US20100055408A1 - Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof - Google Patents

Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof Download PDF

Info

Publication number
US20100055408A1
US20100055408A1 US12/321,091 US32109109A US2010055408A1 US 20100055408 A1 US20100055408 A1 US 20100055408A1 US 32109109 A US32109109 A US 32109109A US 2010055408 A1 US2010055408 A1 US 2010055408A1
Authority
US
United States
Prior art keywords
substituted
unsubstituted
carbon atoms
reflective layer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/321,091
Inventor
Jong-Don Lee
Jun-Ho Lee
Shin-Hyo Bae
Seung-Hee Hong
Seung-Duk Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumho Petrochemical Co Ltd
Original Assignee
Korea Kumho Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Kumho Petrochemical Co Ltd filed Critical Korea Kumho Petrochemical Co Ltd
Assigned to KOREA KUMBO PETROCHEMICAL CO., LTD. reassignment KOREA KUMBO PETROCHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAE, SHIN-HYO, CHO, SEUNG-DUK, HONG, SEUNG-HEE, LEE, JONG-DON, LEE, JUN-HO
Publication of US20100055408A1 publication Critical patent/US20100055408A1/en
Priority to US13/186,101 priority Critical patent/US8357482B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/04Saturated compounds having a carboxyl group bound to a three or four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/44Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/62Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/753Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of polycyclic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/92Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/36Systems containing two condensed rings the rings having more than two atoms in common
    • C07C2602/44Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing eight carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • the present invention relates to a novel light absorbent for forming an organic anti-reflective layer, which is a ring-opened phthalic anhydride compound, an organic anti-reflective layer composition, a method for patterning a semiconductor device using the organic anti-reflective layer composition, and a semiconductor device produced by the method for patterning.
  • the present invention relates to a novel light absorbent capable of being used in producing an organic anti-reflective layer which is useful for the formation of ultrafine semiconductor patterns using an ArF excimer laser; an organic anti-reflective layer composition containing the light absorbent, which prevents reflection from underneath film layers in lithographic processes, prevents a stationary wave, and exhibits a high dry etching rate; a method for patterning a semiconductor device using the organic anti-reflective layer composition; and a semiconductor device produced by the method for patterning.
  • A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms,
  • A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms,
  • an organic anti-reflective composition comprising the light absorbent represented by the formula 1 or formula 2, a polymer, a thermal acid generating agent, a crosslinking agent, and a solvent.
  • a method for patterning a semiconductor device comprising:
  • the organic anti-reflective layer composition according to the present invention exhibits excellent adhesiveness and storage stability, as well as excellent resolution in both C/H patterns and L/S patterns.
  • the organic anti-reflective layer composition also has an excellent process window, so that excellent pattern profiles can be obtained irrespective of the type of the substrate.
  • etching of the anti-reflective layer can be rapidly carried out in ultrafine patterning processes making use of a 193-nm light source, and as a result, development of high integration semiconductor devices can be achieved more actively.
  • FIG. 1 is a 1 H-NMR spectrum of a copolymer produced according to an embodiment of the present invention
  • FIG. 3 is a 1 H-NMR spectrum of a copolymer produced according to another embodiment of the present invention.
  • FIG. 5 is a 1 H-NMR spectrum of a copolymer produced according to another embodiment of the present invention.
  • FIG. 6 is a 1 H-NMR spectrum of a copolymer produced according to another embodiment of the present invention.
  • FIG. 7 is a 1 H-NMR spectrum of a copolymer produced according to another embodiment of the present invention.
  • FIG. 8 is a 1 H-NMR spectrum of a copolymer produced according to another embodiment of the present invention.
  • FIG. 9 is a 1 H-NMR spectrum of a copolymer produced according to another embodiment of the present invention.
  • a ring-opened phthalic anhydride represented by the following formula 1, which serves as a light absorbent for forming an organic anti-reflective layer, is provided.
  • the compound of formula 2 has a weight average molecular weight of 350 to 100,000, and more preferably 400 to 50,000.
  • the light absorbent of the present invention includes a benzene chromophore, and contains functional groups for thermal curing.
  • a carboxylic acid functional group is generated by ring-opening of the light absorbent by means of an alcohol compound, and this carboxylic acid functional group reacts with a functional group of the thermally curable compound, such as acetal, epoxy or hemiacetal, to form a crosslinked structure.
  • substituted means that one or more hydrogen atoms in a group may be respectively substituted with a halogen atom, a hydroxyl group, a nitro group, a cyano group, an amino group, an amidino group, hydrazine, hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C 1 -C 10 alkyl group, a C 1 -C 10 alkenyl group, a C 1 -C 10 alkynyl group, a C 6 -C 20 aryl group, a C 7 -C 20 arylalkyl group, a C 4 -C 20 heteroaryl group or a C 5 -C 20 heteroarylalkyl group.
  • the compounds represented by formula 1 of the present invention are produced by reacting a substituted or unsubstituted benzyl alcohol compound represented by the following formula 61 with various dianhydride compounds in the presence of a base, and then neutralizing the base used with an acid.
  • R 4 represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group.
  • R 5 represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group.
  • the light absorbent of the present invention can be synthesized by conventional methods, but preferably, synthesis of the light absorbent of the present invention is achieved by a reaction in a basic environment.
  • the aforementioned various dianhydrides are advantageous in that the compounds are highly reactive with alcohols, and have four reactive groups so that two chromophores can be introduced first and then two more crosslinking sites can be provided in the subsequent processes.
  • Examples of the base that can be used to provide a basic environment include dimethylaminopyridine, pyridine, 1,4-diazabicyclo[2,2,2]octane. 1,5-diazabicyclo[4,3,0]nonane, triethylamine, 2,6-di-tert-butylpyridine, diisopropylethylamine, diazabicycloundecene, tetramethylethylenediamine, tetrabutylammonium bromide and the like, and no particular limitation is posed.
  • the temperature for synthesis of the compound can be selected and used in accordance with the solvent, and is usually 5° C. to 200° C., and preferably 20° C. to 100° C.
