US20100076293A1 - Health Monitor - Google Patents

Health Monitor Download PDF

Info

Publication number
US20100076293A1
US20100076293A1 US12628210 US62821009A US2010076293A1 US 20100076293 A1 US20100076293 A1 US 20100076293A1 US 12628210 US12628210 US 12628210 US 62821009 A US62821009 A US 62821009A US 2010076293 A1 US2010076293 A1 US 2010076293A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
system
analyte
data
glucose
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12628210
Inventor
Daniel Bernstein
Jared Watkin
Martin J. Fennell
Mark K. Sloan
Michael Love
Namvar Kiaie
Jean-Pierre Cole
Steve Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Diabetes Care Inc
Original Assignee
Abbott Diabetes Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0276Determining malfunction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • A61B2560/045Modular apparatus with a separable interface unit, e.g. for communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0456Apparatus provided with a docking unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0475Special features of memory means, e.g. removable memory cards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0017Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system transmitting optical signals

Abstract

Methods and devices to detect analyte in body fluid are provided. Embodiments include enhanced analyte monitoring devices and systems.

Description

    RELATED APPLICATION
  • The present application is a continuation of U.S. patent application Ser. No. 12/143,734 filed Jun. 20, 2008, entitled “Health Monitor”, which claims priority to U.S. provisional application No. 60/945,581 filed Jun. 21, 2007, entitled “Health Monitor” and assigned to the assignee of the present application, Abbott Diabetes Care Inc., the disclosure of which is incorporated herein by reference for all purposes.
  • BACKGROUND
  • The detection of the level of analytes, such as glucose, lactate, oxygen, and the like, in certain individuals is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics may need to monitor glucose levels to determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.
  • Accordingly, of interest are devices, system and methods that allow a user to test for one or more analytes.
  • SUMMARY
  • Embodiments include enhanced in vitro analyte meters and systems which are enhanced with in vivo continuous analyte monitoring functionality. The descriptions herein describe in vitro analyte glucose meters primarily as in vitro blood glucose (“BG”) meters and in vivo continuous analyte system primarily as in vivo continuous glucose (“CG”) monitoring devices and systems, for convenience only. Such descriptions are in no way intended to limit the scope of the disclosure in any way.
  • Accordingly, BG meters and systems having high levels of functionality are provided. Each BG or CG system may accept and process data from its own respective system and/or from another system, e.g., a BG system may accept and process CG system data, or vice versa. Embodiments enable CG data to be provided to a user by way of a BG meter.
  • Embodiments may be useful to users who may require conventional blood glucose BG data most of the time, but who may have a periodic need for CG data. One way this problem has been addressed in the past is to provide the user with both a BG meter and a CG system. However, this has the disadvantage of cost because a CG system may be more expensive than a BG meter, and increased training as the user must learn how to use two meters—a BG meter for normal use and a CG meter for those times when CG data is required.
  • Embodiments herein may be appropriate for Type I and Type II diabetics, other patients experiencing diabetic conditions, or patients in post surgery recovery period.
  • Also provided are devices, methods and kits.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a block diagram of an embodiment of a data monitoring and management system according to the present disclosure;
  • FIG. 2 shows a block diagram of an embodiment of the transmitter unit of the data monitoring and management system of FIG. 1;
  • FIG. 3 shows a block diagram of an embodiment of the receiver/monitor unit of the data monitoring and management system of FIG. 1;
  • FIG. 4 shows a schematic diagram of an embodiment of an analyte sensor according to the present disclosure;
  • FIGS. 5A-5B show a perspective view and a cross sectional view, respectively of another embodiment an analyte sensor;
  • FIG. 6 shows an exemplary embodiment of a system that includes a CG Data Logger (for example, including a data storage device or memory) and an enhanced BG meter, in which the CG Data Logger is capable of transferring CG data obtained by a CG analyte sensor positioned at least partially beneath a skin surface of a user to the enhanced BG meter;
  • FIG. 7 shows an exemplary embodiment of a Modular System that includes a CG unit having a transmitter, data transfer module and enhanced BG meter, in which the CG unit is capable of wirelessly transferring data obtained by a CG analyte sensor positioned at least partially beneath a skin surface of a user to the enhanced BG meter by way of the data transfer module;
  • FIG. 8 shows an exemplary embodiment of an integrated system that includes an enhanced BG meter and a CG unit having a transmitter, in which the CG unit is capable of transferring CG data obtained by a CG analyte sensor positioned at least partially beneath a skin surface of a user to the enhanced BG meter in real time;
  • FIG. 9 shows an exemplary embodiment of a system which includes a BG meter and a docking unit, herein shown configured as a belt holster;
  • FIGS. 10A-10C show exemplary embodiments of glucose test strips that may be used with the enhanced systems described herein; and
  • FIGS. 11A-11C show exemplary BG meters.
  • DETAILED DESCRIPTION
  • Before the present disclosure is described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
  • Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
  • It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
  • As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
  • The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity.
  • Embodiments include devices which allow diabetic patients to measure the blood (or other bodily fluid) glucose levels, e.g., hand-held electronic meters (blood glucose meters), e.g., such as Freestyle® or Precision® blood glucose monitoring systems available from Abbott Diabetes Care, Inc., of Alameda, Calif. (and the like) which receives blood samples via enzyme-based test strips. Typically, a user inserts a test strip into a meter and lances a finger or alternate body site to obtain a blood sample. The drawn sample is applied to the test strip and the meter reads the strip and determines analyte concentration, which is then conveyed to the user. For example, the blood glucose meter converts a current generated by the enzymatic reaction in the test strip to a corresponding blood glucose value which is displayed or otherwise provided to the patient to show the level of glucose at the time of testing.
  • Such periodic discrete glucose testing helps diabetic patients to take any necessary corrective actions to better manage diabetic conditions.
  • Test strips may be adapted to measure the concentration of an analyte in any volume of sample, including but not limited to small volumes of sample, e.g., about 1 microliter or less sample, for example about 0.5 microliters or less, for example about 0.3 microliters or less, for example about 0.1 microliters or less. In some embodiments, the volume of sample may be as low as about 0.05 microliters or as low as about 0.03 microliters. Strips may be configures so that an accurate analyte measurement may be obtained using a volume of sample that wholly or partially fills a sample chamber of a strip. In certain embodiments, a test may only start when sufficient sample has been applied to a strip, e.g., as detected by a detector such as an electrode. A system may be programmed to allow re-application of additional sample if insufficient sample is firstly applied, e.g., the time to reapply sample may range from about 10 seconds to about 2 minutes, e.g., from about 30 seconds to about 60 seconds.
  • Strips may be side fill, front fill, top fill or corner fill, or any combination thereof. Test strips may be calibration-free, e.g., minimal input (if any) is required of a user to calibrate. In certain embodiments, no calibration test strips may be employed. In such embodiments, the user need not take any action for calibration, i.e., calibration is invisible to a user.
  • As noted above, strips are used with meters. In certain embodiments, meters may be integrated meters, i.e., a device which has at least one strip and at least a second element, such as a meter and/or a skin piercing element such as a lancet or the like, in the device. In some embodiments, a strip may be integrated with both a meter and a lancet, e.g., in a single housing. Having multiple elements together in one device reduces the number of devices needed to obtain an analyte level and facilitates the sampling process. For example, embodiments may include a housing that includes one or more analyte test strips, a skin piercing element and a processor for determining the concentration of an analyte in a sample applied to the strip. A plurality of strips may be retained in a magazine in the housing interior and, upon actuation by a user, a single strip may be dispensed from the magazine so that at least a portion extends out of the housing for use.
  • Test strips may be short test time test strips. For example, test times may range from about 1 second to about 20 seconds, e.g., from about 3 seconds to about 10 seconds, e.g., from about 3 seconds to about 7 seconds, e.g., about 5 seconds or about 3 seconds.
  • Exemplary meters and test strips and using the same are shown in FIGS. 10A-10C and 11A-11C.
  • Embodiments include analyte monitoring devices and systems that include an analyte sensor—at least a portion of which is positionable beneath the skin of the user—for the in vivo detection, of at least one analyte, such as glucose, lactate, and the like, in a body fluid. Such in vivo sensors are generally referred to herein as in vivo sensors/systems and/or continuous sensors/systems, where such are used interchangeably unless indicated otherwise. Embodiments include wholly implantable analyte sensors and analyte sensors in which only a portion of the sensor is positioned under the skin and a portion of the sensor resides above the skin, e.g., for contact to a transmitter, receiver, transceiver, processor, etc. The sensor may be, for example, subcutaneously positionable in a patient for the continuous or periodic monitoring of a level of an analyte in a patient's interstitial fluid. For the purposes of this description, continuous monitoring and periodic monitoring will be used interchangeably, unless noted otherwise. The sensor response may be correlated and/or converted to analyte levels in blood or other fluids. In certain embodiments, an analyte sensor may be positioned in contact with interstitial fluid to detect the level of glucose, which detected glucose may be used to infer the glucose level in the patient's bloodstream. Analyte sensors may be insertable into a vein, artery, or other portion of the body containing fluid. Embodiments of the analyte sensors of the subject disclosure may be configured for monitoring the level of the analyte over a time period which may range from minutes, hours, days, weeks, or longer. Analyte sensors that do not require contact with bodily fluid are also contemplated.
  • Of interest are analyte sensors, such as glucose sensors, that are capable of in vivo detection of an analyte for about one hour or more, e.g., about a few hours or more, e.g., about a few days of more, e.g., about three or more days, e.g., about five days or more, e.g., about seven days or more, e.g., about several weeks or at least one month. Future analyte levels may be predicted based on information obtained, e.g., the current analyte level at time t0, the rate of change of the analyte, etc. Predictive alarms may notify the user of a predicted analyte levels that may be of concern in advance of the user's analyte level reaching the future level. This provides the user an opportunity to take corrective action.
  • FIG. 1 shows a data monitoring and management system such as, for example, an analyte (e.g., glucose) monitoring system 100 in accordance with certain embodiments. Embodiments of the subject disclosure are further described primarily with respect to glucose monitoring devices and systems, and methods of glucose detection, for convenience only and such description is in no way intended to limit the scope of the disclosure. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes at the same time or at different times.
  • Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, creatinine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketone bodies, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.
  • The analyte monitoring system 100 includes a sensor 101, a data processing unit 102 connectable to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the data processing unit 102 via a communication link 103. In certain embodiments, the primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 to evaluate or otherwise process or format data received by the primary receiver unit 104. The data processing terminal 105 may be configured to receive data directly from the data processing unit 102 via a communication link which may optionally be configured for bi-directional communication. Further, the data processing unit 102 may include a transmitter or a transceiver to transmit and/or receive data to and/or from the primary receiver unit 104 and/or the data processing terminal 105 and/or optionally the secondary receiver unit 106.
  • Also shown in FIG. 1 is an optional secondary receiver unit 106 which is operatively coupled to the communication link and configured to receive data transmitted from the data processing unit 102. The secondary receiver unit 106 may be configured to communicate with the primary receiver unit 104, as well as the data processing terminal 105. The secondary receiver unit 106 may be configured for bi-directional wireless communication with each of the primary receiver unit 104 and the data processing terminal 105. As discussed in further detail below, in certain embodiments the secondary receiver unit 106 may be a de-featured receiver as compared to the primary receiver, i.e., the secondary receiver may include a limited or minimal number of functions and features as compared with the primary receiver unit 104. As such, the secondary receiver unit 106 may include a smaller (in one or more, including all, dimensions), compact housing or embodied in a device such as a wrist watch, arm band, etc., for example. Alternatively, the secondary receiver unit 106 may be configured with the same or substantially similar functions and features as the primary receiver unit 104. The secondary receiver unit 106 may include a docking portion to be mated with a docking cradle unit for placement by, e.g., the bedside for night time monitoring, and/or a bi-directional communication device. A docking cradle may recharge a powers supply.
  • Only one sensor 101, data processing unit or control unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the analyte monitoring system 100 may include more than one sensor 101 and/or more than one data processing unit 102, and/or more than one data processing terminal 105. Multiple sensors may be positioned in a patient for analyte monitoring at the same or different times. In certain embodiments, analyte information obtained by a first positioned sensor may be employed as a comparison to analyte information obtained by a second sensor. This may be useful to confirm or validate analyte information obtained from one or both of the sensors. Such redundancy may be useful if analyte information is contemplated in critical therapy-related decisions. In certain embodiments, a first sensor may be used to calibrate a second sensor.
  • The analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique IDs, communication channels, and the like, may be used.
  • In certain embodiments, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to at least periodically sample the analyte level of the user and convert the sampled analyte level into a corresponding signal for transmission by the data processing unit 102. The data processing unit 102 is coupleable to the sensor 101 so that both devices are positioned in or on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously. The data processing unit may include a fixation element such as adhesive or the like to secure it to the user's body. A mount (not shown) attachable to the user and mateable with the unit 102 may be used. For example, a mount may include an adhesive surface. The data processing unit 102 performs data processing functions, where such functions may include but are not limited to, amplification, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103. In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.
  • In certain embodiments, the primary receiver unit 104 may include an analog interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, data bit recovery, etc., or any combination thereof.
  • In operation, the primary receiver unit 104 in certain embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, an identification information of the data processing unit 102, and thereafter, to periodically receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101.
  • Referring again to FIG. 1, the data processing terminal 105 may include a personal computer, a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs), telephone such as a cellular phone (e.g., a multimedia and Internet-enabled mobile phone such as an iPhone or similar phone), mp3 player, pager, and the like), drug delivery device, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving, updating, and/or analyzing data corresponding to the detected analyte level of the user.
  • The data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the primary receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the primary receiver unit 104 may be configured to integrate an infusion device therein so that the primary receiver unit 104 is configured to administer insulin (or other appropriate drug) therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing unit 102. An infusion device may be an external device or an internal device (wholly implantable in a user).
  • In certain embodiments, the data processing terminal 105, which may include an insulin pump, may be configured to receive the analyte signals from the data processing unit 102, and thus, incorporate the functions of the primary receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in FIG. 1, may use one or more of: an RF communication protocol, an infrared communication protocol, a Bluetooth enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPPA requirements), while avoiding potential data collision and interference.
  • FIG. 2 shows a block diagram of an embodiment of a data processing unit of the data monitoring and detection system shown in FIG. 1. User input and/or interface components may be included or a data processing unit may be free of user input and/or interface components. In certain embodiments, one or more application-specific integrated circuits (ASIC) may be used to implement one or more functions or routines associated with the operations of the data processing unit (and/or receiver unit) using for example one or more state machines and buffers. The processor shown in FIG. 2 may be equipped with sufficient memory to store the data of interest (such as analyte data) for extended periods of time ranging from one to several samples to the number of samples obtained for an entire wear period of several days to weeks. In one aspect, the memory may be included as part of the processor 204. In another embodiment, a separate memory unit such as a memory chip, random access memory (RAM) or any other storage device for storing for subsequent retrieval data. For example, as shown, the data processing unit may include a storage unit 215 operative coupled to the processor 204, and configured to store the analyte data received, for example, from the sensor 101 (FIG. 1). In one aspect, the storage unit 215 may be configured to store a large volume of data received over a predetermined time period from the sensor, and, the processor 204 may be configured to, for example, transmit the stored analyte sensor data in a batch mode, for example, after collecting and storing over a defined time period in a single or multiple data transmission. In another aspect, the processor 204 may be configured such that the received analyte sensor data is e transmitted in real time, when received from the analyte sensor.
  • Also, the processor 204 may be configured to anticipate or wait for a receipt confirmation signal from the recipient of the data transmission (for example, the receiver unit 104 FIG. 1), where when the signal receipt confirmation signal is not received, the processor 204 of the data processing unit 102 may be configured to retrieve the stored analyte sensor data and retransmit it to the receiver unit 104, for example.
  • As can be seen in the embodiment of FIG. 2, the sensor unit 101 (FIG. 1) includes four contacts, three of which are electrodes—work electrode (W) 210, reference electrode (R) 212, and counter electrode (C) 213, each operatively coupled to the analog interface 201 of the data processing unit 102. This embodiment also shows optional guard contact (G) 211. Fewer or greater electrodes may be employed. For example, the counter and reference electrode functions may be served by a single counter/reference electrode, there may be more than one working electrode and/or reference electrode and/or counter electrode, etc.
  • FIG. 3 is a block diagram of an embodiment of a receiver/monitor unit such as the primary receiver unit 104 of the data monitoring and management system shown in FIG. 1. The primary receiver unit 104 includes one or more of: a blood glucose test strip interface 301, an RF receiver 302, an input 303, a temperature detection section 304, and a clock 305, each of which is operatively coupled to a processing and storage section 307. The primary receiver unit 104 also includes a power supply 306 operatively coupled to a power conversion and monitoring section 308. Further, the power conversion and monitoring section 308 is also coupled to the receiver processor 307. Moreover, also shown are a receiver serial communication section 309, and an output 310, each operatively coupled to the processing and storage unit 307. The receiver may include user input and/or interface components or may be free of user input and/or interface components.
  • In certain embodiments, the test strip interface 301 includes a glucose level testing portion to receive a blood (or other body fluid sample) glucose test or information related thereto. For example, the interface may include a test strip port to receive a glucose test strip. The device may determine the glucose level of the test strip, and optionally display (or otherwise notice) the glucose level on the output 310 of the primary receiver unit 104. Any suitable test strip may be employed, e.g., test strips that only require a very small amount (e.g., one microliter or less, e.g., 0.5 microliter or less, e.g., 0.1 microliter or less), of applied sample to the strip in order to obtain accurate glucose information, e.g. FreeStyle® blood glucose test strips from Abbott Diabetes Care Inc. Glucose information obtained by the in vitro glucose testing device may be used for a variety of purposes, computations, etc. For example, the information may be used to calibrate sensor 101, confirm results of the sensor 101 to increase the confidence thereof (e.g., in instances in which information obtained by sensor 101 is employed in therapy related decisions), etc.
  • In further embodiments, the data processing unit 102 and/or the primary receiver unit 104 and/or the secondary receiver unit 105, and/or the data processing terminal/infusion section 105 may be configured to receive the blood glucose value wirelessly over a communication link from, for example, a blood glucose meter. In further embodiments, a user manipulating or using the analyte monitoring system 100 (FIG. 1) may manually input the blood glucose value using, for example, a user interface (for example, a keyboard, keypad, voice commands, and the like) incorporated in the one or more of the data processing unit 102, the primary receiver unit 104, secondary receiver unit 105, or the data processing terminal/infusion section 105.
  • Additional detailed description of embodiments of test strips, blood glucose (BG) meters and continuous monitoring systems and data management systems that may be employed are provided in but not limited to: U.S. Pat. No. 6,175,752; U.S. Pat. No. 6,560,471; U.S. Pat. No. 5,262,035; U.S. Pat. No. 6,881,551; U.S. Pat. No. 6,121,009; U.S. Pat. No. 7,167,818; U.S. Pat. No. 6,270,455; U.S. Pat. No. 6,161,095; U.S. Pat. No. 5,918,603; U.S. Pat. No. 6,144,837; U.S. Pat. No. 5,601,435; U.S. Pat. No. 5,822,715; U.S. Pat. No. 5,899,855; U.S. Pat. No. 6,071,391; U.S. Pat. No. 6,120,676; U.S. Pat. No. 6,143,164; U.S. Pat. No. 6,299,757; U.S. Pat. No. 6,338,790; U.S. Pat. No. 6,377,894; U.S. Pat. No. 6,600,997; U.S. Pat. No. 6,773,671; U.S. Pat. No. 6,514,460; U.S. Pat. No. 6,592,745; U.S. Pat. No. 5,628,890; U.S. Pat. No. 5,820,551; U.S. Pat. No. 6,736,957; U.S. Pat. No. 4,545,382; U.S. Pat. No. 4,711,245; U.S. Pat. No. 5,509,410; U.S. Pat. No. 6,540,891; U.S. Pat. No. 6,730,200; U.S. Pat. No. 6,764,581; U.S. Pat. No. 6,299,757; U.S. Pat. No. 6,461,496; U.S. Pat. No. 6,503,381; U.S. Pat. No. 6,591,125; U.S. Pat. No. 6,616,819; U.S. Pat. No. 6,618,934; U.S. Pat. No. 6,676,816; U.S. Pat. No. 6,749,740; U.S. Pat. No. 6,893,545; U.S. Pat. No. 6,942,518; U.S. Pat. No. 6,514,718; U.S. patent application Ser. No. 10/745,878 filed Dec. 26, 2003 entitled “Continuous Glucose Monitoring System and Methods of Use”, and elsewhere, the disclosures of each which are incorporated herein by reference for all purposes.
  • FIG. 4 schematically shows an embodiment of an analyte sensor in accordance with the present disclosure. This sensor embodiment includes electrodes 401, 402 and 403 on a base 404. Electrodes (and/or other features) may be applied or otherwise processed using any suitable technology, e.g., chemical vapor deposition (CVD), physical vapor deposition, sputtering, reactive sputtering, printing, coating, ablating (e.g., laser ablation), painting, dip coating, etching, and the like. Materials include but are not limited to aluminum, carbon (such as graphite), cobalt, copper, gallium, gold, indium, iridium, iron, lead, magnesium, mercury (as an amalgam), nickel, niobium, osmium, palladium, platinum, rhenium, rhodium, selenium, silicon (e.g., doped polycrystalline silicon), silver, tantalum, tin, titanium, tungsten, uranium, vanadium, zinc, zirconium, mixtures thereof, and alloys, oxides, or metallic compounds of these elements.
  • The sensor may be wholly implantable in a user or may be configured so that only a portion is positioned within (internal) a user and another portion outside (external) a user. For example, the sensor 400 may include a portion positionable above a surface of the skin 410, and a portion positioned below the skin. In such embodiments, the external portion may include contacts (connected to respective electrodes of the second portion by traces) to connect to another device also external to the user such as a transmitter unit. While the embodiment of FIG. 4 shows three electrodes side-by-side on the same surface of base 404, other configurations are contemplated, e.g., fewer or greater electrodes, some or all electrodes on different surfaces of the base or present on another base, some or all electrodes stacked together, electrodes of differing materials and dimensions, etc.
  • FIG. 5A shows a perspective view of an embodiment of an electrochemical analyte sensor 500 having a first portion (which in this embodiment may be characterized as a major portion) positionable above a surface of the skin 510, and a second portion (which in this embodiment may be characterized as a minor portion) that includes an insertion tip 530 positionable below the skin, e.g., penetrating through the skin and into, e.g., the subcutaneous space 520, in contact with the user's biofluid such as interstitial fluid. Contact portions of a working electrode 501, a reference electrode 502, and a counter electrode 503 are positioned on the portion of the sensor 500 situated above the skin surface 510. Working electrode 501, a reference electrode 502, and a counter electrode 503 are shown at the second section and particularly at the insertion tip 530. Traces may be provided from the electrode at the tip to the contact, as shown in FIG. 5A. It is to be understood that greater or fewer electrodes may be provided on a sensor. For example, a sensor may include more than one working electrode and/or the counter and reference electrodes may be a single counter/reference electrode, etc.
  • FIG. 5B shows a cross sectional view of a portion of the sensor 500 of FIG. 5A.
  • The electrodes 510, 502 and 503, of the sensor 500 as well as the substrate and the dielectric layers are provided in a layered configuration or construction. For example, as shown in FIG. 5B, in one aspect, the sensor 500 (such as the sensor unit 101 FIG. 1), includes a substrate layer 504, and a first conducting layer 501 such as carbon, gold, etc., disposed on at least a portion of the substrate layer 504, and which may provide the working electrode. Also shown disposed on at least a portion of the first conducting layer 501 is a sensing layer 508.
  • A first insulation layer such as a first dielectric layer 505 is disposed or layered on at least a portion of the first conducting layer 501, and further, a second conducting layer 509 may be disposed or stacked on top of at least a portion of the first insulation layer (or dielectric layer) 505. As shown in FIG. 5B, the second conducting layer 509 may provide the reference electrode 502, and in one aspect, may include a layer of silver/silver chloride (Ag/AgCl), gold, etc.
  • A second insulation layer 506 such as a dielectric layer in one embodiment may be disposed or layered on at least a portion of the second conducting layer 509. Further, a third conducting layer 503 may provide the counter electrode 503. It may be disposed on at least a portion of the second insulation layer 506. Finally, a third insulation layer may be disposed or layered on at least a portion of the third conducting layer 503. In this manner, the sensor 500 may be layered such that at least a portion of each of the conducting layers is separated by a respective insulation layer (for example, a dielectric layer). The embodiment of FIGS. 5A and 5B show the layers having different lengths. Some or all of the layers may have the same or different lengths and/or widths.
  • In certain embodiments, some or all of the electrodes 501, 502, 503 may be provided on the same side of the substrate 504 in the layered construction as described above, or alternatively, may be provided in a co-planar manner such that two or more electrodes may be positioned on the same plane (e.g., side-by side (e.g., parallel) or angled relative to each other) on the substrate 504. For example, co-planar electrodes may include a suitable spacing there between and/or include dielectric material or insulation material disposed between the conducting layers/electrodes. Furthermore, in certain embodiments one or more of the electrodes 501, 502, 503 may be disposed on opposing sides of the substrate 504. In such embodiments, contact pads may be one the same or different sides of the substrate. For example, an electrode may be on a first side and its respective contact may be on a second side, e.g., a trace connecting the electrode and the contact may traverse through the substrate.
  • As noted above, analyte sensors may include an analyte-responsive enzyme to provide a sensing component or sensing layer. Some analytes, such as oxygen, can be directly electrooxidized or electroreduced on a sensor, and more specifically at least on a working electrode of a sensor. Other analytes, such as glucose and lactate, require the presence of at least one electron transfer agent and/or at least one catalyst to facilitate the electrooxidation or electroreduction of the analyte. Catalysts may also be used for those analyte, such as oxygen, that can be directly electrooxidized or electroreduced on the working electrode. For these analytes, each working electrode includes a sensing layer (see for example sensing layer 408 of FIG. 5B) proximate to or on a surface of a working electrode. In many embodiments, a sensing layer is formed near or on only a small portion of at least a working electrode.
  • The sensing layer includes one or more components designed to facilitate the electrochemical oxidation or reduction of the analyte. The sensing layer may include, for example, a catalyst to catalyze a reaction of the analyte and produce a response at the working electrode, an electron transfer agent to transfer electrons between the analyte and the working electrode (or other component), or both.
  • A variety of different sensing layer configurations may be used. In certain embodiments, the sensing layer is deposited on the conductive material of a working electrode. The sensing layer may extend beyond the conductive material of the working electrode. In some cases, the sensing layer may also extend over other electrodes, e.g., over the counter electrode and/or reference electrode (or counter/reference is provided).
