • [0045]
    Accordingly, it is a general object of this invention to provide a system and methods for treating targeted internal tissue, e.g., cardiac tissue or other internal tissue, of a living being which overcomes the shortcomings of the prior art.
  • [0046]
    It is a further object of this invention to provide a system and method for myocardial revascularization that overcomes the disadvantages of the prior art.
  • [0047]
    It is a further object of this invention to provide a system and method for vascularizing the cardiac tissue of a living being to cause the formation of lumens in communication with the being's arterial system.
  • [0048]
    It is a further object of this invention to provide a system and method for treating cardiac tissue of a living being to affect the conduction of electrical signals in the cardiac tissue.
  • [0049]
    It is a further object of this invention to provide a system and method for treating cardiac tissue of a living being to affect the conduction of nerve signals in the cardiac tissue.
  • [0050]
    It is a further object of this invention to provide a system and methods for treating targeted internal tissue, e.g., cardiac tissue or other internal tissue, by delivering flowable agent(s) thereto.
  • [0051]
    It is a further object of this invention to provide a system and methodology for providing relief from myocardial ischemia.
  • [0052]
    It is a further object of the present invention to provide a system having delivery capabilities delivering agents flowable agents to internal body tissues for beneficial purposes, such as, but not limited to treating heart disease.
  • [0053]
    It is a further object of this invention to provide apparatus and methods for providing myocardial perfusion that reduce the level of ischemia in a living being.
  • [0054]
    It is a further object of this invention to provide methods and apparatus for reducing the level of discomfort associated with angina in a living being.
  • [0055]
    It is a further object of this invention to provide apparatus and methods to enable living beings that suffer from the later stages of ischemic heart disease to experience reduced pain and improved emotional well being.
  • [0056]
    It is a further object of this invention to provide a transmyocardial revascularization system and methodology that is simple and cost effective.
  • [0057]
    It is a further object of this invention to provide an apparatus and method for myocardial revascularization to increase blood flow to the myocardium from the endocardium without using the native diseased coronary arteries.
  • [0058]
    It is a further object of this invention to provide an apparatus and method for myocardial revascularization to be used with living beings having extensive coronary atherosclerosis.
  • [0059]
    It is a further object of this invention is to provide apparatus and methods for effecting endovascular myocardial revascularization.
  • [0060]
    It is a further object of the present invention to provide methods and apparatus which can be utilized either in open surgical, minimally invasive surgical, or transluminal techniques to deliver beneficial agents to the myocardium.
  • [0061]
    It is a further object of this invention to provide a system and method for direct myocardial revascularization without the need for opening the chest cavity.
  • [0062]
    It is a further object of this invention to provide as system and method for direct endovascular myocardial revascularization without having to utilize a laser, although a laser may be used, if desired, in some applications as part of the procedure.
  • [0063]
    It is a further object of this invention to provide a system and method to create channels in the myocardium without having to utilize a laser, although a laser may be used, if desired, in some applications as part of the procedure.
  • [0064]
    It is a further object of this invention to provide a system and method for effecting initial and prolonged stimulus within the myocardium that instigates the heart to heal itself.
  • [0065]
    It is a further object of this invention to provide instruments with delivery capabilities for dispersing flowable agent(s) into targeted internal tissues of a living being at a location beyond that which is immediately adjacent the instrument.
  • SUMMARY OF THE INVENTION
  • [0066]
    These and other objects of this invention are achieved by providing tissue, e.g., cardiac, treatment systems and methods of treating tissue, such as the myocardium and other tissues, within the body of a living being.
  • [0067]
    The treatment system can be used for vascularizing the cardiac tissue of a living being to cause the formation of lumens in communication with the being's arterial system, or can be used to affect the conduction of electrical signals in the cardiac tissue, or can be used to affect the conduction of nerve signals in the cardiac tissue, or in some way beneficially treat other (e.g., non-cardiac) tissue within the body of the being.
  • [0068]
    To that end the treatment system comprises a delivery instrument and a flowable agent. The flowable agent comprises a plurality of small particles for introduction into the cardiac tissue or other tissue. The delivery instrument is arranged to introduce the flowable agent at or adjacent the cardiac or other targeted tissue by imparting a force to the agent, whereupon the agent directly enters the cardiac or other targeted tissue at an entry situs.
  • DESCRIPTION OF THE DRAWINGS
  • [0069]
    Other objects and many attendant features of this invention will become readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing wherein.
  • [0070]
    FIG. 1A is an illustration of the heart of a living human being, partially in section, showing one embodiment of a delivery instrument forming a portion of the tissue treatment, e.g., myocardial revascularization, system of the subject invention being used to penetrate a portion of the septum to deliver flowable agent(s) to the targeted tissue, e.g., the septum, via the endocardium.
  • [0071]
    FIG. 1B is an illustration similar to that of FIG. 1A, but showing the embodiment of the delivery instrument being used to penetrate a portion of the myocardium to deliver the flowable agent(s) into the myocardium via the endocardium.
  • [0072]
    FIG. 2 is an enlarged sectional view of the distal portion of the delivery instrument embodiment illustrated in FIGS. 1A and 1B, and showing the flow paths of the agent(s) through and out of the instrument for dispersion into the targeted tissue.
  • [0073]
    FIG. 3A is an enlarged side sectional view of one embodiment of a rupturable capsule containing a dose of the flowable agent(s) for delivery into the targeted tissue by various delivery instruments of the subject invention.
  • [0074]
    FIG. 3B is an enlarged side sectional view of one embodiment of a piercable capsule containing a dose of the flowable agent(s) for delivery into the targeted tissue by various delivery instruments of the subject invention.
  • [0075]
    FIG. 4A is an enlarged side elevational view, partially in section, of the embodiment of the needle access capsule of FIG. 3B, positioned within a capsule injector forming a portion of the delivery instrument of FIG. 1.
  • [0076]
    FIG. 4B is an enlarged side elevational view, partially in section, of the embodiment of the rupturable capsule of FIG. 3A, positioned within a capsule injector forming a portion of the delivery system of FIG. 1.
  • [0077]
    FIG. 5A is a schematic diagram and system illustration showing one embodiment of an entire targeted tissue treatment system making use of the delivery instrument of FIG. 1 for delivering the flowable agent(s) into a portion of the myocardium in accordance with the vascularization technique illustrated in FIG. 1B.
  • [0078]
    FIG. 5B is a schematic diagram and system illustration similar to that of FIG. 5A, but showing an embodiment of the entire targeted tissue system making use of the delivery instrument of FIG. 1 for delivering the flowable agent(s) into a portion of the myocardium via a coronary artery to thereby effect myocardial vascularization.
  • [0079]
    FIG. 6 is an enlarged illustration of the heart of a living human being, partially in section, showing a portion of the delivery instrument of FIG. 5B being used to deliver the flowable agent(s) into the myocardium via a coronary artery.
  • [0080]
    FIG. 7 is a side sectional view of one embodiment of an alternative, e.g., a rigid, delivery instrument of the targeted tissue treatment system of this invention shown being used for effecting myocardial revascularization by piercing the epicardium to create a channel in the myocardium, and deliver the flowable agent(s) therein by pressurizing the agent(s).
  • [0081]
    FIG. 8 is a side sectional view of one embodiment of another alternative, e.g., a flexible, delivery instrument of the targeted tissue treatment system of this invention shown being used for effecting myocardial revascularization by delivering the flowable agent(s) intravascularly through a vessel, e.g., coronary artery, wall into myocardium.
  • [0082]
    FIG. 9 is an illustration of the heart of a living human being, partially in section, showing another alternative embodiment, e.g., a vibratory, delivery instrument of the targeted tissue treatment system of this invention shown being used to penetrate a portion of the epicardium and myocardium to deliver the flowable agent(s) into the myocardium.
  • [0083]
    FIG. 10 is an enlarged side sectional view showing a portion of the vibratory delivery instrument embodiment of FIG. 9 for penetrating tissue and delivering the flowable agent(s) into the myocardium.
  • [0084]
    FIG. 11 is a schematic diagram and system illustration showing another embodiment of a targeted tissue treatment system of this invention including the embodiment of the vibratory delivery instrument illustrated in FIG. 9 being used to penetrate and deliver the flowable agent(s) to a portion of the myocardium via the epicardium.
  • [0085]
    FIG. 12 is an illustration of the heart of a living human being, partially in section, showing one embodiment of an alternative delivery instrument forming a portion of the myocardial revascularization system of the subject invention being used to deliver the flowable agent(s) into the myocardium via the epicardium.
  • [0086]
    FIG. 13 is a side sectional view of the embodiment of the delivery instrument of FIG. 7 with a stabilizing device, e.g., a suction hood, associated with it and shown being used to pierce the epicardium to create a channel in the myocardium and to deliver the flowable agent(s) into the channel in the myocardium.
  • [0087]
    FIG. 14 is a side sectional view of an embodiment of a delivery instrument, e.g., a flexible pressurized intravascular access delivery instrument, forming a portion of the tissue treatment system of the subject invention being used delivery agents through the urethra wall into the prostrate gland of a living being.
  • [0088]
    FIGS. 15A-15I are embodiments various exemplary types of particulate materials which may make up all or a portion of the flowable agent(s) of the subject invention, in this case the materials being in the form of microspheres and/or microparticles or other small particulates.
  • [0089]
    FIG. 16 is a side sectional view of one embodiment of a delivery instrument of a targeted tissue treatment, e.g., a myocardial revascularization, system of this invention being used to pierce the epicardium, create a channel in the myocardium, and deliver the flowable agent(s) into myocardium whose vasculature has been reduced over time by atherosclerosis.
  • [0090]
    FIG. 17 is an illustration, like that of FIG. 16, but showing the myocardium immediately after the introduction of the small particles of the flowable agent(s) into the channel in the myocardium followed by the placement of an insert into the channel to increase the vasculature of by the myocardium by the creation of new vessels, e.g., capillaries, in the myocardium.
  • [0091]
    FIG. 18 is an illustration like that of 17, but showing the myocardium some time after treatment by the system of FIGS. 16 and 17 where the deployed particles and insert have stimulated angiogenesis to improve the blood flow in the contiguous portion of myocardium.
  • [0092]
    FIG. 19 is an illustration of a portion of the heart of a living being, shown partially in section, and showing a flowable treatment agent delivery system like that of FIG. 7 delivering the agent(s) at plural locations to result in the production of an intramyocardial channel for providing an enhanced blood supply to ischemic myocardial tissue.
  • [0093]
    FIG. 20 is an illustration of the portion of the heart shown in FIG. 19 after the treatment procedure as depicted therein.
  • [0094]
    FIG. 21 is an enlarged sectional view of the distal or working end of yet another alternative delivery instrument of the targeted tissue treatment system of this invention.
  • [0095]
    FIG. 22 is an enlarged sectional view of the distal or working end of still another alternative delivery instrument of the targeted tissue treatment system of this invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0096]
    Referring now to the drawing wherein like reference characters refer to like parts, there is shown in FIG. 1A the distal portion of a delivery subsystem 22 which will be described later and which forms a portion of a tissue treatment, e.g., revascularization system, 20 constructed in accordance with this invention.
  • [0097]
    These and other objects of this invention are achieved by providing tissue, e.g., cardiac tissue, treatment systems and methods of treating tissue, such as the myocardium and other tissues within the body. The systems basically comprise a delivery system for accessing a targeted tissue within the living being and a flowable agent (to be described in considerable detail later) arranged to be introduced into the targeted tissue by the delivery system.
  • [0098]
    In several preferred embodiments shown and described herein the tissue treatment system introduces the flowable agent into select portions of the myocardium, or other cardiac tissue.
  • [0099]
    As will be described later one or more of the delivery systems of this invention can be utilized during transluminal, transthoracic and direct surgical access procedures. Where appropriate, for example in the case of intraventricular access, portions of the delivery system are steerable to properly orient the delivery instrument. In some embodiments the delivery instruments are arranged to pierce the heart tissue and create channels extending from the endocardium, the epicardium, or the cardiac vessels. When tissue penetration is utilized, the delivery instrument can include a feature to control the depth of penetration. To minimize bleeding through the channels the delivery instrument can dilate small initial punctures that later contract down after device removal. When the formation of channels is required, this can be achieved, by way of example, with a rotary-tipped device, pressurized fluid jet devices, vibratory instruments and piercing needle-like tip devices.
  • [0100]
    The tissue treatment systems of this invention may utilize some form of mechanical action or application of energy, e.g., electrical, sonic, thermal, optical (e.g., laser), pressurized fluid, radio frequency (RF), nuclear, in the process. The mechanical action or energy application may affect the surroundings tissues at a distance from the delivery system. For example, thermal energy may be conducted away via nerve conduits thereby disabling the nerves and creating a condition of denervation. As another example, shockwaves created by sonic energy may travel through the tissue and serve to initiate a change that is beneficial to the patient either immediately or over time.
  • [0101]
    The delivery instruments may make use of a device to stabilize a portion of the system or anatomy during the procedure (e.g., a vacuum stabilizer or surgical stabilizer ring). A controller may also be provided as part of the system to coordinate the operation of the delivery instrument with the cardiac cycle. For example, power to the delivery instrument can be synchronized with EKG leads, such that delivery instrument operation occurs at a recurring portion of the cardiac cycle.
  • [0102]
    Radiopaque contrast media, fluoroscopy, ultrasound, magnetic resonance, GPS-like triangulation, RF triangulation, flashback or other imaging/position systems can be used to orient/position the delivery instrument during the procedure. Robotics could also be used to position the delivery instrument of the system in a body cavity or lumen. For example, a robotic arm can be used to navigate within the chest cavity through a small thoracic incision to position the delivery instrument in relation to the epicardium.
  • [0103]
    In some applications, the delivery instrument is arranged to directly deliver the flowable agent(s) into the cardiac tissue. In other applications a pressurized system imparts kinetic energy to the flowable agent(s) for the purpose of dispersing the agents into the tissue located beyond the tissue immediately adjacent the delivery instrument of the system. Control parameters on the delivery instrument (e.g. a pressure limiter) can provide control over agent penetration depth.
  • [0104]
    In some applications the dispersal pattern for the flowable agent(s) can be selected and adjusted to provide for an optimum dispersion of the agent into the targeted tissue.
  • [0105]
    In applications, the pressurized system of the delivery instrument delivers the agents from the coronary vessels, the endocardium or the epicardium into the myocardium without the need to pierce the tissues of the artery, endocardium or epicardium. The delivery instrument can use a gas, fluid, gel, or other suitable carrier to transport the flowable agent through the instrument and into contact with the tissue.
  • [0106]
    Although the preferred embodiment of the system will allow delivery of the agents into distant tissues, it may be beneficial to deposit some of the agents within an instrument created channel or to deliver a portion of the agent systemically via the circulatory system. Agents can pre-dosed in per-use packages or the system can draw doses of pre-selected volumes from a reservoir. The system can vary the concentration of the agent in a fluid, or other suitable carrier.
  • [0107]
    In accordance with some preferred embodiments of this invention the flowable agents are formed of at least one material that can elicit a beneficial response within the tissues. For example, at least a portion of the agents can be comprised of such items as a pharmaceutical, a growth factor, a suitable biomaterial, or a genetic or cellular based material. The presence of the agent can initiate a bio-chemical/biological process that stimulates the tissue to heal itself. The agents can also trigger the onset of a foreign body or healing response to cause the formation of lumens in communication with the arterial system.
  • [0108]
    The flowable agents can be designed to assist the tissue in functioning more effectively. For example, the agents could contain an electrically conductive element that modifies or improves the contractile motion of the myocardium. It is contemplated that the mere presence of even an inert agent in the tissue may also be beneficial to a living being. Thus, for example, one embodiment of the invention described herein can be used to deliver a select agent from within the urethra through the urethra wall and into the sphincter muscle to bulk up the sphincter as a remedy for urinary incontinence. As another example the system could be used to overcome the difficulty of transporting pharmeceuticals across the blood-brain by providing positioning a portion of the system in the vicinity of the targeted tissue (e.g., brain tumor) and delivering beneficial agents. As yet another example, the system of the subject invention could be used to disperse beneficial agents (e.g. gene-based elements) into the musculature of a patients with degenerative muscle diseases (e.g., muscular dystrophy).
  • [0109]
    The flowable agents may be totally resorbable, partially resorbable or non-resorbable. As an example they can be made of polymers, metals, elastomers, glass, ceramics, collagen, proteins or other suitable materials or a combination materials. A collection of agents with varying characteristics (e.g. density) can be delivered to the tissue to allow for a graduated deposition of varying types of agents to different depths of the tissue. Other agent characteristics (e.g. texture and abrasiveness) can be controlled to allow for varying degrees of trauma to encountered tissues. Where the agents incorporate a solid component, the shape of the component can be varied from spheres to fibers to any other desired shape. A form of a microsphere may be utilized to treat the desired tissue region either by occupying space or by stimulating a biological response to the presence of them material or the release from the material of some chemical or biological element.
  • [0110]
    In the treatment of cardiac tissue, the presence of the flowable agents of this invention when deployed in the myocardium will not appreciably restrict the cardiac contraction of the heart.
  • [0111]
    The flowable agents may be constructed to effect a time-phased delivery of active ingredients. In summary, both the creation of channels and the dispersion of the agents is designed lead to improvements in patients with cardiovascular disease as a result of: (1) angiogenesis (stimulation of the creation of new blood vessels), (2) cardiac denervation (3) ablation of ischemic myocardium, and (4) formation of collateral circulation.
  • [0112]
    Turning now to FIG. 1A, there is shown a portion of a cardiac vascularization system 20 in the process of revascularizing the myocardium of a living, e.g., human, being. The entire system 20 is shown in detail in FIG. 5A and will be described in detail later. Suffice it for now to state that the treatment system 20 includes various components and subsystems which cooperate to effect the delivery of flowable agents into relevant tissue of the being, e.g., the heart, the vascular system, etc. FIG. 1A is an illustration, not to scale, of a section of a healthy, human heart 1. As can be seen, the heart includes the epicardium 2, the myocardium 3, the endocardium 4, the left ventricle 5, the right ventricle 6, the ventricle septum 7, the aortic valve 8, the mitral valve 9, and the aorta 10. As can be seen clearly in FIG. 1A, the distal portion of the delivery subsystem 22 of system 20 is shown penetrating the ventricle septum and delivering the flowable agent(s) 24, which are denoted by the arrows in that illustration, into the adjacent tissues of the septum. The subsystem 22 includes a delivery instrument 26 and a conventional, e.g., Judkins, guiding catheter or instrument 28. The delivery instrument 26 of this embodiment basically comprises an elongated catheter having a high-speed, rotary working head 30 located at the distal end thereof. The guiding instrument 28, which will be described later, is positioned to guide the delivery instrument 26 to the desired location at the ventricle septum. The high speed working head 30 of the delivery instrument is arranged to propel and disperse the flowable agent into the adjacent tissue. The flowable agent may be any type of flowable material, e.g., a fluid that alone or in combination with other additives such as drugs, growth factors, biocompatible microparticles, etc., is to be introduced into the relevant tissue for a desired purpose. The details of various of the flowable agents will be described later. When the delivery instrument 26 is operated, its working head, e.g., the rotary working head of the embodiment described heretofore, or other types of working heads, ejects or bombards the surrounding tissue with the propelled flowable agent(s) 24 at high pressure to force the agent(s) into the tissue by increasing the local dynamic or hydrostatic pressure induced by the agent or the rotating working head. The construction of the delivery instrument 26 allows the agent(s) 24 to be delivered and dispersed into a significant volume of cardiac tissue.
  • [0113]
