US20100015793A1 - Contact surrounded by passivation and polymide and method therefor - Google Patents

Contact surrounded by passivation and polymide and method therefor Download PDF

Info

Publication number
US20100015793A1
US20100015793A1 US12/569,022 US56902209A US2010015793A1 US 20100015793 A1 US20100015793 A1 US 20100015793A1 US 56902209 A US56902209 A US 56902209A US 2010015793 A1 US2010015793 A1 US 2010015793A1
Authority
US
United States
Prior art keywords
layer
depositing
polyimide
step
further characterized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/569,022
Inventor
James Jen-Ho Wang
Paul T. Hui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/419,798 priority Critical patent/US7615866B2/en
Priority to US12/569,022 priority patent/US20100015793A1/en
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of US20100015793A1 publication Critical patent/US20100015793A1/en
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY AGREEMENT Assignors: FREESCALE SEMICONDUCTOR, INC.
Assigned to FREESCALE SEMICONDUCTOR, INC. reassignment FREESCALE SEMICONDUCTOR, INC. PATENT RELEASE Assignors: CITIBANK, N.A., AS COLLATERAL AGENT
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. SECURITY AGREEMENT SUPPLEMENT Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12092129 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to NXP B.V. reassignment NXP B.V. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 042985 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC. reassignment MORGAN STANLEY SENIOR FUNDING, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12298143 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT. Assignors: NXP B.V.
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05073Single internal layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Abstract

A semiconductor device has contact between the last interconnect layer and the bond pad that includes a barrier metal between the bond pad and the last interconnect layer. Both a passivation layer and a polyimide layer separate the last interconnect layer and the bond pad. The passivation layer is patterned to form a first opening to contact the last interconnect layer. The polyimide layer is also patterned to leave a second opening that is inside and thus smaller than the first opening through the passivation. The barrier layer is then deposited in contact with the last interconnect layer and bounded by the polyimide layer. The bond pad is then formed in contact with the barrier, and a wire bond is then made to the bond pad.