  • A sensing layer that is in direct contact with the working electrode may contain an electron transfer agent to transfer electrons directly or indirectly between the analyte and the working electrode, and/or a catalyst to facilitate a reaction of the analyte. For example, a glucose, lactate, or oxygen electrode may be formed having a sensing layer which contains a catalyst, such as glucose oxidase, lactate oxidase, or laccase, respectively, and an electron transfer agent that facilitates the electrooxidation of the glucose, lactate, or oxygen, respectively.
  • In other embodiments the sensing layer is not deposited directly on the working electrode. Instead, the sensing layer 64 may be spaced apart from the working electrode, and separated from the working electrode, e.g., by a separation layer. A separation layer may include one or more membranes or films or a physical distance. In addition to separating the working electrode from the sensing layer the separation layer may also act as a mass transport limiting layer and/or an interferent eliminating layer and/or a biocompatible layer.
  • In certain embodiments which include more than one working electrode, one or more of the working electrodes may not have a corresponding sensing layer, or may have a sensing layer which does not contain one or more components (e.g., an electron transfer agent and/or catalyst) needed to electrolyze the analyte. Thus, the signal at this working electrode may correspond to background signal which may be removed from the analyte signal obtained from one or more other working electrodes that are associated with fully-functional sensing layers by, for example, subtracting the signal.
  • In certain embodiments, the sensing layer includes one or more electron transfer agents. Electron transfer agents that may be employed are electroreducible and electrooxidizable ions or molecules having redox potentials that are a few hundred millivolts above or below the redox potential of the standard calomel electrode (SCE). The electron transfer agent may be organic, organometallic, or inorganic. Examples of organic redox species are quinones and species that in their oxidized state have quinoid structures, such as Nile blue and indophenol. Examples of organometallic redox species are metallocenes such as ferrocene. Examples of inorganic redox species are hexacyanoferrate (III), ruthenium hexamine etc.
  • In certain embodiments, electron transfer agents have structures or charges which prevent or substantially reduce the diffusional loss of the electron transfer agent during the period of time that the sample is being analyzed. For example, electron transfer agents include but are not limited to a redox species, e.g., bound to a polymer which can in turn be disposed on or near the working electrode. The bond between the redox species and the polymer may be covalent, coordinative, or ionic. Although any organic, organometallic or inorganic redox species may be bound to a polymer and used as an electron transfer agent, in certain embodiments the redox species is a transition metal compound or complex, e.g., osmium, ruthenium, iron, and cobalt compounds or complexes. It will be recognized that many redox species described for use with a polymeric component may also be used, without a polymeric component.
  • One type of polymeric electron transfer agent contains a redox species covalently bound in a polymeric composition. An example of this type of mediator is poly(vinylferrocene). Another type of electron transfer agent contains an ionically-bound redox species. This type of mediator may include a charged polymer coupled to an oppositely charged redox species. Examples of this type of mediator include a negatively charged polymer coupled to a positively charged redox species such as an osmium or ruthenium polypyridyl cation. Another example of an ionically-bound mediator is a positively charged polymer such as quaternized poly(4-vinyl pyridine) or poly(1-vinyl imidazole) coupled to a negatively charged redox species such as ferricyanide or ferrocyanide. In other embodiments, electron transfer agents include a redox species coordinatively bound to a polymer. For example, the mediator may be formed by coordination of an osmium or cobalt 2,2′-bipyridyl complex to poly(1-vinyl imidazole) or poly(4-vinyl pyridine).
  • Suitable electron transfer agents are osmium transition metal complexes with one or more ligands, each ligand having a nitrogen-containing heterocycle such as 2,2′-bipyridine, 1,10-phenanthroline, 1-methyl, 2-pyridyl biimidazole, or derivatives thereof. The electron transfer agents may also have one or more ligands covalently bound in a polymer, each ligand having at least one nitrogen-containing heterocycle, such as pyridine, imidazole, or derivatives thereof. One example of an electron transfer agent includes (a) a polymer or copolymer having pyridine or imidazole functional groups and (b) osmium cations complexed with two ligands, each ligand containing 2,2′-bipyridine, 1,10-phenanthroline, or derivatives thereof, the two ligands not necessarily being the same. Some derivatives of 2,2′-bipyridine for complexation with the osmium cation include but are not limited to 4,4′-dimethyl-2,2′-bipyridine and mono-, di-, and polyalkoxy-2,2′-bipyridines, such as 4,4′-dimethoxy-2,2′-bipyridine. Derivatives of 1,10-phenanthroline for complexation with the osmium cation include but are not limited to 4,7-dimethyl-1,10-phenanthroline and mono, di-, and polyalkoxy-1,10-phenanthrolines, such as 4,7-dimethoxy-1,10-phenanthroline. Polymers for complexation with the osmium cation include but are not limited to polymers and copolymers of poly(1-vinyl imidazole) (referred to as “PVI”) and poly(4-vinyl pyridine) (referred to as “PVP”). Suitable copolymer substituents of poly(1-vinyl imidazole) include acrylonitrile, acrylamide, and substituted or quaternized N-vinyl imidazole, e.g., electron transfer agents with osmium complexed to a polymer or copolymer of poly(1-vinyl imidazole).
  • Embodiments may employ electron transfer agents having a redox potential ranging from about −200 mV to about +200 mV versus the standard calomel electrode (SCE). The sensing layer may also include a catalyst which is capable of catalyzing a reaction of the analyte. The catalyst may also, in some embodiments, act as an electron transfer agent. One example of a suitable catalyst is an enzyme which catalyzes a reaction of the analyte. For example, a catalyst, such as a glucose oxidase, glucose dehydrogenase (e.g., pyrroloquinoline quinone (PQQ), dependent glucose dehydrogenase, flavine adenine dinucleotide (FAD) dependent glucose dehydrogenase, or nicotinamide adenine dinucleotide (NAD) dependent glucose dehydrogenase), may be used when the analyte of interest is glucose. A lactate oxidase or lactate dehydrogenase may be used when the analyte of interest is lactate. Laccase may be used when the analyte of interest is oxygen or when oxygen is generated or consumed in response to a reaction of the analyte.
  • The sensing layer may also include a catalyst which is capable of catalyzing a reaction of the analyte. The catalyst may also, in some embodiments, act as an electron transfer agent. One example of a suitable catalyst is an enzyme which catalyzes a reaction of the analyte. For example, a catalyst, such as a glucose oxidase, glucose dehydrogenase (e.g., pyrroloquinoline quinone (PQQ), dependent glucose dehydrogenase or oligosaccharide dehydrogenase, flavine adenine dinucleotide (FAD) dependent glucose dehydrogenase, nicotinamide adenine dinucleotide (NAD) dependent glucose dehydrogenase), may be used when the analyte of interest is glucose. A lactate oxidase or lactate dehydrogenase may be used when the analyte of interest is lactate. Laccase may be used when the analyte of interest is oxygen or when oxygen is generated or consumed in response to a reaction of the analyte.
  • In certain embodiments, a catalyst may be attached to a polymer, cross linking the catalyst with another electron transfer agent (which, as described above, may be polymeric. A second catalyst may also be used in certain embodiments. This second catalyst may be used to catalyze a reaction of a product compound resulting from the catalyzed reaction of the analyte. The second catalyst may operate with an electron transfer agent to electrolyze the product compound to generate a signal at the working electrode. Alternatively, a second catalyst may be provided in an interferent-eliminating layer to catalyze reactions that remove interferents.
  • Certain embodiments include a Wired Enzyme™ sensing layer (Abbott Diabetes Care, Inc.) that works at a gentle oxidizing potential, e.g., a potential of about +40 mV. This sensing layer uses an osmium (Os)-based mediator designed for low potential operation and is stably anchored in a polymeric layer. Accordingly, in certain embodiments the sensing element is redox active component that includes (1) Osmium-based mediator molecules attached by stable (bidente) ligands anchored to a polymeric backbone, and (2) glucose oxidase enzyme molecules. These two constituents are crosslinked together.
  • A mass transport limiting layer (not shown), e.g., an analyte flux modulating layer, may be included with the sensor to act as a diffusion-limiting barrier to reduce the rate of mass transport of the analyte, for example, glucose or lactate, into the region around the working electrodes. The mass transport limiting layers are useful in limiting the flux of an analyte to a working electrode in an electrochemical sensor so that the sensor is linearly responsive over a large range of analyte concentrations and is easily calibrated. Mass transport limiting layers may include polymers and may be biocompatible. A mass transport limiting layer may provide many functions, e.g., biocompatibility and/or interferent-eliminating, etc.
  • In certain embodiments, a mass transport limiting layer is a membrane composed of crosslinked polymers containing heterocyclic nitrogen groups, such as polymers of polyvinylpyridine and polyvinylimidazole. Embodiments also include membranes that are made of a polyurethane, or polyether urethane, or chemically related material, or membranes that are made of silicone, and the like.
  • A membrane may be formed by crosslinking in situ a polymer, modified with a zwitterionic moiety, a non-pyridine copolymer component, and optionally another moiety that is either hydrophilic or hydrophobic, and/or has other desirable properties, in an alcohol-buffer solution. The modified polymer may be made from a precursor polymer containing heterocyclic nitrogen groups. For example, a precursor polymer may be polyvinylpyridine or polyvinylimidazole. Optionally, hydrophilic or hydrophobic modifiers may be used to “fine-tune” the permeability of the resulting membrane to an analyte of interest. Optional hydrophilic modifiers, such as poly(ethylene glycol), hydroxyl or polyhydroxyl modifiers, may be used to enhance the biocompatibility of the polymer or the resulting membrane.
  • A membrane may be formed in situ by applying an alcohol-buffer solution of a crosslinker and a modified polymer over an enzyme-containing sensing layer and allowing the solution to cure for about one to two days or other appropriate time period. The crosslinker-polymer solution may be applied to the sensing layer by placing a droplet or droplets of the solution on the sensor, by dipping the sensor into the solution, or the like. Generally, the thickness of the membrane is controlled by the concentration of the solution, by the number of droplets of the solution applied, by the number of times the sensor is dipped in the solution, or by any combination of these factors. A membrane applied in this manner may have any combination of the following functions: (1) mass transport limitation, i.e. reduction of the flux of analyte that can reach the sensing layer, (2) biocompatibility enhancement, or (3) interferent reduction.
  • The description herein is directed primarily to electrochemical sensors for convenience only and is in no way intended to limit the scope of the disclosure. Other sensors and sensor systems are contemplated. Such include, but are not limited to, optical sensors, colorimetric sensors, potentiometric sensors, coulometric sensors and sensors that detect hydrogen peroxide to infer glucose levels, for example. For example, a hydrogen peroxide-detecting sensor may be constructed in which a sensing layer includes enzyme such as glucose oxides, glucose dehydrogenase, or the like, and is positioned proximate to the working electrode. The sending layer may be covered by a membrane that is selectively permeable to glucose. Once the glucose passes through the membrane, it is oxidized by the enzyme and reduced glucose oxidase can then be oxidized by reacting with molecular oxygen to produce hydrogen peroxide.
  • Certain embodiments include a hydrogen peroxide-detecting sensor constructed from a sensing layer prepared by crosslinking two components together, for example: (1) a redox compound such as a redox polymer containing pendent Os polypyridyl complexes with oxidation potentials of about +200 mV vs. SCE, and (2) periodate oxidized horseradish peroxidase (HRP). Such a sensor functions in a reductive mode; the working electrode is controlled at a potential negative to that of the Os complex, resulting in mediated reduction of hydrogen peroxide through the HRP catalyst.
  • In another example, a potentiometric sensor can be constructed as follows. A glucose-sensing layer is constructed by crosslinking together (1) a redox polymer containing pendent Os polypyridyl complexes with oxidation potentials from about −200 mV to +200 mV vs. SCE, and (2) glucose oxidase. This sensor can then be used in a potentiometric mode, by exposing the sensor to a glucose containing solution, under conditions of zero current flow, and allowing the ratio of reduced/oxidized Os to reach an equilibrium value. The reduced/oxidized Os ratio varies in a reproducible way with the glucose concentration, and will cause the electrode's potential to vary in a similar way.
  • A sensor may also include an active agent such as an anticlotting and/or antiglycolytic agent(s) disposed on at least a portion a sensor that is positioned in a user. An anticlotting agent may reduce or eliminate the clotting of blood or other body fluid around the sensor, particularly after insertion of the sensor. Examples of useful anticlotting agents include heparin and tissue plasminogen activator (TPA), as well as other known anticlotting agents. Embodiments may include an antiglycolytic agent or precursor thereof. Examples of antiglycolytic agents are glyceraldehyde, fluoride ion, and mannose.
  • Sensors may be configured to require no system calibration or no user calibration. For example, a sensor may be factory calibrated and need not require further calibrating. In certain embodiments, calibration may be required, but may be done without user intervention, i.e., may be automatic. In those embodiments in which calibration by the user is required, the calibration may be according to a predetermined schedule or may be dynamic, i.e., the time for which may be determined by the system on a real-time basis according to various factors, such as but not limited to glucose concentration and/or temperature and/or rate of change of glucose, etc.
  • Calibration may be accomplished using an in vitro test strip (or other reference), e.g., a small sample test strip such as a test strip that requires less than about 1 microliter of sample (for example FreeStyle® blood glucose monitoring test strips from Abbott Diabetes Care). For example, test strips that require less than about 1 nanoliter of sample may be used. In certain embodiments, a sensor may be calibrated using only one sample of body fluid per calibration event. For example, a user need only lance a body part one time to obtain sample for a calibration event (e.g., for a test strip), or may lance more than one time within a short period of time if an insufficient volume of sample is firstly obtained. Embodiments include obtaining and using multiple samples of body fluid for a given calibration event, where glucose values of each sample are substantially similar. Data obtained from a given calibration event may be used independently to calibrate or combined with data obtained from previous calibration events, e.g., averaged including weighted averaged, etc., to calibrate. In certain embodiments, a system need only be calibrated once by a user, where recalibration of the system is not required.
  • Analyte systems may include an optional alarm system that, e.g., based on information from a processor, warns the patient of a potentially detrimental condition of the analyte. For example, if glucose is the analyte, an alarm system may warn a user of conditions such as hypoglycemia and/or hyperglycemia and/or impending hypoglycemia, and/or impending hyperglycemia. An alarm system may be triggered when analyte levels approach, reach or exceed a threshold value. An alarm system may also, or alternatively, be activated when the rate of change, or acceleration of the rate of change, in analyte level increase or decrease approaches, reaches or exceeds a threshold rate or acceleration. A system may also include system alarms that notify a user of system information such as battery condition, calibration, sensor dislodgment, sensor malfunction, etc. Alarms may be, for example, auditory and/or visual. Other sensory-stimulating alarm systems may be used including alarm systems which heat, cool, vibrate, or produce a mild electrical shock when activated.
  • The subject disclosure also includes sensors used in sensor-based drug delivery systems. The system may provide a drug to counteract the high or low level of the analyte in response to the signals from one or more sensors. Alternatively, the system may monitor the drug concentration to ensure that the drug remains within a desired therapeutic range. The drug delivery system may include one or more (e.g., two or more) sensors, a processing unit such as a transmitter, a receiver/display unit, and a drug administration system. In some cases, some or all components may be integrated in a single unit. A sensor-based drug delivery system may use data from the one or more sensors to provide necessary input for a control algorithm/mechanism to adjust the administration of drugs, e.g., automatically or semi-automatically. As an example, a glucose sensor may be used to control and adjust the administration of insulin from an external or implanted insulin pump.
  • As discussed above, embodiments of the present disclosure relate to methods and devices for detecting at least one analyte such as glucose in body fluid. Embodiments relate to the continuous and/or automatic in vivo monitoring of the level of one or more analytes using a continuous analyte monitoring system that includes an analyte sensor at least a portion of which is to be positioned beneath a skin surface of a user for a period of time and/or the discrete monitoring of one or more analytes using an in vitro blood glucose (“BG”) meter in conjunction with an analyte test strip. Embodiments include combined or combinable devices, systems and methods and/or transferring data between an in vivo continuous system and a BG meter system, and include integrated systems.
  • Embodiments include “Data Logger” systems which include a continuous glucose monitoring system (at least an analyte sensor and control unit (e.g., an on body unit)). The continuous glucose monitoring (“CG”) system may have limited real-time connectivity with a BG meter. For example, real time connectivity may be limited to communicating calibration data (e.g., a BG value) to the CG system or it may have the ability to receive data from the CG system on demand (as compared to a CG system continuously broadcasting such data). In one embodiment, the data processing unit (102) may be an on-body unit that is configured to operate in several transmission modes. In a first mode, analyte related data may be transmitted when a new data value (e.g., sensor data) is available (for example, when received from the analyte sensor). This mode of operation may result in “lost data” because the data processing unit 102 does not get confirmation that the data was successfully received by the receiver unit 104, and in some embodiments, this data may not be resent.
  • In a second transmission mode, data may be transmitted when the new data is available and the data processing unit 102 may receive an acknowledgement that such data has been successfully received, or if the transmission was unsuccessful the data would be stored (“buffered”) for another attempt. This mode reduces the likelihood of “lost data”. In a third mode (“data logging mode”), the data processing unit 102 may be configured to retain or store all data (i.e.; not attempt to transmit it when it becomes available) until the receiver unit (104) requests the data, or based upon a scheduled data transmission.
  • CG data obtained by the CG Data Logger may be processed by the Data Logger system or by the BG meter and/or by a data management system (“DMS”) which may includes a computer such as a PC and an optional server. For example, the CoPilot™ data management system from Abbott Diabetes Care, Inc., or the like, may be employed. In certain embodiments neither the CG system nor the BG meter are capable of (or have such capability, but the capability is selectively turned off) supporting continuous real time CG data communication, thereby substantially reducing power requirements. Such embodiments are CG Data Loggers in which CG data resides (i.e., is logged) in a CG control unit (e.g., on-body unit) until it is retrieved by a BG meter. In other words, a CG Data Logger buffers the CG data and stores it in memory until the CG data is downloaded or transferred to the BG meter, e.g., a user initiates data transfer or transfer may occur at set times. The CG component logs continuous glucose data, but only gives up this data to the on-request to a BG meter. Retrieval may be by any suitable methodology, including but not limited to wireless communication protocols such as for example RF, optical means (such as an IR link), Bluetooth, or a direct connection (such as a USB, or the like), etc. A given BG meter and CG data Logger may be synchronized, e.g., by one or more unique identifiers, thereby ensuring preventing inadvertent data exchange between devices.
  • FIG. 6 shows an exemplary embodiment of a system that includes a CG Data
  • Logger and an enhanced BG meter. As shown, the enhanced BG meter may communicate with the CG Data Logger by a wired connection and/or by IR or RF. Referring to the Figure, in one aspect, the CG data logger may be configured to collect and store monitored analyte data over a predetermined time period (for example, from a transcutaneous, subcutaneous or implanted analyte sensor), and transmit the collected and stored analyte data to the BG meter either continuously in real time, or periodically (for example, when the CG data logger is in signal communication with the BG meter (either cabled or wireless), or in a single data transfer mode, for example, at the end of the predetermined time period.
  • “Modular” embodiments are also provided. Modular systems may be used in conjunction with the Data Logger system in certain embodiments. For example, a separable CG data transfer module may be configured for wireless communication with the CG data logger and further configured to removably mate with a BG meter to transfer CG information to the BG meter (see for example FIG. 7). Modular embodiments include all the necessary hardware (and software) to support either (or both) continuous (real time) or “batched” (data logged) CG data collection in a snap-on or otherwise mateable module that provides CG data to a BG meter. Alarm functionality may be included in the BG meter, as well as features to support CG data processing and communication to a user, e.g., hardware and software to process CG data and/or calibrate CG data, enhanced user interface to communicate CG information to a user (in addition to BG information), e.g., may include CG calibration information, CG trend information, rate of change indicators to indicate the rate of change of glucose, and the like.
  • Modules may be re-usable by a plurality of users. User privacy features may be included, e.g., a module may not permanently store patient data (user data may be automatically deleted or expunged after a certain time period), data may be encrypted, password protected, or otherwise provided with one or more security features that will limit access to only the intended users. In one aspect, the CG data logger may be configured to collect and store the monitored analyte data received from an analyte sensor, and upon establishing data communication with the BG meter via the data transfer module, communicate the received analyte data in one or more batch transfer, or continuously in real time as the analyte sensor data is received from the sensor.
  • FIG. 7 shows an exemplary embodiment of a modular system that includes a CG control unit/transmitter, a mateable module and an enhanced BG meter. In this embodiment, the CG data logger/transmitter is shown communicating with the module via RF where the module is mateably coupled to the BG meter. However, other suitable data communication approaches may be used including IR, Bluetooth, Zigbee communication, and the like.
  • FIG. 8 shows an integrated or continuous system that includes an enhanced BG meter and a CG data logger/transmitter, where the CG data logger is capable of transferring CG data to the enhanced BG meter directly and in real time, in this embodiment shown via a wireless protocol. For example, as shown, the enhanced BG meter may include an RF communication module or chipset that allows for wireless communication with the CG data logger. Accordingly, as the continuous analyte sensor data is received by the CG data logger, the data is substantially contemporaneously transferred or communicated in real time to the enhanced BG meter over the RF communication link.
  • FIG. 9 shows an exemplary embodiment of a system which includes a BG meter and a docking unit, herein shown configured as a belt holster. The BG meter couples to the holster via contacts of the holster, which correspond to contacts of the BG meter. The BG meter displays information to the user when electronically coupled to the holster, i.e., when docked or when in wireless signal communication with the belt holster (for example, when removed from the holster). The holster may include some or all functionality of a primary receiver unit as described below for CG monitoring. For example, the holster may contain some or all of a FreeStyle Navigator® system, e.g., the receiver functionality as described above. In one aspect, the belt holster may integrate the CG data logger such that the collected and stored analyte data may be transferred to the BG meter when docked in the holster (or when wirelessly synchronized with the belt holster).
  • The CG system may be calibrated using the BG meter, e.g., when the BG meter is docked. Such as system may be useful in a variety of instances, e.g., for gestational diabetes, assessing/diagnosing diabetes, and the like.
  • In certain embodiments, the CG system (whether it be modular or includes a data logger) may be configured with reduced set of functionalities. For example, it may not include alarms (audible and/or vibratory and/or visual) and/or glucose rate of change indicators and/or a visual or user interface display such as a dot matrix display and/or additional processing power and/or miniaturized, or it may not include a test strip port. For example, FIG. 10 illustrates features which may be included in an exemplary full-featured CG system, and exemplary integrated real time system and an exemplary Data Logger system.
  • In certain embodiments, synchronization between a BG and CG systems is provided to calibrate the CG sensor using a BG strip measurement as a reference data point.
  • In certain applications, the enhanced BG meters may be used by those who require more intensive (i.e., continuous) glucose monitoring, by temporarily or periodically allowing a user's BG meter to capture CG data without the user having to obtain another meter. Likewise, the added value to a health care provider (“HCP”) is gained by patients periodically obtaining more detailed blood glucose information (e.g., prior to regular check up), thus allowing the HCP to make more informed and suited therapy adjustments for the patient.
  • Various embodiments have extensive applicability. For example, indwelling or external sensors other than CG sensors may be included. Data from indwelling or external sensors other than a CG sensor may be captured by the systems described herein (such as temperature data, ketone data, and the like). Furthermore, functions such as weigh management, enhanced data management or insulin pump control may also be added to a BG meter via the modular approach to further enhance the meter. In certain embodiments, a Data Logger includes providing molded electrical contacts that allow for electrical connections thru the on-body case without compromising the watertight seal of the case.
  • Embodiments herein may provide increased value of a BG meter to the patient by adding CG functionality to a base BG meter, a low learning curve such that the user does not need to become familiar with two different user interfaces (one for the BG unit and another for the CG system), reduction in cost of the overall system, and substantial immunity to environments where continuous wireless communication may be prohibited such as during flight on an airplane, within hospital or other settings that have sensitive instrumentation that may interfere with RF or other wireless signals.
  • Accordingly, an analyte monitoring system in one embodiment includes an analyte sensor for transcutaneous positioning under a skin layer of a subject, a data processing device operatively coupled to the analyte sensor, the device comprising: a control unit, a memory operatively coupled to the control unit and configured to store a plurality of data associated with the monitored analyte level received from the sensor, and a communication unit operatively coupled to the control unit; and a blood glucose meter configured for signal communication with the data processing device, where when the control unit of the data processing device detects a communication link with the blood glucose meter, the control unit is further configured to retrieve the stored plurality of data from the memory and to transmit the retrieved data to the blood glucose meter.
  • The blood glucose meter includes a strip port for receiving a blood glucose test strip.
  • The communication unit may be configured to communicate with the blood glucose meter using one or more of a wired connection, a USB cable connection, a serial cable connection, an RF communication protocol, an infrared communication protocol, a Bluetooth communication protocol, or an 802.11x communication protocol.
  • In one embodiment, data processing device does not include a user output component, where the user output component includes a display.
  • The control unit may detect the communication link with the blood glucose meter based on detection of a wired connection to the meter.
  • The retrieved stored plurality of data may correspond to glucose data of the subject collected over a predetermined time period.
  • The glucose data may be uncalibrated or calibrated.
  • The analyte sensor may be a glucose sensor.
  • In one aspect, the blood glucose meter may include an output unit configured to output one or more of the received retrieved data.
  • The output unit may include a display unit operatively coupled to a housing of the blood glucose meter.
  • The output of one or more received data may include a graphical output, a numerical output, or a text output.
  • The blood glucose meter may be configured to calibrate the received data.
  • The blood glucose meter may include a storage unit configured to store the calibrated data.
  • The blood glucose meter may include a storage unit configured to store the received data.
  • In another aspect, the system may include a holster device for receiving the blood glucose meter, and the data processing unit may be integrated in the holster device.
  • The control unit may be configured to detect the communication link with the blood glucose meter when the meter is coupled to the holster.
  • The holster device may include a belt clip.
  • A method in another embodiment may include transcutaneously positioning an analyte sensor under a skin layer of a subject, coupling a data processing device to the analyte sensor, storing in a memory of the data processing device a plurality of data associated with the monitored analyte level received from the sensor, operatively coupling a communication unit to the control unit, detecting a communication link with the blood glucose meter, retrieving the stored plurality of data from the memory, and commanding the communication unit to transmit the retrieved data to the blood glucose meter.
  • The communication link may be established based on one or more of a wired connection, a USB cable connection, a serial cable connection, an RF communication protocol, an infrared communication protocol, a Bluetooth communication protocol, or an 802.11× communication protocol.
  • The method may include displaying on the blood glucose meter the received analyte data.
  • The retrieved data may correspond to glucose data of the subject collected over a predetermined time period.
  • The method may include calibrating the received data.
  • In another aspect, the method may include storing the received data in a memory of the blood glucose meter.
  • In still a further aspect, the method may include encrypting the retrieved data prior to transmitting to the blood glucose meter.
  • Various other modifications and alterations in the structure and method of operation of the present disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. Although the present disclosure has been described in connection with specific embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims (19)