    It is important to note at this juncture that most prior art systems for delivering medications to the heart do so either systemically by vein or regionally, e.g., intracoronary infusion. Systemic delivery is not efficient for the treatment of locally isolated disease for various reasons, namely: a wide range and large number of sites are exposed to the material, large quantities of the agent are required, due to the entire volume of distribution, to obtain the desired effect, and the agent degrades and can be eliminated by various organ systems that keep the agent from reaching the target site, thereby reducing the agent residence time in the body.
  • [0114]
    As utilized in this invention, local intra-tissue delivery of the flowable agent(s) 24 eliminates these problems. In particular, the flowable agent(s) is (are) distributed into the target tissue and not just deposited into the channel or puncture created in the tissue. The nature of the pressurized flowable agent carries it to intra-cellular sites beyond the site of the initial puncture.
  • [0115]
    As will be appreciated by those skilled in the art, penetration into the target tissue is a function of the mass, density and speed of the agent(s). The agent(s) is (are) less likely to migrate away from the site of implantation. When the treatment of the site is complete, the delivery instrument 24 can be repositioned and the procedure repeated to impregnate a new treatment site with the selected agent(s).
  • [0116]
    It is believed that the systems of the subject invention may be used as sole therapy for end-stage heart disease patients that are not amenable to alternative therapies, such as coronary artery bypass surgery, or the systems could be used as an adjunctive therapy in addition to other cardiac therapies such as PTCA, stenting, or coronary artery bypass surgery.
  • [0117]
    FIG. 1B illustrates a portion of a transmyocardial revascularization system 20 like that shown in FIG. 1A and constructed in accordance with this invention and shown in the process of revascularizing the myocardium 3. In this illustration, the guiding instrument 28 is positioned to guide the delivery instrument 26 toward the desired location on the myocardium adjacent the left ventricle. The distal portion of the delivery instrument 26 is shown penetrating the myocardium and delivering the agent(s) 24, which are also denoted by the arrows, into the adjacent tissue of the myocardium.
  • [0118]
    FIG. 2 is an enlarged sectional view of the distal end portion of the delivery instrument 26 which is illustrated in FIGS. 1A and 1B, and showing the tissue penetrating system, utilizing the flow path of the agent(s) 24 through and out of the instrument. In accordance with one preferred embodiment of this invention, the instrument is constructed in a fashion similar to those described in U.S. Pat. No. 4,747,821 which is assigned to the same assignee as this invention and whose disclosure is incorporated by reference herein. To that end, the working head 30 is a rotary member which is arranged to revolve at a high speed in a bush 32 driven by a double helical drive wire 34 from a remote, proximally-located motor or turbine (not shown). The bush 32 is mounted on the distal end of a flexible or rigid catheter jacket 36. The agent(s) 24, under distribution, is delivered to the proximal end of the delivery instrument 26 (not shown) and is transported down a central passageway therethrough alongside and between the helical drive wires 36 to the bush 34, where the agent(s) 24 passes out of plural grooves 38 provided in the center and end of the front portion of the bush, whereupon the agent(s) is further energized as it is centrifuged by the rotation of the working head. The working head is arranged to revolve over a conventional guide wire 40, if one is needed for the procedure. The bush 34 is held in place at the distal end of the jacket by a retention band 42. A liner sleeve 44 extends down the center of the double helical drive wires 36. The distal end of the drive wires are fixedly secured, e.g., welded to a central shaft 46 of the working head 30. The distal end of the working head is a generally dome-shaped cam member having flatted or relieved surfaces 48.
  • [0119]
    FIGS. 4A and 4B show two examples of delivery injectors forming a portion of the system 20 for propelling the flowable agent(s) 24 into any of the delivery instruments of this system, such as the delivery instrument 26 described heretofore. In particular, FIG. 4A shows a device 50 for propelling the agent(s) 24 from a rupturable, capsule 52. The injector 50 basically comprises a base plate 54 on which are mounted a capsule receiver 56 and a jack assembly 58. A needle 60 and associated tubing 62 forming a subassembly are mounted in the receiver 56. The tubing 62 is connected to a “highest wins valve” (to be described later) forming a portion of the system 20 for providing the flowable agent(s) to the delivery instrument 26 at the proximal end thereof. Another tube or conduit (also to be described later) is in fluid communication with the highest wins valve and the interior of the delivery instrument 26 so that the flowable agent(s) which will be provided through the tubing 62 enters into the instrument 26 flows therealong, as described above, and exits out of the instrument at the working head.
  • [0120]
    An enlarged view of the capsule 52 is shown in FIG. 3A. Thus, as can be seen therein, the capsule 52 comprises a container 62, made of a plastic such as polypropylene, and has a piston 64 at its proximal end. The piston 64 is made from a rubber compound similar to that used in medical syringes, and fits firmly, but slidably, in the container 64. On the distal end of the container 64 is a rubber coating 66 which seals the agent(s) 24 within the capsule 52. The coating may also be located along the walls of the container 62, such as shown in FIG. 3A.
  • [0121]
    Referring again to FIG. 4A, it can be seen that in use the capsule 52 is placed into a recess within the receiver 56 of the delivery injector and the piston 64 is driven toward the distal end of the capsule by a ram 68 of the jack assembly 58. This causes a sharp piercing end portion of the needle 60 in the delivery device 26 to pierce the rubber 66 whereupon the flowable agent(s) 24 flows into the delivery device 26 via the tubing 62 at a pressure determined by the rate of travel of the ram 68 and the impedance of the distal located passageways, e.g., the tubing 62, the passageway through the instrument 26, and the outlet delivery ports (e.g., the grooves 38 at the working head 30—see FIG. 2).
  • [0122]
    FIG. 4B shows a similar injector device 70 for propelling the agent(s) 24 from the capsule 72. The injector 70 is virtually the same as the injector 50, except that it doesn't include a needle 60. Thus, as can be seen, the injector 70 basically comprises a base plate 54 on which are mounted the capsule receiver 56 and the jack assembly 58. A tubing assembly 56 including tubing 62 is mounted on the receiver 56.
  • [0123]
    An enlarged view of the capsule 72 is shown in FIG. 3B. Thus, as can be seen, that capsule comprises a container 62, made of plastic such as polypropylene, having a piston 64 at its proximal end. The piston is made from a rubber compound similar to that used in medical syringes and fits firmly, but slidably, in the container 62. On the distal end of the container is bonded a thin, frangible disk 74. The disk 74 is formed of aluminum foil or a similar material and is coated with a plastic, such as polyethylene, on its agent-contacting side (the inside). The disk serves to seal the agent(s) 24 within the capsule 62. The coating on the disk also acts as a hot-seal medium when bonding the disk to the container.
  • [0124]
    Referring again to FIG. 4B, in use the capsule 72 is placed into a recess within the receiver 56 and the piston 64 is driven toward the distal end of the capsule 72 by the ram 64 of the jack assembly 58. As the pressure of the agent(s) 24 rises, the disk 74 ruptures and the agent flows through the associated port into the tubing 62 and the associated instrument 26 at a pressure determined by the rate of travel of the ram and the impedance of the distal tubing and delivery ports, like that described earlier.
  • [0125]
    FIG. 5A is a schematic diagram and system illustration showing one embodiment of the entire system 20. That system includes not only the guide instrument 28 and the delivery instrument 26 but also means to control the operation of the delivery instrument in accordance with the subject invention. The illustration of FIG. 1B shows only a portion of the system 20 used to penetrate and deliver agent(s) 24 to a portion of the myocardium via the endocardium, whereas the illustration of FIG. 5A shows the entire system for achieving that end.
  • [0126]
    As mentioned, the delivery instrument 26 is a rotary device, whose distal end is shown in detail in FIG. 2. The device 26 is arranged to pass through the conventional guide catheter 28, which in this application is preferably a steerable, guide catheter. That catheter has a “J” shaped distal end and a knob 80 at the proximal end which used to steer the “J” shaped distal end as shown in FIG. 5A. The details of the steering mechanism are not shown in the drawing nor will be described hereinafter, but may comprise any suitable means for achieving such steering action, such as that disclosed in U.S. Pat. No. 5,674,197 (van Muniden et. al.), whose disclosure is incorporated by reference herein. The “J” shape of the distal end of the guide catheter 28 permits the user to advance the delivery instrument 26 to the desired position against the endocardium and by rotation of the guide catheter about its longitudinal axis via the knob 80, the “J” shaped distal end can be directed to any area of the ventricle 5.
  • [0127]
    The rotary working head 30 of the instrument 26 is driven by the drive cable from a turbine 82, via compressed nitrogen provided through a line 84. The line 84 is coupled to a controller 86, whose construction and operation will be described later, which receives compressed nitrogen from a tank or other source (not shown). The turbine 82 is mounted in a cradle 88. The turbine 82 includes an output shaft which is connected via any suitable means (not shown) to the proximal end of the drive helices 34. The turbine 82 is connected to the proximal end portion 90 of the jacket 36 of the instrument 26 so that longitudinal movement of the turbine causes concomitant movement of the instrument 26. To that end, the turbine 82 is slidably mounted in the cradle 88 in a manner which permits the user to feed the delivery instrument 26 down the guide catheter 28 to the precise location by moving a knob 94 connected to the turbine to and fro in a longitudinally extending slot 96 in the cradle 88.
  • [0128]
    The steerable guide catheter 28 is coupled at its proximal end to a distal manifold 98, which in turn is connected via line 100 to a conventional angiographic manifold 102. The distal end portion of the instrument 26 extends through a conventional hemostasis valve 104 to prevent the egress of blood from the interior of the guide catheter.
  • [0129]
    The angiographic manifold 102 is a conventional device such as that commonly used in laboratories and thus will not be described in detail. It will suffice to say that the physician uses the manifold 102 to pass a contrast medium via the guide catheter 28 to the site of the delivery instrument's distal or working head 30 in the ventricle for assessment of the location of the guide catheter and the delivery instrument by fluoroscopy.
  • [0130]
    The flowable agent(s) 24 to be delivered by the delivery instrument 26 is provided in the capsule 62. The capsule is in turn mounted in the injector 50. The agent delivery tube 62 is connected to one input 106A of a conventional “highest wins” valve 106. The outlet from the valve 106 is connected via a line 108 into a port in communication with the interior passageway extending longitudinally through the jacket of the delivery instrument 26. The other input 1068 to the valve 106 is provided via a line 110 from a peristaltic pump 112.
  • [0131]
    The controller 86 is an electrically powered device which is arranged to accept inputs from a two-position foot control switch 114 to drive the peristaltic pump. The peristaltic pump is connected via a line to a bag or supply of saline 116. The electrically powered controller 86 is arranged to provide power via line 118 to the ram 58 of the injector 50. In addition, as noted earlier, the controller 86 provides the compressed nitrogen via line 84 to the turbine 82 of the delivery instrument.
  • [0132]
    In use, the guide catheter 28 is extended from the patient entry situs, e.g., the femoral artery, through the vascular system under fluoroscope vision until its distal end is in the appropriate location within the ventricle. The delivery instrument 26 is then advanced through the guide catheter until its working head 30 at its distal end is adjacent the ventricular wall. The foot control switch 114 is then depressed by the operator to a first switch position to cause the turbine 82 of the delivery instrument to operate, whereupon saline from the bag 116 is delivered to the instrument. In particular, the saline is pumped by pump 112 into communicating line 110, through the input line 106B of the highest wins valve 106 and its communicating outlet line 108 into the interior passageway of the delivery instrument. From there it flows longitudinally down the central passageway whereupon it exits from the distal end or at the working head. The operation of the turbine effects the concomitant high speed rotation of the working head. The operator then grasps the slide knob 94 on the cradle 88 and pushes it forward while the working head is rotated at the high speed to advance the working head into the myocardium. The cam surfaces on the working head engage the myocardium tissue to form a bore or channel therein. Preferably, the channel is made approximately one centimeter deep by the advancement of the instrument with respect to the catheter. This action is accomplished rather quickly, e.g., in about five seconds. Once the channel or bore is completed, or during the time of its formation, the foot control switch 114 is depressed by the operator further to the second switch position. This action results in electric power being provided via the controller 86 to the injector 50. In particular, electrical power is provided via line 118 to the jack of the controller, whereupon the jack commences inward movement, thereby causing immediate delivery of the agent(s) 24 into the tubing (the pushing of the ram causes the capsule to be pierced by the piercing needle 60 whereupon the agent flows through the needle into the communicating tubing 62, through the inlet port 106A of the highest wins valve (since this is port will now be at a higher pressure level than port 106B), whereupon the flowable agent will flow through communicating outlet line 108 into the interior of the delivery instrument 26 at the proximal end thereof. The agent is delivered down the delivery instrument to the working head either by continued motion of the ejector (assuming the capsule charge is large enough) or is carried forward by the continuing flow of saline from the pump 112. It is expected that the delivery of the agent(s) 24 from the capsule to the bore within the myocardium be delivered quite quickly, e.g., in five seconds or less.
  • [0133]
    In accordance with one preferred use of the system of the subject invention, e.g., the vascularization of the myocardium, plural bores, lumens or channels are formed in the myocardium by repeating the procedure as set forth above. As should be appreciated by those skilled in the art, the number of bores or channels, their size (e.g., inner diameter and depth), their spacing, and the tissue area encompassed thereby will be a matter of choice based on the desires of the operator of the system and the particular tissue treatment desired. For myocardial vascularization applications of this invention it is contemplated that the bores or channels created be within the range of ¼ to 3 mm in diameter, extending in depth from 1-20 mm, and being spaced from one another by 0.25 cm to 5 cm. The area coverage of cardiac tissue encompassed by the bores or channels may be from 1 to 100 square centimeters. Moreover, the size of the particles forming the flowable agent(s) or included in the flowable agent(s) will, of course, be a factor in the determination of the dimensions, spacing and geographic extent of the channels in the targeted tissue.
  • [0134]
    If it is desired to time the introduction of the delivery system and the flowable agent(s) 24 into the myocardium to any particular portion of the patient's cardiac cycle (e.g., during diastole) then the system 20 preferably includes a cardiac cycle monitor 121 for providing EKG and BP output signals in response to signals provided from associated cardiac sensor(s), e.g., skin-mounted electrodes (not shown) on the patient. As can be seen in FIG. 5A the cardiac cycle monitor 121 is arranged to provide signals, via a line 133, to the controller 86, in response to the monitored cardiac cycle of the patient. The controller 86, in turn, controls the operation of the injector 50 to the delivery instrument 26 in coordination with the sensed cardiac cycle. Thus, the controller 86 can be used to initiate operation of the system to deliver the flowable treatment agent(s) into the myocardium at a predetermined point in the cardiac cycle.
  • [0135]
    If angiographic placement of the delivery instrument 26 is required, the system 20 preferably includes the heretofore identified manifold 102 as well as associated components, such as a bag of a contrast medium 123, a bag of saline 125, and a syringe 127 for delivery of a bolus of the contrast medium through the guide catheter 28 via the conduit or line 100. A blood pressure transducer 131 is also provided connected via a line 129 to the manifold. The transducer 131 provides blood pressure signals to the monitor 121.
  • [0136]
    In FIG. 5B there is shown an illustration of a system for deploying the flowable agent(s) 24 into the wall of a coronary blood vessel, such as the left anterior descending (LAD) artery 11. Thus, the illustration in FIG. 5B is identical to that as shown in FIG. 5A except for the positioning of the guide catheter 28 and the delivery instrument 26 in the left anterior descending coronary artery of the heart.
  • [0137]
    In this application, the delivery instrument 26 is passed through the guide catheter 28 to the LAD where it distributes the flowable agent(s) 24 into the wall of the LAD by ejecting the agent(s) at a high velocity. This is accomplished by the combination of pressure and the rotary centrifugal action of the working head. To that end, the instrument 26 is inserted into the guide catheter 28 and moved to a location just inside the guide catheters distal tip under fluoroscope vision. The operator of the system then depresses the foot control switch 114 to the first position, whereupon nitrogen flows to the turbine 82 which in turn rotates the working head 30 at the distal tip of the instrument. The operator then advances the instrument longitudinally by sliding the knob 94 in the slot in the cradle until the working head is advanced to the appropriate location in the vessel. The foot switch 114 may then be depressed in the second position, whereupon the capsule ejector ram 68 is driven smartly into the capsule, thereby causing the needle to pierce into the capsule so that the agent(s) 24 flows through the tubing 62 into the input 106A of the highest wins valve 106 and from there through the outlet tube into the interior of the instrument 26. The instrument is then delivered down the instrument to the instrument's working head either by continued motion of the injector (assuming the capsule charge is large enough) or is carried forward by the continuing flow of saline from the peristaltic pump 112. In any case, the flowable material is forced out in a somewhat radial direction, such as shown by the arrows in FIG. 5B whereupon it passes through the artery wall and into the contiguous tissue of the myocardium.
  • [0138]
    FIG. 6 is an enlarged portion of the illustration shown in FIG. 5B. Thus, it can be seen that when the delivery instrument is located so that it is within the desired coronary artery, e.g., the left anterior descending (LAD) artery 11, its distal end portion extends beyond the distal end of the guide catheter and lies approximately centered within the artery and parallel to the longitudinal axis thereof. Operation of the instrument 26 causes the tip to bombard the surrounding tissue with the propelled fluids (e.g., the agent(s) 24 with or without saline or other flowable materials at a high pressure). This action forces the flowable liquids into and through the artery wall and into the immediately adjacent myocardium tissue. This is achieved by increasing the local dynamic or hydrostatic pressure induced by the injected flowable materials and/or the movement, e.g., rotation, of the working head. The construction of the instrument allows the flowable agent(s) to be delivered and dispersed into a significant volume of cardiac tissue. As will be described in considerable detail later, the flowable materials or agents may be in the form of fine particulates, e.g., microspheres, which, when dispersed into the cardiac tissue cover a relatively wide area, yet are resistant to further migration, thereby retaining their beneficial effect within the desired portion of the heart.
  • [0139]
    FIG. 7 is an illustration of a portion of the heart of a living human being, shown partially in section and showing an alternative embodiment of the delivery instrument of the subject invention for introducing the flowable agent(s) 24 therein. In the embodiment shown in FIG. 7, the delivery instrument is designated by the reference number 200 and is in the form of a jet injector. The instrument is used to deliver into the myocardium the flowable materials via the epicardium. To that end, the instrument utilizes a pressurized stream of fluid to distribute the flowable agent(s) into the targeted tissue.
  • [0140]
    The use of pressurized fluids for medical applications has been known for some time for various applications. For example, pressurized fluids have been used in the past to ablate and remove substances from the body. See for example U.S. Pat. No. 1,902,481 (Pilgrim). This patent discloses the use of a pressurized fluid or medicant to flush undesirable substances from body cavities of animals. U.S. Pat. No. 3,930,505 (Wallach) discloses a surgical apparatus for the removal of tissue from the eye of a patient by making use of a low pressure, e.g., 15 to 3500 psi jet, to disintegrate that tissue. Particles, such as salt crystals, may be introduced into the jet. A suction pump is used for material removal. U.S. Pat. No. 4,690,672 (Veltrup) discloses a low pressure, e.g., less than 450 psi water jet for ablating deposits. A vacuum pump is also used for evacuation of the fragmented material which is ablated. U.S. Pat. No. 5,496,267 (Drasler) discloses a device for the ablation and removal of thrombus deposits from tissue walls of patients by means of a high pressure jet, e.g., 5,000 to 50,000 Psi. The device of that patent may be used to infuse drugs, inject contrast media for visualization and flush the vessel. U.S. Pat. No. 5,037,432 (Molinari) discloses an apparatus utilizing pressurized fluid in conjunction with an abrasive reducing substance for removing surface portions of human tissue. The device allows a controlled application of a reducing substance for the purpose of obtaining a superficial abrasion of surface portions of the human tissue. This patent does not contemplate utilizing the system for a surgical or percutaneous tool, nor the delivery of a substance into the tissue.
  • [0141]
    The delivery instrument 200 shown in FIG. 7 is arranged to drive the flowable agent(s) 24 at high pressures into the myocardium and thus implant the agent(s) at some significant distance from the instrument's distal end 202, as indicated by the arrows in this figure. The instrument 200 is a generally rigid or partially rigid device for use in open heart surgery or for use in mini-open heart surgery through a thoracotomy. Like the instrument 26 described heretofore, the delivery instrument 200 is arranged to drive the flowable agent(s) 24 at high pressures into the myocardium 3 to thereby implant that agent at some significant distance from the instrument's distal or working end. However, unlike the delivery instrument 26 (which is threaded through the vascular system to a position so that its working head 300 is extended into the ventricle or through a coronary artery to be adjacent the site into which the flowable material will be introduced into the myocardium), the instrument 200 is arranged to penetrate the myocardium directly from the epicardium to introduce the flowable agent.