Description

    FIELD OF THE INVENTION
  • This invention relates to integrated circuits, and more particularly, to contacts that are surrounded by a passivation layer and a polyimide layer.
  • BACKGROUND OF THE INVENTION
  • Contacts for bond pads for high power integrated circuits commonly have an aluminum interface. Aluminum is used as the last layer of interconnect as well as bond pad metal with gold wire bonded to the aluminum bond pads. For better durability at higher temperature, gold may be used for the bond pad. A gold bond pad is similar to the gold bumps used for tape automated bonding (TAB) that do not require any wire bonds. At higher temperatures, however, such as continuous junction operating temperatures above 125 degrees Celsius, there have been life span limitations with this approach. For applications such as engine control, it is desirable to withstand the higher temperatures for longer life span. At the higher temperatures the gold will eventually diffuse into the aluminum, which causes the area of the aluminum that has the diffused gold to become brittle and weak. When this happens, the diffused region is likely to crack and cause a failure. A number of barrier metals such as titanium tungsten (TiW), titanium tungsten nitride (TiWN), chromium, and platinum have been proposed. All, although generally effective, still have limited barrier lifespan at the higher temperatures.
  • Thus, there is a need for a contact between an interconnect layer and the overlying bond pad metal that improves durability without adversely impacting cost or unduly adding to process complexity.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and further and more specific objects and advantages of the invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment thereof taken in conjunction with the following drawings:
  • FIG. 1 is a cross section of a semiconductor device at a stage in a process that is according to an embodiment of the invention;
  • FIG. 2 is a cross section of the semiconductor device at a stage in the process subsequent to that shown in FIG. 1;
  • FIG. 3 is a cross section of the semiconductor device at a stage in the process subsequent to that shown in FIG. 2;
  • FIG. 4 is a cross section of the semiconductor device at a stage in the process subsequent to that shown in FIG. 3; and
  • FIG. 5 is a cross section of the semiconductor device at a stage in the process subsequent to that shown in FIG. 4.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In one aspect a semiconductor device has contact between the last interconnect layer and the bond pad metal that includes a barrier metal between the bond pad and the last interconnect layer. Both a passivation layer and a polyimide layer separate the last interconnect layer and the bond pad. The passivation layer is patterned to form a first contact opening to contact the last interconnect layer. The polyimide layer is also patterned to leave a second opening that is inside and thus smaller than the first contact opening through the passivation. The barrier layer is then deposited in contact with the last interconnect layer and bounded by the polyimide layer. The bond pad metal is then formed in contact with the barrier, and a wire bond is then made to the bond pad metal. This is better understood by reference to the drawings and the following description.
  • Shown in FIG. 1 is a semiconductor device structure 10 having an active circuitry region 12, a contact region 14, an aluminum layer 16 over active circuitry 12 and contact region 14, and a passivation layer 18 over aluminum layer 16. In this example semiconductor device structure 10, shown in simplified form, is a completed integrated circuit that needs to have bond pads placed on it. Aluminum layer 16 is the last interconnect layer of the integrated circuit and although aluminum is generally preferable, could be another material. Although aluminum layer 16 as shown in FIG. 1 is continuous, aluminum layer 16 is patterned in areas not shown to achieve its function as an interconnect layer. Aluminum layer 16 in this example is preferably about 0.6 microns but could be another thickness.
  • Active circuitry region 12 is the portion of the integrated circuit where transistors and other circuit elements are formed and includes the interconnect for those transistors and other circuit elements. This is typically achieved with a silicon substrate for use in forming certain portions of the transistors, one or more polysilicon layers for use as transistor elements and interconnect, and interconnect metal layers above the polysilicon layer or layers for providing the necessary interconnections and power connections. The last interconnect layer, aluminum layer 16 in this example, is the highest in the stack of interconnect layers. Other functions may also be present. Electrostatic discharge (ESD) protection circuitry, may be placed in the contact region. Contact regions that are not directly under a ball bond pad may also have active circuitry present. Passivation layer 18 is preferably plasma oxide/nitride about 1.0 microns thick but could be different thickness and could be of another suitable dielectric material. Thus, the contact region is the region where the contact to the last metal layer is made for the bond pad.