  1. 1. An glucose monitoring system, comprising:
    an analyte sensor having a portion in fluid contact with an interstitial fluid under a skin layer;
    an on body unit operatively coupled to the analyte sensor, the on body unit receiving analyte related signals from the analyte sensor and storing the analyte related signals in a memory until a data transfer request is received, the on body unit transmitting the analyte related signals in response to the data transfer request; and
    a glucose meter including a processor, the glucose meter providing the data transfer request, and further receiving the analyte related data on demand from the on body unit.
  2. 2. The system of claim 1 wherein the on body unit stores the analyte related signals in the memory without a data transmission attempt until the data transfer request is received from the glucose meter.
  3. 3. The system of claim 1 wherein the on body unit receives the data transfer request when the on body unit is in signal communication with the glucose meter.
  4. 4. The system of claim 1 wherein the on body unit transmits the analyte related signals only in response to the data transfer request.
  5. 5. The system of claim 1 wherein the glucose meter includes a memory for storing the analyte related signals received from the on body unit in response to the data transfer request.
  6. 6. The system of claim 1 wherein the analyte sensor is a glucose sensor.
  7. 7. The system of claim 1 wherein the on body unit receives the data transfer request based on radio frequency (RF) communication protocol.
  8. 8. The system of claim 1 wherein the glucose meter includes an output unit to output the received analyte related signals under the control of the processor.
  9. 9. The system of claim 8 wherein the output unit outputs an audible indicator, a visual indicator, a vibratory indicator, or one or more combinations thereof.
  10. 10. The system of claim 1 wherein the on body unit does not continuously broadcast the analyte related signals.
  11. 11. The system of claim 1 wherein the on body unit transmits a current glucose data and one or more prior glucose data in response to the data transfer request.
  12. 12. The system of claim 1 wherein the glucose meter includes a strip port to receive an in vitro test strip.
  13. 13. The system of claim 12 wherein the glucose meter outputs an indication based on a glucose measurement from a blood sample received from the in vitro test strip.
  14. 14. The system of claim 1 wherein the analyte sensor requires no system calibration.
  15. 15. The system of claim 1 wherein the analyte sensor requires no user calibration.
  16. 16. The system of claim 1 wherein the analyte sensor is automatically calibrated.
  17. 17. The system of claim 1 wherein the processor of the glucose meter performs data analysis of the analyte related signals received from the on body unit.
  18. 18. The system of claim 17 wherein processor of the glucose meter performs data analysis of the received analyte related signals based a blood glucose measurement.
  19. 19. The system of claim 17 wherein the glucose meter displays a trend based on the received analyte related signals.
US12628210 2007-06-21 2009-11-30 Health Monitor Abandoned US20100076293A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US94558107 true 2007-06-21 2007-06-21
US12143734 US8617069B2 (en) 2007-06-21 2008-06-20 Health monitor
US12628210 US20100076293A1 (en) 2007-06-21 2009-11-30 Health Monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12628210 US20100076293A1 (en) 2007-06-21 2009-11-30 Health Monitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12143734 Continuation US8617069B2 (en) 2007-06-21 2008-06-20 Health monitor