  • [0142]
    As best seen in FIG. 7 the delivery instrument 200 basically consists of two main portions, namely, a flowable agent capsule receiving portion 202 and an elongated injector tip portion 204. The capsule receiver portion 202 is in the form of an elongated body which is particularly suited to be grasped in the hand of the user. The body forms the proximal end of the instrument 200. The injector tip portion 204 is an elongated, small diameter, e.g., 1 mm, member which extends from the distal end of the body portion 202 to thereby form the distal end of the instrument. The receiver portion 202 is a generally hollow member having a cavity 206 for receipt of a rupturable capsule, like capsule 72 described heretofore. The outlet of the capsule 72 is in communication with a passageway 208 in the form of a metal tube of small bore, e.g., 0.015 inch, which extends down through the injector tip 204 to the distal end 210 thereof. As can be seen, the distal end of the tip is pointed to form a piercing member. A plurality of outlet ports 212 are provided in the distal tip and are in fluid communication with the passageway 208. The ports are equidistantly spaced about the periphery of the tip and are directed radially outward therefrom. The ports are arranged to allow the flowable agent(s) 24 to exit the instrument 200 in the form of plural, radially outwardly directed, high pressure fluid jets which are shown graphically by the arrows 24 in FIG. 7.
  • [0143]
    The delivery instrument 200 illustrated in FIG. 7 only shows the flowable agent(s) 24 delivered to the myocardium 3 in one area. However, it should be appreciated that the instrument may be positioned at different levels in the myocardium to deliver the flowable agent(s) into the entire depth of the myocardium. Further still, the distal portion 204 of the instrument 200 may include a plurality of ports 212 at different longitudinal positions therealong to distribute the flowable agent(s) into the myocardium at various levels with a single delivery or penetration.
  • [0144]
    In order to propel the flowable agent(s) out of the capsule to form those jets, the instrument 200 includes a fast acting plunger assembly. In particular, the assembly comprises a plunger 214 located immediately proximally of the piston 64 at the proximal end of the capsule 72. The plunger is located within a bore 216 in the body portion 202. A powerful spring, not shown, forming a portion of the plunger assembly is located proximally of the plunger and is normally held in a retracted, loaded position by a trigger mechanism, not shown. When the trigger mechanism is actuated by the user, it releases the spring to advance the plunger rapidly through the bore in the distal direction to engage and move the piston distally. The rapid distal movement of the piston pressurizes the agent 24 within the capsule to cause the capsule wall to burst and thereby enable the flowable agent to flow down the passageway 208 to the ports 212 where it exits in plurally radially directed high pressure jets.
  • [0145]
    It should be pointed out that the delivery instrument 200 can be constructed in accordance with the teachings of U.S. Pat. No. 2,398,544 (Lockhart) or any other prior art injector device using springs or other mechanisms for driving an agent from a capsule or receiver located therein.
  • [0146]
    In any case, the sizing of the parts of the instrument is preferably selected so that pressures of several thousand psi can be generated by the actuating mechanism, e.g., plunger and capsule combination. Such pressures are more than adequate to drive the flowable agent(s) jets a significant distance into the penetrated tissue, e.g., the myocardium.
  • [0147]
    To expedite the vascularization of cardiac tissue, the tip 210 of the device 200 is preferably pointed so that it may penetrate into the cardiac tissue a limited distance, e.g., 1-20 mm, such as shown in FIG. 7. Once it is at the appropriate depth, the agent 24 may then be pressurized and forced into the tissue through the ports 212 as described earlier. Depending on the application, one or plural penetrations can be undertaken.
  • [0148]
    In some applications, a depth control means (to be described later) may be provided to limit the depth of penetration of the distal or working end of the instrument 200 into the myocardium to disperse the flowable agent(s) into the contiguous tissue. Such depth control means may comprise means to limit the depth of the lumen(s) created by the delivery instrument, or may comprise means on an insert (to be described later) which is implanted into the targeted tissue to limit its depth of penetration into the lumen or may be a combination of both. The depth control means of the delivery instrument may be adjustable to vary the depth of the lumen(s) created by the instrument. The optimal lumen depth created by the instrument may be determined before the procedure or during the procedure by measuring the thickness of the cardiac tissue with a transesopheageal echocardiogram probe, ultrasound probe, or other measuring instrument.
  • [0149]
    It should be pointed out at this juncture that while the delivery instrument 200 is shown making use of a rupturable capsule 72, like that described heretofore, it should be clear that the instrument can make use of other types of capsules, such as the needle-puncturable capsule 52 described earlier, for holding the flowable agent(s). In such an alternative arrangement, a piercing needle 60, like that described heretofore, is provided in the injector located proximally of and in communication with the metal tube 208. The needle is directed towards the cavity holding the capsule so that it can pierce the end wall of the capsule when the capsule is moved into the point of the needle by the distal movement of the piston 64.
  • [0150]
    It should also be pointed out at this juncture that the flowable agent can include a flowable carrier material if desired. The flowable carrier material can be arranged to harden slightly after placement, like epoxy or silicon caulking material, so that it is not extruded from the cardiac tissue after penetration during the cardiac contraction cycle. As will be discussed later, a significant feature of the subject invention is the stimulation of a foreign body reaction and healing response in the myocardium which results in the formation of capillaries at the site of and adjacent the implanted flowable agents.
  • [0151]
    FIG. 9 is an illustration of the heart of a living human being, partially in section, showing one embodiment of another flowable agent(s) delivery instrument 400 forming a portion of a targeted tissue treatment, e.g., myocardial revascularization, system of the subject invention. In this case, the instrument is a vibratory device which is used to penetrate a portion of the epicardium 2 and then into the myocardium 3 to deliver the flowable agent(s) into the myocardium. Vibratory energy provided by this embodiment may be sonic, ultrasonic or other energy used to create channels or lumens in the targeted tissue into which the flowable agent(s) 24 will be ejected or deposited for dispersion into tissue contiguous with the lumen or channel into which it is introduced. Alternatively, the deployment instrument 400 can provide one or more of various other types of energy to the targeted tissue to create the channels or lumens and then deliver the flowable agents therein. Examples of other types of energy contemplated for such procedure are thermal energy, mechanical energy (e.g., rotational cutting or boring, slicing, etc.), electrical energy (e.g., radiofrequency energy, etc.), hydraulic energy (e.g., pneumatic energy, radiation energy, laser or other light energy, or other types of electromagnetic energy, etc.) It should be pointed out at this juncture that the application of energy to the cardiac tissue will not only serve to create the lumens or channels but can also disable or denervate local nerves in the targeted tissue. This factor may prove particularly significant for cardiac tissue treatment applications by minimizing or otherwise reducing patient-pain resulting from angina.
  • [0152]
    In some applications, such as where the deployment instrument 400 applies electrical energy to the cardiac tissue to form the lumens or where the formations of the lumens and/or the deployment of the flowable agents therein is best accomplished during a particular portion of the cardiac cycle, the targeted tissue treatment system utilizing a vibratory instrument like instrument 400 may also include some control and sensing means (such as will be described later) that synchronizes the operation of the delivery instrument to a specific portion of the cardiac cycle.
  • [0153]
    The instrument 400 as shown herein is merely exemplary. Thus, it can be of any suitable construction. For example, it can be constructed similarly to the device disclosed in U.S. Pat. No. 4,315,742 (Sertich) whose disclosure is incorporated by reference herein. That device basically comprises an air-powered vibratory instrument which vibrates at approximately 7 KHz. This example is not intended to exclude other means for generating vibratory energy for the instrument 400, such as magnetostrictive or piezoelectric devices. In the exemplary embodiment 400 shown herein, the device basically comprises the device of the aforementioned Sertich patent with an alternative tip 402 constructed in accordance with this invention and as shown in FIG. 10 herein. In particular, as can be seen in FIG. 10, the tip 402 is an elongated angled member which is arranged to be attached to the screw thread at the distal end of the Sertich device. The angled tip is present within a holder 404. The free end of the tip is rounded at its distal end 406 and includes plural small radially directed outlet ports 408 for distribution of the flowable agent(s) 24. The tip may be of a continuous tapered form (not shown) or a step form having a reduced diameter distal section 410 including the free end 406 as shown in the illustration of FIG. 10. The fact that the distal end of the tip is of reduced diameter coupled with the fact that it is located a distance from the holder 84 serves to amplify the vibration produced by the instrument during operation. The flowable agent 24 is provided by the instrument 400, as will be described later, and exits from the plural ports 408 in the form of plural radially directed outward jets as shown by the arrows in FIG. 9.
  • [0154]
    FIG. 11 shows a complete targeted tissue treatment system 20 making use of the vibratory delivery instrument 400 just described to effect the vascularization of the myocardium. Thus, as can be seen, the free end 406 of the tip 402 of the instrument 400 is placed against the epicardium and the foot control switch 114 is depressed to the first position. Nitrogen gas passes through the tube 110 directly to the instrument 400 thus generating vibrations in the tip 402. Concurrently, saline flows from the bag 116 through the pump 112 to the input 1068 of the highest wins valve 106 and from there through the feed line 108 into the interior of the instrument 400. The saline flows through the instrument to the tip and out through the ports 408. This action bores a channel or lumen through the epicardium into the myocardium. When this has been accomplished, the foot switch is then depressed to the second position, whereupon the capsule injector ram 68 of the system 20 is driven smartly into the capsule 52, thereby ejecting the flowable agent(s) 24 through the highest wins valve port 106A into the feed tube 108. The agent(s) 24 is delivered through the instrument 404 to its tip 402 either by continued motion of the injector (assuming the capsule charge is large enough) or carried forward by the continuing flow of saline from the pump. The flowable agent thus is driven into the myocardium by the use of pressure alone or by the vibration of the instrument alone or by a combination of both.
  • [0155]
    FIG. 12 is an illustration, not to scale, of the heart of a living human being, shown partially in section, and illustrating an embodiment of another alternative flowable agent(s) delivery instrument (not to scale) forming a portion of a targeted tissue, e.g., myocardial revascularization, system of the subject invention. This embodiment is denoted by the reference number 500 and basically comprises a jet injector which is used to deliver the flowable agent(s) 24 as a pressurized stream into the myocardium 3 via the epicardium 2.
  • [0156]
    As is known, pressurized fluids have been used in the past in jet injector devices for administering intramuscular and subcutaneous medications to a patient through the patient's skin, without the use of a skin-penetrating needle. The advantages of such systems include the reduction of pain and apprehension associated with needle injections, the elimination of needle-stick injuries, and the reduction of environmental contamination associated with needles. Jet injection devices have been considered for immunization vaccines, hormone delivery, local anesthetics, and insulin delivery. For example, U.S. Pat. No. 2,398,544 (Lockhart) discloses a hypodermic injector for administering a liquid through the skin of a living being without the necessity of having a needle puncture the skin. The device uses a pressure of 8,000 to 10,000 psi to force a stream of a liquid through the skin. U.S. Pat. No. 2,737,946 (Hein) discloses an apparatus for hypodermically injecting medicants through the skin without the use of a penetrating needle. U.S. Pat. No. 2,762,370 (Venditty) discloses a needleless hypodermic injector for use in discharging liquid medicants from an orificed ampule in the form of a minute stream. An initial high-pressure discharge causes the jet stream to distend the skin and force the liquid to a predetermined depth beneath the surface. After the minute opening in the epidermis has been produced, the pressure of the stream is immediately reduced to a lower second stage for completing transfer of the remaining liquid from the ampule. U.S. Pat. No. 2,800,903 (Smoot) discloses a device for the injection of a medicant without the use of a long needle. U.S. Pat. No. 5,704,911 (Parsons) discloses a system utilizing hypodermic jet injections to deliver liquid medicants without piercing the skin with a needle. U.S. Pat. No. 4,165,739 (Doherty et al.) and U.S. Pat. No. 3,815,514 (Doherty) disclose innoculators for injecting a fluid through the skin without the use of a needle.
  • [0157]
    Referring now to FIG. 12, it can be seen that the jet injector delivery instrument 500 as illustrated is constructed similarly to the inoculation injector described in U.S. Pat. No. 2,398,544 (Lockhart) whose disclosure is incorporated by reference herein. This construction is referred to since it is illustrative of some forms of devices that are suitable for the purpose of injecting a flowable agent into a targeted tissue, e.g., the myocardium, under high pressure. Other types of jet injectors could be utilized in accordance with this invention.
  • [0158]
    As can be seen clearly in FIG. 12, a capsule 502 containing a flowable agent(s) constructed in accordance with this invention is held within a dispensing chamber in a cap portion 504 of the jet injector instrument 500. The cap includes multiple tiny orifices 506 arranged in a pattern, e.g., equidistantly spaced and slightly flared outward, to give a wide spread to the injected agent(s) 24 within the myocardium. Alternatively, the injector device may only include a single orifice for injecting a single jet stream of the agent into the myocardium. In the embodiment shown, the instrument 500 includes an activatable plunger 508 which is arranged to be released by axial motion of a sleeve 510 to rapidly engage or push into the capsule 502. This action propels the flowable agent(s) 24 of the capsule through the orifices 506 in the cap 504 and into the contiguous cardiac tissue, i.e., through the epicardium and into the myocardium as shown by the arrows in FIG. 12.
  • [0159]
    It should be pointed out at this juncture that the instrument 500 may be constructed differently. For example, the instrument 500 could consist of a local jet holder, like cap 504, but with the pressure source and capsule remote from the tip.
  • [0160]
    During the operation of the system of FIG. 12, the agent or carrier fluid for the agent (to be described later) intended for introduction into the targeted tissue is inserted in a proper dosage into the dispensing chamber. As discussed previously, pre-dosed capsules can be utilized. In any case, the plunger is driven forward by the linearly applied force and converts this force into pressure on the flowable agents. The force is sufficient to cause the flowable agents to exit the chamber via the orifice(s) 506 at such a velocity that they can be hypodermically injected into the injection site. It is possible that an ampule or other agent reservoir could be used and as such the ampule could utilize a dosage scale or graduations for use in metering proper doses. Moreover, it is conceived, but not illustrated, that an embodiment of a needleless hypodermic injection delivery instrument of this invention would include an ampule assembly having a chamber for holding the flowable agent(s), e.g., a liquid suspension, and an injector for receiving and mounting the ampule assembly. In such a case, the ampule assembly will have an opening at an end of an ampule shell through which the flowable agent can be drawn into an ejected out from. A plunger assembly movable within the chamber is used for drawing the flowable agent into the chamber and for injecting the material out of the chamber. The injector applies a force that activates a plunger to thereby force the material to leave the chamber via the orifice(s) at a velocity sufficient that the agent can be hypodermically injected into the targeted tissue. The force may be applied by a firing mechanism that releases compressed gas from a storage compartment. The compressed gas acts upon a piston which drives the plunger to subsequently eject the preselected dosage of the flowable agent(s) through the orifice(s) at the distal end of the instrument. A shock absorber may be used to soften or cushion the shock of the triggering mechanism. For some flowable agents, e.g., vaccines, there may be a standard implant dosage, while for other agents there may be variable size dosages, e.g., weight dependent medications. Safety interlocks, not shown, can be incorporated to prevent system activation until the delivery instrument is fully secured in position.
  • [0161]
    In some applications it may be desirable to stabilize the flowable agent(s) delivery instrument against the targeted tissue, e.g., the endocardium or epicardium during the tissue treatment, e.g., revascularization, procedure. For such applications, the system 20 may make use of some releasable securement or attachment means, like that shown in FIG. 13. That means basically comprises a suction hood, to be described in detail later, which stabilizes or otherwise holds the flowable agent delivery instrument in place. Once positioned, the delivery instrument can be activated to direct the flowable agent(s) therefrom into the targeted tissue. It must be pointed out at this juncture that the use of the stabilization as disclosed herein is not confined to the use with any particular type of delivery instrument. Thus, it can be used with powered, e.g., rotatable working head instruments like shown in FIG. 2, or manually driven instruments like shown in FIGS. 7, 9 and 13, to create lumens within the targeted tissue and to introduce the flowable agent(s) therein. FIG. 13 illustrates one such device when applied to the delivery instrument of FIG. 7. Thus, referring now to FIG. 13, there is shown a delivery instrument 200 of FIG. 7 but including a releasably securable attachment mechanism 600 in the form of a suction hood 602 assembly and associated components. The suction hood assembly is slidably mounted on the distal portion 204 of the instrument 200. The suction hood assembly 602 basically comprises a cup-shaped hollow member formed of a resilient material, e.g., silicone rubber, having a central passageway 604 therein for accommodating the distal end portion 204 of the delivery instrument 200 (or any other delivery instrument). The periphery of the cup-shaped member is in the form of an enlarged flange which is arranged to directly engage the epicardium or other targeted tissue. A source of vacuum 606 is provided coupled to the proximal end of a tube 608 in communication with the interior of the cup-shaped hood. The vacuum source 606 is arranged to be actuated by the operator of the system via any suitable means (not shown). This action couples the vacuum source 606 to the interior 610 of the hood to produce suction at the distal end of the hood thereby holding it in place on the targeted tissue, e.g., epicardium, centered over the location at which the delivery instrument 200 is to enter the underlying tissue. The operator can then drive the instrument 200 inwardly into and through the epicardium and into the myocardium with the suction cup stabilizing the zone of interest.
  • [0162]
    FIG. 14 shows the flowable agent(s) delivery device 300 of FIG. 8 but used in a tissue treatment application wherein the distal end portion of the instrument is fed through the urethra 14 into the prostate gland 15 of a living male being for the purpose of delivering the flowable agent(s) 24 into the prostate gland in the form of jets of that agent. The instrument 200 could thus be used to treat prostate cancer, benign prostate hyperplasia, or other prostate conditions with suitable flowable treatment agent(s), such as tissue and/or vascular antagonists. If desired, the instrument may be positioned so that its distal end is within the bladder 16 to deliver the flowable treatment agent(s) thereto for treating a tumor T.
  • [0163]
    In accordance with one preferred aspect of this invention, the flowable agent(s) is in the form of a plurality, e.g., a host or myriad, of small particles of one or more materials (the materials to be described in the tables to follow) either alone or in combination with some carrier fluid, e.g., a liquid. Preferably, the particles are in the form of microspheres or other microparticles. FIGS. 15A-15H show respective embodiments of the microparticles which may be used as the flowable agent or as part of the flowable agent or for delivering flowable agents into the tissue of a living being in accordance with this invention.
  • [0164]
    As described previously, the agents 24 are formed of at least one material that can elicit a beneficial response within cardiac or other tissues. For example, the agents can be of a pharmaceutical or genetic nature and their presence can initiate a bio-chemical/biological process that stimulates the tissue to heal itself. The agents can also trigger the onset of a foreign body or healing response to cause the formation of lumens in communication with the arterial system.
  • [0165]
    Before describing the exemplary embodiments of the microspheres shown in FIGS. 15A-15I The flowable materials may be of any particulate size from approximately 1 micron to approximately 1 mm. In FIGS. 15A-15I, the particles are shown as being microspheres or microparticles.
  • [0166]
    Referring now to FIG. 15A, it can be seen that while there is shown a single microsphere 700 which along with others can be used to form the flowable agent. The microsphere 700 basically comprises an outer layer 702 and an inner core 704. The outer and inner layers may be of different materials or contain different agents or different concentrations of the same agent. By varying the absorption rate of the different layers, the release rate of any agent stored in the material will vary accordingly. Additionally, the inner core can be an encapsulated liquid containing an agent or plural agents.
  • [0167]
    FIG. 15B shows a microsphere 706 having a matrix of small pockets of agents 708 dispersed therein. As the microsphere 706 is absorbed, the agents in the matrix are released.
  • [0168]
    FIG. 15C shows a microsphere 710 having a matrix of small pockets of agents 714 dispersed therein and which matrix is coated by a continuous shell 714. The shell can contain no agent or different agents than are contained in the interior matrix.
  • [0169]
    FIG. 15D shows a microsphere 716 having an outer layer 718 and an encapsulated liquid core 719 containing the agent(s).
  • [0170]