  • Shown in FIG. 2 is semiconductor device structure 10 after a patterned etch of passivation layer 18 to leave a opening 20 in passivation layer 18 over contact region 14. Opening 20 is preferably about 15 by 21 microns but could be of other dimensions.
  • Shown in FIG. 3 is semiconductor device structure 10 after deposition by spin coating of polyimide layer 22 that is about 8 microns thick before curing.
  • Shown in FIG. 4 is semiconductor device structure 10 after patterning polyimide layer 22 to form an opening 24 within opening 20. Opening 24 is preferably about 12 by 18 microns at aluminum layer 16. Opening 24 has substantial slope that may be 45 degrees. On the other hand it can be only 10 degrees from vertical. Opening 24 is separated from opening 20 by about 2 microns of polyimide per side.
  • Shown in FIG. 5 is semiconductor device structure 10, after deposition of a titanium tungsten (TiW) layer 26 on polyimide layer 22 and on aluminum layer 16 in opening 24, a gold layer 28 on TiW layer 26, and a wire bond on gold layer 28. TiW layer 26 is preferably about 0.35 microns thick. Gold layer 28 is preferably about 9 microns thick but may be another thickness. Gold layer 28 is conventionally made by first sputtering a thin layer of gold seed metal to obtain a gold/TiW seed layer and, after patterning a thick photoresist over the gold/TiW seed layer, then electroplating 9 microns of gold only where there is no photoresist cover of the gold/TiW seed layer. The photoresist and the portion of the thin gold/TiW seed metal that is not under the electroplated thick gold layer are also chemically stripped; leaving patterned and separated gold bond pads having contact to the desired points in the aluminum interconnect layer. Gold layer 28 is substantially conformal so substantially follows the contour of polyimide layer 22. The bond pad formed of gold layer 28 is over a flat portion of gold layer 28 and polyimide layer 22 and may be over active circuitry region 12 as shown in FIG. 4. Gold layer 28 and TiW layer 26 in opening 24 are thus separated from the sidewall of passivation layer 18 by at least one micron of polyimide.
  • The polyimide providing separation between the sidewall of passivation layer 18 and gold layer 28 has proven to make a significant difference in durability of the contact between aluminum layer 16 and gold layer 28 for high temperature applications. The inventors discovered that when the TiW barrier was along the sidewall of the passivation layer, gold diffused through the TiW barrier and into the aluminum at this location at high temperature at far too great of a rate. The root cause of this high rate of diffusion at this location is not known. One theory is that when the polyimide is etched to expose the aluminum, there is some undercutting of the aluminum that extends under the passivation causing more difficult step coverage of the passivation by the barrier metal. Another theory is that the TiW layer is not a very good barrier at the stress point of the corner of the sidewall where 3 different rigid materials trisect. The approach of the invention's use of polyimide may provide some form of mechanical stress relief over the passivation. In any event, the problem of a poor barrier metal at the sidewall of the passivation layer is greatly improved by separating the passivation sidewall from the TiW with polyimide. The result of the approach of the invention is significantly improved durability of the contact.
  • The polyimide used should be able to be patterned to the dimensions described and perhaps even smaller. A photo-imageable polyimide may be used for this purpose. Another benefit of photo-imageable polyimide is that a step of depositing photoresist for patterning the polyimide is not required. In effect the photo-imageable polyimide is similar to photoresist with the advantage over photoresist that it can be left remaining after patterning for the normal uses of polyimide. Additionally, the polyimide should have a low polyamic acid content, preferably be substantially free of polyamic acid. The polymerization of some polyimides results in residual acid that then acts as a corrosive agent under high humidity ambients. One such polyimide that has been found effective is sold under the trade designation P12771 by Hitachi-Dupont.
  • Various other changes and modifications to the embodiments herein chosen for purposes of illustration will readily occur to those skilled in the art. For example, other thicknesses than those disclosed may be effective. Also, there is believed to be a particular benefit to the materials used but other materials may also be effective. The application described was for wire bonding but other applications such as TAB bonding may also be applicable. To the extent that such modifications and variations do not depart from the spirit of the invention, they are intended to be included within the scope thereof which is assessed only by a fair interpretation of the following claims.