Publications (1)

Publication Number Publication Date
US20100076293A1 true true US20100076293A1 (en) 2010-03-25

Family

ID=40137215

Family Applications (10)

Application Number Title Priority Date Filing Date
US12143734 Active 2032-03-22 US8617069B2 (en) 2007-06-21 2008-06-20 Health monitor
US12625510 Abandoned US20100076290A1 (en) 2007-06-21 2009-11-24 Health Monitor
US12628198 Abandoned US20100076291A1 (en) 2007-06-21 2009-11-30 Health Monitor
US12628177 Abandoned US20100076289A1 (en) 2007-06-21 2009-11-30 Health Monitor
US12628203 Abandoned US20100076292A1 (en) 2007-06-21 2009-11-30 Health Monitor
US12628201 Abandoned US20100076280A1 (en) 2007-06-21 2009-11-30 Health Monitor
US12628210 Abandoned US20100076293A1 (en) 2007-06-21 2009-11-30 Health Monitor
US13292074 Abandoned US20120053428A1 (en) 2007-06-21 2011-11-08 Health Monitor
US14133635 Pending US20140107436A1 (en) 2007-06-21 2013-12-18 Health Monitor
US15985615 Pending US20180271419A1 (en) 2007-06-21 2018-05-21 Health Monitor

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US12143734 Active 2032-03-22 US8617069B2 (en) 2007-06-21 2008-06-20 Health monitor
US12625510 Abandoned US20100076290A1 (en) 2007-06-21 2009-11-24 Health Monitor
US12628198 Abandoned US20100076291A1 (en) 2007-06-21 2009-11-30 Health Monitor
US12628177 Abandoned US20100076289A1 (en) 2007-06-21 2009-11-30 Health Monitor
US12628203 Abandoned US20100076292A1 (en) 2007-06-21 2009-11-30 Health Monitor
US12628201 Abandoned US20100076280A1 (en) 2007-06-21 2009-11-30 Health Monitor

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13292074 Abandoned US20120053428A1 (en) 2007-06-21 2011-11-08 Health Monitor
US14133635 Pending US20140107436A1 (en) 2007-06-21 2013-12-18 Health Monitor
US15985615 Pending US20180271419A1 (en) 2007-06-21 2018-05-21 Health Monitor

Country Status (6)

Country Link
US (10) US8617069B2 (en)
EP (1) EP2166928B1 (en)
JP (4) JP2010531169A (en)
CN (2) CN103251414B (en)
CA (1) CA2690870C (en)
WO (1) WO2008157821A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012145027A1 (en) * 2011-04-20 2012-10-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US8844007B2 (en) 2011-04-08 2014-09-23 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9386522B2 (en) 2011-09-23 2016-07-05 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9901292B2 (en) 2013-11-07 2018-02-27 Dexcom, Inc. Systems and methods for a continuous monitoring of analyte values

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8160670B2 (en) * 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US8515518B2 (en) * 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
DE202007003159U1 (en) * 2007-03-01 2007-05-10 Schunk Kohlenstofftechnik Gmbh Brush contact picking up current from conductive guide rail, comprises sliding contact, carrier and contact pin, all forming parts of a single molded unit
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
JP2010531169A (en) * 2007-06-21 2010-09-24 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Health monitoring devices
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US20090085768A1 (en) * 2007-10-02 2009-04-02 Medtronic Minimed, Inc. Glucose sensor transceiver
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US20100198142A1 (en) * 2009-02-04 2010-08-05 Abbott Diabetes Care Inc. Multi-Function Analyte Test Device and Methods Therefor
EP2409253A1 (en) * 2009-03-16 2012-01-25 Roche Diagnostics GmbH Method for automatically generating a user-specific measurement data capturing regime for a discontinuous blood sugar measurement and data processing device and blood sugar measuring device
EP2233067A1 (en) * 2009-03-23 2010-09-29 Roche Diagnostics GmbH Medicinal system with plug-and-play function
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US8613892B2 (en) * 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
EP2456351B1 (en) 2009-07-23 2016-10-12 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
EP2473098A4 (en) 2009-08-31 2014-04-09 Abbott Diabetes Care Inc Analyte signal processing device and methods
EP2482720A4 (en) 2009-09-29 2014-04-23 Abbott Diabetes Care Inc Method and apparatus for providing notification function in analyte monitoring systems
US8661895B2 (en) * 2009-12-29 2014-03-04 Abbott Diabetes Care Inc. Carrying cases for medical devices that use analyte test strips and methods of using the same
US20120029830A1 (en) * 2009-12-31 2012-02-02 Turner Richard W Blood glucose measurement devices and methods of using the same
US9561476B2 (en) 2010-12-15 2017-02-07 Praxair Technology, Inc. Catalyst containing oxygen transport membrane
US8828330B2 (en) * 2010-01-28 2014-09-09 Abbott Diabetes Care Inc. Universal test strip port
CA2766693A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US9271671B2 (en) 2010-04-16 2016-03-01 Arkray, Inc. Sensor and method for removing interfering substance
EP2436311A1 (en) * 2010-10-04 2012-04-04 PharmaSens AG Diagnostic device
CN103282764A (en) * 2010-10-29 2013-09-04 尼尔科学公司 Method and apparatus for analyte detection
CN107019515A (en) 2011-02-28 2017-08-08 雅培糖尿病护理公司 Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
WO2012122520A1 (en) 2011-03-10 2012-09-13 Abbott Diabetes Care Inc. Multi-function analyte monitor device and methods of use
US8435332B2 (en) 2011-04-08 2013-05-07 Praxair Technology, Inc. Oxygen separation module and apparatus
WO2013066873A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US20130116526A1 (en) 2011-11-09 2013-05-09 Telcare, Inc. Handheld Blood Glucose Monitoring Device with Messaging Capability
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
EP2791082A1 (en) 2011-12-15 2014-10-22 Praxair S.T. Technologies, Inc. Composite oxygen transport membrane
US9486735B2 (en) 2011-12-15 2016-11-08 Praxair Technology, Inc. Composite oxygen transport membrane
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
EP2897711B1 (en) 2012-09-19 2017-09-13 Praxair Technology Inc. High purity ceramic oxygen generator
US9969645B2 (en) 2012-12-19 2018-05-15 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
US9585563B2 (en) 2012-12-31 2017-03-07 Dexcom, Inc. Remote monitoring of analyte measurements
US9730620B2 (en) 2012-12-31 2017-08-15 Dexcom, Inc. Remote monitoring of analyte measurements
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
EP3055052A2 (en) 2013-10-07 2016-08-17 Praxair Technology Inc. Ceramic oxygen transport membrane array reactor and reforming method
EP3055053A2 (en) 2013-10-08 2016-08-17 Praxair Technology Inc. System and method for temperature control in an oxygen transport membrane based reactor
CN105764842B (en) 2013-12-02 2018-06-05 普莱克斯技术有限公司 Method and system for use with two-stage conversion systems based on oxygen transport membrane reformer hydrogen production
CA2937943A1 (en) 2014-02-12 2015-08-20 Praxair Technology, Inc. Oxygen transport membrane reactor based method and system for generating electric power
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
US9841014B2 (en) * 2014-10-20 2017-12-12 Medtronic Minimed, Inc. Insulin pump data acquisition device and system
CN105517491A (en) * 2014-10-22 2016-04-20 深圳市光聚通讯技术开发有限公司 Continuous glucose monitoring system and monitoring terminal
WO2016183524A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Systems, devices, and methods for monitoring medical devices
US20170124350A1 (en) 2015-10-30 2017-05-04 Dexcom, Inc. Data backfilling for continuous glucose monitoring
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
KR101879940B1 (en) * 2016-08-30 2018-07-18 최규동 Pilot Bio-Signal Monitoring System using Wearable Continuous Body Fluid checking apparatus

Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245634A (en) * 1975-01-22 1981-01-20 Hospital For Sick Children Artificial beta cell
US4373527A (en) * 1979-04-27 1983-02-15 The Johns Hopkins University Implantable, programmable medication infusion system
US4425920A (en) * 1980-10-24 1984-01-17 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US4995402A (en) * 1988-10-12 1991-02-26 Thorne, Smith, Astill Technologies, Inc. Medical droplet whole blood and like monitoring
US5082550A (en) * 1989-12-11 1992-01-21 The United States Of America As Represented By The Department Of Energy Enzyme electrochemical sensor electrode and method of making it
US5279294A (en) * 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US5285792A (en) * 1992-01-10 1994-02-15 Physio-Control Corporation System for producing prioritized alarm messages in a medical instrument
US5379238A (en) * 1989-03-03 1995-01-03 Stark; Edward W. Signal processing method and apparatus
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5489414A (en) * 1993-04-23 1996-02-06 Boehringer Mannheim, Gmbh System for analyzing compounds contained in liquid samples
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5601435A (en) * 1994-11-04 1997-02-11 Intercare Method and apparatus for interactively monitoring a physiological condition and for interactively providing health related information
US5707502A (en) * 1996-07-12 1998-01-13 Chiron Diagnostics Corporation Sensors for measuring analyte concentrations and methods of making same
US5711001A (en) * 1992-05-08 1998-01-20 Motorola, Inc. Method and circuit for acquisition by a radio receiver
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US6024699A (en) * 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US20020019022A1 (en) * 1998-09-30 2002-02-14 Cygnus, Inc. Method and device for predicting physiological values
US20020023852A1 (en) * 1999-02-25 2002-02-28 Minimed Inc. Glucose sensor package system
US20020045808A1 (en) * 2000-08-18 2002-04-18 Russell Ford Formulation and manipulation of databases of analyte and associated values
US20020065454A1 (en) * 2000-01-21 2002-05-30 Lebel Ronald J. Microprocessor controlled ambulatory medical apparatus with hand held communication device
US20030004403A1 (en) * 2001-06-29 2003-01-02 Darrel Drinan Gateway platform for biological monitoring and delivery of therapeutic compounds
US20030023317A1 (en) * 2001-07-27 2003-01-30 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US20030100821A1 (en) * 2001-01-02 2003-05-29 Therasense, Inc. Analyte monitoring device and methods of use
US20040010207A1 (en) * 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US20040011671A1 (en) * 1997-03-04 2004-01-22 Dexcom, Inc. Device and method for determining analyte levels
US6689191B2 (en) * 2000-02-22 2004-02-10 Omg Americas, Inc. Rapid conversion of metal-containing compounds to form metals or metal alloys
US6695860B1 (en) * 2000-11-13 2004-02-24 Isense Corp. Transcutaneous sensor insertion device
US20040039298A1 (en) * 1996-09-04 2004-02-26 Abreu Marcio Marc Noninvasive measurement of chemical substances
US20040186365A1 (en) * 2002-12-31 2004-09-23 Therasense, Inc. Continuous glucose monitoring system and methods of use
US20040225199A1 (en) * 2003-05-08 2004-11-11 Evanyk Shane Walter Advanced physiological monitoring systems and methods
US20050001024A1 (en) * 2001-12-03 2005-01-06 Yosuke Kusaka Electronic apparatus, electronic camera, electronic device, image display apparatus, and image transmission system
US20050004494A1 (en) * 2001-01-22 2005-01-06 Perez Edward P. Lancet device having capillary action
US20050004439A1 (en) * 2000-02-23 2005-01-06 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US20050027177A1 (en) * 2000-02-23 2005-02-03 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US20050038332A1 (en) * 2001-12-27 2005-02-17 Frank Saidara System for monitoring physiological characteristics
US20050043598A1 (en) * 2003-08-22 2005-02-24 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20060004270A1 (en) * 2004-06-23 2006-01-05 Michel Bedard Method and apparatus for the monitoring of clinical states
US20060001538A1 (en) * 2004-06-30 2006-01-05 Ulrich Kraft Methods of monitoring the concentration of an analyte
US20060015024A1 (en) * 2004-07-13 2006-01-19 Mark Brister Transcutaneous medical device with variable stiffness
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060020192A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060016700A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060029177A1 (en) * 2001-01-16 2006-02-09 International Business Machines Corporation Unified digital architecture
US20060031094A1 (en) * 2004-08-06 2006-02-09 Medtronic Minimed, Inc. Medical data management system and process
US6998247B2 (en) * 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US6997907B2 (en) * 1997-02-05 2006-02-14 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US7003336B2 (en) * 2000-02-10 2006-02-21 Medtronic Minimed, Inc. Analyte sensor method of making the same
US7003340B2 (en) * 1998-03-04 2006-02-21 Abbott Diabetes Care Inc. Electrochemical analyte sensor
US20060264785A1 (en) * 2005-05-19 2006-11-23 Barton Dring Monitoring systems and methods
US20070016381A1 (en) * 2003-08-22 2007-01-18 Apurv Kamath Systems and methods for processing analyte sensor data
US20070027381A1 (en) * 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US20070032706A1 (en) * 2003-08-22 2007-02-08 Apurv Kamath Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20070033074A1 (en) * 2005-06-03 2007-02-08 Medtronic Minimed, Inc. Therapy management system
US20070038044A1 (en) * 2004-07-13 2007-02-15 Dobbles J M Analyte sensor
US20070043182A1 (en) * 2005-08-22 2007-02-22 Martin Joel L Multimodal polyethylene compositions and pipe made from same
US20080009692A1 (en) * 2005-09-30 2008-01-10 Abbott Diabetes Care, Inc. Method and Apparatus for Providing Analyte Sensor and Data Processing Device
US20080018433A1 (en) * 2003-10-29 2008-01-24 Innovision Research & Technology Plc Rfid Apparatus
US20080017522A1 (en) * 1997-02-06 2008-01-24 Therasense, Inc. Integrated Lancing and Measurement Device
US20080021666A1 (en) * 2003-08-01 2008-01-24 Dexcom, Inc. System and methods for processing analyte sensor data
US7324850B2 (en) * 2004-04-29 2008-01-29 Cardiac Pacemakers, Inc. Method and apparatus for communication between a handheld programmer and an implantable medical device
US20080033254A1 (en) * 2003-07-25 2008-02-07 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US20080030369A1 (en) * 1998-10-08 2008-02-07 Medtronic Minimed, Inc. Telemetered characteristic monitor system and method of using the same
US20080029391A1 (en) * 2001-05-15 2008-02-07 Abbott Diabetes Care, Inc. Biosensor Membranes Composed of Polymers Containing Heterocyclic Nitrogens
US20080039702A1 (en) * 2006-08-09 2008-02-14 Abbott Diabetes Care, Inc. Method and System for Providing Calibration of an Analyte Sensor in an Analyte Monitoring System
US20080045824A1 (en) * 2003-10-28 2008-02-21 Dexcom, Inc. Silicone composition for biocompatible membrane
US20090005665A1 (en) * 2007-05-14 2009-01-01 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090006034A1 (en) * 2007-05-14 2009-01-01 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090018424A1 (en) * 2006-10-04 2009-01-15 Dexcom, Inc. Analyte sensor
US20090018425A1 (en) * 2005-12-28 2009-01-15 Tianmei Ouyang Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US20090030294A1 (en) * 2004-05-03 2009-01-29 Dexcom, Inc. Implantable analyte sensor
US20090033482A1 (en) * 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US7651596B2 (en) * 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor

Family Cites Families (641)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1191363A (en) 1968-02-19 1970-05-13 Pavelle Ltd Improvements in or relating to Electronic Thermostats.
US3949388A (en) 1972-11-13 1976-04-06 Monitron Industries, Inc. Physiological sensor and transmitter
US3926760A (en) 1973-09-28 1975-12-16 Du Pont Process for electrophoretic deposition of polymer
US4036749A (en) 1975-04-30 1977-07-19 Anderson Donald R Purification of saline water
US4055175A (en) 1976-05-07 1977-10-25 Miles Laboratories, Inc. Blood glucose control apparatus
US4129128A (en) 1977-02-23 1978-12-12 Mcfarlane Richard H Securing device for catheter placement assembly
US4344438A (en) 1978-08-02 1982-08-17 The United States Of America As Represented By The Department Of Health, Education And Welfare Optical sensor of plasma constituents
CA1146607A (en) 1978-12-07 1983-05-17 Robert B. Phillips Target apparatus
US4327725A (en) 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4392849A (en) 1981-07-27 1983-07-12 The Cleveland Clinic Foundation Infusion pump controller
DE3138194A1 (en) 1981-09-25 1983-04-14 Basf Ag Water-insoluble porous material protein whose production and use
FI831399L (en) 1982-04-29 1983-10-30 Agripat Sa Kontaktlinsen of haerdad polyvinylalkohol
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
US4509531A (en) 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
GB2128453A (en) 1982-10-08 1984-04-26 Philips Electronic Associated System identification in communications systems
US4527240A (en) 1982-12-29 1985-07-02 Kvitash Vadim I Balascopy method for detecting and rapidly evaluating multiple imbalances within multi-parametric systems
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
US4538616A (en) 1983-07-25 1985-09-03 Robert Rogoff Blood sugar level sensing and monitoring transducer
DE3429596A1 (en) 1984-08-10 1986-02-20 Siemens Ag Device for the physiological frequency control of a stimulation electrode provided with a pacemaker
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US5245314A (en) 1985-09-18 1993-09-14 Kah Jr Carl L C Location monitoring system
US4757022A (en) 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US5055171A (en) 1986-10-06 1991-10-08 T And G Corporation Ionic semiconductor materials and applications thereof
US5002054A (en) 1987-02-25 1991-03-26 Ash Medical Systems, Inc. Interstitial filtration and collection device and method for long-term monitoring of physiological constituents of the body
US4854322A (en) 1987-02-25 1989-08-08 Ash Medical Systems, Inc. Capillary filtration and collection device for long-term monitoring of blood constituents
US4777953A (en) 1987-02-25 1988-10-18 Ash Medical Systems, Inc. Capillary filtration and collection method for long-term monitoring of blood constituents
US4759828A (en) 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US4749985A (en) 1987-04-13 1988-06-07 United States Of America As Represented By The United States Department Of Energy Functional relationship-based alarm processing
EP0290683A3 (en) 1987-05-01 1988-12-14 Diva Medical Systems B.V. Diabetes management system and apparatus
GB8725936D0 (en) 1987-11-05 1987-12-09 Genetics Int Inc Sensing system
US4925268A (en) 1988-07-25 1990-05-15 Abbott Laboratories Fiber-optic physiological probes
EP0353328A1 (en) 1988-08-03 1990-02-07 Dräger Nederland B.V. A polarographic-amperometric three-electrode sensor
US5340722A (en) 1988-08-24 1994-08-23 Avl Medical Instruments Ag Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method
US5360404A (en) 1988-12-14 1994-11-01 Inviro Medical Devices Ltd. Needle guard and needle assembly for syringe
US5068536A (en) 1989-01-19 1991-11-26 Futrex, Inc. Method for providing custom calibration for near infrared instruments for measurement of blood glucose
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
EP0396788A1 (en) 1989-05-08 1990-11-14 Dräger Nederland B.V. Process and sensor for measuring the glucose content of glucosecontaining fluids
FR2648353B1 (en) 1989-06-16 1992-03-27 Europhor Sa Microdialysis probe
US5431160A (en) 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5262035A (en) 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5264105A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5320725A (en) 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5342789A (en) 1989-12-14 1994-08-30 Sensor Technologies, Inc. Method and device for detecting and quantifying glucose in body fluids
US5051688A (en) 1989-12-20 1991-09-24 Rohm Co., Ltd. Crossed coil meter driving device having a plurality of input parameters
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5124661A (en) 1990-07-23 1992-06-23 I-Stat Corporation Reusable test unit for simulating electrochemical sensor signals for quality assurance of portable blood analyzer instruments
US5431921A (en) 1990-09-28 1995-07-11 Pfizer Inc Dispensing device containing a hydrophobic medium
WO1992010133A1 (en) 1990-12-12 1992-06-25 Intelligent Medical Systems, Inc. Infrared thermometer utilizing calibration mapping
CA2050057A1 (en) 1991-03-04 1992-09-05 Adam Heller Interferant eliminating biosensors
US5262305A (en) 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
US5469855A (en) 1991-03-08 1995-11-28 Exergen Corporation Continuous temperature monitor
US5135004A (en) * 1991-03-12 1992-08-04 Incontrol, Inc. Implantable myocardial ischemia monitor and related method
US5122925A (en) 1991-04-22 1992-06-16 Control Products, Inc. Package for electronic components
US5289497A (en) 1991-05-23 1994-02-22 Interdigital Technology Corporation Broadcast synchronized communication system
CA2074702C (en) 1991-07-29 1996-11-19 Donald J. Urbas Programmable transponder
GB9120144D0 (en) 1991-09-20 1991-11-06 Imperial College A dialysis electrode device
US5322063A (en) 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5372427A (en) 1991-12-19 1994-12-13 Texas Instruments Incorporated Temperature sensor
US5246867A (en) 1992-01-17 1993-09-21 University Of Maryland At Baltimore Determination and quantification of saccharides by luminescence lifetimes and energy transfer
CA2129227A1 (en) 1992-01-31 1993-08-05 Christian Paul Valcke Method and apparatus for closed loop drug delivery
US5328927A (en) 1992-03-03 1994-07-12 Merck Sharpe & Dohme, Ltd. Hetercyclic compounds, processes for their preparation and pharmaceutical compositions containing them
ES2299133T3 (en) 1992-03-05 2008-05-16 Qualcomm, Incorporated Apparatus and method for reducing the collision of messages between mobile stations simultaneously accessing a base station in a CDMA cellular communications system.
EP0563795B1 (en) 1992-03-31 1998-07-22 Dai Nippon Printing Co., Ltd. Enzyme-immobilized electrode, composition for preparation of the same and electrically conductive enzyme
ES2155068T3 (en) 1992-04-03 2001-05-01 Micromedical Ind Ltd Physiological supervision system.
GB9211402D0 (en) 1992-05-29 1992-07-15 Univ Manchester Sensor devices
US5333615A (en) 1992-06-22 1994-08-02 William Craelius Apparatus for digitally recording and analyzing electrocardial and other bioelectric signals
DK95792D0 (en) 1992-07-24 1992-07-24 Radiometer As Sensor for non-invasive, in vivo determination of an analyte and blodgennemstroemning
US6283761B1 (en) 1992-09-08 2001-09-04 Raymond Anthony Joao Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information
WO1994010553A1 (en) 1992-10-23 1994-05-11 Optex Biomedical, Inc. Fibre-optic probe for the measurement of fluid parameters
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
CA2103325C (en) 1992-11-23 2004-07-20 Kirk W. Johnson Techniques to improve the performance of electrochemical sensors
US5410326A (en) 1992-12-04 1995-04-25 Goldstein; Steven W. Programmable remote control device for interacting with a plurality of remotely controlled devices
US5342408A (en) 1993-01-07 1994-08-30 Incontrol, Inc. Telemetry system for an implantable cardiac device
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5499243A (en) 1993-01-22 1996-03-12 Hall; Dennis R. Method and apparatus for coordinating transfer of information between a base station and a plurality of radios
US5600301A (en) 1993-03-11 1997-02-04 Schrader Automotive Inc. Remote tire pressure monitoring system employing coded tire identification and radio frequency transmission, and enabling recalibration upon tire rotation or replacement
US5400794A (en) 1993-03-19 1995-03-28 Gorman; Peter G. Biomedical response monitor and technique using error correction
JP2979933B2 (en) 1993-08-03 1999-11-22 セイコーエプソン株式会社 Pulse wave analysis device
DE4329898A1 (en) 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring equipment
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
FR2713372B1 (en) 1993-12-01 1996-03-01 Neopost Ind Thermally protective arrangement for secure electronic appliance, in particular franking machine.
DE4401400A1 (en) 1994-01-19 1995-07-20 Ernst Prof Dr Pfeiffer Method and apparatus for continuously monitoring the concentration of a metabolite
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5609575A (en) 1994-04-11 1997-03-11 Graseby Medical Limited Infusion pump and method with dose-rate calculation
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
DE4415896A1 (en) * 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5472317A (en) 1994-06-03 1995-12-05 Minimed Inc. Mounting clip for a medication infusion pump
US5809417A (en) 1994-07-05 1998-09-15 Lucent Technologies Inc. Cordless telephone arranged for operating with multiple portable units in a frequency hopping system
US5798961A (en) 1994-08-23 1998-08-25 Emc Corporation Non-volatile memory module
US5462051A (en) 1994-08-31 1995-10-31 Colin Corporation Medical communication system
US5549115A (en) 1994-09-28 1996-08-27 Heartstream, Inc. Method and apparatus for gathering event data using a removable data storage medium and clock
US5724030A (en) 1994-10-13 1998-03-03 Bio Medic Data Systems, Inc. System monitoring reprogrammable implantable transponder
DE69600098T2 (en) 1995-02-04 1998-06-10 Baumann & Haldi Sa Individual device for measuring, processing and transmission of substantially physiological parameters
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5628310A (en) 1995-05-19 1997-05-13 Joseph R. Lakowicz Method and apparatus to perform trans-cutaneous analyte monitoring
CA2259254C (en) 1996-07-08 2008-02-19 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
US5581206A (en) 1995-07-28 1996-12-03 Micron Quantum Devices, Inc. Power level detection circuit
US5665222A (en) 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US5748103A (en) 1995-11-13 1998-05-05 Vitalcom, Inc. Two-way TDMA telemetry system with power conservation features
FI960636A (en) 1996-02-12 1997-08-13 Nokia Mobile Phones Ltd A method for monitoring the patient's state of health
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
FR2748171B1 (en) 1996-04-30 1998-07-17 Motorola Inc A method of generating a clock signal for use in a data receiver, clock generator, receiver data and remote access system for vehicles
DE19618597B4 (en) 1996-05-09 2005-07-21 Institut für Diabetestechnologie Gemeinnützige Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm A method for determining the concentration of tissue glucose
US6130602A (en) 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US5735285A (en) 1996-06-04 1998-04-07 Data Critical Corp. Method and hand-held apparatus for demodulating and viewing frequency modulated biomedical signals
JP4012252B2 (en) 1996-06-18 2007-11-21 アルザ コーポレイション Apparatus for enhancing the transdermal delivery or sampling of an agent
US5830064A (en) 1996-06-21 1998-11-03 Pear, Inc. Apparatus and method for distinguishing events which collectively exceed chance expectations and thereby controlling an output
JP3581218B2 (en) 1996-07-03 2004-10-27 株式会社東芝 Mobile communication terminal device with its mobile telephone and data terminal equipment
US5856758A (en) 1996-11-20 1999-01-05 Adtran, Inc. Low distortion driver employing positive feedback for reducing power loss in output impedance that effectively matches the impedance of driven line
US6071251A (en) 1996-12-06 2000-06-06 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US5964993A (en) 1996-12-19 1999-10-12 Implanted Biosystems Inc. Glucose sensor
US6130623A (en) 1996-12-31 2000-10-10 Lucent Technologies Inc. Encryption for modulated backscatter systems
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US6122351A (en) 1997-01-21 2000-09-19 Med Graph, Inc. Method and system aiding medical diagnosis and treatment
DK1743667T3 (en) 1997-12-31 2012-06-18 Medtronic Minimed Inc Loading device for an insertion
US6093172A (en) 1997-02-05 2000-07-25 Minimed Inc. Injector for a subcutaneous insertion set
CA2575064C (en) 1997-12-31 2010-02-02 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US5749907A (en) 1997-02-18 1998-05-12 Pacesetter, Inc. System and method for identifying and displaying medical data which violate programmable alarm conditions
US6309884B1 (en) 1997-02-26 2001-10-30 Diasense, Inc. Individual calibration of blood glucose for supporting noninvasive self-monitoring blood glucose
US6159147A (en) 1997-02-28 2000-12-12 Qrs Diagnostics, Llc Personal computer card for collection of real-time biological data
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US6558321B1 (en) * 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US7899511B2 (en) 1997-03-04 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US20050033132A1 (en) 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US6699187B2 (en) 1997-03-27 2004-03-02 Medtronic, Inc. System and method for providing remote expert communications and video capabilities for use during a medical procedure
US5961451A (en) 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US5942979A (en) 1997-04-07 1999-08-24 Luppino; Richard On guard vehicle safety warning system
US5935224A (en) 1997-04-24 1999-08-10 Microsoft Corporation Method and apparatus for adaptively coupling an external peripheral device to either a universal serial bus port on a computer or hub or a game port on a computer
US6085342A (en) 1997-05-06 2000-07-04 Telefonaktiebolaget L M Ericsson (Publ) Electronic system having a chip integrated power-on reset circuit with glitch sensor
US5954643A (en) 1997-06-09 1999-09-21 Minimid Inc. Insertion set for a transcutaneous sensor
US7806886B2 (en) 1999-06-03 2010-10-05 Medtronic Minimed, Inc. Apparatus and method for controlling insulin infusion with state variable feedback
CA2294610A1 (en) 1997-06-16 1998-12-23 George Moshe Katz Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
US6056435A (en) 1997-06-24 2000-05-02 Exergen Corporation Ambient and perfusion normalized temperature detector
US6731976B2 (en) 1997-09-03 2004-05-04 Medtronic, Inc. Device and method to measure and communicate body parameters
DE19836401A1 (en) 1997-09-19 2000-02-17 Salcomp Oy Salo An apparatus for charging rechargeable batteries
US6117290A (en) 1997-09-26 2000-09-12 Pepex Biomedical, Llc System and method for measuring a bioanalyte such as lactate
US20020013538A1 (en) 1997-09-30 2002-01-31 David Teller Method and apparatus for health signs monitoring
US6514689B2 (en) 1999-05-11 2003-02-04 M-Biotech, Inc. Hydrogel biosensor
US5904671A (en) 1997-10-03 1999-05-18 Navot; Nir Tampon wetness detection system
EP0918423B1 (en) 1997-10-15 2004-03-10 Nokia Corporation Mobile phone for Internet applications
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
FI107080B (en) 1997-10-27 2001-05-31 Nokia Mobile Phones Ltd Measuring Instruments
ES2281143T3 (en) 1997-11-12 2007-09-16 Lightouch Medical, Inc. Method for non-invasive measurement of an analyte.
US6635167B1 (en) 1997-12-04 2003-10-21 Roche Diagnostics Corporation Apparatus and method for determining the concentration of a component of a sample
WO1999027849A1 (en) 1997-12-04 1999-06-10 Roche Diagnostics Corporation Instrument setup utility program
US6579690B1 (en) 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US6097480A (en) 1998-01-27 2000-08-01 Kaplan; Milton Vehicle interlock system
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6579231B1 (en) 1998-03-27 2003-06-17 Mci Communications Corporation Personal medical monitoring unit and system
JP2002509771A (en) 1998-03-30 2002-04-02 アストラゼネカ・アクチエボラーグ Device including a display device for displaying indicia, fault detection in the inhaler and the device containing the device
JP3104672B2 (en) 1998-03-31 2000-10-30 日本電気株式会社 Current detection type sensor element, and a manufacturing method thereof
JPH11296598A (en) 1998-04-07 1999-10-29 Seizaburo Arita System and method for predicting blood-sugar level and record medium where same method is recorded
WO1999053287A3 (en) 1998-04-09 1999-12-02 California Inst Of Techn Electronic techniques for analyte detection
US6091987A (en) 1998-04-29 2000-07-18 Medtronic, Inc. Power consumption reduction in medical devices by employing different supply voltages
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
DE69910003D1 (en) 1998-05-13 2003-09-04 Cygnus Therapeutic Systems Monitoring physiological analytes
DE69914319D1 (en) 1998-05-13 2004-02-26 Cygnus Therapeutic Systems Signal processing for measurement of physiological analytes
US6121611A (en) 1998-05-20 2000-09-19 Molecular Imaging Corporation Force sensing probe for scanning probe microscopy
US6302855B1 (en) 1998-05-20 2001-10-16 Novo Nordisk A/S Medical apparatus for use by a patient for medical self treatment of diabetes
US6359270B1 (en) 1998-09-04 2002-03-19 Ncr Corporation Communications module mounting for domestic appliance
JP2000031951A (en) 1998-07-15 2000-01-28 Fujitsu Ltd Burst synchronization circuit
US6493069B1 (en) 1998-07-24 2002-12-10 Terumo Kabushiki Kaisha Method and instrument for measuring blood sugar level
KR20000019716A (en) 1998-09-15 2000-04-15 박호군 Composition comprising bioflavonoid compounds for descending blood sugar
US6740518B1 (en) 1998-09-17 2004-05-25 Clinical Micro Sensors, Inc. Signal detection techniques for the detection of analytes
US6402689B1 (en) 1998-09-30 2002-06-11 Sicel Technologies, Inc. Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US20060202859A1 (en) 1998-10-08 2006-09-14 Mastrototaro John J Telemetered characteristic monitor system and method of using the same
US6496729B2 (en) 1998-10-28 2002-12-17 Medtronic, Inc. Power consumption reduction in medical devices employing multiple supply voltages and clock frequency control
WO2000030532A1 (en) 1998-11-20 2000-06-02 University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
DK1144028T3 (en) 1998-11-30 2004-10-18 Novo Nordisk As System to help a user during medical self treatment, said self treatment comprising a plurality of actions
US6540672B1 (en) 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment
US6248067B1 (en) 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
JP2002536103A (en) 1999-02-12 2002-10-29 シグナス, インコーポレイテッド Devices and methods for frequent measurements of analyte present in a biological system
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
US8103325B2 (en) 1999-03-08 2012-01-24 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6416471B1 (en) 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6200265B1 (en) 1999-04-16 2001-03-13 Medtronic, Inc. Peripheral memory patch and access method for use with an implantable medical device
US6669663B1 (en) 1999-04-30 2003-12-30 Medtronic, Inc. Closed loop medicament pump
US6359444B1 (en) 1999-05-28 2002-03-19 University Of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
US6546268B1 (en) 1999-06-02 2003-04-08 Ball Semiconductor, Inc. Glucose sensor
US6312378B1 (en) 1999-06-03 2001-11-06 Cardiac Intelligence Corporation System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
US7267665B2 (en) 1999-06-03 2007-09-11 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
WO2000078992A3 (en) 1999-06-18 2001-07-19 Therasense Inc Mass transport limited in vivo analyte sensor
US6423035B1 (en) 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US6804558B2 (en) 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6413393B1 (en) 1999-07-07 2002-07-02 Minimed, Inc. Sensor including UV-absorbing polymer and method of manufacture
US7113821B1 (en) 1999-08-25 2006-09-26 Johnson & Johnson Consumer Companies, Inc. Tissue electroperforation for enhanced drug delivery
US6608562B1 (en) 1999-08-31 2003-08-19 Denso Corporation Vital signal detecting apparatus
EP1211976A1 (en) 1999-09-17 2002-06-12 Thomas Pieber Device for conducting in vivo measurements of quantities in living organisms
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6294997B1 (en) 1999-10-04 2001-09-25 Intermec Ip Corp. RFID tag having timing and environment modules
US6662439B1 (en) 1999-10-04 2003-12-16 Roche Diagnostics Corporation Laser defined features for patterned laminates and electrodes
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
US7073246B2 (en) 1999-10-04 2006-07-11 Roche Diagnostics Operations, Inc. Method of making a biosensor
WO2001028495A3 (en) 1999-10-08 2002-07-11 Healthetech Inc Indirect calorimeter for weight control
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
DE60011286T2 (en) 1999-11-15 2005-07-14 Therasense, Inc., Alameda Transition metal complex compounds with a bidentate ligands containing an imidazole ring
US6291200B1 (en) 1999-11-17 2001-09-18 Agentase, Llc Enzyme-containing polymeric sensors
US6658396B1 (en) 1999-11-29 2003-12-02 Tang Sharon S Neural network drug dosage estimation
US6522927B1 (en) 1999-12-01 2003-02-18 Vertis Neuroscience, Inc. Electrode assembly for a percutaneous electrical therapy system
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US6497655B1 (en) 1999-12-17 2002-12-24 Medtronic, Inc. Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US7060031B2 (en) 1999-12-17 2006-06-13 Medtronic, Inc. Method and apparatus for remotely programming implantable medical devices
US20020091796A1 (en) 2000-01-03 2002-07-11 John Higginson Method and apparatus for transmitting data over a network using a docking device
US7286894B1 (en) 2000-01-07 2007-10-23 Pasco Scientific Hand-held computer device and method for interactive data acquisition, analysis, annotation, and calibration
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
EP1248660B1 (en) 2000-01-21 2012-04-11 Medtronic MiniMed, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
US7369635B2 (en) 2000-01-21 2008-05-06 Medtronic Minimed, Inc. Rapid discrimination preambles and methods for using the same
US6748445B1 (en) 2000-02-01 2004-06-08 Microsoft Corporation System and method for exchanging data
US20010037060A1 (en) 2000-02-08 2001-11-01 Thompson Richard P. Web site for glucose monitoring
US6484045B1 (en) 2000-02-10 2002-11-19 Medtronic Minimed, Inc. Analyte sensor and method of making the same
US20030060765A1 (en) 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US7027931B1 (en) 2000-02-24 2006-04-11 Bionostics, Inc. System for statistical analysis of quality control data
US6893396B2 (en) 2000-03-01 2005-05-17 I-Medik, Inc. Wireless internet bio-telemetry monitoring system and interface
US6405066B1 (en) 2000-03-17 2002-06-11 The Regents Of The University Of California Implantable analyte sensor
US7025425B2 (en) 2000-03-29 2006-04-11 University Of Virginia Patent Foundation Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
WO2001075775A3 (en) 2000-04-04 2002-02-28 Contact Technology Systems Inc Arc fault current interrupter testing device
US6610012B2 (en) 2000-04-10 2003-08-26 Healthetech, Inc. System and method for remote pregnancy monitoring
US6561975B1 (en) 2000-04-19 2003-05-13 Medtronic, Inc. Method and apparatus for communicating with medical device systems
US6440068B1 (en) 2000-04-28 2002-08-27 International Business Machines Corporation Measuring user health as measured by multiple diverse health measurement devices utilizing a personal storage device
WO2001088524A1 (en) 2000-05-12 2001-11-22 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
US7181261B2 (en) 2000-05-15 2007-02-20 Silver James H Implantable, retrievable, thrombus minimizing sensors
US6459917B1 (en) 2000-05-22 2002-10-01 Ashok Gowda Apparatus for access to interstitial fluid, blood, or blood plasma components
US20040197846A1 (en) 2001-01-18 2004-10-07 Linda Hockersmith Determination of glucose sensitivity and a method to manipulate blood glucose concentration
US6735479B2 (en) 2000-06-14 2004-05-11 Medtronic, Inc. Lifestyle management system
WO2002000111A1 (en) 2000-06-23 2002-01-03 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6494830B1 (en) 2000-06-22 2002-12-17 Guidance Interactive Technologies, Inc. Handheld controller for monitoring/using medical parameters
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6540675B2 (en) 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
US6400974B1 (en) 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US20030208113A1 (en) 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
EP1309271B1 (en) 2000-08-18 2008-04-16 Animas Technologies LLC Device for prediction of hypoglycemic events
US20020026111A1 (en) 2000-08-28 2002-02-28 Neil Ackerman Methods of monitoring glucose levels in a subject and uses thereof
US6645359B1 (en) 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
WO2002030264A3 (en) 2000-10-10 2003-07-17 Microchips Inc Microchip reservoir devices using wireless transmission of power and data
US6712025B2 (en) 2000-10-13 2004-03-30 Dogwatch, Inc. Receiver/stimulus unit for an animal control system
US6574510B2 (en) 2000-11-30 2003-06-03 Cardiac Pacemakers, Inc. Telemetry apparatus and method for an implantable medical device
US7018341B2 (en) 2000-12-11 2006-03-28 Resmed Limited Methods and apparatus for stroke patient treatment
US6665558B2 (en) 2000-12-15 2003-12-16 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
US20020118528A1 (en) 2000-12-15 2002-08-29 Bor-Ray Su Substrate layout method and structure for reducing cross talk of adjacent signals
US20020074162A1 (en) 2000-12-15 2002-06-20 Bor-Ray Su Substrate layout method and structure for reducing cross talk of adjacent signals
US7052483B2 (en) 2000-12-19 2006-05-30 Animas Corporation Transcutaneous inserter for low-profile infusion sets
US6603770B2 (en) 2001-01-16 2003-08-05 Physical Optics Corporation Apparatus and method for accessing a network
US6937222B2 (en) 2001-01-18 2005-08-30 Sharp Kabushiki Kaisha Display, portable device, and substrate
CA2440799A1 (en) 2001-03-14 2002-09-19 Baxter International Inc. Internet based therapy management system
US6968294B2 (en) 2001-03-15 2005-11-22 Koninklijke Philips Electronics N.V. Automatic system for monitoring person requiring care and his/her caretaker
US6611206B2 (en) 2001-03-15 2003-08-26 Koninklijke Philips Electronics N.V. Automatic system for monitoring independent person requiring occasional assistance
WO2002078512A8 (en) 2001-04-02 2004-12-02 Therasense Inc Blood glucose tracking apparatus and methods
US6767440B1 (en) 2001-04-24 2004-07-27 Roche Diagnostics Corporation Biosensor
US6698269B2 (en) 2001-04-27 2004-03-02 Oceana Sensor Technologies, Inc. Transducer in-situ testing apparatus and method
US20020164836A1 (en) 2001-05-07 2002-11-07 Advanced Semiconductor Engineering Inc. Method of manufacturing printed circuit board
US7395214B2 (en) 2001-05-11 2008-07-01 Craig P Shillingburg Apparatus, device and method for prescribing, administering and monitoring a treatment regimen for a patient
US6549796B2 (en) 2001-05-25 2003-04-15 Lifescan, Inc. Monitoring analyte concentration using minimally invasive devices
DE60227510D1 (en) 2001-06-01 2008-08-21 Polyfuel Inc Interchangeable fuel cartridge, fuel cell unit with said fuel cartridge for portable electronic devices and corresponding device
US7410468B2 (en) 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US7179226B2 (en) 2001-06-21 2007-02-20 Animas Corporation System and method for managing diabetes
WO2003000127A3 (en) 2001-06-22 2004-02-12 Cygnus Therapeutic Systems Method for improving the performance of an analyte monitoring system
JP2003035229A (en) * 2001-07-25 2003-02-07 Suzuki Motor Corp Intake device of v-type engine
US6544212B2 (en) 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system
US6788965B2 (en) 2001-08-03 2004-09-07 Sensys Medical, Inc. Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
US20040054263A1 (en) 2001-08-20 2004-03-18 Piet Moerman Wireless diabetes management devices and methods for using the same
US7736272B2 (en) 2001-08-21 2010-06-15 Pantometrics, Ltd. Exercise system with graphical feedback and method of gauging fitness progress
US6781522B2 (en) * 2001-08-22 2004-08-24 Kivalo, Inc. Portable storage case for housing a medical monitoring device and an associated method for communicating therewith
JP3962250B2 (en) * 2001-08-29 2007-08-22 株式会社レアメタル Vivo information detection system and tag devices used in this relay device
US6827702B2 (en) 2001-09-07 2004-12-07 Medtronic Minimed, Inc. Safety limits for closed-loop infusion pump control
WO2003022142A3 (en) 2001-09-13 2003-10-16 Boeing Co Method for transmitting vital health statistics to a remote location form an aircraft
US7052591B2 (en) 2001-09-21 2006-05-30 Therasense, Inc. Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US6830562B2 (en) 2001-09-27 2004-12-14 Unomedical A/S Injector device for placing a subcutaneous infusion set
JP2003108677A (en) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd Medical information communication system
US20050137480A1 (en) 2001-10-01 2005-06-23 Eckhard Alt Remote control of implantable device through medical implant communication service band
DE60237463D1 (en) 2001-11-16 2010-10-07 Roche Diagnostics Gmbh Flexible sensor and manufacturing processes
US20030116447A1 (en) 2001-11-16 2003-06-26 Surridge Nigel A. Electrodes, methods, apparatuses comprising micro-electrode arrays
US7276146B2 (en) 2001-11-16 2007-10-02 Roche Diagnostics Operations, Inc. Electrodes, methods, apparatuses comprising micro-electrode arrays
EP1461745A4 (en) 2001-11-28 2006-10-18 Phemi Inc Methods and apparatus for automated interactive medical management
US7204823B2 (en) 2001-12-19 2007-04-17 Medtronic Minimed, Inc. Medication delivery system and monitor
US7729776B2 (en) 2001-12-19 2010-06-01 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
US20030119457A1 (en) 2001-12-19 2003-06-26 Standke Randolph E. Filter technique for increasing antenna isolation in portable communication devices
US7082334B2 (en) 2001-12-19 2006-07-25 Medtronic, Inc. System and method for transmission of medical and like data from a patient to a dedicated internet website
US20050027182A1 (en) 2001-12-27 2005-02-03 Uzair Siddiqui System for monitoring physiological characteristics
US20080255438A1 (en) 2001-12-27 2008-10-16 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US7022072B2 (en) 2001-12-27 2006-04-04 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US6980852B2 (en) 2002-01-25 2005-12-27 Subqiview Inc. Film barrier dressing for intravascular tissue monitoring system
US20030144711A1 (en) 2002-01-29 2003-07-31 Neuropace, Inc. Systems and methods for interacting with an implantable medical device
US6985773B2 (en) 2002-02-07 2006-01-10 Cardiac Pacemakers, Inc. Methods and apparatuses for implantable medical device telemetry power management
US20030212379A1 (en) * 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
EP1487519B1 (en) 2002-02-26 2013-06-12 TecPharma Licensing AG Insertion device for an insertion set and method of using the same
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
US20040030531A1 (en) 2002-03-28 2004-02-12 Honeywell International Inc. System and method for automated monitoring, recognizing, supporting, and responding to the behavior of an actor