  • an organic anti-reflective layer composition containing the light absorbent of the present invention is also provided.
  • the anti-reflective layer should be able to be etched more rapidly than the photoresist layer on the upper side, so that the loss of photoresist resulting from etching of underneath film layers can be reduced.
  • organic anti-reflective layer composition according to the present invention will be described in detail.
  • An organic anti-reflective layer employing such polymer acquires resistance to dissolution by solvents, as the composition applied on a substrate is cured while going through a baking process.
  • the crosslinking agent is preferably a compound having at least two or more crosslinkable functional groups, and examples thereof include aminoplastic compounds, polyfunctional epoxy resins, mixtures of dianhydrides, and the like.
  • the aminoplastic compounds may be exemplified by dimethoxymethylglycoluril, diethoxymethylglycoluril and mixtures thereof, diethyldimethylmethylglycoluril, tetramethoxymethylglycoluril, hexamethoxymethylmelamine resin, and the like.
  • thermal acid generating agent As a catalyst for accelerating the curing reaction, it is preferable to use a thermal acid generating agent as a catalyst for accelerating the curing reaction.
  • a thermal acid generating agent to be contained in the present invention, toluenesulfonic acid, amine salts or pyridine salts of toluenesulfonic acid, alkylsulfonic acid, amine salts or pyridine salts of alkylsulfonic acid, and the like can also be used.
  • organic solvent that can be used in the organic anti-reflective layer composition of the present invention
  • one or more solvents selected from the group consisting of propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), cyclohexanone, ethyl lactate, propylene glycol n-propyl ether, dimethylformamide (DMF), ⁇ -butyrolactone, ethoxyethanol, methoxyethanol, methyl 3-methoxypropionate (MMP) and ethyl 3-ethoxypropionate (EEP).
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • DMF dimethylformamide
  • MMP methyl 3-methoxypropionate
  • EEP ethyl 3-ethoxypropionate
  • the organic anti-reflective layer composition contains the light absorbent represented by formula 1 or formula 2 in an amount of preferably 0.1 to 40% by weight, more preferably 0.1 to 15% by weight, and even more preferably 0.1 to 10% by weight, based on the whole composition.
  • the polymer is contained in an amount of preferably 0.1 to 20% by weight based on the whole composition.
  • the crosslinking agent is contained in an amount of preferably 0.01 to 15% by weight, and more preferably 0.05 to 7% by weight, based on the whole composition.
  • the thermal acid generating agent is contained in an amount of 0.01 to 20% by weight, more preferably 0.01 to 10% by weight, and even more preferably 0.02 to 5% by weight, based on the whole composition.
  • the balance of the contents in the composition can be constituted of the solvent and other additional additives which are well known and widely used.
  • the method for forming a pattern of a semiconductor device using the organic anti-reflective layer composition as described above comprises applying the organic anti-reflective layer composition on top of a layer to be etched; curing the applied composition through a baking process, and forming crosslinking bonds to form an organic anti-reflective layer; applying a photoresist on top of the organic anti-reflective layer, and exposing and developing the photoresist to form a photoresist pattern; and etching the organic anti-reflective layer using the photoresist pattern as an etching mask, and then etching the layer to be etched so as to pattern the layer to be etched.
  • the baking process can be carried out preferably at a temperature of 150° C. to 250° C. for 0.5 to 5 minutes, and more preferably for 1 minute to 5 minutes.
  • an additional baking process can be carried out again before or after laminating an organic or inorganic composition of anti-reflective layer or silicone anti-reflective layer on top of a spin-on carbon hard mask, and such baking process is preferably carried out at a temperature of 70° C. to 200° C.
  • a semiconductor device produced by the patterning method of the present invention is provided.
  • the separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound.
  • the 1 H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 8 is presented in FIG. 8 .
  • Each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10 was applied on a silicon wafer by spin coating, and then the coated wafer was baked on a hot plate at 230° C. for 1 minute to form an organic anti-reflective layer. The thickness of the layer was measured, and the wafer coated with the organic anti-reflective layer was immersed for 1 minute in ethyl lactate and propylene glycol monomethyl ether, which are solvents used for the photoresist. Subsequently, the coated wafer was baked on a hot plate at 100° C. for 1 minute to completely remove the solvents, and then the thickness of the organic anti-reflective layer was measured again. It was confirmed that the anti-reflective layer was insoluble in the solvents.
  • Each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10 was applied on a silicon wafer by spin coating, and then the coated wafer was baked on a hot plate at 230° C. for 1 minute to form an organic anti-reflective layer.
  • the refractive index (n) at 193 nm and the extinction coefficient (k) of the anti-reflective layer were measured using a spectroscopic ellipsometer (J.A. Woollam Co., Inc.). The measurement results are presented in Table 1.
  • An organic anti-reflective layer was formed using each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10, and then the refractive index (n) at 193 nm and the extinction coefficient (k) of the anti-reflective layer were measured using a spectroscopic ellipsometer. Subsequently, the thickness of the first microthin film, and the reflectance in the case of using the thickness of the first microthin film were calculated by performing a simulation using the values of the refractive index (n) and extinction coefficient (k) obtained from the measurement. The simulation was related to the reflectance obtainable in the case where 40 nm of silicon oxynitride was deposited on the silicon wafer. The software used in the simulation was KLA Tencor FINDLE Division PROLITH, and the results are presented in Table 1.
  • Each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10 was applied by spin coating on a silicon wafer deposited with silicon oxynitride, and then the coated wafer was baked on a hot plate at 230° C. for 1 minute, to form an organic anti-reflective layer. Subsequently, an ArF photoresist was applied on top of the organic anti-reflective layer, and then the coated wafer was baked at 100° C. for 60 seconds. Then, the photoresist was exposed using a scanner equipment, and then the wafer was baked again at 115° C. for 60 seconds. The exposed wafer was developed using a developer solution containing 2.38% by weight of TMAH, to obtain a final photoresist pattern. The pattern was of L/S type with a size of 80 nm, and the results are presented in Table 2.