    FIG. 15E shows a microsphere 720 having multiple layers 722 with thin coatings of agents 724 between each layer. As the layers 722 are absorbed, the agents 724 between the layers will be released. Additionally, the thin layers may comprise a material that may not be related to the treatment of the targeted tissue; but rather is an intermediate material which connects two layers of material. For example, it may comprise a coating applied to a polymer surface that contains receptors for a specific biological material, e.g., a recombinant adenovirus expressing human fibroblast growth factor-2 (FGF-2).
  • [0171]
    FIG. 15F shows a homogeneous microsphere 726 that is evenly seeded with agents 728 throughout. The agents 728 are uniformly released as the microsphere is absorbed.
  • [0172]
    FIG. 15G shows a microsphere 730 that is coated with a thrombogenic agent 732 such as thrombin, that will promote clotting of blood around the agent to prohibit movement of the agent through the tissue after it is deposited.
  • [0173]
    FIG. 15H shows a microparticle (not a sphere, but rather an irregularly shaped body) 734 seeded with a matrix of encapsulated agents 736 throughout. The irregular shape of the body 734 tends to render it resistant to movement after it is deposited in the targeted tissue.
  • [0174]
    FIG. 15I shows a small shard or piece of a polymer 738 or some other material that could be coated or seeded with a suitable treatment agent. The irregular shape of the polymer body also serves to prevent movement of it after it is deposited in the targeted tissue.
  • [0175]
    As is know, microspheres are well known for their use in long term controlled release of drugs or other therapeutic agents. This is a highly developed technology that has been used in many applications and such microspheres are available from a variety of sources (e.g., Polymicrospheres, Indianapolis, Ind.). The microsphere structures typically consists of: (a) a continuous drug phase surrounded by a continuous barrier membrane or shell (microcapsule), (b) a shell structure where the drug phase is subdivided into numerous domains scattered uniformly through the interior of the microsphere, (c) a polymer matrix throughout which the drug is uniformly dispersed, (d) a structure where the drug is either dissolve or molecularily dispersed within the carrier material from which the microsphere is prepared, and (e) solid. The most common method of delivering drugs or other therapeutic agents with microspheres incorporates these agents uniformly within a polymer matrix.
  • [0176]
    The fabrication of and application of microspheres is well known and as such the following examples are included herein as reference. U.S. Pat. No. 3,887,699 describes a solid biodegradable polymer spheroids implants which incorporate a drug for sustained release as the polymer naturally degrades in the human body. Many different methods of constructing this type of controlled release system have been developed. Although the uniform matrix of a polymer provides a simple and efficient means of controlled release of agents with microspheres, many advanced methods of containing and releasing the therapeutic agents have been developed. U.S. Pat. No. 4,637,905 (Gardner) discloses a method for encapsulating a therapeutic agent within a biodegradable polymer microsphere. U.S. Pat. No. 4,652,441 (Okada et al.) discloses a method of utilizing a water-in-oil emulsion to give prolonged release of a water-soluble drug. The patent describes a wide variety of drugs that can be delivered via prolonged release micro-capsules as well as suitable polymeric materials and drug retaining substances. It is conceived that the system of this invention could incorporate any of the drugs described to in this patent to generate a beneficial effect in the cardiac tissue. U.S. Pat. No. 5,718,921 (Mathiowitz et al.) discloses a method for constructing a multiple layer microsphere which can release two different drugs at controlled rates or a singe drug at two different rates. U.S. Pat. No. 5,912,017 (Mathiowitz et al.) also discloses a method of forming two layered microspheres by using an organic solvent or melting two different polymers, combining them with a desired substance and cooling. Microspheres are not limited to just water-soluble therapeutic agents. See, for example, U.S. Pat. No. 5,288,502 (McGinity et al.) which discloses a multi-phase microsphere which is capable of incorporating water-soluble and water-insoluble drugs.
  • [0177]
    Several embodiments of the subject invention utilize the incorporation of therapeutic agents into microparticles or microspheres that degrade over time and release the therapeutic agents. As a non limiting example, microparticles can be used to deliver any type of molecular compound, such as proteins, genetic materials, proteins, peptides, pharmacological materials, vitamins, sedatives, steroids, hypnotics, antibiotics, chemotherapeutic agents, prostaglandins, and radiopharmaceuticals. The delivery system of the present invention is suitable for delivery the above materials and others including but not limited to proteins, peptides, nucleotides, carbohydrates, simple sugars, steroids, pharmaceuticals, cells, genes, anti-thrombotics, anti-metabolics, growth factor inhibitor, growth promoters, anticoagulants, antimitotics, and antibiotics, fibrinolytic, anti-inflammatory steroids, and monoclonal antibodies. Examples of deliverable compounds are listed in Table 1 and 2.
  • [0000]
    TABLE 1
    Examples of Biological Active Ingredients
    Growth factors
    Genetic material
    Fibroblast Growth Factor (FGF)
    Adenovirus
    Bone morphogenic proteins (BMP)
    Hormones
    Stem Cells
    Vascular Endothelial Growth Factor (VEGF)
    Interlukins
    Insulin-like Growth Factors (e.g. IGF-I)
    Platelet-derived Growth Factor (PDGF)
  • [0000]
    TABLE 2
    Examples of Pharmaceutical ingredients
    Thrombin
    Anti-inflammatorys
    Anti-proliferative agents
    Immunosuppressant agents
    Glycosaminoglycans
    Collagen inhibitors
    Anticoagulants
    Anti-bacterial agents
    Vasodilators
    Calcium channel blockers
    ACE inhibitors
    Beta blockers
    Antiarrhythmics
    Antiplatelets
    Thrombolytics
  • [0178]
    Microspheres can be made of a variety of materials such as polymers, silicone and metals. Biodegradable polymers are ideal for use in creating microspheres. There are essentially three classes of biodegradable polymers: (1) water-soluble polymers rendered insoluble by hydrolytically unstable cross-linking agents, (2) water-insoluble polymers that become soluble by hydrolysis but retain their molecular backbone, and (3) water-insoluble polymers that become soluble by backbone cleavage. Polylactic Acid and Polyglycolic Acid are well known examples of resorbable polymers. The release of agents from absorbable microparticles is dependent upon diffusion through the microsphere polymer, polymer degradation and the microsphere structure. Although most any biocompatible polymer could be adapted for this invention, the preferred material would exhibit in vivo degradation. It is well known that there can be different mechanisms involved in implant degradation like hydrolysis, enzyme mediated degradation, and bulk or surface erosion. These mechanisms can alone or combined influence the host response by determining the amount and character of the degradation product that is released from the implant. The most predominant mechanism of in vivo degradation of synthetic biomedical polymers like polyesters, polyamides and polyurethanes, is generally considered to be hydrolysis, resulting in ester bond scission and chain disruption. In the extracellular fluids of the living tissue, the accessability of water to the hydrolysable chemical bonds makes hydrophilic polymers (i.e. polymers that take up significant amounts of water) susceptible to hydrolytic cleavage or bulk erosion. Several variables can influence the mechanism and kinetics of polymer degradation. Material properties like crystallinity, molecular weight, additives, polymer surface morphology, and environmental conditions. As such, to the extent that each of these characteristics can be adjusted or modified, the performance of this invention can be altered.
  • [0179]
    Finally, many biodegradable polymers are also used to construct these microspheres such as polylactide, polylactide, copolymers with glycolides, lactides and/or epsilon-caprolactone, polyanhydrides, polyorthoesters, and many others. The polymers of poly (d,l-lactic acid) and poly (d,l-lactic) co-glycolic acid are among the most preferred polymers used historically for controlled release. However, virtually any biodegradable and/or biocompatible material may be used with the present invention. A list of example biocompatible materials are shown in Tables 3 and 4.
  • [0000]
    TABLE 3
    Biodegradable Polymer Examples
    Polyglycolide (PGA)
    Polylactide
    Copolymers of glycolide
    Glycolide/L-lactide copolymers (PGA/PLLA)
    Glycolide/trimethylene carbonate copolymers (PGA/TMC)
    Polylactides (PLA)
    Poly-L-lactide (PLLA)
    Poly-DL-lactide (PDLLA)
    L-lactide/DL-lactide copolymers
    Lactide/tetramethylglycolide copolymers
    Lactide/trimethylene carbonate copolymers
    Lactide/σ-valerolactone copolymers
    Lactide/ε-caprolactone copolymers
    Polydepsipeptides
    PLA/polyethylene oxide copolymers
    Poly-β-hydroxybutyrate (PBA)
    PHBA/γ-hydroxyvalerate copolymers (PHBA/HVA)
    Poly-β-hydroxypropionate (PHPA)
    Poly-p-dioxanone (PDS)
    Poly-σ-valerolactone
    Poly-ε-caprolactone
    Methyl methacrylate-N-vinyl pyrrolidone copolymers
    Polyesteramides
    Polyesters of oxalic acid
    Polydihydropyrans
    Polyalkyl-2-cyanoacrylates
    Polyurethanes (PU)
    Polyvinyl alcohol (PVA)
    Polypeptides
    Poly-β- malic acid (PMLA)
    Poly-β- alkanoic acids
    Trimethylene carbonate
    Polyanhydrides
    Polyorthoesters
    Polyphosphazenes
    Poly (trimethylene carbonates)
    PLA-polyethylene oxide (PELA)
    Tyrosine based polymers
  • [0000]
    TABLE 4
    Examples of other suitable materials
    Alginate
    Calcium
    Calcium Phosphate
    Ceramics
    Cyanoacrylate
    Collagen
    Dacron
    Elastin
    Fibrin
    Gelatin
    Glass
    Gold
    Hydrogels
    Hydroxy apatite
    Hydroxyethyl methacrylate
    Hyaluronic Acid
    Liposomes
    Nitinol
    Oxidized regenerated cellulose
    Phosphate glasses
    Polyethylene glycol
    Polyester
    Polysaccharides
    Polyvinyl alcohol
    Platelets, blood cells
    Radiopaque
    Salts
    Silicone
    Silk
    Steel (e.g. Stainless Steel)
    Synthetic polymers
    Thrombin
    Titanium
  • [0180]
    It must be pointed out at this juncture that the agents of this invention are preferably configured such that their presence in the myocardial tissue does not significantly limit the contractility of the cardiac muscle. As previously described, the agents may be coated with or contain growth factors, anti-oxidants, seeded cells, or other drug/biologically active components depending upon the result desired.
  • [0181]
    The main feature of these constructions is to stimulate a foreign body reaction and a healing response which results in the formation of capillaries at the site of the implant. Moreover, the angiogenesis action resulting by the location of the agents within the lumens over time will further revascularize the myocardium. As such, these implants may provide less of a short term improvement to vascularization, but instead will lead to a long term improvement.
  • [0182]
    As should be appreciated from the foregoing whether the system 20 makes use of non-resorbable or resorbable agents is of little relevance from the standpoint of increased blood flow to the myocardium tissue and capillaries contiguous with the lumens so long as the agents are constructed suitably.
  • [0183]
    FIG. 16 is an illustration of a portion of the heart of a living human being, partially in section, showing the embodiment of a jet injector delivery instrument 200 (described earlier and shown in FIG. 7) shown used to deliver the flowable agent(s) of this invention into the myocardium 3 via the epicardium 2. The coronary vessels 17 perfusing the myocardium are at least partially obstructed by atherosclerotic material 18. As previously described, the device 200 utilizes a pressurized stream to distribute the flowable agents into targeted tissues. In this particular embodiment, microparticles or microspheres like those described earlier and shown in FIG. 15 are implanted or injected into a portion of myocardium in the form of a micro dispersion. The velocity of the microparticles when exiting the instrument may be of sufficient velocity to penetrate the myocardium but not penetrate a coronary vessel if encountered. As previously discussed the instrument 200 may be stabilized on the surface of the heart and the depth of the instrument in the myocardium may also be controlled. One embodiment of a stabilizing and depth control member 800 is shown as part of the instrument 200.
  • [0184]
    Referring to FIG. 17, after the instrument 200 shown in FIG. 16 is removed, the microdistribution of microparticles 24 remain in the myocardium 3. The microparticles 24 are sufficiently implanted into the myocardium to resist movement. The combination of the microparticles and the injury created by the instrument 200 to deploy and disperse the particles may effect angiogenesis. Additionally a channel or lumen 19 remains in the myocardium area where the instrument was inserted. An insert or plug 802 may be placed in the channel 19 after the instrument 200 is removed. This action may assist in achieving hemostasis of the puncture. For this purpose, the insert or plug 802 may be formed of a hemostatic material, such as collagen or alginate, and may incorporate thrombogenic material, such as thrombin, to accelerate hemostasis of the channel. The insert or plug 802 may also have an enlarged proximal head portion 804 that may limit the depth of insertion depth of the insert or plug and may also serve to stabilize the insert or plug against the surface of the myocardium. The insert or plug 802 may also be formed of a material which will contribute to the improved revascularization such as those listed on Tables 3 and 4. The insert may also serve to maintain the patency of the channel or lumen. As such, a portion of the insert or plug can be perforated or include channels (see for example the inserts of the aforementioned copending application Ser. No. 08/958,788). The insert itself may also act to treat the surrounding tissue. For example, the insert or plug 802 may also comprise a biologically active ingredient or pharmaceutical ingredient as listed on Tables 1 and 2. Finally, the insert or plug 802 may also be useful in the selective ablation or improvement of electrical conduction pathways, or the selective ablation or improvement of the nerves of the tissue.
  • [0185]
    FIG. 18 shows the condition of the myocardium 3 after angiogenesis has occurred to create significant new vasculature, e.g., capillaries C. As can be seen at this time, the microparticles 24 and the insert 802 have been absorbed and the channel 19 formed by the instrument have healed. In addition and quite significantly, the microparticles, the insert, and any biologically active materials or pharmaceutical agents which may have also been implanted have induced the growth of the new vasculature (capillaries) C or otherwise improved the tissue.
  • [0186]
    FIG. 19 is an illustration of a portion of the heart 1 of a living being, shown partially in section and showing the embodiment of the delivery instrument 200 of FIG. 7 used to deliver the flowable agent(s) 24 into the myocardium in the form of pressurized streams of fluid. In this figure three instruments 200 are illustrated for introducing the flowable agents into the myocardium at three different locations 902, 904, and 906. While three delivery instruments 200 are illustrated extending into the myocardium together, the system 20 will typically only include a single delivery for delivering the agents to one site 902, 904 and 906 in the myocardium at a time. Therefore, it should be understood that FIG. 19 should be understood to depict the sequential delivery of the flowable agent(s) 24 into the myocardium 3 by a single delivery instrument 200.
  • [0187]
    At high pressures, the stream of flowable agent(s) 24 delivered to the myocardium may cause separation of the myocardial muscular fibers and may form a channel in the myocardium. If the delivery instrument is inserted into the myocardium at several locations at controlled distances between insertion points, the channels formed by the pressurized stream of fluid may be contiguous with one another, thus forming a long channel within the myocardium. Furthermore, a portion of the myocardium may be normally perfused with blood and an adjacent portion of the myocardium may be ischemic. If the instrument 200 is inserted in a plurality of locations at controlled distances between insertion points in the normally perfused myocardium and extending into and possibly through the ischemic myocardium, an intramyocardial channel (like that designated by reference number 908 in FIG. 20) from the normally perfused myocardium extending into the ischemic myocardium results. This channel is expected to remain patent, thereby resulting in immediate increased perfusion to the ischemic myocardium.
  • [0188]
    Regardless of the immediate patency of the channel 908, the combination of the mechanical injury produced by the creation of the channel and the flowable agents 24 may cause the creation of additional vasculature including and in addition to the formed channel, thereby resulting in increased perfusion of the portion of ischemic myocardium. Depending on the degree of ischemia and the area of ischemic myocardium, several channels may be formed in the area of the ischemic myocardium. The channels may or may not originate or terminate in a portion of normally perfused myocardium.
  • [0189]
    Regarding the pressurized stream of fluid used to create the channel 908, the instrument 200 may utilize multiple flowable agents 24 to create the channel and implant agents into the myocardium. For example, one flowable agent, e.g., saline mixed with contract medium, may be used to create the channel and a second flowable agent, e.g., saline with bFGF coated microspheres and VEGF coated microspheres, may be implanted into the channel and at some significant distance into the myocardium surrounding the created channel. Additionally, the channel may be formed in communication with an existing coronary vessel to provide significant blood flow to the channel. The communication of existing vessel and channel may be effected by creating an opening in the existing vessel with the delivery of flowable agent in a pressurized stream from within the myocardium or from within the vessel.
  • [0190]
    FIG. 20 is an illustration of a portion of the heart shown in FIG. 19, but after its treatment by the system of the subject invention. Thus, as can be seen, the channel 908 in the myocardium which was created by the delivery system of the subject invention is open and may extend between normally perfused myocardium and ischemic myocardium to provide immediate blood flow to the ischemic myocardium. In addition or alternatively the channel 908 may serve as a means whereby new blood vessels may grow, supplemented by the introduction of a flowable agent as previously described.
  • [0191]
    In order to prevent the flow of blood from the channel 908 through the instrument's entry sites 902, 904 and 906 into the myocardium, a hemostatic insert may be applied in each channel created by the instrument, like that described with reference to FIG. 17. Alternatively, an adhesive material, e.g., fibrin glue, may be applied to the surface of the myocardium at the delivery instrument insertion point or within the channel created by the instrument, to cause the original entry channels close down as shown in FIG. 20.
  • [0192]
    FIG. 21 is an enlarged sectional view of the distal end portion of the treatment agent delivery instrument 1000 forming a portion of the tissue treatment system 20 of this invention. The delivery instrument 1000 incorporates an energy applicator, e.g., a laser (not shown), to provide energy denoted by the arrows designated by the reference numbers 1004 into the targeted tissue, e.g., the myocardium 3, to produce a channel therein and into which the flowable agent(s) 24 may be introduced. In particular, the laser beam 1004 from the laser is carried down the instrument 1000 via any suitable laser energy conductor, e.g., a light pipe or fiber optic cable 1006. An annular passageway 1008 is provided within the distal end portion of the instrument 1000 surrounding the laser energy conductor 1006. A plurality of exit ports 1010 are located at peripherally spaced locations at the distal end of the instrument adjacent the free end at which the laser energy conductor 1006 terminates and are in fluid communication with the passageway 1008. The passageway 1008 and the communicating ports 1010 serve as the means to enable the flowable agent(s) 24 to exit from the instrument in plural jets.
  • [0193]
    The instrument 1000 of FIG. 21 is inserted into the targeted tissue, e.g., the myocardium, by applying laser energy from the laser source through the conductor 1006 so that the laser beam 1004 penetrates into the tissue to form a channel into which the distal end of the instrument 1000 may be inserted. Once the instrument 1000 is within the channel in the tissue, the flowable agent(s) 24 may be introduced into the tissue by causing it to flow down the annular passageway 1008 and out through the ports 1010 in the form of pressurized jets. The combination of the application of the energy to create the channel plus the delivery of the flowable agent(s) 24 into the tissue contiguous with the channel is expected to result in increased beneficial effects to that tissue, such as the formation of new vasculature, denervation, and ablation of electrical conduction pathways.
  • [0194]
    In FIG. 22, there is shown an alternative embodiment of a laser-energy based delivery instrument 1020. In this embodiment, the distal end of the instrument 1020 includes an annular laser energy conductor 22 for carrying the laser energy or beam 1004 down it from the laser energy source (not shown) so that the laser beam exits the instrument in a somewhat coaxial direction as shown. A central passageway 1024 is provided in the instrument located within the central opening in the annular laser conductor 1022. The passageway 1024 terminates at its distal end in a wall having plural outlet ports 1026. The ports 1026 are directed in a longitudinal or axial direction with respect to the instrument. It is through these ports 1026 that the flowable agent(s) 24 is ejected from the instrument 1020 in the form of pressurized jets as shown in FIG. 22.
  • [0195]
    It should be pointed out at this juncture that the instrument in FIGS. 21 and 22 can utilize RF energy or other electromagnetic energy to produce the channels in the targeted tissue in lieu of the laser beam described. In any case with the embodiment 1000 shown in FIG. 21, the flowable agent is ejected in a radial direction, whereas with the embodiment of 1020 of FIG. 22, the flowable agents are ejected in an axial direction.
  • [0196]
    It should also be pointed out that the tissue treatment systems of this invention may be used without the inclusion of particles in the flowable agent. In such a case a fluid, e.g., a liquid or gas, fluid without particles but which may contain one or more of biologically active or pharmaceutical agents, such as but not limited to the agents disclosed in Tables 1 and 2 is delivered into the targeted tissue. Furthermore, the system described herein for the treatment of cardiac tissue may also be used in other tissues in the body to effect similar beneficial treatment. For example, constriction of peripheral arteries often creates areas of ischemic tissue not unlike ischemic myocardium as a result of coronary artery disease. The system of this invention may be used in these or other tissues to deliver therapeutic agents to improve blood flow through the creation of new vasculature. Other beneficial effects on the targeted tissue which may be achieved by the subject invention are pain reduction resulting from denervation in the treated tissue and interruption of electrical conduction pathways in the treated tissue resulting from ablation or some other process.
  • [0197]
    Without further elaboration the foregoing will so fully illustrate our invention that others may, by applying current or future knowledge, adopt the same for use under various conditions of service.