US6810309B2 (en) 2002-04-25 2004-10-26 Visteon Global Technologies, Inc. Vehicle personalization via biometric identification
EP1498067A1 (en) 2002-04-25 2005-01-19 Matsushita Electric Industrial Co., Ltd. Dosage determination supporting device, injector, and health management supporting system
US6983867B1 (en) 2002-04-29 2006-01-10 Dl Technology Llc Fluid dispense pump with drip prevention mechanism and method for controlling same
US20030212579A1 (en) 2002-05-08 2003-11-13 Brown Stephen J. Remote health management system
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US20040030581A1 (en) * 2002-06-12 2004-02-12 Samuel Leven Heart monitoring device
US7124027B1 (en) 2002-07-11 2006-10-17 Yazaki North America, Inc. Vehicular collision avoidance system
JP2004054394A (en) 2002-07-17 2004-02-19 Toshiba Corp Radio information processing system, radio information recording medium, radio information processor and communication method for radio information processing system
US7034677B2 (en) 2002-07-19 2006-04-25 Smiths Detection Inc. Non-specific sensor array detectors
US7470533B2 (en) 2002-12-20 2008-12-30 Acea Biosciences Impedance based devices and methods for use in assays
US7278983B2 (en) 2002-07-24 2007-10-09 Medtronic Minimed, Inc. Physiological monitoring device for controlling a medication infusion device
US20070100222A1 (en) 2004-06-14 2007-05-03 Metronic Minimed, Inc. Analyte sensing apparatus for hospital use
US6992580B2 (en) 2002-07-25 2006-01-31 Motorola, Inc. Portable communication device and corresponding method of operation
EP2327359B1 (en) 2002-08-13 2015-01-21 University Of Virginia Patent Foundation Method, system, and computer program product for processing of self-monitoring blood glucose (smbg) data to enhance diabetic self-management
DK1734858T3 (en) 2004-03-22 2014-10-20 Bodymedia Inc Non-invasive temperature monitoring device
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7192405B2 (en) 2002-09-30 2007-03-20 Becton, Dickinson And Company Integrated lancet and bodily fluid sensor
DE60328039D1 (en) 2002-10-11 2009-07-30 Becton Dickinson Co Insulin delivery system with sensor
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US6983861B2 (en) * 2002-11-05 2006-01-10 Aidox Technology Corporation Dispensing apparatus
US7572237B2 (en) 2002-11-06 2009-08-11 Abbott Diabetes Care Inc. Automatic biological analyte testing meter with integrated lancing device and methods of use
GB0226648D0 (en) 2002-11-15 2002-12-24 Koninkl Philips Electronics Nv Usage data harvesting
US20040100376A1 (en) 2002-11-26 2004-05-27 Kimberly-Clark Worldwide, Inc. Healthcare monitoring system
US7580395B2 (en) 2002-11-29 2009-08-25 Intermec Ip Corp. Information gathering apparatus and method having multiple wireless communication options
US7009511B2 (en) 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
US7468032B2 (en) 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
US20040122353A1 (en) 2002-12-19 2004-06-24 Medtronic Minimed, Inc. Relay device for transferring information between a sensor system and a fluid delivery system
US7154398B2 (en) 2003-01-06 2006-12-26 Chen Thomas C H Wireless communication and global location enabled intelligent health monitoring system
US7228162B2 (en) 2003-01-13 2007-06-05 Isense Corporation Analyte sensor
US7447298B2 (en) 2003-04-01 2008-11-04 Cabot Microelectronics Corporation Decontamination and sterilization system using large area x-ray source
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7587287B2 (en) * 2003-04-04 2009-09-08 Abbott Diabetes Care Inc. Method and system for transferring analyte test data
US20040204868A1 (en) 2003-04-09 2004-10-14 Maynard John D. Reduction of errors in non-invasive tissue sampling
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
DE602004023190D1 (en) 2003-05-08 2009-10-29 Aimedics Pty Ltd Patient monitoring device
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
EP1636579A4 (en) 2003-06-10 2011-10-05 Smiths Detection Inc Sensor arrangement
US20040254433A1 (en) 2003-06-12 2004-12-16 Bandis Steven D. Sensor introducer system, apparatus and method
US7155290B2 (en) 2003-06-23 2006-12-26 Cardiac Pacemakers, Inc. Secure long-range telemetry for implantable medical device
US7510564B2 (en) 2003-06-27 2009-03-31 Abbott Diabetes Care Inc. Lancing device
US7242981B2 (en) 2003-06-30 2007-07-10 Codman Neuro Sciences Sárl System and method for controlling an implantable medical device subject to magnetic field or radio frequency exposure
US7722536B2 (en) * 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
EP1649260A4 (en) 2003-07-25 2010-07-07 Dexcom Inc Electrode systems for electrochemical sensors
WO2005011520A3 (en) 2003-07-25 2005-12-15 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
US7108778B2 (en) 2003-07-25 2006-09-19 Dexcom, Inc. Electrochemical sensors including electrode systems with increased oxygen generation
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7933639B2 (en) 2003-08-01 2011-04-26 Dexcom, Inc. System and methods for processing analyte sensor data
CA2852974C (en) 2003-09-11 2017-06-27 Theranos, Inc. Medical device for analyte monitoring and drug delivery
CA2541616A1 (en) 2003-09-30 2005-04-14 Andre Mang Sensor with increased biocompatibility
US7203549B2 (en) 2003-10-02 2007-04-10 Medtronic, Inc. Medical device programmer with internal antenna and display
US8140168B2 (en) 2003-10-02 2012-03-20 Medtronic, Inc. External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore
US7148803B2 (en) 2003-10-24 2006-12-12 Symbol Technologies, Inc. Radio frequency identification (RFID) based sensor networks
US6928380B2 (en) 2003-10-30 2005-08-09 International Business Machines Corporation Thermal measurements of electronic devices during operation
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
KR20060132434A (en) 2003-11-06 2006-12-21 라이프스캔, 인코포레이티드 Drug delivery pen with event notification means
US7419573B2 (en) 2003-11-06 2008-09-02 3M Innovative Properties Company Circuit for electrochemical sensor strip
WO2005051232A3 (en) 2003-11-20 2005-12-08 Angiotech Int Ag Soft tissue implants and anti-scarring agents
US20050176136A1 (en) 2003-11-19 2005-08-11 Dexcom, Inc. Afinity domain for analyte sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US20050113886A1 (en) 2003-11-24 2005-05-26 Fischell David R. Implantable medical system with long range telemetry
EP2239567B1 (en) 2003-12-05 2015-09-02 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US7460898B2 (en) 2003-12-05 2008-12-02 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7424318B2 (en) 2003-12-05 2008-09-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7467003B2 (en) 2003-12-05 2008-12-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US7831287B2 (en) 2006-10-04 2010-11-09 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20080197024A1 (en) 2003-12-05 2008-08-21 Dexcom, Inc. Analyte sensor
US7366556B2 (en) 2003-12-05 2008-04-29 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US7081195B2 (en) 2003-12-08 2006-07-25 Dexcom, Inc. Systems and methods for improving electrochemical analyte sensors
EP1711791B1 (en) 2003-12-09 2014-10-15 DexCom, Inc. Signal processing for continuous analyte sensor
US7384397B2 (en) 2003-12-30 2008-06-10 Medtronic Minimed, Inc. System and method for sensor recalibration
US7637868B2 (en) 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
CN1910600B (en) 2004-01-23 2011-12-14 株式会社半导体能源研究所 Id tag, id cards and id tag
EP2843848B1 (en) 2004-01-27 2017-11-01 Altivera L.L.C. Diagnostic radio frequency identification sensors and applications thereof
US8165651B2 (en) 2004-02-09 2012-04-24 Abbott Diabetes Care Inc. Analyte sensor, and associated system and method employing a catalytic agent
US7364592B2 (en) 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US20060154642A1 (en) 2004-02-20 2006-07-13 Scannell Robert F Jr Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses
JP3590053B1 (en) 2004-02-24 2004-11-17 株式会社日立製作所 Blood glucose level measuring device
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7404796B2 (en) 2004-03-01 2008-07-29 Becton Dickinson And Company System for determining insulin dose using carbohydrate to insulin ratio and insulin sensitivity factor
DE102004011135A1 (en) 2004-03-08 2005-09-29 Disetronic Licensing Ag Method and apparatus for calculating a bolus amount
US7831828B2 (en) 2004-03-15 2010-11-09 Cardiac Pacemakers, Inc. System and method for securely authenticating a data exchange session with an implantable medical device
GB0405798D0 (en) 2004-03-15 2004-04-21 E San Ltd Medical data display
US7228182B2 (en) 2004-03-15 2007-06-05 Cardiac Pacemakers, Inc. Cryptographic authentication for telemetry with an implantable medical device
EP1735729A2 (en) 2004-03-26 2006-12-27 Novo Nordisk A/S Device for displaying data relevant for a diabetic patient
US20050221504A1 (en) 2004-04-01 2005-10-06 Petruno Patrick T Optoelectronic rapid diagnostic test system
US6971274B2 (en) 2004-04-02 2005-12-06 Sierra Instruments, Inc. Immersible thermal mass flow meter
US7204540B2 (en) * 2004-04-16 2007-04-17 Wheatley Donald G Method for covering structure having automatic coupling system
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US20050245799A1 (en) 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US7241266B2 (en) 2004-05-20 2007-07-10 Digital Angel Corporation Transducer for embedded bio-sensor using body energy as a power source
US7118667B2 (en) 2004-06-02 2006-10-10 Jin Po Lee Biosensors having improved sample application and uses thereof
WO2005119524A3 (en) 2004-06-04 2007-04-19 Therasense Inc Diabetes care host-client architecture and data management system
US7289855B2 (en) 2004-06-09 2007-10-30 Medtronic, Inc. Implantable medical device package antenna
WO2006022993A3 (en) 2004-06-10 2006-12-21 Ndi Medical Llc Implantable generator for muscle and nerve stimulation
US7565197B2 (en) 2004-06-18 2009-07-21 Medtronic, Inc. Conditional requirements for remote medical device programming
US7556723B2 (en) 2004-06-18 2009-07-07 Roche Diagnostics Operations, Inc. Electrode design for biosensor
DE102004031092A1 (en) 2004-06-28 2006-01-12 Giesecke & Devrient Gmbh transponder unit
US20080242961A1 (en) 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US7344500B2 (en) 2004-07-27 2008-03-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
WO2006026741A1 (en) * 2004-08-31 2006-03-09 Lifescan Scotland Limited Wearable sensor device and system
WO2006024671A1 (en) 2004-09-03 2006-03-09 Novo Nordisk A/S A method of calibrating a system for measuring the concentration of substances in body and an apparatus for exercising the method
US8211038B2 (en) * 2004-09-17 2012-07-03 Abbott Diabetes Care Inc. Multiple-biosensor article
US20090247931A1 (en) 2004-09-23 2009-10-01 Novo Nordisk A/S Device for self-care support
US20060095091A1 (en) 2004-11-02 2006-05-04 Medtronic, Inc. Apparatus for data retention in an implantable medical device
US7408132B2 (en) 2004-11-08 2008-08-05 Rrc Power Solutions Gmbh Temperature sensor for power supply
US7237712B2 (en) 2004-12-01 2007-07-03 Alfred E. Mann Foundation For Scientific Research Implantable device and communication integrated circuit implementable therein
EP1827214B1 (en) 2004-12-13 2012-02-15 Koninklijke Philips Electronics N.V. Mobile monitoring
US7461192B2 (en) 2004-12-15 2008-12-02 Rambus Inc. Interface for bridging out-of-band information and preventing false presence detection of terminating devices
CN101137320B (en) 2004-12-29 2012-10-03 生命扫描苏格兰有限公司 Method of inputting data into an analyte testing device
US20060166629A1 (en) 2005-01-24 2006-07-27 Therasense, Inc. Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems
US20060173260A1 (en) * 2005-01-31 2006-08-03 Gmms Ltd System, device and method for diabetes treatment and monitoring
US7547281B2 (en) 2005-02-01 2009-06-16 Medtronic Minimed, Inc. Algorithm sensor augmented bolus estimator for semi-closed loop infusion system
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20060202805A1 (en) 2005-03-14 2006-09-14 Alfred E. Mann Foundation For Scientific Research Wireless acquisition and monitoring system
EP1859279A4 (en) 2005-03-15 2009-12-30 Entelos Inc Apparatus and method for computer modeling type 1 diabetes
EP1863559A4 (en) 2005-03-21 2008-07-30 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
US7916013B2 (en) 2005-03-21 2011-03-29 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
JP2006280464A (en) * 2005-03-31 2006-10-19 Semiconductor Energy Lab Co Ltd Biological information detecting apparatus, health care apparatus, health care assisting system using them, and health care assisting method
US7889069B2 (en) 2005-04-01 2011-02-15 Codman & Shurtleff, Inc. Wireless patient monitoring system
US7270633B1 (en) 2005-04-22 2007-09-18 Cardiac Pacemakers, Inc. Ambulatory repeater for use in automated patient care and method thereof
GB2425601B (en) * 2005-04-26 2008-01-30 Bio Nano Sensium Technologies Sensor configuration
DE102005019306B4 (en) 2005-04-26 2011-09-01 Disetronic Licensing Ag Energy-optimized data transmission of a medical device
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8700157B2 (en) 2005-04-29 2014-04-15 Medtronic, Inc. Telemetry head programmer for implantable medical device and system and method
US7467065B2 (en) 2005-05-02 2008-12-16 Home Diagnostics, Inc. Computer interface for diagnostic meter
US20060253085A1 (en) 2005-05-06 2006-11-09 Medtronic Minimed, Inc. Dual insertion set
US7686787B2 (en) 2005-05-06 2010-03-30 Medtronic Minimed, Inc. Infusion device and method with disposable portion
US7604178B2 (en) 2005-05-11 2009-10-20 Intelleflex Corporation Smart tag activation
US7806854B2 (en) 2005-05-13 2010-10-05 Trustees Of Boston University Fully automated control system for type 1 diabetes
US20060272652A1 (en) 2005-06-03 2006-12-07 Medtronic Minimed, Inc. Virtual patient software system for educating and treating individuals with diabetes
US20080071580A1 (en) 2005-06-03 2008-03-20 Marcus Alan O System and method for medical evaluation and monitoring
JP4240007B2 (en) * 2005-06-06 2009-03-18 ニプロ株式会社 Telemedicine system
US20070016449A1 (en) 2005-06-29 2007-01-18 Gary Cohen Flexible glucose analysis using varying time report deltas and configurable glucose target ranges
WO2007007459A1 (en) 2005-07-12 2007-01-18 Omron Healthcare Co., Ltd. Biochemical measuring instrument for measuring information about component of living body accurately
WO2007008646A3 (en) 2005-07-12 2008-02-28 Massachusetts Inst Technology Wireless non-radiative energy transfer
RU2411001C2 (en) 2005-08-05 2011-02-10 Байер Хелткэр Ллк Measurement instrument with multi-level user interface
WO2007022485A3 (en) 2005-08-19 2007-11-15 Javier Alarcon Sterilization of biosensors
EP1758039A1 (en) 2005-08-27 2007-02-28 Boehringer Mannheim Gmbh Communication adaptor for portable medical or therapeutical devices
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
DK2260757T3 (en) 2005-09-09 2016-06-27 F Hoffmann-La Roche Ag System tools, apparatus and a program for diabetes treatment
US7725148B2 (en) 2005-09-23 2010-05-25 Medtronic Minimed, Inc. Sensor with layered electrodes
US9072476B2 (en) 2005-09-23 2015-07-07 Medtronic Minimed, Inc. Flexible sensor apparatus
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7701052B2 (en) 2005-10-21 2010-04-20 E. I. Du Pont De Nemours And Company Power core devices
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
EP1955240B8 (en) 2005-11-08 2016-03-30 Bigfoot Biomedical, Inc. Method for manual and autonomous control of an infusion pump
US20070173706A1 (en) 2005-11-11 2007-07-26 Isense Corporation Method and apparatus for insertion of a sensor
WO2007062173A1 (en) 2005-11-22 2007-05-31 Vocollect Healthcare Systems, Inc. Advanced diabetes management system (adms)
US7941200B2 (en) 2005-12-08 2011-05-10 Roche Diagnostics Operations, Inc. System and method for determining drug administration information
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8102789B2 (en) 2005-12-29 2012-01-24 Medtronic, Inc. System and method for synchronous wireless communication with a medical device
US7574266B2 (en) 2006-01-19 2009-08-11 Medtronic, Inc. System and method for telemetry with an implantable medical device
US20070179349A1 (en) 2006-01-19 2007-08-02 Hoyme Kenneth P System and method for providing goal-oriented patient management based upon comparative population data analysis
US7872574B2 (en) 2006-02-01 2011-01-18 Innovation Specialists, Llc Sensory enhancement systems and methods in personal electronic devices
CA2926975A1 (en) 2006-02-09 2007-08-16 Deka Products Limited Partnership Peripheral systems
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7576657B2 (en) 2006-03-22 2009-08-18 Symbol Technologies, Inc. Single frequency low power RFID device
ES2336360T3 (en) 2006-04-20 2010-04-12 Lifescan Scotland Ltd Method for transmitting data in a system of blood glucose and glucose system corresponding blood.
US7359837B2 (en) 2006-04-27 2008-04-15 Medtronic, Inc. Peak data retention of signal data in an implantable medical device
US20070255126A1 (en) * 2006-04-28 2007-11-01 Moberg Sheldon B Data communication in networked fluid infusion systems
US20070255125A1 (en) 2006-04-28 2007-11-01 Moberg Sheldon B Monitor devices for networked fluid infusion systems
US20070253021A1 (en) 2006-04-28 2007-11-01 Medtronic Minimed, Inc. Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers
US20070258395A1 (en) 2006-04-28 2007-11-08 Medtronic Minimed, Inc. Wireless data communication protocols for a medical device network
CA2649352A1 (en) 2006-05-02 2007-11-15 3M Innovative Properties Company A telecommunication enclosure monitoring system
GB0608829D0 (en) 2006-05-04 2006-06-14 Husheer Shamus L G In-situ measurement of physical parameters
DE102006023213B3 (en) 2006-05-17 2007-09-27 Siemens Ag Sensor operating method, involves detecting recording and evaluation device during order and non-order functions of monitoring device in check mode, and watching occurrence of results in mode by sensor, which automatically leaves mode
DE102006025485B4 (en) 2006-05-30 2008-03-20 Polylc Gmbh & Co. Kg Antenna array and their use
US20080071157A1 (en) 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US8098159B2 (en) 2006-06-09 2012-01-17 Intelleflex Corporation RF device comparing DAC output to incoming signal for selectively performing an action
US7796038B2 (en) 2006-06-12 2010-09-14 Intelleflex Corporation RFID sensor tag with manual modes and functions
US20090105560A1 (en) 2006-06-28 2009-04-23 David Solomon Lifestyle and eating advisor based on physiological and biological rhythm monitoring
US7680469B2 (en) 2006-07-06 2010-03-16 Hewlett-Packard Development Company, L.P. Electronic device power management system and method
GB0616331D0 (en) 2006-08-16 2006-09-27 Innovision Res & Tech Plc Near Field RF Communicators And Near Field Communications Enabled Devices
US7769456B2 (en) 2006-09-01 2010-08-03 Cardiac Pacemakers, Inc. Frequency-agile system for telemetry with implantable device
US20080058626A1 (en) 2006-09-05 2008-03-06 Shinichi Miyata Analytical meter with display-based tutorial module
US20080058678A1 (en) 2006-09-05 2008-03-06 Shinichi Miyata Kit for the determination of an analyte in a bodily fluid sample that includes a meter with a display-based tutorial module
US9056165B2 (en) 2006-09-06 2015-06-16 Medtronic Minimed, Inc. Intelligent therapy recommendation algorithm and method of using the same
US20080071328A1 (en) 2006-09-06 2008-03-20 Medtronic, Inc. Initiating medical system communications
DE102006043484A1 (en) 2006-09-15 2008-04-03 Infineon Technologies Ag Fuse structure and method of manufacturing the same
US7779332B2 (en) 2006-09-25 2010-08-17 Alfred E. Mann Foundation For Scientific Research Rotationally invariant non-coherent burst coding
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8298142B2 (en) 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
US8532730B2 (en) 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US20080200788A1 (en) 2006-10-04 2008-08-21 Dexcorn, Inc. Analyte sensor
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8126728B2 (en) 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for processing and transmittal of medical data through an intermediary device
JP2010508091A (en) 2006-10-26 2010-03-18 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. The method for detecting a decrease sensitivity of the analyte sensor in real time systems, and computer program products
EP1918837A1 (en) 2006-10-31 2008-05-07 F. Hoffmann-La Roche AG Method for processing a chronological sequence of measurements of a time dependent parameter
US20080119705A1 (en) 2006-11-17 2008-05-22 Medtronic Minimed, Inc. Systems and Methods for Diabetes Management Using Consumer Electronic Devices
FI20065735A0 (en) 2006-11-20 2006-11-20 Salla Koski Measurement, monitoring and management system, as well as equipment belonging to the system
CA2670265A1 (en) * 2006-11-23 2008-05-29 Lifescan Scotland Limited Blood glucose meter capable of wireless communication
US20080139910A1 (en) 2006-12-06 2008-06-12 Metronic Minimed, Inc. Analyte sensor and method of using the same
KR100833511B1 (en) 2006-12-08 2008-05-29 한국전자통신연구원 Passive tag with volatile memory
WO2008071218A1 (en) 2006-12-14 2008-06-19 Egomedical Swiss Ag Monitoring device
US8120493B2 (en) 2006-12-20 2012-02-21 Intel Corporation Direct communication in antenna devices
US20080154513A1 (en) 2006-12-21 2008-06-26 University Of Virginia Patent Foundation Systems, Methods and Computer Program Codes for Recognition of Patterns of Hyperglycemia and Hypoglycemia, Increased Glucose Variability, and Ineffective Self-Monitoring in Diabetes
US20080161666A1 (en) 2006-12-29 2008-07-03 Abbott Diabetes Care, Inc. Analyte devices and methods
US7999674B2 (en) 2007-01-15 2011-08-16 Deka Products Limited Partnership Device and method for food management
US8098160B2 (en) 2007-01-22 2012-01-17 Cisco Technology, Inc. Method and system for remotely provisioning and/or configuring a device
US7742747B2 (en) 2007-01-25 2010-06-22 Icera Canada ULC Automatic IIP2 calibration architecture
US20080183060A1 (en) 2007-01-31 2008-07-31 Steil Garry M Model predictive method and system for controlling and supervising insulin infusion
US8808515B2 (en) * 2007-01-31 2014-08-19 Abbott Diabetes Care Inc. Heterocyclic nitrogen containing polymers coated analyte monitoring device and methods of use
US9597019B2 (en) 2007-02-09 2017-03-21 Lifescan, Inc. Method of ensuring date and time on a test meter is accurate
US8758245B2 (en) 2007-03-20 2014-06-24 Lifescan, Inc. Systems and methods for pattern recognition in diabetes management
US7659823B1 (en) 2007-03-20 2010-02-09 At&T Intellectual Property Ii, L.P. Tracking variable conditions using radio frequency identification
US9008743B2 (en) 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
WO2009096992A1 (en) 2007-04-14 2009-08-06 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
EP2137637A4 (en) 2007-04-14 2012-06-20 Abbott Diabetes Care Inc Method and apparatus for providing data processing and control in medical communication system
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US20080267823A1 (en) 2007-04-27 2008-10-30 Abbott Diabetes Care, Inc. Identification Of A Strip Type By The Meter Using Conductive Patterns On The Strip
US8692655B2 (en) 2007-05-07 2014-04-08 Bloomberg Finance L.P. Dynamically programmable RFID transponder
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
CA2685167A1 (en) 2007-05-14 2008-11-27 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080312845A1 (en) 2007-05-14 2008-12-18 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080287755A1 (en) 2007-05-17 2008-11-20 Isense Corporation Method and apparatus for trend alert calculation and display
US8072310B1 (en) 2007-06-05 2011-12-06 Pulsed Indigo Inc. System for detecting and measuring parameters of passive transponders
EP2152350A4 (en) 2007-06-08 2013-03-27 Dexcom Inc Integrated medicament delivery device for use with continuous analyte sensor
US20080312518A1 (en) 2007-06-14 2008-12-18 Arkal Medical, Inc On-demand analyte monitor and method of use
JP2010531169A (en) * 2007-06-21 2010-09-24 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Health monitoring devices
CN101730501A (en) 2007-06-27 2010-06-09 霍夫曼-拉罗奇有限公司 Patient information input interface for a therapy system
WO2009005957A1 (en) 2007-06-29 2009-01-08 Roche Diagnostics Gmbh Apparatus and method for remotely controlling an ambulatory medical device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
EP2182838B1 (en) 2007-07-31 2016-05-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090036760A1 (en) 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US7731658B2 (en) 2007-08-16 2010-06-08 Cardiac Pacemakers, Inc. Glycemic control monitoring using implantable medical device
US9968742B2 (en) 2007-08-29 2018-05-15 Medtronic Minimed, Inc. Combined sensor and infusion set using separated sites
US20090063402A1 (en) 2007-08-31 2009-03-05 Abbott Diabetes Care, Inc. Method and System for Providing Medication Level Determination
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
ES2547493T3 (en) 2007-09-24 2015-10-06 Bayer Healthcare Llc Multiple test sensors and potential regions, procedures, systems and
DE102007047351A1 (en) 2007-10-02 2009-04-09 B. Braun Melsungen Ag System and method for monitoring and controlling blood glucose levels
US20090085768A1 (en) 2007-10-02 2009-04-02 Medtronic Minimed, Inc. Glucose sensor transceiver
US8000918B2 (en) 2007-10-23 2011-08-16 Edwards Lifesciences Corporation Monitoring and compensating for temperature-related error in an electrochemical sensor
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US7783442B2 (en) 2007-10-31 2010-08-24 Medtronic Minimed, Inc. System and methods for calibrating physiological characteristic sensors
US8098201B2 (en) 2007-11-29 2012-01-17 Electronics & Telecommunications Research Institute Radio frequency identification tag and radio frequency identification tag antenna
US8103241B2 (en) 2007-12-07 2012-01-24 Roche Diagnostics Operations, Inc. Method and system for wireless device communication
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US20090164251A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Method and apparatus for providing treatment profile management
JP2011510402A (en) 2008-01-15 2011-03-31 コーニング ケーブル システムズ エルエルシーCorning Cable Systems Llc rfid system and method for detecting and / or direct physical configuration of a complex system automatically
DE102008008072A1 (en) 2008-01-29 2009-07-30 Balluff Gmbh sensor
US20090299155A1 (en) 2008-01-30 2009-12-03 Dexcom, Inc. Continuous cardiac marker sensor system
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
EP2090996A1 (en) 2008-02-16 2009-08-19 Boehringer Mannheim Gmbh Medical device
WO2009105337A3 (en) 2008-02-20 2010-12-16 Dexcom, Inc. Continuous medicament sensor system for in vivo use
CA2715628A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8317699B2 (en) 2008-02-29 2012-11-27 Roche Diagnostics Operations, Inc. Device and method for assessing blood glucose control
US20090242399A1 (en) 2008-03-25 2009-10-01 Dexcom, Inc. Analyte sensor
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
WO2009121026A1 (en) 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
DK2260423T3 (en) 2008-04-04 2018-06-06 Hygieia Inc An apparatus for optimizing a patient's insulin dosage level
US20090256572A1 (en) 2008-04-14 2009-10-15 Mcdowell Andrew F Tuning Low-Inductance Coils at Low Frequencies
US20090267765A1 (en) 2008-04-29 2009-10-29 Jack Greene Rfid to prevent reprocessing
US8102021B2 (en) 2008-05-12 2012-01-24 Sychip Inc. RF devices
US8936552B2 (en) 2008-05-14 2015-01-20 Heartmiles, Llc Physical activity monitor and data collection unit
US8610577B2 (en) 2008-05-20 2013-12-17 Deka Products Limited Partnership RFID system
US8394637B2 (en) 2008-06-02 2013-03-12 Roche Diagnostics Operations, Inc. Handheld analyzer for testing a sample
US8132037B2 (en) 2008-06-06 2012-03-06 Roche Diagnostics International Ag Apparatus and method for processing wirelessly communicated data and clock information within an electronic device
US8117481B2 (en) 2008-06-06 2012-02-14 Roche Diagnostics International Ag Apparatus and method for processing wirelessly communicated information within an electronic device
US8131365B2 (en) 2008-07-09 2012-03-06 Cardiac Pacemakers, Inc. Event-based battery monitor for implantable devices
US20100025238A1 (en) 2008-07-31 2010-02-04 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
US8111042B2 (en) 2008-08-05 2012-02-07 Broadcom Corporation Integrated wireless resonant power charging and communication channel
US8432070B2 (en) 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
US8094009B2 (en) 2008-08-27 2012-01-10 The Invention Science Fund I, Llc Health-related signaling via wearable items
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8102154B2 (en) 2008-09-04 2012-01-24 Medtronic Minimed, Inc. Energy source isolation and protection circuit for an electronic device
WO2010033724A3 (en) 2008-09-19 2010-05-20 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
JP2012504932A (en) 2008-10-02 2012-02-23 レイデン エナジー インコーポレイテッドLeyden Energy, Inc. Electron current cut-off device for the battery
WO2010062898A1 (en) 2008-11-26 2010-06-03 University Of Virginia Patent Foundation Method, system, and computer program product for tracking of blood glucose variability in diabetes
US8098161B2 (en) 2008-12-01 2012-01-17 Raytheon Company Radio frequency identification inlay with improved readability
US8150516B2 (en) 2008-12-11 2012-04-03 Pacesetter, Inc. Systems and methods for operating an implantable device for medical procedures
US20100169035A1 (en) 2008-12-29 2010-07-01 Medtronic Minimed, Inc. Methods and systems for observing sensor parameters
US9320470B2 (en) 2008-12-31 2016-04-26 Medtronic Minimed, Inc. Method and/or system for sensor artifact filtering
US20100198142A1 (en) 2009-02-04 2010-08-05 Abbott Diabetes Care Inc. Multi-Function Analyte Test Device and Methods Therefor
WO2010127169A3 (en) 2009-04-30 2011-02-03 Dexcom, Inc. Performance reports associated with continuous sensor data from multiple analysis time periods
US8124452B2 (en) 2009-06-14 2012-02-28 Terepac Corporation Processes and structures for IC fabrication
US9218453B2 (en) 2009-06-29 2015-12-22 Roche Diabetes Care, Inc. Blood glucose management and interface systems and methods
US9792408B2 (en) 2009-07-02 2017-10-17 Covidien Lp Method and apparatus to detect transponder tagged objects and to communicate with medical telemetry devices, for example during medical procedures
US8093991B2 (en) 2009-09-16 2012-01-10 Greatbatch Ltd. RFID detection and identification system for implantable medical devices
US20110077469A1 (en) 2009-09-27 2011-03-31 Blocker Richard A Systems and methods for utilizing prolonged self monitoring in the analysis of chronic ailment treatments
US20110123971A1 (en) 2009-11-20 2011-05-26 Medivoce, Inc. Electronic Medical Voice Instruction System
US9949672B2 (en) 2009-12-17 2018-04-24 Ascensia Diabetes Care Holdings Ag Apparatus, systems and methods for determining and displaying pre-event and post-event analyte concentration levels
CA2728831A1 (en) 2010-01-22 2011-07-22 Lifescan, Inc. Diabetes management unit, method, and system
WO2011091176A1 (en) 2010-01-24 2011-07-28 Medtronic, Inc. Method of making a battery including applying a cathode material slurry to a current collector
US20110208027A1 (en) 2010-02-23 2011-08-25 Roche Diagnostics Operations, Inc. Methods And Systems For Providing Therapeutic Guidelines To A Person Having Diabetes