Abstract

A light absorbent for forming an organic anti-reflective layer, represented by the following formula 1 or formula 2, is provided:
Figure US20100055408A1-20100304-C00001
Figure US20100055408A1-20100304-C00002
wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group and containing one or more heteroatoms, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, a substituted or unsubstituted alicyclic group, a substituted or unsubstituted heteroalicyclic group, a substituted or unsubstituted diaryl ether, a substituted or unsubstituted diaryl sulfide, a substituted or unsubstituted diaryl sulfoxide, a substituted or unsubstituted diaryl ketone, or a substituted or unsubstituted diaryl bisphenol A; R1, R2, and R3 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group a substituted or unsubstituted aryl group, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group; and n is an integer from 2 to 500.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a novel light absorbent for forming an organic anti-reflective layer, which is a ring-opened phthalic anhydride compound, an organic anti-reflective layer composition, a method for patterning a semiconductor device using the organic anti-reflective layer composition, and a semiconductor device produced by the method for patterning. More particularly, the present invention relates to a novel light absorbent capable of being used in producing an organic anti-reflective layer which is useful for the formation of ultrafine semiconductor patterns using an ArF excimer laser; an organic anti-reflective layer composition containing the light absorbent, which prevents reflection from underneath film layers in lithographic processes, prevents a stationary wave, and exhibits a high dry etching rate; a method for patterning a semiconductor device using the organic anti-reflective layer composition; and a semiconductor device produced by the method for patterning.
  • 2. Description of the Related Art
  • Along with the recent high integration of semiconductor devices, there is a demand for ultrafine patterns with a line width of 0.10 micrometers or less in the production of ultra LSI and the like, and a demand also exists for lithographic processes using light of lower wavelengths in the region of conventionally used g-ray or i-ray as the exposure wavelength. Accordingly, microlithographic processes using KrF excimer lasers and ArF excimer lasers are currently used for the process for producing semiconductor devices.
  • Because the size of patterns of semiconductor devices is ever decreasing, only when the reflectance is maintained to be at least less than 1% while the exposure process is carried out, a uniform pattern can be obtained, and an appropriate process window can be obtained, so as to attain a desired yield.
  • Therefore, technologies of preventing reflection from underneath film layers and eliminating a stationary wave, by disposing an organic anti-reflective layer containing organic molecules which are capable of absorbing light, beneath a photoresist layer, to thereby control the reflectance so as to reduce the reflectance at the maximum, have become important.
  • SUMMARY OF THE INVENTION
  • In order to overcome such problems as described above, it is an object of the present invention to provide a novel light absorbent which can be used in an organic anti-reflective layer capable of absorbing reflected light that is generated during exposure in ultrafine patterning lithographic processes making use of 193-nm ArF excimer laser, and an organic anti-reflective layer composition comprising the light absorbent.
  • It is another object of the invention to provide a method of designing the basic structure of an organic anti-reflective layer to constitute a chemical structure capable of increasing the etching rate of the organic anti-reflective layer, and producing a polymer in accordance therewith, to thus produce an organic anti-reflective layer using the polymer, so that etching processes can be carried out more smoothly, and to provide a method for forming a pattern of a semiconductor device using the organic anti-reflective layer composition, which method is capable of achieving the formation of excellent ultrafine patterns by eliminating undercut, footing and the like.
  • According to an aspect of the present invention, there is provided a light absorbent for forming an organic anti-reflective layer, represented by the following formula 1:
  • Figure US20100055408A1-20100304-C00003
  • wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ketone having 3 to 20 carbon atoms, or a substituted or unsubstituted diaryl bisphenol A having 3 to 20 carbon atoms; and R1 and R2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group.
  • According to another aspect of the present invention, there is provided a light absorbent for forming an organic anti-reflective layer, represented by the following formula 2:
  • Figure US20100055408A1-20100304-C00004
  • wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ketone having 3 to 20 carbon atoms, or a substituted or unsubstituted diaryl bisphenol A having 3 to 20 carbon atoms; R3 represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group; and n is an integer from 2 to 500.
  • According to another aspect of the present invention, there is provided an organic anti-reflective composition comprising the light absorbent represented by the formula 1 or formula 2, a polymer, a thermal acid generating agent, a crosslinking agent, and a solvent.
  • According to another aspect of the present invention, there is provided a method for patterning a semiconductor device, the method comprising:
  • applying the organic anti-reflective layer composition according to the present invention on top of a layer to be etched;
  • curing the applied composition through a baking process, and forming crosslinking bonds to form an organic anti-reflective layer; applying a photoresist on top of the organic anti-reflective layer, and exposing and developing the photoresist to form a photoresist pattern; and
  • etching the organic anti-reflective layer using the photoresist pattern as an etching mask, and then etching the layer to be etched so as to pattern the layer to be etched.
  • According to another aspect of the present invention, there is provided a semiconductor device produced by the method for patterning according to the present invention.
  • The organic anti-reflective layer composition according to the present invention exhibits excellent adhesiveness and storage stability, as well as excellent resolution in both C/H patterns and L/S patterns. The organic anti-reflective layer composition also has an excellent process window, so that excellent pattern profiles can be obtained irrespective of the type of the substrate.
  • Furthermore, when a pattern is formed using the organic anti-reflective layer composition, etching of the anti-reflective layer can be rapidly carried out in ultrafine patterning processes making use of a 193-nm light source, and as a result, development of high integration semiconductor devices can be achieved more actively.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a 1H-NMR spectrum of a copolymer produced according to an embodiment of the present invention;
  • FIG. 2 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention;
  • FIG. 3 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention;
  • FIG. 4 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention;
  • FIG. 5 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention;
  • FIG. 6 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention;
  • FIG. 7 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention;
  • FIG. 8 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention; and
  • FIG. 9 is a 1H-NMR spectrum of a copolymer produced according to another embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, the present invention will be described in more detail.
  • According to an aspect of the present invention, a ring-opened phthalic anhydride represented by the following formula 1, which serves as a light absorbent for forming an organic anti-reflective layer, is provided.
  • Figure US20100055408A1-20100304-C00005
  • wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ketone having 3 to 20 carbon atoms, or a substituted or unsubstituted diaryl bisphenol A having 3 to 20 carbon atoms; and R1 and R2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group.
  • According to another aspect of the present invention, a ring-opened phthalic anhydride compound represented by the following formula 2, which serves as a light absorbent for forming an organic anti-reflective layer, is provided.
  • Figure US20100055408A1-20100304-C00006
  • wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ketone having 3 to 20 carbon atoms, or a substituted or unsubstituted diaryl bisphenol A having 3 to 20 carbon atoms; R3 represents a,hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group; and n is an integer from 2 to 500, and preferably an integer from 2 to 300.
  • Preferably, the compound of formula 2 has a weight average molecular weight of 350 to 100,000, and more preferably 400 to 50,000.
  • The light absorbent contained in an organic anti-reflective layer can be classified into a type in which the light absorbent is included in a compound in the form of a chemical moiety capable of absorbing light, and a type in which the light absorbent is separately present with a polymer incapable of absorbing light. Typically, the light absorbent is separately used so that the amount of the light absorbing chemical species can be controlled.
  • The light absorbent of the present invention includes a benzene chromophore, and contains functional groups for thermal curing.
  • Specifically, since benzene chromophore derivatives may have widely varying etching properties depending on the structure, derivatives having various structures have been introduced in the present invention for the application in the organic anti-reflective layer composition.
  • Upon examining the reaction between the above-described light absorbent according to the present invention and a thermally curable compound which is a polymer to be contained in the anti-reflective layer composition as will be described later, a carboxylic acid functional group is generated by ring-opening of the light absorbent by means of an alcohol compound, and this carboxylic acid functional group reacts with a functional group of the thermally curable compound, such as acetal, epoxy or hemiacetal, to form a crosslinked structure.
  • The term “substituted” according to the present invention means that one or more hydrogen atoms in a group may be respectively substituted with a halogen atom, a hydroxyl group, a nitro group, a cyano group, an amino group, an amidino group, hydrazine, hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkenyl group, a C1-C10 alkynyl group, a C6-C20 aryl group, a C7-C20 arylalkyl group, a C4-C20 heteroaryl group or a C5-C20 heteroarylalkyl group.
  • Specific examples of the light absorbent for forming an organic anti-reflective layer, represented by the formula 1, according to the present invention include compounds of the following formulas 3 to 42.
  • Figure US20100055408A1-20100304-C00007
    Figure US20100055408A1-20100304-C00008
    Figure US20100055408A1-20100304-C00009
    Figure US20100055408A1-20100304-C00010
    Figure US20100055408A1-20100304-C00011
    Figure US20100055408A1-20100304-C00012
    Figure US20100055408A1-20100304-C00013
    Figure US20100055408A1-20100304-C00014
    Figure US20100055408A1-20100304-C00015
    Figure US20100055408A1-20100304-C00016
    Figure US20100055408A1-20100304-C00017
    Figure US20100055408A1-20100304-C00018
    Figure US20100055408A1-20100304-C00019
  • Furthermore, specific examples of the light absorbent for forming an organic anti-reflective layer, represented by the formula 2, according to the present invention include compounds of the following formulas 43 to 60.
  • Figure US20100055408A1-20100304-C00020
    Figure US20100055408A1-20100304-C00021
    Figure US20100055408A1-20100304-C00022
  • According to an embodiment of the present invention, the compounds represented by formula 1 of the present invention are produced by reacting a substituted or unsubstituted benzyl alcohol compound represented by the following formula 61 with various dianhydride compounds in the presence of a base, and then neutralizing the base used with an acid.
  • Figure US20100055408A1-20100304-C00023
  • wherein R4 represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group.
  • According to another embodiment of the present invention, the compounds represented by formula 2 of the present invention can be produced by reacting a compound represented by the following formula 62 with various dianhydride compounds.
  • Figure US20100055408A1-20100304-C00024
  • wherein R5 represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group.
  • The light absorbent of the present invention can be synthesized by conventional methods, but preferably, synthesis of the light absorbent of the present invention is achieved by a reaction in a basic environment.
  • The aforementioned various dianhydrides are advantageous in that the compounds are highly reactive with alcohols, and have four reactive groups so that two chromophores can be introduced first and then two more crosslinking sites can be provided in the subsequent processes.
  • Examples of the base that can be used to provide a basic environment include dimethylaminopyridine, pyridine, 1,4-diazabicyclo[2,2,2]octane. 1,5-diazabicyclo[4,3,0]nonane, triethylamine, 2,6-di-tert-butylpyridine, diisopropylethylamine, diazabicycloundecene, tetramethylethylenediamine, tetrabutylammonium bromide and the like, and no particular limitation is posed.
  • As for the solvent for synthesis, one or more can be selected from benzene, toluene, xylene, halogenated benzene, diethyl ether, tetrahydrofuran, esters, ethers, lactones, ketones and amides, and used.
  • The temperature for synthesis of the compound can be selected and used in accordance with the solvent, and is usually 5° C. to 200° C., and preferably 20° C. to 100° C.
  • According to another aspect of the present invention, an organic anti-reflective layer composition containing the light absorbent of the present invention is also provided.
  • According to an embodiment of the present invention, the organic anti-reflective layer composition comprises the light absorbent of the present invention, a polymer, a thermal acid generating agent, a crosslinking agent and a solvent.
  • A preferable organic anti-reflective layer composition needs to satisfy the following requirements.
  • Firstly, the composition should contain a substance which is capable of absorbing light in the wavelength region of the light source for exposure so as to prevent reflection from underneath film layers.
  • Secondly, in a process of laminating an anti-reflective layer and then laminating a photoresist layer, the anti-reflective layer should not be dissolved and destroyed by the solvent for the photoresist. For this reason, the anti-reflective layer should be designed to have a structure which can be thermally cured, and during the process of laminating the anti-reflective layer, a baking process is carried out after coating of the anti-reflective layer so as to proceed curing.
  • Thirdly, the anti-reflective layer should be able to be etched more rapidly than the photoresist layer on the upper side, so that the loss of photoresist resulting from etching of underneath film layers can be reduced.
  • Fourthly, the anti-reflective layer composition should not be reactive to the photoresist on the upper side. Further, compounds such as amines or acids should be prevented from migrating to the photoresist layer. This is because these migrating impurities may cause defects, such as footing or undercut in particular, in the photoresist pattern.
  • Fifthly, the anti-reflective layer composition should have optical properties which are suitable for various exposure processes using various substrates, that is, appropriate refractive index and absorption coefficient, and should have good adhesive power to the substrate and photoresist layer.
  • The organic anti-reflective layer composition according to the present invention satisfies all of the above-mentioned requirements.