Claims (28)

  1. 1. A catheter system for delivering a fluid to heart tissue, comprising:
    a pressurized fluid source containing a fluid therein, the pressurized fluid source generating a high transient pressure sufficient to pierce bodily tissue; and
    an injection catheter including an elongate shaft having a proximal end, a distal end and an infusion lumen extending therein, the proximal end of the shaft connected to the pressurized fluid source, the infusion lumen in fluid communication with the fluid contained in the pressurized fluid source, the distal end of the shaft including a nozzle having an injection port in fluid communication with the infusion lumen such that fluid from the pressurized fluid source may be delivered to the heart tissue via the infusion lumen of the shaft and the injection port at a sufficient exit velocity to at least partially penetrate the heart tissue.
  2. 2. The catheter system of claim 1, wherein the injection port has a diameter selected from the group consisting of 0.05 inches or less, 0.010 inches or less and 0.005 inches or less.
  3. 3. The catheter system of claim 1, wherein the nozzle defines a nozzle lumen having a diameter, and wherein the injection port has a diameter substantially the same as the diameter of the nozzle lumen.
  4. 4. The catheter system of claim 1, wherein the nozzle defines a nozzle lumen having a diameter, and wherein the injection port has a diameter smaller than the diameter of the nozzle lumen.
  5. 5. The catheter system of claim 1, wherein the nozzle includes a sharpened distal end to at least partially penetrate the heart tissue.
  6. 6. The catheter system of claim 1, wherein the injection port is one of directed distally or directed laterally.
  7. 7. The catheter system of claim 1, further comprising:
    a vacuum source; and
    a sheath disposed about the injection catheter, the sheath having a proximal end, a distal end and a suction lumen disposed therein, the proximal end of the sheath connected to the vacuum source with the suction lumen of the sheath in fluid communication with the vacuum source, wherein the distal end of the sheath is disposed adjacent the heart tissue such that the distal end of the sheath is stabilized against the heart tissue when a vacuum is applied to the suction lumen using the vacuum source.
  8. 8. The catheter system of claim 1 wherein said heart tissue comprises the myocardium.
  9. 9. The catheter system of claim 1, additionally comprising releasable securement means, wherein said securement means stabilizes said delivery system against tissue during its operation.
  10. 10. The catheter system of claim 9, wherein said securement means comprises a suction hood.
  11. 11. The system of claim 1, wherein said fluid additionally comprises a carrier for a first flowable agent.
  12. 12. The system of claim 11, wherein said first flowable agent comprises at least one of saline, pharmaceuticals, growth factors, biomaterials, small particles, genetic based material or cellular based material.
  13. 13. The system of claim 12, wherein said small particles comprise microspheres comprising at least one of resorbable materials, non-resorbable materials or partially resorbable materials.
  14. 14. The system of claim 13, wherein said microspheres are arranged for time-phased delivery of said beneficial treatment.
  15. 15. The catheter system of claim 11, wherein said catheter system additionally comprises a second flowable agent.
  16. 16. The catheter system of claim 1, arranged to be operated as an adjunctive therapy to a primary therapy.
  17. 17. The catheter system of claim 16, wherein said primary therapy comprises percutaneous transluminal angioplasty, stenting, or coronary artery by-pass surgery.
  18. 18. The catheter system of claim 1, wherein the distal end defines said injection port having a diameter, and wherein the outlet port has a diameter substantially the same as the diameter of said infusion lumen.
  19. 19. The catheter system of claim 1, wherein the distal end defines said injection port having a diameter, and wherein the injection port has a diameter smaller than the diameter of the infusion lumen to increase the exit velocity of the fluid.
  20. 20. The catheter system as in claim 1, wherein the distal end includes a sharpened portion to partially penetrate the heart tissue.
  21. 21. The catheter system of claim 1 wherein the injection port is directed distally.
  22. 22. The catheter system of claim 1, wherein said injection port is arranged radially from said infusion lumen.
  23. 23. A method of delivering a flowable agent to a target tissue site in target tissue of a patient, comprising the steps of:
    providing a reservoir containing a flowable agent therein, and a delivery injector, said reservoir arranged to generate a high transient pressure sufficient to cause said flowable agent to enter target tissue;
    providing a delivery instrument comprising a suction head having a proximal end, a distal end and a flow path extending therein, the distal end of the delivery instrument including an outlet port;
    inserting the delivery instrument into the patient;
    navigating the delivery instrument until the distal end of the delivery instrument is positioned adjacent the target tissue site; and
    actuating the fluid source to inject flowable agent into the target tissue via the flow path of the suction head and the outlet port at a sufficient exit velocity to partially penetrate the target tissue.
  24. 24. The method of claim 23, wherein said delivery instrument further supplies additional energy to said body.
  25. 25. The method of claim 24, wherein said additional energy is selected from the group consisting of thermal, mechanical, electrical, and electromagnetic.
  26. 26. The method of claim 25, wherein said mechanical energy is selected from the group consisting of hydraulic energy and vibrational energy.
  27. 27. The method of claim 24, wherein said additional energy disables or denervates local nerves in said target tissue.
  28. 28. The method of claim 23, wherein said high pressure is about several thousand psi.
US12567592 1999-08-05 2009-09-25 Systems and methods for delivering agents into targeted tissue of a living being Abandoned US20100094196A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09368410 US6709427B1 (en) 1999-08-05 1999-08-05 Systems and methods for delivering agents into targeted tissue of a living being
US10124359 US7594900B1 (en) 1999-08-05 2002-04-17 Systems and methods for delivering agents into targeted tissue of a living being
US12567592 US20100094196A1 (en) 1999-08-05 2009-09-25 Systems and methods for delivering agents into targeted tissue of a living being