Claims (9)

1-7. (canceled)
8. A method of making semiconductor device, comprising:
providing an active circuitry region;
providing a contact region;
forming a last interconnect layer over the active circuitry and the contact region;
depositing a passivation layer over the last interconnect layer;
etching a first opening in the passivation layer, wherein the first opening is bounded be a sidewall of the passivation layer;
depositing a polyimide layer over the passivation layer;
etching a second opening in the polyimide layer, wherein the second opening is within the first opening so that the polyimide layer separates the second opening from the sidewall of the passivation layer;
depositing a barrier metal layer over the polyimide layer and contacting the last interconnect layer in the second opening; and
depositing a bond pad metal over the barrier metal.
9. The method of claim 8 further comprising forming a wire bond on the bond pad metal over the active circuitry region.
10. The method of claim 9, wherein:
the step of depositing the barrier metal layer is further characterized by the barrier metal layer comprising titanium tungsten;
the step of depositing the bond pad metal is further characterized by the bond pad metal comprising gold, and
the step of depositing last interconnect layer is further characterized by the last interconnect layer comprising aluminum.
11. The method of claim 8, wherein the step of depositing the polyimide layer is further characterized by the polyimide layer comprising photo-imageable polyimide.
12. The method of claim 11, wherein:
the step of depositing the passivation layer is further characterized by the passivation layer comprising nitride;
the step of depositing the barrier metal layer is further characterized by the barrier metal layer comprising titanium tungsten;
the step of depositing the bond pad metal is further characterized by the bond pad metal comprising gold, and
the step of depositing last interconnect layer is further characterized by the last interconnect layer comprising aluminum.
13. The method of claim 8, wherein;
the step of depositing the passivation layer is further characterized by the passivation layer comprising nitride;
the step of depositing the barrier metal layer is further characterized by the barrier metal layer comprising titanium tungsten;
the step of depositing the bond pad metal is further characterized by the bond pad metal comprising gold, and
the step of depositing last interconnect layer is further characterized by the last interconnect layer comprising aluminum.
14. The method of claim 8, wherein the step of etching the polyimide layer is further characterized by leaving at least a thickness of one micron of polyimide as measured from the sidewall of the passivation layer.
15-20. (canceled)
US12/569,022 2006-05-23 2009-09-29 Contact surrounded by passivation and polymide and method therefor Abandoned US20100015793A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/419,798 US7615866B2 (en) 2006-05-23 2006-05-23 Contact surrounded by passivation and polymide and method therefor
US12/569,022 US20100015793A1 (en) 2006-05-23 2009-09-29 Contact surrounded by passivation and polymide and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/569,022 US20100015793A1 (en) 2006-05-23 2009-09-29 Contact surrounded by passivation and polymide and method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/419,798 Division US7615866B2 (en) 2006-05-23 2006-05-23 Contact surrounded by passivation and polymide and method therefor

Publications (1)

Publication Number Publication Date
US20100015793A1 true US20100015793A1 (en) 2010-01-21

Family

ID=38750055

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/419,798 Active 2026-08-31 US7615866B2 (en) 2006-05-23 2006-05-23 Contact surrounded by passivation and polymide and method therefor
US12/569,022 Abandoned US20100015793A1 (en) 2006-05-23 2009-09-29 Contact surrounded by passivation and polymide and method therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/419,798 Active 2026-08-31 US7615866B2 (en) 2006-05-23 2006-05-23 Contact surrounded by passivation and polymide and method therefor

Country Status (6)

Country Link
US (2) US7615866B2 (en)
JP (1) JP5474534B2 (en)
KR (1) KR20090009890A (en)
CN (1) CN101449376B (en)
TW (1) TWI445141B (en)
WO (1) WO2007140049A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916463B2 (en) 2012-09-06 2014-12-23 International Business Machines Corporation Wire bond splash containment
US8998454B2 (en) 2013-03-15 2015-04-07 Sumitomo Electric Printed Circuits, Inc. Flexible electronic assembly and method of manufacturing the same
US9668352B2 (en) 2013-03-15 2017-05-30 Sumitomo Electric Printed Circuits, Inc. Method of embedding a pre-assembled unit including a device into a flexible printed circuit and corresponding assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120292770A1 (en) * 2011-05-19 2012-11-22 General Electric Company Method and device for preventing corrosion on sensors
KR101994974B1 (en) 2013-01-10 2019-07-02 삼성디스플레이 주식회사 Thin film trannsistor array panel and manufacturing method thereof
US8994173B2 (en) 2013-06-26 2015-03-31 International Business Machines Corporation Solder bump connection and method of making
CN104409371A (en) * 2014-12-03 2015-03-11 无锡中微高科电子有限公司 Method for improving long-term reliability of gold-aluminum bonding

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317081A (en) * 1990-07-11 1994-05-31 International Business Machines Corporation Microwave processing
US6077766A (en) * 1999-06-25 2000-06-20 International Business Machines Corporation Variable thickness pads on a substrate surface
US20040151893A1 (en) * 2001-06-28 2004-08-05 Kydd Paul H. Low temperature method and composition for producing electrical conductors
US20050136558A1 (en) * 2003-12-18 2005-06-23 Wang James J. Stacked semiconductor device assembly and method for forming
US20050224966A1 (en) * 2004-03-31 2005-10-13 Fogel Keith E Interconnections for flip-chip using lead-free solders and having reaction barrier layers
US20060022311A1 (en) * 2003-05-08 2006-02-02 Mou-Shiung Lin Chip structure with redistribution Circuit, chip package and manufacturing process thereof
US20060049525A1 (en) * 2004-09-09 2006-03-09 Megic Corporation Post passivation interconnection process and structures
US20060060961A1 (en) * 2004-07-09 2006-03-23 Mou-Shiung Lin Chip structure
US20060079025A1 (en) * 2004-10-12 2006-04-13 Agency For Science, Technology And Research Polymer encapsulated dicing lane (PEDL) technology for Cu/low/ultra-low k devices
US20060214296A1 (en) * 2005-03-28 2006-09-28 Fujitsu Limited Semiconductor device and semiconductor-device manufacturing method
US20070134903A1 (en) * 2005-12-09 2007-06-14 Vivian Ryan Integrated circuit having bond pad with improved thermal and mechanical properties

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482652A (en) * 1987-09-25 1989-03-28 Nec Corp Manufacture of semiconductor device
JPH10125685A (en) * 1996-10-16 1998-05-15 Casio Comput Co Ltd Protruding electrode and its forming method
JP2001035876A (en) * 1999-07-23 2001-02-09 Nec Corp Flip-chip connection structure, semiconductor device and fabrication thereof
CN1152418C (en) 2001-06-29 2004-06-02 信息产业部电子第五十五研究所 Inactivation method of gallium arsenide chip for plastic packaging
US6770971B2 (en) 2002-06-14 2004-08-03 Casio Computer Co., Ltd. Semiconductor device and method of fabricating the same
TWI281718B (en) * 2002-09-10 2007-05-21 Advanced Semiconductor Eng Bump and process thereof
JP2004266012A (en) * 2003-02-28 2004-09-24 Canon Inc Semiconductor device
JP2004342988A (en) 2003-05-19 2004-12-02 Shinko Electric Ind Co Ltd Method for manufacturing semiconductor package and semiconductor device
JP2005057252A (en) * 2003-08-07 2005-03-03 Samsung Electronics Co Ltd Method for manufacturing semiconductor device having photosensitive polyimide film and semiconductor device manufactured thereby

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317081A (en) * 1990-07-11 1994-05-31 International Business Machines Corporation Microwave processing
US6077766A (en) * 1999-06-25 2000-06-20 International Business Machines Corporation Variable thickness pads on a substrate surface
US20040151893A1 (en) * 2001-06-28 2004-08-05 Kydd Paul H. Low temperature method and composition for producing electrical conductors
US20060022311A1 (en) * 2003-05-08 2006-02-02 Mou-Shiung Lin Chip structure with redistribution Circuit, chip package and manufacturing process thereof
US20050136558A1 (en) * 2003-12-18 2005-06-23 Wang James J. Stacked semiconductor device assembly and method for forming
US20050224966A1 (en) * 2004-03-31 2005-10-13 Fogel Keith E Interconnections for flip-chip using lead-free solders and having reaction barrier layers
US20060060961A1 (en) * 2004-07-09 2006-03-23 Mou-Shiung Lin Chip structure
US20060049525A1 (en) * 2004-09-09 2006-03-09 Megic Corporation Post passivation interconnection process and structures
US20060079025A1 (en) * 2004-10-12 2006-04-13 Agency For Science, Technology And Research Polymer encapsulated dicing lane (PEDL) technology for Cu/low/ultra-low k devices
US20060214296A1 (en) * 2005-03-28 2006-09-28 Fujitsu Limited Semiconductor device and semiconductor-device manufacturing method
US20070134903A1 (en) * 2005-12-09 2007-06-14 Vivian Ryan Integrated circuit having bond pad with improved thermal and mechanical properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916463B2 (en) 2012-09-06 2014-12-23 International Business Machines Corporation Wire bond splash containment
US8998454B2 (en) 2013-03-15 2015-04-07 Sumitomo Electric Printed Circuits, Inc. Flexible electronic assembly and method of manufacturing the same
US9668352B2 (en) 2013-03-15 2017-05-30 Sumitomo Electric Printed Circuits, Inc. Method of embedding a pre-assembled unit including a device into a flexible printed circuit and corresponding assembly