Patent Citations (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245634A (en) * 1975-01-22 1981-01-20 Hospital For Sick Children Artificial beta cell
US4373527A (en) * 1979-04-27 1983-02-15 The Johns Hopkins University Implantable, programmable medication infusion system
US4373527B1 (en) * 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4425920A (en) * 1980-10-24 1984-01-17 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US5279294A (en) * 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4995402A (en) * 1988-10-12 1991-02-26 Thorne, Smith, Astill Technologies, Inc. Medical droplet whole blood and like monitoring
US5379238A (en) * 1989-03-03 1995-01-03 Stark; Edward W. Signal processing method and apparatus
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5082550A (en) * 1989-12-11 1992-01-21 The United States Of America As Represented By The Department Of Energy Enzyme electrochemical sensor electrode and method of making it
US6514718B2 (en) * 1991-03-04 2003-02-04 Therasense, Inc. Subcutaneous glucose electrode
US5285792A (en) * 1992-01-10 1994-02-15 Physio-Control Corporation System for producing prioritized alarm messages in a medical instrument
US5711001A (en) * 1992-05-08 1998-01-20 Motorola, Inc. Method and circuit for acquisition by a radio receiver
US5489414A (en) * 1993-04-23 1996-02-06 Boehringer Mannheim, Gmbh System for analyzing compounds contained in liquid samples
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5601435A (en) * 1994-11-04 1997-02-11 Intercare Method and apparatus for interactively monitoring a physiological condition and for interactively providing health related information
US5711861A (en) * 1995-11-22 1998-01-27 Ward; W. Kenneth Device for monitoring changes in analyte concentration
US5707502A (en) * 1996-07-12 1998-01-13 Chiron Diagnostics Corporation Sensors for measuring analyte concentrations and methods of making same
US20040039298A1 (en) * 1996-09-04 2004-02-26 Abreu Marcio Marc Noninvasive measurement of chemical substances
US6997907B2 (en) * 1997-02-05 2006-02-14 Medtronic Minimed, Inc. Insertion device for an insertion set and method of using the same
US7335294B2 (en) * 1997-02-06 2008-02-26 Abbott Diabetes Care, Inc. Integrated lancing and measurement device and analyte measuring methods
US20080017522A1 (en) * 1997-02-06 2008-01-24 Therasense, Inc. Integrated Lancing and Measurement Device
US20040011671A1 (en) * 1997-03-04 2004-01-22 Dexcom, Inc. Device and method for determining analyte levels
US7003340B2 (en) * 1998-03-04 2006-02-21 Abbott Diabetes Care Inc. Electrochemical analyte sensor
US6024699A (en) * 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US7003341B2 (en) * 1998-04-30 2006-02-21 Abbott Diabetes Care, Inc. Analyte monitoring devices and methods of use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6990366B2 (en) * 1998-04-30 2006-01-24 Therasense, Inc. Analyte monitoring device and methods of use
US20020019022A1 (en) * 1998-09-30 2002-02-14 Cygnus, Inc. Method and device for predicting physiological values
US20080030369A1 (en) * 1998-10-08 2008-02-07 Medtronic Minimed, Inc. Telemetered characteristic monitor system and method of using the same
US20020023852A1 (en) * 1999-02-25 2002-02-28 Minimed Inc. Glucose sensor package system
US6687546B2 (en) * 2000-01-21 2004-02-03 Medtronic Minimed, Inc. Ambulatory medical apparatus and method using a robust communication protocol
US20050010269A1 (en) * 2000-01-21 2005-01-13 Medical Research Group, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
US6694191B2 (en) * 2000-01-21 2004-02-17 Medtronic Minimed, Inc. Ambulatory medical apparatus and method having telemetry modifiable control software
US20020065454A1 (en) * 2000-01-21 2002-05-30 Lebel Ronald J. Microprocessor controlled ambulatory medical apparatus with hand held communication device
US7171274B2 (en) * 2000-01-21 2007-01-30 Medtronic Minimed, Inc. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
US7003336B2 (en) * 2000-02-10 2006-02-21 Medtronic Minimed, Inc. Analyte sensor method of making the same
US6689191B2 (en) * 2000-02-22 2004-02-10 Omg Americas, Inc. Rapid conversion of metal-containing compounds to form metals or metal alloys
US20090005666A1 (en) * 2000-02-23 2009-01-01 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US20050004439A1 (en) * 2000-02-23 2005-01-06 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US20050027177A1 (en) * 2000-02-23 2005-02-03 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US20020045808A1 (en) * 2000-08-18 2002-04-18 Russell Ford Formulation and manipulation of databases of analyte and associated values
US6695860B1 (en) * 2000-11-13 2004-02-24 Isense Corp. Transcutaneous sensor insertion device
US20030100821A1 (en) * 2001-01-02 2003-05-29 Therasense, Inc. Analyte monitoring device and methods of use
US20060029177A1 (en) * 2001-01-16 2006-02-09 International Business Machines Corporation Unified digital architecture
US20050004494A1 (en) * 2001-01-22 2005-01-06 Perez Edward P. Lancet device having capillary action
US20080029391A1 (en) * 2001-05-15 2008-02-07 Abbott Diabetes Care, Inc. Biosensor Membranes Composed of Polymers Containing Heterocyclic Nitrogens
US20030004403A1 (en) * 2001-06-29 2003-01-02 Darrel Drinan Gateway platform for biological monitoring and delivery of therapeutic compounds
US20030023317A1 (en) * 2001-07-27 2003-01-30 Dexcom, Inc. Membrane for use with implantable devices
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US20050001024A1 (en) * 2001-12-03 2005-01-06 Yosuke Kusaka Electronic apparatus, electronic camera, electronic device, image display apparatus, and image transmission system
US20050038332A1 (en) * 2001-12-27 2005-02-17 Frank Saidara System for monitoring physiological characteristics
US6998247B2 (en) * 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US20040010207A1 (en) * 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US20040186365A1 (en) * 2002-12-31 2004-09-23 Therasense, Inc. Continuous glucose monitoring system and methods of use
US20040225199A1 (en) * 2003-05-08 2004-11-11 Evanyk Shane Walter Advanced physiological monitoring systems and methods
US20050031689A1 (en) * 2003-05-21 2005-02-10 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US20080033254A1 (en) * 2003-07-25 2008-02-07 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US20090012379A1 (en) * 2003-08-01 2009-01-08 Dexcom, Inc. System and methods for processing analyte sensor data
US20080021666A1 (en) * 2003-08-01 2008-01-24 Dexcom, Inc. System and methods for processing analyte sensor data
US20070032706A1 (en) * 2003-08-22 2007-02-08 Apurv Kamath Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20070016381A1 (en) * 2003-08-22 2007-01-18 Apurv Kamath Systems and methods for processing analyte sensor data
US20050043598A1 (en) * 2003-08-22 2005-02-24 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20080045824A1 (en) * 2003-10-28 2008-02-21 Dexcom, Inc. Silicone composition for biocompatible membrane
US20080018433A1 (en) * 2003-10-29 2008-01-24 Innovision Research & Technology Plc Rfid Apparatus
US7324850B2 (en) * 2004-04-29 2008-01-29 Cardiac Pacemakers, Inc. Method and apparatus for communication between a handheld programmer and an implantable medical device
US20090030294A1 (en) * 2004-05-03 2009-01-29 Dexcom, Inc. Implantable analyte sensor
US20060004270A1 (en) * 2004-06-23 2006-01-05 Michel Bedard Method and apparatus for the monitoring of clinical states
US20060001538A1 (en) * 2004-06-30 2006-01-05 Ulrich Kraft Methods of monitoring the concentration of an analyte
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060016700A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060020187A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060036143A1 (en) * 2004-07-13 2006-02-16 Dexcom, Inc. Transcutaneous analyte sensor
US20060036139A1 (en) * 2004-07-13 2006-02-16 Dexcom, Inc. Transcutaneous analyte sensor
US20060036140A1 (en) * 2004-07-13 2006-02-16 Dexcom, Inc. Transcutaneous analyte sensor
US20060020190A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060036142A1 (en) * 2004-07-13 2006-02-16 Dexcom, Inc. Transcutaneous analyte sensor
US20060020188A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060015024A1 (en) * 2004-07-13 2006-01-19 Mark Brister Transcutaneous medical device with variable stiffness
US20070038044A1 (en) * 2004-07-13 2007-02-15 Dobbles J M Analyte sensor
US20060020189A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060019327A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060020186A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060036145A1 (en) * 2004-07-13 2006-02-16 Dexcom, Inc. Transcutaneous analyte sensor
US20060036144A1 (en) * 2004-07-13 2006-02-16 Dexcom, Inc. Transcutaneous analyte sensor
US20060020192A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060036141A1 (en) * 2004-07-13 2006-02-16 Dexcom, Inc. Transcutaneous analyte sensor
US20060020191A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060031094A1 (en) * 2004-08-06 2006-02-09 Medtronic Minimed, Inc. Medical data management system and process
US7651596B2 (en) * 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US20060264785A1 (en) * 2005-05-19 2006-11-23 Barton Dring Monitoring systems and methods
US20070033074A1 (en) * 2005-06-03 2007-02-08 Medtronic Minimed, Inc. Therapy management system
US20070027381A1 (en) * 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US20070043182A1 (en) * 2005-08-22 2007-02-22 Martin Joel L Multimodal polyethylene compositions and pipe made from same
US20080009692A1 (en) * 2005-09-30 2008-01-10 Abbott Diabetes Care, Inc. Method and Apparatus for Providing Analyte Sensor and Data Processing Device
US20090018425A1 (en) * 2005-12-28 2009-01-15 Tianmei Ouyang Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US20080039702A1 (en) * 2006-08-09 2008-02-14 Abbott Diabetes Care, Inc. Method and System for Providing Calibration of an Analyte Sensor in an Analyte Monitoring System
US7653425B2 (en) * 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US20090018424A1 (en) * 2006-10-04 2009-01-15 Dexcom, Inc. Analyte sensor
US20090006034A1 (en) * 2007-05-14 2009-01-01 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090005665A1 (en) * 2007-05-14 2009-01-01 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090033482A1 (en) * 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wireless Access PCI Adapter (6/30/2002) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022077B2 (en) 2009-02-26 2018-07-17 Abbott Diabeetes Care Inc. Analyte monitoring devices and methods
US9526453B2 (en) 2009-02-26 2016-12-27 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US9339229B2 (en) 2009-02-26 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US9002390B2 (en) 2011-04-08 2015-04-07 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9028410B2 (en) 2011-04-08 2015-05-12 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9743224B2 (en) 2011-04-08 2017-08-22 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9439029B2 (en) 2011-04-08 2016-09-06 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US8844007B2 (en) 2011-04-08 2014-09-23 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
WO2012145027A1 (en) * 2011-04-20 2012-10-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
US9386522B2 (en) 2011-09-23 2016-07-05 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9730160B2 (en) 2011-09-23 2017-08-08 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9974018B2 (en) 2011-09-23 2018-05-15 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9980223B2 (en) 2011-09-23 2018-05-22 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9974470B2 (en) 2013-11-07 2018-05-22 Dexcom, Inc. Systems and methods for a continuous monitoring of analyte values
US9974469B2 (en) 2013-11-07 2018-05-22 Dexcom, Inc. Systems and methods for a continuous monitoring of analyte values
US9999379B2 (en) 2013-11-07 2018-06-19 Dexcom, Inc. Systems and methods for a continuous monitoring of analyte values
US9901292B2 (en) 2013-11-07 2018-02-27 Dexcom, Inc. Systems and methods for a continuous monitoring of analyte values