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12567592 US20100094196A1 (en) 1999-08-05 2009-09-25 Systems and methods for delivering agents into targeted tissue of a living being

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10124359 Continuation US7594900B1 (en) 1999-08-05 2002-04-17 Systems and methods for delivering agents into targeted tissue of a living being

Publications (1)

Publication Number Publication Date
US20100094196A1 true true US20100094196A1 (en) 2010-04-15

Family

ID=23451089

Family Applications (5)

Application Number Title Priority Date Filing Date
US09368410 Active US6709427B1 (en) 1999-08-05 1999-08-05 Systems and methods for delivering agents into targeted tissue of a living being
US10124359 Expired - Fee Related US7594900B1 (en) 1999-08-05 2002-04-17 Systems and methods for delivering agents into targeted tissue of a living being
US10405394 Abandoned US20030191449A1 (en) 1999-08-05 2003-04-02 Systems for delivering agents into targeted tissue of a living being
US10763558 Active 2020-05-15 US7419482B2 (en) 1999-08-05 2004-01-23 Systems and methods for delivering agents into targeted tissue of a living being
US12567592 Abandoned US20100094196A1 (en) 1999-08-05 2009-09-25 Systems and methods for delivering agents into targeted tissue of a living being

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09368410 Active US6709427B1 (en) 1999-08-05 1999-08-05 Systems and methods for delivering agents into targeted tissue of a living being
US10124359 Expired - Fee Related US7594900B1 (en) 1999-08-05 2002-04-17 Systems and methods for delivering agents into targeted tissue of a living being
US10405394 Abandoned US20030191449A1 (en) 1999-08-05 2003-04-02 Systems for delivering agents into targeted tissue of a living being
US10763558 Active 2020-05-15 US7419482B2 (en) 1999-08-05 2004-01-23 Systems and methods for delivering agents into targeted tissue of a living being

Country Status (6)

Country Link
US (5) US6709427B1 (en)
EP (1) EP1206219B1 (en)
JP (1) JP3712668B2 (en)
CA (1) CA2381153C (en)
DE (1) DE60041196D1 (en)
WO (1) WO2001010313A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261662A1 (en) * 2009-04-09 2010-10-14 Endologix, Inc. Utilization of mural thrombus for local drug delivery into vascular tissue
WO2014099323A1 (en) * 2012-12-17 2014-06-26 Cormatrix Cardiovascular, Inc. Intra-myocardial agent delivery device, system and method
US9005100B2 (en) 2011-12-15 2015-04-14 The Board Of Trustees Of The Leland Stanford Jr. University Apparatus and methods for treating pulmonary hypertension
US20160184523A1 (en) * 2008-12-05 2016-06-30 Justin M. Crank Devices, systems, and related methods for delivery of fluid to tissue
US9820800B2 (en) 2012-11-13 2017-11-21 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758385A (en) * 1993-08-13 1995-03-03 Ishikawajima Harima Heavy Ind Co Ltd Supersonic gas laser generator
CA2178541C (en) 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US6905505B2 (en) 1996-07-26 2005-06-14 Kensey Nash Corporation System and method of use for agent delivery and revascularizing of grafts and vessels
US5779721A (en) 1996-07-26 1998-07-14 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other blood vessels
US6569147B1 (en) * 1996-07-26 2003-05-27 Kensey Nash Corporation Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes
US6080170A (en) 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US6511477B2 (en) * 1997-03-13 2003-01-28 Biocardia, Inc. Method of drug delivery to interstitial regions of the myocardium
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
EP1669042A3 (en) * 1998-09-10 2006-06-28 Percardia, Inc. TMR shunt
US6638237B1 (en) * 1999-08-04 2003-10-28 Percardia, Inc. Left ventricular conduits and methods for delivery
US6709427B1 (en) * 1999-08-05 2004-03-23 Kensey Nash Corporation Systems and methods for delivering agents into targeted tissue of a living being
US6811551B2 (en) * 1999-12-14 2004-11-02 Radiant Medical, Inc. Method for reducing myocardial infarct by application of intravascular hypothermia
US8474460B2 (en) 2000-03-04 2013-07-02 Pulmonx Corporation Implanted bronchial isolation devices and methods
CA2421005A1 (en) * 2000-08-24 2002-02-28 Timi 3 Systems, Inc. Systems and method for applying ultrasonic energy
WO2002024247A1 (en) * 2000-09-22 2002-03-28 Kensey Nash Corporation Drug delivering prostheses and methods of use
WO2002024248A1 (en) * 2000-09-22 2002-03-28 Kensey Nash Corporation Systems and methods for delivering beneficial agents into targeted tissue of a living being
US20040054286A1 (en) * 2001-11-05 2004-03-18 Audain Vaughn A Ultrasonic transducing probe with liquid flow-through capability and related automated workstation and methods of using same
US7357794B2 (en) * 2002-01-17 2008-04-15 Medtronic Vascular, Inc. Devices, systems and methods for acute or chronic delivery of substances or apparatus to extravascular treatment sites
US6976990B2 (en) * 2001-01-25 2005-12-20 Percardia, Inc. Intravascular ventriculocoronary bypass via a septal passageway
US7993365B2 (en) * 2001-06-08 2011-08-09 Morris Innovative, Inc. Method and apparatus for sealing access
US20070038244A1 (en) * 2001-06-08 2007-02-15 Morris Edward J Method and apparatus for sealing access
US20060004408A1 (en) * 2001-06-08 2006-01-05 Morris Edward J Method and apparatus for sealing access
US20030036698A1 (en) * 2001-08-16 2003-02-20 Robert Kohler Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
US20030050648A1 (en) 2001-09-11 2003-03-13 Spiration, Inc. Removable lung reduction devices, systems, and methods
JP4446739B2 (en) * 2001-10-11 2010-04-07 パルモンクス・コーポレイションPulmonx Corporation Using bronchial flow control device and the device
US6592594B2 (en) 2001-10-25 2003-07-15 Spiration, Inc. Bronchial obstruction device deployment system and method
WO2003039350A3 (en) * 2001-11-09 2004-02-19 David Amundson Direct, real-time imaging guidance of cardiac catheterization
US6949118B2 (en) * 2002-01-16 2005-09-27 Percardia, Inc. Encased implant and methods
US7008397B2 (en) * 2002-02-13 2006-03-07 Percardia, Inc. Cardiac implant and methods
US7169127B2 (en) * 2002-02-21 2007-01-30 Boston Scientific Scimed, Inc. Pressure apron direct injection catheter
US20030163111A1 (en) * 2002-02-26 2003-08-28 Daellenbach Keith K. End effector for needle-free injection system
US20030181922A1 (en) 2002-03-20 2003-09-25 Spiration, Inc. Removable anchored lung volume reduction devices and methods
US7108685B2 (en) 2002-04-15 2006-09-19 Boston Scientific Scimed, Inc. Patch stabilization of rods for treatment of cardiac muscle
US20030216769A1 (en) 2002-05-17 2003-11-20 Dillard David H. Removable anchored lung volume reduction devices and methods
US20030220661A1 (en) * 2002-05-21 2003-11-27 Heartstent Corporation Transmyocardial implant delivery system
EP1545314B1 (en) * 2002-07-08 2016-09-07 Koninklijke Philips N.V. Cardiac ablation using microbubbles
DE60323502D1 (en) 2002-07-26 2008-10-23 Emphasys Medical Inc Bronchial flow device with a membrane seal
US20040265351A1 (en) * 2003-04-10 2004-12-30 Miller Richard L. Methods and compositions for enhancing immune response
US7326238B1 (en) 2002-09-30 2008-02-05 Abbott Cardiovascular Systems Inc. Method and apparatus for treating vulnerable plaque
US20060265043A1 (en) * 2002-09-30 2006-11-23 Evgenia Mandrusov Method and apparatus for treating vulnerable plaque
US7008411B1 (en) * 2002-09-30 2006-03-07 Advanced Cardiovascular Systems, Inc. Method and apparatus for treating vulnerable plaque
US7103418B2 (en) 2002-10-02 2006-09-05 Medtronic, Inc. Active fluid delivery catheter
FR2846520B1 (en) * 2002-11-06 2006-09-29 Roquette Freres Use of branched maltodextrins as granulation binders
US7317950B2 (en) * 2002-11-16 2008-01-08 The Regents Of The University Of California Cardiac stimulation system with delivery of conductive agent
US20050015048A1 (en) 2003-03-12 2005-01-20 Chiu Jessica G. Infusion treatment agents, catheters, filter devices, and occlusion devices, and use thereof
US7250041B2 (en) 2003-03-12 2007-07-31 Abbott Cardiovascular Systems Inc. Retrograde pressure regulated infusion
US7533671B2 (en) 2003-08-08 2009-05-19 Spiration, Inc. Bronchoscopic repair of air leaks in a lung
US20050059930A1 (en) * 2003-09-16 2005-03-17 Michi Garrison Method and apparatus for localized drug delivery
US20050059931A1 (en) * 2003-09-16 2005-03-17 Venomatrix Methods and apparatus for localized and semi-localized drug delivery
US20050175709A1 (en) 2003-12-11 2005-08-11 Baty Ace M.Iii Therapeutic microparticles
US8876791B2 (en) 2005-02-25 2014-11-04 Pulmonx Corporation Collateral pathway treatment using agent entrained by aspiration flow current
US7632262B2 (en) * 2004-07-19 2009-12-15 Nexeon Medical Systems, Inc. Systems and methods for atraumatic implantation of bio-active agents
US20060025755A1 (en) * 2004-07-30 2006-02-02 Jaime Landman Surgical cooling system and method
US8750983B2 (en) 2004-09-20 2014-06-10 P Tech, Llc Therapeutic system
US7276032B2 (en) * 2004-09-29 2007-10-02 Ethicon Endo-Surgery, Inc. Biopsy apparatus and method
US20060074344A1 (en) * 2004-09-29 2006-04-06 Hibner John A Fluid control for biopsy device
US7819856B2 (en) * 2004-10-05 2010-10-26 Nexeon Medical Systems, Inc. Methods and apparatus for treating infarcted regions of tissue following acute myocardial infarction
US20060079841A1 (en) * 2004-10-07 2006-04-13 University Technologies International Inc. Rapid insufflation drug compartment
US8663225B2 (en) * 2004-11-12 2014-03-04 Medtronic, Inc. Hydrogel bone void filler
US7771472B2 (en) 2004-11-19 2010-08-10 Pulmonx Corporation Bronchial flow control devices and methods of use
US8262605B2 (en) * 2004-12-09 2012-09-11 Ams Research Corporation Needleless delivery systems
JP4804906B2 (en) * 2004-12-15 2011-11-02 アレクサンドラ、アイヒャーAlexandra Aicher Improved method according to shockwaves cell therapy and tissue regeneration in patients with cardiovascular and neurological disorders
US20060142773A1 (en) * 2004-12-29 2006-06-29 Depuy Mitek, Inc. Abrasive cutting system and method
US7226440B2 (en) * 2005-01-31 2007-06-05 G & L Consulting, Llc Method and device for accessing a pericardial space
US20070141106A1 (en) * 2005-10-19 2007-06-21 Bonutti Peter M Drug eluting implant
US20070100199A1 (en) * 2005-11-03 2007-05-03 Lilip Lau Apparatus and method of delivering biomaterial to the heart
US20070148227A1 (en) * 2005-12-27 2007-06-28 Hemant Joshi Physically/molecularly distributed and/or chemically bound medicaments in capsule shells
US20090312696A1 (en) * 2005-12-28 2009-12-17 Copa Vincent G Devices, Systems, and Related Methods for Delivery of Fluid to Tissue
US20080033296A1 (en) * 2006-02-17 2008-02-07 Florida Gulf Coast University Methods for delivering materials into biological systems using sonic energy
US7691151B2 (en) 2006-03-31 2010-04-06 Spiration, Inc. Articulable Anchor
US8206370B2 (en) * 2006-04-21 2012-06-26 Abbott Laboratories Dual lumen guidewire support catheter
US7927305B2 (en) * 2006-04-21 2011-04-19 Abbott Laboratories Systems, methods, and devices for injecting media contrast
US8246574B2 (en) * 2006-04-21 2012-08-21 Abbott Laboratories Support catheter
US7993303B2 (en) * 2006-04-21 2011-08-09 Abbott Laboratories Stiffening support catheter and methods for using the same
US20070250149A1 (en) * 2006-04-21 2007-10-25 Abbott Laboratories Stiffening Support Catheters and Methods for Using the Same
US8388573B1 (en) 2006-06-28 2013-03-05 Abbott Cardiovascular Systems Inc. Local delivery with a balloon covered by a cage
US20080004599A1 (en) * 2006-06-30 2008-01-03 Mds (Canada) Inc. Apparatus and method to convey a fluid
EP3047860A1 (en) 2006-07-20 2016-07-27 OrbusNeich Medical, Inc. Bioabsorbable polymeric composition for a medical device
US20080097297A1 (en) * 2006-08-31 2008-04-24 Kelley Gregory S Medical device for local site-specific drug delivery
JP5522664B2 (en) 2006-09-08 2014-06-18 カーディオポリマーズ, インコーポレイテッド Intramyocardial patterning for resizing and reshaping of the entire cardiac
US7942845B2 (en) * 2006-09-19 2011-05-17 Bioject, Inc. Needle-free injector and process for providing serial injections
US7959942B2 (en) 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
EP2073754A4 (en) 2006-10-20 2012-09-26 Orbusneich Medical Inc Bioabsorbable polymeric composition and medical device background
US7862576B2 (en) * 2006-11-06 2011-01-04 The Regents Of The University Of Michigan Angioplasty balloon with therapeutic/aspiration channel
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US20080119823A1 (en) * 2006-11-21 2008-05-22 Crank Justin M Injection Tube for Jet Injection Device
JP5369336B2 (en) * 2007-01-02 2013-12-18 アクアビーム エルエルシー Methods and devices invasive for the treatment of diseases of the prostate is the minimum
US8855744B2 (en) 2008-11-18 2014-10-07 Sync-Rx, Ltd. Displaying a device within an endoluminal image stack
US9144394B2 (en) 2008-11-18 2015-09-29 Sync-Rx, Ltd. Apparatus and methods for determining a plurality of local calibration factors for an image
JP5639764B2 (en) 2007-03-08 2014-12-10 シンク−アールエックス,リミティド Imaging and tools for use with the movement organs
US9375164B2 (en) 2007-03-08 2016-06-28 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
US9101286B2 (en) 2008-11-18 2015-08-11 Sync-Rx, Ltd. Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points
US9095313B2 (en) 2008-11-18 2015-08-04 Sync-Rx, Ltd. Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe
US9888969B2 (en) 2007-03-08 2018-02-13 Sync-Rx Ltd. Automatic quantitative vessel analysis
US8781193B2 (en) 2007-03-08 2014-07-15 Sync-Rx, Ltd. Automatic quantitative vessel analysis
US9629571B2 (en) 2007-03-08 2017-04-25 Sync-Rx, Ltd. Co-use of endoluminal data and extraluminal imaging
EP2146667A2 (en) 2007-04-11 2010-01-27 Henry Ford Health System Cardiac repair, resizing and reshaping using the venous system of the heart
US20090024106A1 (en) * 2007-07-17 2009-01-22 Morris Edward J Method and apparatus for maintaining access
US8100855B2 (en) 2007-09-17 2012-01-24 Abbott Cardiovascular Systems, Inc. Methods and devices for eluting agents to a vessel
CN101868199B (en) 2007-10-12 2016-04-06 斯波瑞申有限公司 Valve loader methods, systems, and devices
US8617099B2 (en) * 2007-11-26 2013-12-31 Bioject Inc. Injection device plunger auto-disable
US20090137949A1 (en) * 2007-11-26 2009-05-28 Bioject Inc. Needle-free injection device with nozzle auto-disable
US8801665B2 (en) 2008-04-10 2014-08-12 Henry Ford Health System Apparatus and method for controlled depth of injection into myocardial tissue
US8403913B2 (en) * 2008-06-16 2013-03-26 John Richard Dein Variable diameter surgical drains and sheaths
US8118832B1 (en) 2008-06-16 2012-02-21 Morris Innovative, Inc. Method and apparatus for sealing access
US8642063B2 (en) 2008-08-22 2014-02-04 Cook Medical Technologies Llc Implantable medical device coatings with biodegradable elastomer and releasable taxane agent
US8551074B2 (en) * 2008-09-08 2013-10-08 Bayer Pharma AG Connector system having a compressible sealing element and a flared fluid path element
EP3047861B1 (en) 2008-12-01 2017-10-18 University College Cork-National University of Ireland, Cork Intracoronary infusion of igf-1 for myocardial repair
US20110046600A1 (en) * 2008-12-05 2011-02-24 Crank Justin M Devices, systems, and related methods for delivery of fluid to tissue
WO2010074705A4 (en) 2008-12-16 2010-10-28 Ams Research Corporation Needleless injection device components, systems, and methods
WO2010093834A3 (en) * 2009-02-12 2010-12-09 Incube Labs, Llc Skin penetrating device and method for subcutaneous solid drug delivery
US20100292582A1 (en) * 2009-05-13 2010-11-18 Dasilva Luiz B Tissue probe with speed control
CA2757660A1 (en) * 2009-07-20 2011-01-27 Ams Research Corporation Tissue tensioner assembly
US8628494B2 (en) * 2009-07-20 2014-01-14 Ams Research Corporation Devices, systems, and methods for delivering fluid to tissue
US20110028848A1 (en) * 2009-07-31 2011-02-03 Cem Shaquer Methods and Apparatus for Detecting and Mapping Tissue Interfaces
WO2011053604A1 (en) * 2009-10-26 2011-05-05 Biolase Technology, Inc. High power radiation source with active-media housing
US9415189B2 (en) 2010-07-13 2016-08-16 Blue Belt Technologies Inc. Method and apparatus for intraoperative cardiac tissue injection
US9585667B2 (en) * 2010-11-15 2017-03-07 Vascular Insights Llc Sclerotherapy catheter with lumen having wire rotated by motor and simultaneous withdrawal from vein
US8979797B2 (en) 2010-12-16 2015-03-17 Ams Research Corporation High pressure delivery system and method for treating pelvic disorder using large molecule therapeutics
EP2723231A4 (en) 2011-06-23 2015-02-25 Sync Rx Ltd Luminal background cleaning
US8998985B2 (en) * 2011-07-25 2015-04-07 Rainbow Medical Ltd. Sinus stent
WO2013044267A1 (en) 2011-09-23 2013-03-28 Pulmonx, Inc. Implant loading device and system
US20140142418A1 (en) 2012-11-19 2014-05-22 Therix Medical Development, Ltd. Occlusion access system
JP6132660B2 (en) * 2013-05-27 2017-05-24 オリンパス株式会社 The method of the body cavity expansion device and a peristaltic pump
US20150173830A1 (en) * 2013-12-23 2015-06-25 Eric Johnson Treatment structure and methods of use
US20150250424A1 (en) * 2014-03-05 2015-09-10 Biosense Webster (Israel) Ltd. Multi-arm catheter with signal transmission over braid wires