Also Published As

Publication number Publication date
CN101449376A (en) 2009-06-03
WO2007140049A3 (en) 2008-07-24
US7615866B2 (en) 2009-11-10
US20070275549A1 (en) 2007-11-29
TWI445141B (en) 2014-07-11
KR20090009890A (en) 2009-01-23
TW200746379A (en) 2007-12-16
JP5474534B2 (en) 2014-04-16
CN101449376B (en) 2011-04-20
WO2007140049A2 (en) 2007-12-06
JP2009538537A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
US4927505A (en) Metallization scheme providing adhesion and barrier properties
CN100550327C (en) A common ball-limiting metallurgy for i/o site and its forming method
US7115985B2 (en) Reinforced bond pad for a semiconductor device
US7554208B2 (en) Wirebond pad for semiconductor chip or wafer
KR910006967B1 (en) Bump electrod structure of semiconductor device and a method for forming the bump electrode
CN102347298B (en) The formed method of projection cube structure on substrate
US6518092B2 (en) Semiconductor device and method for manufacturing
US6614091B1 (en) Semiconductor device having a wire bond pad and method therefor
US7741714B2 (en) Bond pad structure with stress-buffering layer capping interconnection metal layer
US7445958B2 (en) Semiconductor device having a leading wiring layer
CN100557794C (en) Semiconductor device
US6607941B2 (en) Process and structure improvements to shellcase style packaging technology
US6265300B1 (en) Wire bonding surface and bonding method
US6100589A (en) Semiconductor device and a method for making the same that provide arrangement of a connecting region for an external connecting terminal
US20070187825A1 (en) Electronic component, semiconductor device, methods of manufacturing the same, circuit board, and electronic instrument
DE69938585T2 (en) Integrated circuit arrangement
CN101425493B (en) Back end integrated wlcsp structure without aluminum pads
US7282433B2 (en) Interconnect structures with bond-pads and methods of forming bump sites on bond-pads
KR100922704B1 (en) Semiconductor power device
EP0111823B1 (en) Compressively stressed titanium metallurgy for contacting passivated semiconductor devices
US6727590B2 (en) Semiconductor device with internal bonding pad
US5707894A (en) Bonding pad structure and method thereof
US6507112B1 (en) Semiconductor device with an improved bonding pad structure and method of bonding bonding wires to bonding pads
JP3210547B2 (en) Electroplated solder terminals and a method of manufacturing the same
US6479900B1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: CITIBANK, N.A.,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:023882/0834

Effective date: 20091030

Owner name: CITIBANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:FREESCALE SEMICONDUCTOR, INC.;REEL/FRAME:023882/0834

Effective date: 20091030

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: FREESCALE SEMICONDUCTOR, INC., TEXAS

Free format text: PATENT RELEASE;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:037354/0854

Effective date: 20151207

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:038017/0058

Effective date: 20160218

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12092129 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:039361/0212

Effective date: 20160218

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 039361 FRAME 0212. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:042762/0145

Effective date: 20160218

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., MARYLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE APPLICATION 12681366 PREVIOUSLY RECORDED ON REEL 038017 FRAME 0058. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:NXP B.V.;REEL/FRAME:042985/0001

Effective date: 20160218

AS Assignment

Owner name: NXP B.V., NETHERLANDS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC.;REEL/FRAME:050745/0001

Effective date: 20190903