  • Hereinafter, the organic anti-reflective layer composition according to the present invention will be described in detail.
  • The light absorbent is a compound represented by formula 1 or formula 2 as described previously in the above. The polymer to be contained in the organic anti-reflective layer composition of the present invention can be obtained by polymerizing an acrylate-based, maleic anhydride-based, phenol-based or ester-based monomer, and the polymer is not particularly limited as long as it is a polymer having crosslinking sites which are capable of reacting with the light absorbent, at the terminals of the main chain or side chains.
  • An organic anti-reflective layer employing such polymer acquires resistance to dissolution by solvents, as the composition applied on a substrate is cured while going through a baking process.
  • Therefore, at the time of applying a photosensitizer after the lamination of the organic anti-reflective layer, dissolution of the anti-reflective layer by the solvent of the photosensitizer does not occur, and stability can be imparted to the anti-reflective layer.
  • The organic anti-reflective layer composition of the present invention may contain additives in order to facilitate curing of the light absorbent and polymer and to enhance their performance, and examples of such additives include a crosslinking agent and a thermal acid generating agent.
  • First, the crosslinking agent is preferably a compound having at least two or more crosslinkable functional groups, and examples thereof include aminoplastic compounds, polyfunctional epoxy resins, mixtures of dianhydrides, and the like.
  • The aminoplastic compounds may be exemplified by dimethoxymethylglycoluril, diethoxymethylglycoluril and mixtures thereof, diethyldimethylmethylglycoluril, tetramethoxymethylglycoluril, hexamethoxymethylmelamine resin, and the like.
  • As for the polyfunctional epoxy compounds, it is preferable to use, for example, MY720, CY179MA, DENACOL and the like, as well as products equivalent thereto.
  • Next, it is preferable to use a thermal acid generating agent as a catalyst for accelerating the curing reaction. As for the thermal acid generating agent to be contained in the present invention, toluenesulfonic acid, amine salts or pyridine salts of toluenesulfonic acid, alkylsulfonic acid, amine salts or pyridine salts of alkylsulfonic acid, and the like can also be used.
  • As for the organic solvent that can be used in the organic anti-reflective layer composition of the present invention, it is preferable to use one or more solvents selected from the group consisting of propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), cyclohexanone, ethyl lactate, propylene glycol n-propyl ether, dimethylformamide (DMF), γ-butyrolactone, ethoxyethanol, methoxyethanol, methyl 3-methoxypropionate (MMP) and ethyl 3-ethoxypropionate (EEP).
  • According to another embodiment of the present invention, the organic anti-reflective layer composition contains the light absorbent represented by formula 1 or formula 2 in an amount of preferably 0.1 to 40% by weight, more preferably 0.1 to 15% by weight, and even more preferably 0.1 to 10% by weight, based on the whole composition. The polymer is contained in an amount of preferably 0.1 to 20% by weight based on the whole composition. The crosslinking agent is contained in an amount of preferably 0.01 to 15% by weight, and more preferably 0.05 to 7% by weight, based on the whole composition. The thermal acid generating agent is contained in an amount of 0.01 to 20% by weight, more preferably 0.01 to 10% by weight, and even more preferably 0.02 to 5% by weight, based on the whole composition. The balance of the contents in the composition can be constituted of the solvent and other additional additives which are well known and widely used.
  • When the processes for forming an organic anti-reflective layer are briefly examined, an organic anti-reflective layer composition containing the constituent components as described above at the compositional ratios given above is applied on a wafer, and then a thermal process such as baking is carried out so that acid is generated from the thermal acid generating agent. Then, in the presence of the generated acid, a crosslinking reaction involving the light absorbent represented by formula 1 or formula 2, the polymer and the crosslinking agent which is used as an additive, is accelerated, and an organic anti-reflective layer which is not soluble in organic solvents is formed. Such organic anti-reflective layer can prevent diffused reflection from the layers underneath the photoresist layer by absorbing far-ultraviolet rays which have penetrated through the photoresist layer and reached the organic anti-reflective layer.
  • The method for forming a pattern of a semiconductor device using the organic anti-reflective layer composition as described above, comprises applying the organic anti-reflective layer composition on top of a layer to be etched; curing the applied composition through a baking process, and forming crosslinking bonds to form an organic anti-reflective layer; applying a photoresist on top of the organic anti-reflective layer, and exposing and developing the photoresist to form a photoresist pattern; and etching the organic anti-reflective layer using the photoresist pattern as an etching mask, and then etching the layer to be etched so as to pattern the layer to be etched.
  • In the process of laminating the organic anti-reflective layer according to the present invention, the baking process can be carried out preferably at a temperature of 150° C. to 250° C. for 0.5 to 5 minutes, and more preferably for 1 minute to 5 minutes.
  • Furthermore, in the patterning method according to the present invention, an additional baking process can be carried out again before or after laminating an organic or inorganic composition of anti-reflective layer or silicone anti-reflective layer on top of a spin-on carbon hard mask, and such baking process is preferably carried out at a temperature of 70° C. to 200° C.
  • According to another aspect of the present invention, a semiconductor device produced by the patterning method of the present invention is provided.
  • The present invention will be described specifically by way of the following Synthesis Examples and Examples. However, the present invention is not intended to be limited to these Synthesis Examples and Examples.
  • In the following Synthesis Examples 1 to 10, light absorbents for organic anti-reflective layer were synthesized.
  • SYNTHESIS EXAMPLE 1
  • 50 g of bicycle[2,2,2]octene-2,3,5,6-tetracarboxylic acid dianhydride, 43.57 g of benzenemethanol, 31.87 g of pyridine and 4.92 g of dimethylaminopyridine were dissolved in 260.73 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved again in dioxane. This solution was dropped in water, and a precipitate thus generated was filtered, washed several times with distilled water, and then dried, to obtain 45.62 g (yield=46.6%) of a compound. The 1H-NMR spectrum of the copolymer produced according to Synthesis Example 1 is presented in FIG. 1.
  • SYNTHESIS EXAMPLE 2
  • 105 g of 4,4′-oxydiphthalic anhydride, 73.21 g of benzenemethanol, 5.36 g of pyridine, and 8.27 g of dimethylaminopyridine were dissolved in 450.21 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 2 is presented in FIG. 2.
  • SYNTHESIS EXAMPLE 3
  • 50 g of 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride), 19.74 g of benzyl alcohol, 15.2 g of pyridine, and 2.35 g of dimethylaminopyridine were dissolved in 174.56 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 3 is presented in FIG. 3.
  • SYNTHESIS EXAMPLE 4
  • 50 g of benzophenone-3,3′,4,4′-tetracarboxylic acid dianhydride, 33.56 g of benzyl alcohol, 24.55 g of pyridine, and 3.79 g of dimethylaminopyridine were dissolved in 223.8 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 4 is presented in FIG. 4.
  • SYNTHESIS EXAMPLE 5
  • 25 g of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 12.17 g of benzyl alcohol, 8.9 g of pyridine, and 1.38 g of dimethylaminopyridine were dissolved in 94.9 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 5 is presented in FIG. 5.