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443949B1 (en) *
US1902418A (en) * 1931-11-02 1933-03-21 Jensen Salsbery Lab Inc Surgical instrument
US2398544A (en) * 1945-01-06 1946-04-16 Marshall L Lockhart Hypodermic injector
US2737946A (en) * 1949-09-01 1956-03-13 Jr George N Hein Hypodermic injection apparatus
US2762370A (en) * 1954-09-07 1956-09-11 Scherer Corp R P Hypodermic injector
US2800903A (en) * 1947-07-30 1957-07-30 Becton Dickinson Co Injection apparatus
US3815594A (en) * 1972-08-10 1974-06-11 N Doherty Needleless inoculator
US3887699A (en) * 1969-03-24 1975-06-03 Seymour Yolles Biodegradable polymeric article for dispensing drugs
US3930505A (en) * 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4165739A (en) * 1976-09-02 1979-08-28 Doherty Norman R Inoculator
US4315742A (en) * 1979-11-05 1982-02-16 Syntex (U.S.A.) Inc. Vibratory device having tool assembly with fluid transport means
US4406656A (en) * 1981-06-01 1983-09-27 Brack Gillium Hattler Venous catheter having collapsible multi-lumens
US4589412A (en) * 1984-01-03 1986-05-20 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4631052A (en) * 1984-01-03 1986-12-23 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4637905A (en) * 1982-03-04 1987-01-20 Batelle Development Corporation Process of preparing microcapsules of lactides or lactide copolymers with glycolides and/or ε-caprolactones
US4652441A (en) * 1983-11-04 1987-03-24 Takeda Chemical Industries, Ltd. Prolonged release microcapsule and its production
US4658817A (en) * 1985-04-01 1987-04-21 Children's Hospital Medical Center Method and apparatus for transmyocardial revascularization using a laser
US4664112A (en) * 1985-08-12 1987-05-12 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4679558A (en) * 1985-08-12 1987-07-14 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4686982A (en) * 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4690672A (en) * 1984-09-06 1987-09-01 Veltrup Elmar M Apparatus for removing solid structures from body passages
US4700705A (en) * 1985-08-12 1987-10-20 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4747821A (en) * 1986-10-22 1988-05-31 Intravascular Surgical Instruments, Inc. Catheter with high speed moving working head
US4749376A (en) * 1986-10-24 1988-06-07 Intravascular Surgical Instruments, Inc. Reciprocating working head catheter
US4790813A (en) * 1984-12-17 1988-12-13 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4795438A (en) * 1987-05-13 1989-01-03 Intravascular Surgical Instruments, Inc. Method and apparatus for forming a restriction in a vessel, duct or lumen
US4839215A (en) * 1986-06-09 1989-06-13 Ceramed Corporation Biocompatible particles and cloth-like article made therefrom
US4900303A (en) * 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4950238A (en) * 1988-07-07 1990-08-21 Clarence E. Sikes Hydro-rotary vascular catheter
US4994033A (en) * 1989-05-25 1991-02-19 Schneider (Usa) Inc. Intravascular drug delivery dilatation catheter
US5021044A (en) * 1989-01-30 1991-06-04 Advanced Cardiovascular Systems, Inc. Catheter for even distribution of therapeutic fluids
US5037432A (en) * 1987-11-27 1991-08-06 Lorenzo Molinari Adjustable apparatus for removing surface portions of human tissue
US5042984A (en) * 1989-08-17 1991-08-27 Kensey Nash Corporation Catheter with working head having selectable impacting surfaces and method of using the same
US5087244A (en) * 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5112305A (en) * 1989-06-20 1992-05-12 Cedars-Sinai Medical Center Catheter device for intramural delivery of therapeutic agents
US5170805A (en) * 1990-12-11 1992-12-15 Kensey Nash Corporation Method of destroying tissue such as a gall bladder utilizing a sclerosing agent alone or with a symphysis agent
US5199951A (en) * 1990-05-17 1993-04-06 Wayne State University Method of drug application in a transporting medium to an arterial wall injured during angioplasty
US5244460A (en) * 1991-11-27 1993-09-14 The United States Of America As Represented By The Department Of Health And Human Services Method to foster myocardial blood vessel growth and improve blood flow to the heart
US5259842A (en) * 1992-01-25 1993-11-09 Hp-Media Gesellschaft Mgh Fur Medizintechnische Systeme High-pressure liquid dispenser for the dispensing of sterile liquid
US5273526A (en) * 1991-06-21 1993-12-28 Lake Region Manufacturing Company, Inc. Vascular occulusion removal devices and method
US5279565A (en) * 1993-02-03 1994-01-18 Localmed, Inc. Intravascular treatment apparatus and method
US5288502A (en) * 1991-10-16 1994-02-22 The University Of Texas System Preparation and uses of multi-phase microspheres
US5415637A (en) * 1993-04-14 1995-05-16 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with drug delivery capabilities
US5415636A (en) * 1994-04-13 1995-05-16 Schneider (Usa) Inc Dilation-drug delivery catheter
US5417703A (en) * 1993-07-13 1995-05-23 Scimed Life Systems, Inc. Thrombectomy devices and methods of using same
US5456667A (en) * 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
US5496267A (en) * 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
US5498238A (en) * 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
US5527292A (en) * 1990-10-29 1996-06-18 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5558634A (en) * 1993-04-30 1996-09-24 Mitchell; Paul G. Apparatus for the removal of adherent viscoelastic
US5591159A (en) * 1994-11-09 1997-01-07 Taheri; Syde A. Transcavitary myocardial perfusion apparatus
US5607421A (en) * 1991-05-01 1997-03-04 The Trustees Of Columbia University In The City Of New York Myocardial revascularization through the endocardial surface using a laser
US5655548A (en) * 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5674197A (en) * 1994-07-01 1997-10-07 Cordis Corporation Controlled flexible catheter
US5704911A (en) * 1992-09-28 1998-01-06 Equidyne Systems, Inc. Needleless hypodermic jet injector
US5713863A (en) * 1996-01-11 1998-02-03 Interventional Technologies Inc. Catheter with fluid medication injectors
US5718921A (en) * 1987-03-13 1998-02-17 Massachusetts Institute Of Technology Microspheres comprising polymer and drug dispersed there within
US5755682A (en) * 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5779721A (en) * 1996-07-26 1998-07-14 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other blood vessels
US5810836A (en) * 1996-03-04 1998-09-22 Myocardial Stents, Inc. Device and method for trans myocardial revascularization (TMR)
US5820873A (en) * 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5836905A (en) * 1994-06-20 1998-11-17 Lemelson; Jerome H. Apparatus and methods for gene therapy
US5840059A (en) * 1995-06-07 1998-11-24 Cardiogenesis Corporation Therapeutic and diagnostic agent delivery
US5853384A (en) * 1993-07-26 1998-12-29 Surgijet, Inc. Fluid jet surgical cutting tool and aspiration device
US5871469A (en) * 1992-01-07 1999-02-16 Arthro Care Corporation System and method for electrosurgical cutting and ablation
US5873366A (en) * 1996-11-07 1999-02-23 Chim; Nicholas Method for transmyocardial revascularization
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5893840A (en) * 1991-01-04 1999-04-13 Medtronic, Inc. Releasable microcapsules on balloon catheters
US5900246A (en) * 1993-03-18 1999-05-04 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
US5904670A (en) * 1996-04-03 1999-05-18 Xrt Corp. Catheters and methods for guiding drugs and other agents to an intended site by deployable grooves
US5912017A (en) * 1987-05-01 1999-06-15 Massachusetts Institute Of Technology Multiwall polymeric microspheres
US5925016A (en) * 1995-09-27 1999-07-20 Xrt Corp. Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US5935119A (en) * 1997-08-06 1999-08-10 United States Surgical Corporation Perfusion structure
US5941868A (en) * 1995-12-22 1999-08-24 Localmed, Inc. Localized intravascular delivery of growth factors for promotion of angiogenesis
US5947988A (en) * 1996-12-23 1999-09-07 Smith; Sidney Paul Surgical apparatus for tissue removal
US5980548A (en) * 1997-10-29 1999-11-09 Kensey Nash Corporation Transmyocardial revascularization system
US6056938A (en) * 1995-02-21 2000-05-02 Imarx Pharaceutical Corp. Cationic lipids and the use thereof
US6080170A (en) * 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US6086582A (en) * 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US6152141A (en) * 1994-07-28 2000-11-28 Heartport, Inc. Method for delivery of therapeutic agents to the heart
US6261585B1 (en) * 1995-10-31 2001-07-17 Michael Vivian Sefton Generating blood vessels with angiogenic material containing a biocompatible polymer and polymerizable compound
US6344027B1 (en) * 1999-12-08 2002-02-05 Scimed Life Systems, Inc. Needle-less injection apparatus and method
US6443949B2 (en) * 1997-03-13 2002-09-03 Biocardia, Inc. Method of drug delivery to interstitial regions of the myocardium
US20020183738A1 (en) * 1999-06-02 2002-12-05 Chee U. Hiram Method and apparatus for treatment of atrial fibrillation
US6520950B1 (en) * 1999-05-10 2003-02-18 Genetronics, Inc. Method of electroporation-enhanced delivery of active agents
US6592545B1 (en) * 1994-12-23 2003-07-15 Powderject Research Limited Particle delivery
US20030191449A1 (en) * 1999-08-05 2003-10-09 Kensey Nash Corporation Systems for delivering agents into targeted tissue of a living being
US6641553B1 (en) * 1999-06-02 2003-11-04 Boston Scientific Corporation Devices and methods for delivering a drug
US6689103B1 (en) * 1999-05-07 2004-02-10 Scimed Life System, Inc. Injection array apparatus and method
US6969371B2 (en) * 1999-05-07 2005-11-29 Boston Scientific Scimed, Inc. Lateral needle injection apparatus and method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2727946A (en) * 1952-12-11 1955-12-20 Rca Corp Pulse multiplex transmitter system
US3931667A (en) * 1974-05-08 1976-01-13 Dennison Manufacturing Company Interlocking attachment device
US4454875A (en) * 1982-04-15 1984-06-19 Techmedica, Inc. Osteal medical staple
US4747406A (en) 1985-02-13 1988-05-31 Intravascular Surgical Instruments, Inc. Shaft driven, flexible intravascular recanalization catheter
EP0550436A1 (en) 1989-11-06 1993-07-14 Alkermes Controlled Therapeutics, Inc. Protein microspheres and methods of using them
US5135484A (en) * 1990-05-09 1992-08-04 Pioneering Technologies, Inc. Method of removing plaque from vessels
US5885272A (en) * 1990-10-30 1999-03-23 Aita; Michael System and method for percutaneous myocardial revascularization
GB9112267D0 (en) 1991-06-07 1991-07-24 Biocompatibles Ltd Polymeric coating
CA2128186C (en) * 1993-09-02 2005-03-08 Robert G. Jackson Anti-rotation member for railcar brake beam
EP0806212B1 (en) 1996-05-10 2003-04-02 IsoTis N.V. Device for incorporation and release of biologically active agents
US5980545A (en) 1996-05-13 1999-11-09 United States Surgical Corporation Coring device and method
DE29619029U1 (en) 1996-11-02 1997-04-10 Kletke Georg Dr Med Needle for Miokardpunktion
JP2001503301A (en) 1996-11-08 2001-03-13 フォガティー,トマス・ジェイ Through blood vessels tmr apparatus and method
US5968059A (en) 1997-03-06 1999-10-19 Scimed Life Systems, Inc. Transmyocardial revascularization catheter and method
CN1321619C (en) 1997-05-08 2007-06-20 C·R·巴德有限公司 TMT stent and delivery system
EP0903132A1 (en) 1997-09-22 1999-03-24 Andreas Maurer Colour eyeglasses
US6056743A (en) 1997-11-04 2000-05-02 Scimed Life Systems, Inc. Percutaneous myocardial revascularization device and method
US6416490B1 (en) 1997-11-04 2002-07-09 Scimed Life Systems, Inc. PMR device and method
DE99911188T1 (en) 1998-03-05 2005-06-23 Boston Scientific Ltd., St. Michael Transmyocardial revascularization expandable apparatus for and methods
US6045565A (en) 1997-11-04 2000-04-04 Scimed Life Systems, Inc. Percutaneous myocardial revascularization growth factor mediums and method
US6764461B2 (en) 1997-12-01 2004-07-20 Scimed Life Systems, Inc. Catheter system for the delivery of a low volume bolus
EP1049511A1 (en) 1997-12-31 2000-11-08 HydroCision, Inc. Fluid jet cutting system for cardiac applications
US6406455B1 (en) * 1998-12-18 2002-06-18 Biovalve Technologies, Inc. Injection devices