Also Published As

Publication number Publication date Type
US20100076290A1 (en) 2010-03-25 application
JP2017060795A (en) 2017-03-30 application
CA2690870A1 (en) 2008-12-24 application
US8617069B2 (en) 2013-12-31 grant
JP2015027523A (en) 2015-02-12 application
US20180271419A1 (en) 2018-09-27 application
JP2018118077A (en) 2018-08-02 application
US20120053428A1 (en) 2012-03-01 application
US20100076292A1 (en) 2010-03-25 application
US20100076289A1 (en) 2010-03-25 application
CN101686804A (en) 2010-03-31 application
US20100076291A1 (en) 2010-03-25 application
WO2008157821A1 (en) 2008-12-24 application
CN103251414A (en) 2013-08-21 application
EP2166928A4 (en) 2012-06-13 application
CN103251414B (en) 2017-05-24 grant
JP2010531169A (en) 2010-09-24 application
EP2166928A1 (en) 2010-03-31 application
EP2166928B1 (en) 2018-09-12 grant
CN101686804B (en) 2013-05-08 grant
US20140107436A1 (en) 2014-04-17 application
US20080319296A1 (en) 2008-12-25 application
CA2690870C (en) 2017-07-11 grant
US20100076280A1 (en) 2010-03-25 application

Similar Documents

Publication Publication Date Title
US6175752B1 (en) Analyte monitoring device and methods of use
US8346337B2 (en) Analyte monitoring device and methods of use
US6579690B1 (en) Blood analyte monitoring through subcutaneous measurement
US6558320B1 (en) Handheld personal data assistant (PDA) with a medical device and method of using the same
US20040106858A1 (en) Analyte monitoring device and methods of use
US7920907B2 (en) Analyte monitoring system and method
US7768387B2 (en) Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US20090198118A1 (en) Analyte Sensor with Time Lag Compensation
US20100274515A1 (en) Dynamic Analyte Sensor Calibration Based On Sensor Stability Profile
US20070149875A1 (en) Analyte monitoring
US20090143725A1 (en) Method of Optimizing Efficacy of Therapeutic Agent
US20110105873A1 (en) Method and Apparatus for Detecting False Hypoglycemic Conditions
US20080161666A1 (en) Analyte devices and methods
US8160670B2 (en) Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
WO2009029662A1 (en) Analyte monitoring device and methods of use
WO2011002694A1 (en) Analyte monitoring device and methods of use
WO2011002692A1 (en) Analyte monitoring device and methods of use
US20080300476A1 (en) Insertion devices and methods
US20100234710A1 (en) Analyte Sensor Calibration Management
US20100326842A1 (en) Extruded Electrode Structures and Methods of Using Same
US20100326843A1 (en) Extruded analyte sensors and methods of using same
US20100331646A1 (en) Health Management Devices and Methods
US20110021889A1 (en) Continuous Analyte Measurement Systems and Systems and Methods for Implanting Them
US8224415B2 (en) Method and device for providing offset model based calibration for analyte sensor
US20090247857A1 (en) Analyte Sensor Calibration Management