  • SYNTHESIS EXAMPLE 6
  • 20 g of 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride), 5.31 g of benzenedimethanol, 3.04 g of pyridine, and 0.74 g of dimethylaminopyridine were dissolved in 57.64 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 6 is presented in FIG. 6.
  • SYNTHESIS EXAMPLE 7
  • 50 g of 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride), 27.28 g of 4-(hydroxymethyl)benzoic acid, 15.2 g of pyridine, and 2.35 g of dimethylaminopyridine were dissolved in 174.56 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 7 is presented in FIG. 7.
  • SYNTHESIS EXAMPLE 8
  • 50 g of 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride), 31.39 g of methyl 4-(hydroxymethyl)benzoate, 15.2 g of pyridine, and 2.35 g of dimethylaminopyridine were dissolved in 174.56 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 8 is presented in FIG. 8.
  • SYNTHESIS EXAMPLE 9
  • 50 g of 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride), 23.47 g of 4-methylbenzyl alcohol, 15.2 g of pyridine, and 2.35 g of dimethylaminopyridine were dissolved in 174.56 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 9 is presented in FIG. 9.
  • SYNTHESIS EXAMPLE 10
  • 50 g of 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride), 23.85 g of 4-hydroxybenzyl alcohol, 15.2 g of pyridine, and 2.35 g of dimethylaminopyridine were dissolved in 174.56 g of 1,4-dioxane, and then the solution was allowed to react at 80° C. for 24 hours. After completion of the reaction, formic acid was added dropwise to the reaction solution to neutralize the solution. Ethyl acetate and distilled water were added to this reaction product, and the organic layer was separated. The separated organic layer was subjected to solvent removal, and then was dissolved in propylene glycol monomethyl ether acetate, to obtain a compound. The 1H-NMR spectrum of the solid light absorbent produced according to Synthesis Example 10 is presented in FIG. 10.
  • EXAMPLE 1
  • Preparation of Organic Anti-Reflective Layer Composition A
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 1, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition A.
  • EXAMPLE 2
  • Preparation of Organic Anti-Reflective Layer Composition B
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 2, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition B.
  • EXAMPLE 3
  • Preparation of Organic Anti-Reflective Layer Composition C
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 3, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition C.
  • EXAMPLE 4
  • Preparation of Organic Anti-Reflective Layer Composition D
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 4, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition D.
  • EXAMPLE 5
  • Preparation of Organic Anti-Reflective Layer Composition E
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 5, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition E.
  • EXAMPLE 6
  • Preparation of Organic Anti-Reflective Layer Composition F
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 6, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition F.
  • EXAMPLE 7
  • Preparation of Organic Anti-Reflective Layer Composition G
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 7, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition G.
  • EXAMPLE 8
  • Preparation of Organic Anti-Reflective Layer Composition H
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 8, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition H.
  • EXAMPLE 9
  • Preparation of Organic Anti-Reflective Layer Composition I
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 9, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition I.
  • EXAMPLE 10
  • Preparation of Organic Anti-Reflective Layer Composition J
  • 4 g of the light absorbent for organic anti-reflective layer produced in the above Synthesis Example 10, 6 g of an acrylic polymer, 2 g of tetramethoxymethylglycoluril and 0.2 g of pyridinium p-toluenesulfonate were dissolved in 987.8 g of propylene glycol monomethyl ether acetate, and then the solution was filtered through a membrane filter having a pore size of 0.2 μm, to prepare an organic anti-reflective layer composition J.
  • Results for measurement of properties of organic anti-reflective layers and formation of photoresist patterns
  • 1) Stripping Test
  • Each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10 was applied on a silicon wafer by spin coating, and then the coated wafer was baked on a hot plate at 230° C. for 1 minute to form an organic anti-reflective layer. The thickness of the layer was measured, and the wafer coated with the organic anti-reflective layer was immersed for 1 minute in ethyl lactate and propylene glycol monomethyl ether, which are solvents used for the photoresist. Subsequently, the coated wafer was baked on a hot plate at 100° C. for 1 minute to completely remove the solvents, and then the thickness of the organic anti-reflective layer was measured again. It was confirmed that the anti-reflective layer was insoluble in the solvents.
  • 2) Measurement of Optical Properties
  • Each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10 was applied on a silicon wafer by spin coating, and then the coated wafer was baked on a hot plate at 230° C. for 1 minute to form an organic anti-reflective layer. The refractive index (n) at 193 nm and the extinction coefficient (k) of the anti-reflective layer were measured using a spectroscopic ellipsometer (J.A. Woollam Co., Inc.). The measurement results are presented in Table 1.
  • TABLE 1
    Extinction Thickness of first
    Refractive coefficient microthin film Reflectance
    index (n) (k) (nm) (%)
    Example 1 1.62 0.28 33 <0.1
    Example 2 1.76 0.28 24 <0.1
    Example 3 1.75 0.29 24 <0.1
    Example 4 1.79 0.33 22 <0.1
    Example 5 1.69 0.37 27 <0.2
    Example 6 1.67 0.28 30 <0.1
    Example 7 1.65 0.29 31 <0.1
    Example 8 1.68 0.29 29 <0.1
    Example 9 1.67 0.25 30 <0.1
    Example 10 1.66 0.25 31 <0.1
  • 3) Simulation of First Microthin Film
  • An organic anti-reflective layer was formed using each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10, and then the refractive index (n) at 193 nm and the extinction coefficient (k) of the anti-reflective layer were measured using a spectroscopic ellipsometer. Subsequently, the thickness of the first microthin film, and the reflectance in the case of using the thickness of the first microthin film were calculated by performing a simulation using the values of the refractive index (n) and extinction coefficient (k) obtained from the measurement. The simulation was related to the reflectance obtainable in the case where 40 nm of silicon oxynitride was deposited on the silicon wafer. The software used in the simulation was KLA Tencor FINDLE Division PROLITH, and the results are presented in Table 1.
  • 4) Formation of Organic Anti-Reflective Layer and Photoresist Pattern
  • Each of the organic anti-reflective layer compositions A to J prepared in Example 1 to 10 was applied by spin coating on a silicon wafer deposited with silicon oxynitride, and then the coated wafer was baked on a hot plate at 230° C. for 1 minute, to form an organic anti-reflective layer. Subsequently, an ArF photoresist was applied on top of the organic anti-reflective layer, and then the coated wafer was baked at 100° C. for 60 seconds. Then, the photoresist was exposed using a scanner equipment, and then the wafer was baked again at 115° C. for 60 seconds. The exposed wafer was developed using a developer solution containing 2.38% by weight of TMAH, to obtain a final photoresist pattern. The pattern was of L/S type with a size of 80 nm, and the results are presented in Table 2.
  • TABLE 2
    Energy Focus
    margin depth margin
    (%) (μm) Shape of pattern
    Example 1 22 0.4 Perpendicular
    Example 2 20 0.5 Perpendicular
    Example 3 23 0.5 Perpendicular
    Example 4 26 0.3 Perpendicular
    Example 5 31 0.5 Perpendicular
    Example 6 28 0.4 Perpendicular
    Example 7 27 0.4 Perpendicular
    Example 8 26 0.5 Perpendicular
    Example 9 28 0.4 Perpendicular
    Example 10 31 0.3 Perpendicular