Patent Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443949B1 (en) *
US1902418A (en) * 1931-11-02 1933-03-21 Jensen Salsbery Lab Inc Surgical instrument
US2398544A (en) * 1945-01-06 1946-04-16 Marshall L Lockhart Hypodermic injector
US2800903A (en) * 1947-07-30 1957-07-30 Becton Dickinson Co Injection apparatus
US2737946A (en) * 1949-09-01 1956-03-13 Jr George N Hein Hypodermic injection apparatus
US2762370A (en) * 1954-09-07 1956-09-11 Scherer Corp R P Hypodermic injector
US3887699A (en) * 1969-03-24 1975-06-03 Seymour Yolles Biodegradable polymeric article for dispensing drugs
US3815594A (en) * 1972-08-10 1974-06-11 N Doherty Needleless inoculator
US3930505A (en) * 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4165739A (en) * 1976-09-02 1979-08-28 Doherty Norman R Inoculator
US4900303A (en) * 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4315742A (en) * 1979-11-05 1982-02-16 Syntex (U.S.A.) Inc. Vibratory device having tool assembly with fluid transport means
US4406656A (en) * 1981-06-01 1983-09-27 Brack Gillium Hattler Venous catheter having collapsible multi-lumens
US4637905A (en) * 1982-03-04 1987-01-20 Batelle Development Corporation Process of preparing microcapsules of lactides or lactide copolymers with glycolides and/or ε-caprolactones
US4652441A (en) * 1983-11-04 1987-03-24 Takeda Chemical Industries, Ltd. Prolonged release microcapsule and its production
US4631052A (en) * 1984-01-03 1986-12-23 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4589412A (en) * 1984-01-03 1986-05-20 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4690672A (en) * 1984-09-06 1987-09-01 Veltrup Elmar M Apparatus for removing solid structures from body passages
US4790813A (en) * 1984-12-17 1988-12-13 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4658817A (en) * 1985-04-01 1987-04-21 Children's Hospital Medical Center Method and apparatus for transmyocardial revascularization using a laser
US4686982A (en) * 1985-06-19 1987-08-18 John Nash Spiral wire bearing for rotating wire drive catheter
US4664112A (en) * 1985-08-12 1987-05-12 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4679558A (en) * 1985-08-12 1987-07-14 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4700705A (en) * 1985-08-12 1987-10-20 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4839215A (en) * 1986-06-09 1989-06-13 Ceramed Corporation Biocompatible particles and cloth-like article made therefrom
US4747821A (en) * 1986-10-22 1988-05-31 Intravascular Surgical Instruments, Inc. Catheter with high speed moving working head
US4749376A (en) * 1986-10-24 1988-06-07 Intravascular Surgical Instruments, Inc. Reciprocating working head catheter
US5718921A (en) * 1987-03-13 1998-02-17 Massachusetts Institute Of Technology Microspheres comprising polymer and drug dispersed there within
US5912017A (en) * 1987-05-01 1999-06-15 Massachusetts Institute Of Technology Multiwall polymeric microspheres
US4795438A (en) * 1987-05-13 1989-01-03 Intravascular Surgical Instruments, Inc. Method and apparatus for forming a restriction in a vessel, duct or lumen
US5037432A (en) * 1987-11-27 1991-08-06 Lorenzo Molinari Adjustable apparatus for removing surface portions of human tissue
US4950238A (en) * 1988-07-07 1990-08-21 Clarence E. Sikes Hydro-rotary vascular catheter
US5021044A (en) * 1989-01-30 1991-06-04 Advanced Cardiovascular Systems, Inc. Catheter for even distribution of therapeutic fluids
US5087244A (en) * 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US4994033A (en) * 1989-05-25 1991-02-19 Schneider (Usa) Inc. Intravascular drug delivery dilatation catheter
US5112305A (en) * 1989-06-20 1992-05-12 Cedars-Sinai Medical Center Catheter device for intramural delivery of therapeutic agents
US5042984A (en) * 1989-08-17 1991-08-27 Kensey Nash Corporation Catheter with working head having selectable impacting surfaces and method of using the same
US5199951A (en) * 1990-05-17 1993-04-06 Wayne State University Method of drug application in a transporting medium to an arterial wall injured during angioplasty
US5498238A (en) * 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
US5527292A (en) * 1990-10-29 1996-06-18 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5496267A (en) * 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
US5170805A (en) * 1990-12-11 1992-12-15 Kensey Nash Corporation Method of destroying tissue such as a gall bladder utilizing a sclerosing agent alone or with a symphysis agent
US5893840A (en) * 1991-01-04 1999-04-13 Medtronic, Inc. Releasable microcapsules on balloon catheters
US5607421A (en) * 1991-05-01 1997-03-04 The Trustees Of Columbia University In The City Of New York Myocardial revascularization through the endocardial surface using a laser
US5273526A (en) * 1991-06-21 1993-12-28 Lake Region Manufacturing Company, Inc. Vascular occulusion removal devices and method
US5288502A (en) * 1991-10-16 1994-02-22 The University Of Texas System Preparation and uses of multi-phase microspheres
US5244460A (en) * 1991-11-27 1993-09-14 The United States Of America As Represented By The Department Of Health And Human Services Method to foster myocardial blood vessel growth and improve blood flow to the heart
US5871469A (en) * 1992-01-07 1999-02-16 Arthro Care Corporation System and method for electrosurgical cutting and ablation
US5259842A (en) * 1992-01-25 1993-11-09 Hp-Media Gesellschaft Mgh Fur Medizintechnische Systeme High-pressure liquid dispenser for the dispensing of sterile liquid
US5704911A (en) * 1992-09-28 1998-01-06 Equidyne Systems, Inc. Needleless hypodermic jet injector
US5279565A (en) * 1993-02-03 1994-01-18 Localmed, Inc. Intravascular treatment apparatus and method
US5900246A (en) * 1993-03-18 1999-05-04 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
US5415637A (en) * 1993-04-14 1995-05-16 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with drug delivery capabilities
US5558634A (en) * 1993-04-30 1996-09-24 Mitchell; Paul G. Apparatus for the removal of adherent viscoelastic
US5456667A (en) * 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
US5417703A (en) * 1993-07-13 1995-05-23 Scimed Life Systems, Inc. Thrombectomy devices and methods of using same
US5853384A (en) * 1993-07-26 1998-12-29 Surgijet, Inc. Fluid jet surgical cutting tool and aspiration device
US5415636A (en) * 1994-04-13 1995-05-16 Schneider (Usa) Inc Dilation-drug delivery catheter
US5836905A (en) * 1994-06-20 1998-11-17 Lemelson; Jerome H. Apparatus and methods for gene therapy
US5674197A (en) * 1994-07-01 1997-10-07 Cordis Corporation Controlled flexible catheter
US6152141A (en) * 1994-07-28 2000-11-28 Heartport, Inc. Method for delivery of therapeutic agents to the heart
US5820873A (en) * 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5879713A (en) * 1994-10-12 1999-03-09 Focal, Inc. Targeted delivery via biodegradable polymers
US5591159A (en) * 1994-11-09 1997-01-07 Taheri; Syde A. Transcavitary myocardial perfusion apparatus
US6592545B1 (en) * 1994-12-23 2003-07-15 Powderject Research Limited Particle delivery
US6056938A (en) * 1995-02-21 2000-05-02 Imarx Pharaceutical Corp. Cationic lipids and the use thereof
US5840059A (en) * 1995-06-07 1998-11-24 Cardiogenesis Corporation Therapeutic and diagnostic agent delivery
US5997525A (en) * 1995-06-07 1999-12-07 Cardiogenesis Corporation Therapeutic and diagnostic agent delivery
US5925016A (en) * 1995-09-27 1999-07-20 Xrt Corp. Systems and methods for drug delivery including treating thrombosis by driving a drug or lytic agent through the thrombus by pressure
US6261585B1 (en) * 1995-10-31 2001-07-17 Michael Vivian Sefton Generating blood vessels with angiogenic material containing a biocompatible polymer and polymerizable compound
US5941868A (en) * 1995-12-22 1999-08-24 Localmed, Inc. Localized intravascular delivery of growth factors for promotion of angiogenesis
US5713863A (en) * 1996-01-11 1998-02-03 Interventional Technologies Inc. Catheter with fluid medication injectors
US5878751A (en) * 1996-03-04 1999-03-09 Myocardial Stents, Inc. Method for trans myocardial revascularization (TMR)
US5810836A (en) * 1996-03-04 1998-09-22 Myocardial Stents, Inc. Device and method for trans myocardial revascularization (TMR)
US5904670A (en) * 1996-04-03 1999-05-18 Xrt Corp. Catheters and methods for guiding drugs and other agents to an intended site by deployable grooves
US5779721A (en) * 1996-07-26 1998-07-14 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other blood vessels
US6080170A (en) * 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US5755682A (en) * 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5655548A (en) * 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5873366A (en) * 1996-11-07 1999-02-23 Chim; Nicholas Method for transmyocardial revascularization
US5947988A (en) * 1996-12-23 1999-09-07 Smith; Sidney Paul Surgical apparatus for tissue removal
US6086582A (en) * 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US6443949B2 (en) * 1997-03-13 2002-09-03 Biocardia, Inc. Method of drug delivery to interstitial regions of the myocardium
US5935119A (en) * 1997-08-06 1999-08-10 United States Surgical Corporation Perfusion structure
US5980548A (en) * 1997-10-29 1999-11-09 Kensey Nash Corporation Transmyocardial revascularization system
US6969371B2 (en) * 1999-05-07 2005-11-29 Boston Scientific Scimed, Inc. Lateral needle injection apparatus and method
US6689103B1 (en) * 1999-05-07 2004-02-10 Scimed Life System, Inc. Injection array apparatus and method
US6520950B1 (en) * 1999-05-10 2003-02-18 Genetronics, Inc. Method of electroporation-enhanced delivery of active agents
US20020183738A1 (en) * 1999-06-02 2002-12-05 Chee U. Hiram Method and apparatus for treatment of atrial fibrillation
US7147633B2 (en) * 1999-06-02 2006-12-12 Boston Scientific Scimed, Inc. Method and apparatus for treatment of atrial fibrillation
US6641553B1 (en) * 1999-06-02 2003-11-04 Boston Scientific Corporation Devices and methods for delivering a drug
US6709427B1 (en) * 1999-08-05 2004-03-23 Kensey Nash Corporation Systems and methods for delivering agents into targeted tissue of a living being
US7594900B1 (en) * 1999-08-05 2009-09-29 Kensey Nash Corporation Systems and methods for delivering agents into targeted tissue of a living being
US20030191449A1 (en) * 1999-08-05 2003-10-09 Kensey Nash Corporation Systems for delivering agents into targeted tissue of a living being
US6344027B1 (en) * 1999-12-08 2002-02-05 Scimed Life Systems, Inc. Needle-less injection apparatus and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160184523A1 (en) * 2008-12-05 2016-06-30 Justin M. Crank Devices, systems, and related methods for delivery of fluid to tissue
US20100261662A1 (en) * 2009-04-09 2010-10-14 Endologix, Inc. Utilization of mural thrombus for local drug delivery into vascular tissue
US9005100B2 (en) 2011-12-15 2015-04-14 The Board Of Trustees Of The Leland Stanford Jr. University Apparatus and methods for treating pulmonary hypertension
US9028391B2 (en) 2011-12-15 2015-05-12 The Board Of Trustees Of The Leland Stanford Jr. University Apparatus and methods for treating pulmonary hypertension
US9827036B2 (en) 2012-11-13 2017-11-28 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9820800B2 (en) 2012-11-13 2017-11-21 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9872720B2 (en) 2012-11-13 2018-01-23 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
US9918776B2 (en) 2012-11-13 2018-03-20 Pulnovo Medical (Wuxi) Co., Ltd. Multi-pole synchronous pulmonary artery radiofrequency ablation catheter
CN105050651A (en) * 2012-12-17 2015-11-11 矩阵心血管疾病有限公司 Intra-myocardial agent delivery device, system and method
WO2014099323A1 (en) * 2012-12-17 2014-06-26 Cormatrix Cardiovascular, Inc. Intra-myocardial agent delivery device, system and method

Also Published As

Publication number Publication date Type
JP3712668B2 (en) 2005-11-02 grant
DE60041196D1 (en) 2009-02-05 grant
EP1206219B1 (en) 2008-12-24 grant
US20040158227A1 (en) 2004-08-12 application
CA2381153A1 (en) 2001-02-15 application
US7419482B2 (en) 2008-09-02 grant
JP2003506131A (en) 2003-02-18 application
EP1206219A1 (en) 2002-05-22 application
CA2381153C (en) 2007-11-27 grant
US6709427B1 (en) 2004-03-23 grant
US7594900B1 (en) 2009-09-29 grant
US20030191449A1 (en) 2003-10-09 application
WO2001010313A1 (en) 2001-02-15 application

Similar Documents

Publication Publication Date Title
US6056743A (en) Percutaneous myocardial revascularization device and method
US6213126B1 (en) Percutaneous artery to artery bypass using heart tissue as a portion of a bypass conduit
US6251418B1 (en) Systems and methods for local delivery of an agent
US5538504A (en) Intra-extravascular drug delivery catheter and method
US5111832A (en) Processes for the control of tachyarrhythmias by in vivo laser ablation of human heart tissue
US5875782A (en) Methods and devices for minimally invasive coronary artery revascularization on a beating heart without cardiopulmonary bypass
US5993443A (en) Revascularization with heartbeat verification
US5462544A (en) Continuous heart tissue mapping and lasing catheter
US6296630B1 (en) Device and method to slow or stop the heart temporarily
US20020077687A1 (en) Catheter assembly for treating ischemic tissue
US6321109B2 (en) Catheter based surgery
US6685648B2 (en) Systems and methods for delivering drugs to selected locations within the body
US6251079B1 (en) Transthoracic drug delivery device
US6692458B2 (en) Intra-pericardial drug delivery device with multiple balloons and method for angiogenesis
US5620439A (en) Catheter and technique for endovascular myocardial revascularization
US5931834A (en) Method for non-synchronous laser-assisted myocardial revascularization
US5840075A (en) Dual laser device for transmyocardial revascularization procedures
US6343605B1 (en) Percutaneous transluminal myocardial implantation device and method
US6063069A (en) Method and apparatus for power lysis of a thrombus
US6641553B1 (en) Devices and methods for delivering a drug
US20020095124A1 (en) Lateral needle-less injection apparatus and method
US6569147B1 (en) Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes
US5873366A (en) Method for transmyocardial revascularization
US6042581A (en) Transvascular TMR device and method
US20110034832A1 (en) Usage of Extracorporeal and Intracorporeal Pressure Shock Waves in Medicine

Legal Events

Date Code Title Description
AS Assignment

Owner name: KENSEY NASH CORPORATION, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASH, JOHN E;EVANS, DOUGLAS G;HOGANSON, DAVID M;REEL/FRAME:033573/0565

Effective date: 19990908