Claims (20)

1. A light absorbent for forming an organic anti-reflective layer, represented by the following formula 1:
Figure US20100055408A1-20100304-C00025
wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ketone having 3 to 20 carbon atoms, or a substituted or unsubstituted diaryl bisphenol A having 3 to 20 carbon atoms; and R1 and R2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group.
2. A light absorbent for forming an organic anti-reflective layer, represented by the following formula 2:
Figure US20100055408A1-20100304-C00026
wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ketone having 3 to 20 carbon atoms, or a substituted or unsubstituted diaryl bisphenol A having 3 to 20 carbon atoms; R3 represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group; and n is an integer from 2 to 500.
3. The light absorbent for forming an organic anti-reflective layer according to claim 1, wherein the light absorbent represented by the formula 1 is a compound produced by a reaction in the presence of a base.
4. The light absorbent for forming an organic anti-reflective layer according to claim 3, wherein the base is a compound selected from the group consisting of dimethylaminopyridine, pyridine, 1,4-diazabicyclo[2,2,2]octane, 1,5-diazabicyclo[4,3,0]nonane, triethylamine, 2,6-di-tert-butylpyridine, diisopropylethylamine, diazabicycloundecene, tetramethylethylenediamine and tetrabutylammonium bromide.
5. An organic anti-reflective layer composition comprising a light absorbent represented by the following formula 1 or formula 2, a polymer, a thermal acid generating agent, a crosslinking agent and a solvent:
Figure US20100055408A1-20100304-C00027
wherein A represents a substituted or unsubstituted, linear or branched, saturated tetravalent hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted, linear or branched, saturated hydrocarbon group having 1 to 20 carbon atoms and containing one or more heteroatoms, a substituted or unsubstituted aromatic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroaromatic group having 3 to 20 carbon atoms, a substituted or unsubstituted alicyclic group having 4 to 20 carbon atoms, a substituted or unsubstituted heteroalicyclic group having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ether having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl sulfoxide having 3 to 20 carbon atoms, a substituted or unsubstituted diaryl ketone having 3 to 20 carbon atoms, or a substituted or unsubstituted diaryl bisphenol A having 3 to 20 carbon atoms; R1, R2 and R3 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 14 carbon atoms, a substituted or unsubstituted acetal group, or a substituted or unsubstituted hydroxyl group; and n is an integer from 2 to 500.
6. The organic anti-reflective layer composition according to claim 5, wherein the composition comprises 0.1 to 5% by weight of the light absorbent, 0.1 to 5% by weight of the polymer, 0.01 to 1% by weight of the thermal acid generating agent, and 0.05 to 5% by weight of the crosslinking agent.
7. The organic anti-reflective layer composition according to claim 5, wherein the polymer is a resin having crosslinking sites at the terminals of the main chain or side chains.
8. The organic anti-reflective layer composition according to claim 5, wherein the crosslinking agent is an aminoplastic compound, a polyfunctional epoxy resin, an anhydride or a mixture thereof, which respectively has two or more crosslinkable functional groups.
9. The organic anti-reflective layer composition according to claim 5, wherein the thermal acid generating agent is toluenesulfonic acid, an amine salt of toluenesulfonci acid, a pyridine salt of toluenesulfonic acid, alkylsulfonic acid, an amine salt of alkylsulfonic acid, or a pyridine salt of alkylsulfonic acid.
10. The organic anti-reflective layer composition according to claim 5, wherein the solvent is one or more selected from the group consisting of propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), cyclohexanone, ethyl lactate, propylene glycol n-propyl ether, dimethylformamide (DMF), γ-butyrolactone, ethoxyethanol, methoxyethanol, methyl 3-methoxypropionate (MMP) and ethyl 3-ethoxypropionate (EEP).
11. A method for patterning a semiconductor device, the method comprising:
applying the organic anti-reflective layer composition according to claim 5 on top of a layer to be etched;
curing the applied composition through a baking process, and forming crosslinking bonds to form an organic anti-reflective layer;
applying a photoresist on top of the organic anti-reflective layer, and exposing and developing the photoresist to form a photoresist pattern; and
etching the organic anti-reflective layer using the photoresist pattern as an etching mask, and then etching the layer to be etched so as to pattern the layer to be etched.
12. The method for patterning a semiconductor device according to claim 11, wherein the baking process during the curing is carried out at a temperature of 150° C. to 250° C. for 0.5 minutes or 5 minutes.
13. The method for patterning a semiconductor device according to claim 11, further comprising a second baking process before or after exposing during the forming a photoresist pattern.
14. A semiconductor device produced by the method for patterning according to claim 11.
15. The light absorbent for forming an organic anti-reflective layer according to claim 2, wherein the light absorbent represented by the formula 2 is a compound produced by a reaction in the presence of a base.
16. The light absorbent for forming an organic anti-reflective layer according to claim 15, wherein the base is a compound selected from the group consisting of dimethylaminopyridine, pyridine, 1,4-diazabicyclo[2,2,2]octane, 1,5-diazabicyclo[4,3,0]nonane, triethylamine, 2,6-di-tert-butylpyridine, diisopropylethylamine, diazabicycloundecene, tetramethylethylenediamine and tetrabutylammonium bromide.
17. The organic anti-reflective layer composition according to claim 6, wherein the polymer is a resin having crosslinking sites at the terminals of the main chain or side chains.
18. The organic anti-reflective layer composition according to claim 6, wherein the crosslinking agent is an aminoplastic compound, a polyfunctional epoxy resin, an anhydride or a mixture thereof, which respectively has two or more crosslinkable functional groups.
19. The organic anti-reflective layer composition according to claim 6, wherein the thermal acid generating agent is toluenesulfonic acid, an amine salt of toluenesulfonci acid, a pyridine salt of toluenesulfonic acid, alkylsulfonic acid, an amine salt of alkylsulfonic acid, or a pyridine salt of alkylsulfonic acid.
20. The organic anti-reflective layer composition according to claim 6, wherein the solvent is one or more selected from the group consisting of propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), cyclohexanone, ethyl lactate, propylene glycol n-propyl ether, dimethylformamide (DMF), γ-butyrolactone, ethoxyethanol, methoxyethanol, methyl 3-methoxypropionate (MMP) and ethyl 3-ethoxypropionate (EEP).
US12/321,091 2008-08-26 2009-01-15 Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof Abandoned US20100055408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/186,101 US8357482B2 (en) 2008-08-26 2011-07-19 Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0083295 2008-08-26
KR1020080083295A KR100997502B1 (en) 2008-08-26 2008-08-26 Organic antireflective protecting composition layer containing ring-opening phthalic anhydride and synthesis method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/186,101 Division US8357482B2 (en) 2008-08-26 2011-07-19 Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof

Publications (1)

Publication Number Publication Date
US20100055408A1 true US20100055408A1 (en) 2010-03-04

Family

ID=41725878

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/321,091 Abandoned US20100055408A1 (en) 2008-08-26 2009-01-15 Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof
US13/186,101 Active US8357482B2 (en) 2008-08-26 2011-07-19 Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/186,101 Active US8357482B2 (en) 2008-08-26 2011-07-19 Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof

Country Status (6)

Country Link
US (2) US20100055408A1 (en)
JP (1) JP4757923B2 (en)
KR (1) KR100997502B1 (en)
CN (1) CN101659615B (en)
SG (1) SG159433A1 (en)
TW (1) TWI443123B (en)

Cited By (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090258321A1 (en) * 2008-04-11 2009-10-15 Korea Kumho Petrochemical Co., Ltd. Light absorbent and organic antireflection coating composition containing the same
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US9355863B2 (en) 2012-12-18 2016-05-31 Applied Materials, Inc. Non-local plasma oxide etch
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9384997B2 (en) 2012-11-20 2016-07-05 Applied Materials, Inc. Dry-etch selectivity
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9412608B2 (en) 2012-11-30 2016-08-09 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9418858B2 (en) 2011-10-07 2016-08-16 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9437451B2 (en) 2012-09-18 2016-09-06 Applied Materials, Inc. Radical-component oxide etch
US9449850B2 (en) 2013-03-15 2016-09-20 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US9472412B2 (en) 2013-12-02 2016-10-18 Applied Materials, Inc. Procedure for etch rate consistency
US9472417B2 (en) 2013-11-12 2016-10-18 Applied Materials, Inc. Plasma-free metal etch
US9478432B2 (en) 2014-09-25 2016-10-25 Applied Materials, Inc. Silicon oxide selective removal
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434660B1 (en) * 2012-12-18 2014-08-28 금호석유화학 주식회사 Novel absorber and composition for preparing organic antireflective protecting layer comprising the same
US10429737B2 (en) * 2017-09-21 2019-10-01 Rohm And Haas Electronic Materials Korea Ltd. Antireflective compositions with thermal acid generators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506583A (en) * 1968-03-14 1970-04-14 Int Harvester Co Monomeric,solid state solutions of certain aromatic diamines in derivatives of benzophenonetetracarboxylic acid
US5025084A (en) * 1989-07-15 1991-06-18 Ciba-Geigy Corporation Polyimide-forming compositions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837126A (en) * 1985-06-07 1989-06-06 W. R. Grace & Co. Polymer composition for photoresist application
JP3154603B2 (en) * 1993-11-16 2001-04-09 三井化学株式会社 Electrophotographic toner containing pyromellitic acid derivative
US5935760A (en) * 1997-10-20 1999-08-10 Brewer Science Inc. Thermosetting polyester anti-reflective coatings for multilayer photoresist processes
KR20020090584A (en) * 2001-05-28 2002-12-05 주식회사 동진쎄미켐 POLYMER RESIN FOR ORGANIC BOTTOM ANTI-REFLECTIVE COATING FILM, AND ORGANIC BOTTOM ANTI-REFLECTIVE COATING COMPOSITIONS FOR KrF PHOTORESIST USING THE SAME
US7264913B2 (en) * 2002-11-21 2007-09-04 Az Electronic Materials Usa Corp. Antireflective compositions for photoresists
US7691556B2 (en) * 2004-09-15 2010-04-06 Az Electronic Materials Usa Corp. Antireflective compositions for photoresists
US7638262B2 (en) * 2006-08-10 2009-12-29 Az Electronic Materials Usa Corp. Antireflective composition for photoresists
US8137874B2 (en) * 2008-01-23 2012-03-20 International Business Machines Corporation Organic graded spin on BARC compositions for high NA lithography
KR100894218B1 (en) * 2008-04-11 2009-04-22 금호석유화학 주식회사 Absorber and organic antireflective protecting composition layer containing thereof
SG156561A1 (en) * 2008-04-16 2009-11-26 Korea Kumho Petrochem Co Ltd Copolymer and composition for organic antireflective layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506583A (en) * 1968-03-14 1970-04-14 Int Harvester Co Monomeric,solid state solutions of certain aromatic diamines in derivatives of benzophenonetetracarboxylic acid
US5025084A (en) * 1989-07-15 1991-06-18 Ciba-Geigy Corporation Polyimide-forming compositions

Cited By (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939245B2 (en) * 2008-04-11 2011-05-10 Korea Kumho Petrochemical Co., Ltd. Light absorbent and organic antireflection coating composition containing the same
US20090258321A1 (en) * 2008-04-11 2009-10-15 Korea Kumho Petrochemical Co., Ltd. Light absorbent and organic antireflection coating composition containing the same
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9418858B2 (en) 2011-10-07 2016-08-16 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9437451B2 (en) 2012-09-18 2016-09-06 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US9384997B2 (en) 2012-11-20 2016-07-05 Applied Materials, Inc. Dry-etch selectivity
US9412608B2 (en) 2012-11-30 2016-08-09 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9355863B2 (en) 2012-12-18 2016-05-31 Applied Materials, Inc. Non-local plasma oxide etch
US9449845B2 (en) 2012-12-21 2016-09-20 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9659792B2 (en) 2013-03-15 2017-05-23 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9704723B2 (en) 2013-03-15 2017-07-11 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9449850B2 (en) 2013-03-15 2016-09-20 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9472417B2 (en) 2013-11-12 2016-10-18 Applied Materials, Inc. Plasma-free metal etch
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9472412B2 (en) 2013-12-02 2016-10-18 Applied Materials, Inc. Procedure for etch rate consistency
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9564296B2 (en) 2014-03-20 2017-02-07 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US9478432B2 (en) 2014-09-25 2016-10-25 Applied Materials, Inc. Silicon oxide selective removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Also Published As

Publication number Publication date
TWI443123B (en) 2014-07-01
SG159433A1 (en) 2010-03-30
US8357482B2 (en) 2013-01-22
JP4757923B2 (en) 2011-08-24
US20110272643A1 (en) 2011-11-10
JP2010055049A (en) 2010-03-11
KR100997502B1 (en) 2010-11-30
CN101659615A (en) 2010-03-03
KR20100024634A (en) 2010-03-08
CN101659615B (en) 2014-12-03
TW201008909A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
US8357482B2 (en) Organic anti-reflective layer composition containing ring-opened phthalic anhydride and method for preparation thereof
TWI432905B (en) Resist underlayer coating forming composition and method for forming resist pattern by use of the composition
JP6970142B2 (en) A composition for a resist underlayer film and a pattern forming method using the same.
JPWO2013080929A1 (en) Composition for forming resist underlayer film used in multilayer resist process, resist underlayer film, method for forming the same, and pattern forming method
JP2014524942A (en) Bottom anti-reflective coating composition and method thereof
JP5552502B2 (en) Copolymer for organic antireflection film, monomer, and composition containing the copolymer
US7939245B2 (en) Light absorbent and organic antireflection coating composition containing the same
TWI361956B (en) Anti-reflective coating-forming composition containing sulfur atom for lithography
JP5728822B2 (en) Near infrared light absorbing film forming material and laminated film
TWI463262B (en) Organic anti reflective layer composition
KR102516390B1 (en) Novel thiobarbituric acid derivatives, polymer including repeating unit derived therefrom, bottom anti-reflection coating composition containing the same and process for forming resist pattern using the composition
US20210230127A1 (en) Resist underlayer composition, and method of forming patterns using the composition
KR20190042921A (en) Polymer for organic bottom anti-reflective coating, bottom anti-reflective coating composition containing the same and process for forming organic bottom anti-reflective coating using the composition
JP7272364B2 (en) COMPOSITION FOR FORMING RESIST UNDERLAYER FILM, RESIST UNDERLAYER FILM AND METHOD FOR FORMING SAME, PATTERN FORMING METHOD AND COMPOUND AND MANUFACTURING METHOD THEREOF
JP6741957B2 (en) Film forming material for resist process and pattern forming method
KR101434660B1 (en) Novel absorber and composition for preparing organic antireflective protecting layer comprising the same
KR102586107B1 (en) Resist underlayer composition, and method of forming patterns using the composition
US20240061338A1 (en) Resist underlayer composition and method of forming patterns using the composition
JP2023549846A (en) Composition for resist underlayer film and pattern forming method using the same
KR101262445B1 (en) Absorber and organic antireflective protecting composition layer containing thereof
CN115951559A (en) Photosensitive resin composition, preparation method thereof, cured film and application thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOREA KUMBO PETROCHEMICAL CO., LTD.,KOREA, REPUBLI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JONG-DON;LEE, JUN-HO;BAE, SHIN-HYO;AND OTHERS;REEL/FRAME:022168/0415

Effective date: 20081126

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION