US20100000681A1 - Phase change based heating element system and method - Google Patents

Phase change based heating element system and method Download PDF

Info

Publication number
US20100000681A1
US20100000681A1 US12511231 US51123109A US2010000681A1 US 20100000681 A1 US20100000681 A1 US 20100000681A1 US 12511231 US12511231 US 12511231 US 51123109 A US51123109 A US 51123109A US 2010000681 A1 US2010000681 A1 US 2010000681A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
process
temperature
processing
system
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12511231
Inventor
Ronald T. Bertram
Joseph T Hillman
Maximilian A Biberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Supercritical Systems Inc
Original Assignee
Supercritical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02101Cleaning only involving supercritical fluids
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only

Abstract

A method of and apparatus for regulating carbon dioxide using a pre-injection assembly coupled to a processing chamber operating at a supercritical state is disclosed. The method and apparatus utilize a source for providing supercritical carbon dioxide to the pre-injection assembly and a temperature control element for maintaining the pre-injection region at a supercritical temperature and pressure.

Description

    FIELD OF THE INVENTION
  • [0001]
    This invention relates to the field of particle prevention techniques in cleaning silicon wafers. More particularly, the present invention relates to the field of reducing substrate material contaminants during supercritical carbon dioxide processes.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Carbon Dioxide (CO2) is an environmentally friendly, naturally abundant, non-polar molecule. Being non-polar, CO2 has the capacity to dissolve in and dissolve a variety of non-polar materials or contaminates. The degree to which the contaminants found in non-polar CO2 are soluble is dependant on the physical state of the CO2. The four phases of CO2 are solid, liquid, gas, and supercritical. These states are differentiated by appropriate combinations of specific pressures and temperatures. CO2 in a supercritical state (sc-CO2) is neither liquid nor gas but embodies properties of both. In addition, sc-CO2 lacks any meaningful surface tension while interacting with solid surfaces, and hence, can readily penetrate high aspect ratio geometrical features more readily than liquid CO2. Moreover, because of its low viscosity and liquid-like characteristics, the sc-CO2 can easily dissolve large quantities of many other chemicals. It has been shown that as the temperature and pressure are increased into the supercritical phase, the solubility of CO2 also increases. This increase in solubility has lead to the development of sc-CO2 cleaning, extractions, and degreasing.
  • [0003]
    Supercritical fluids have been used to remove residue from surfaces or extract contaminants from various materials. For example, as described in U.S. Pat. No. 6,367,491 to Marshall, et al., entitled “Apparatus for Contaminant Removal Using Natural Convection Flow and Changes in Solubility Concentration by Temperature,” issued Apr. 9, 2002, supercritical and near-supercritical fluids have been used as solvents to clean contaminants from articles; citing, NASA Tech Brief MFS-29611 (December 1990), describing the use of supercritical carbon dioxide as an alternative for hydrocarbon solvents conventionally used for washing organic and inorganic contaminants from the surfaces of metal parts.
  • [0004]
    Supercritical fluids have been employed in the cleaning of semiconductor wafers. For example, an approach to using supercritical carbon dioxide to remove exposed organic photoresist film is disclosed in U.S. Pat. No. 4,944,837 to Nishikawa, et al., entitled “Method of Processing an Article in a Supercritical Atmosphere,” issued Jul. 31, 1990.
  • [0005]
    When cleaning semiconductor wafers with supercritical fluids it is important that contamination and particles be minimized by maintaining the proper temperatures and pressures to eliminate phase changes during processing. Cold spots in the system can allow contaminants to fall out, the fluid to change its phase, or both.
  • [0006]
    What is needed is a method of and system for preventing phase changes from occurring in high-pressure semiconductor processing systems.
  • SUMMARY OF THE INVENTION
  • [0007]
    In accordance with the present invention, a method of and apparatus for pre-processing carbon dioxide using a pre-injection assembly coupled to a processing chamber operating at a supercritical state is disclosed. The supercritical state is defined by both a temperature and a pressure. The method comprises the steps of providing supercritical carbon dioxide to a preinjection region within the pre-injection assembly; isolating the preinjection region; and maintaining the preinjection region at a supercritical temperature and pressure.
  • [0008]
    The supercritical temperature and pressure of the preinjection region is maintained by adding a heating element to the assembly. The heating element can comprise a heater blanket and/or heat tape. Preferably, the heat element includes temperature controllers or built-in preset thermostats to prevent overheating. The pre-injection assembly can comprise a discharge means for discharging particles from the preinjection region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0009]
    A more complete appreciation of various embodiments of the invention and many of the attendant advantages thereof will become readily apparent with reference to the following detailed description, particularly when considered in conjunction with the accompanying drawings, in which:
  • [0010]
    FIG. 1 shows an exemplary block diagram of a processing system in accordance with embodiments of the invention;
  • [0011]
    FIG. 2 illustrates a simplified block diagram of a pre-injection assembly in accordance with an embodiment of the invention;
  • [0012]
    FIG. 3 illustrates an exemplary graph of pressure versus time for supercritical processes in accordance with an embodiment of the invention; and
  • [0013]
    FIG. 4 illustrates a flow diagram of a method for operating a pre-injection assembly in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS
  • [0014]
    Embodiments of the present invention disclose a pre-injection assembly that enables the injection of a temperature-controlled high-pressure processing fluid/solution into a closed loop environment. The closed loop environment is preferably under high pressure. In one embodiment, the high-pressure system can exceed 3,000 psi.
  • [0015]
    FIG. 1 shows an exemplary block diagram of a processing system in accordance with an embodiment of the invention. In the illustrated embodiment, processing system 100 comprises a process module 110, a recirculation system 120, a process chemistry supply system 130, a high-pressure fluid supply system 140, an exhaust control system 150, a pressure control system 160, a pre-injection assembly 170, and a controller 180. The processing system 100 can operate at pressures that can range from 1000 psi. to 10,000 psi. In addition, the processing system 100 can operate at temperatures that can range from 40 to 300 degrees Celsius.
  • [0016]
    The details concerning one example of a processing chamber are disclosed in co-owned and co-pending U.S. patent application Ser. No. 09/912,844, entitled “HIGH PRESSURE PROCESSING CHAMBER FOR SEMICONDUCTOR SUBSTRATE,” filed Jul. 24, 2001, Ser. No. 09/970,309, entitled “HIGH PRESSURE PROCESSING CHAMBER FOR MULTIPLE SEMICONDUCTOR SUBSTRATES,” filed Oct. 3, 2001, Ser. No. 10/121,791, entitled “HIGH PRESSURE PROCESSING CHAMBER FOR SEMICONDUCTOR SUBSTRATE INCLUDING FLOW ENHANCING FEATURES,” filed Apr. 10, 2002, and Ser. No. 10/364,284, entitled “HIGH-PRESSURE PROCESSING CHAMBER FOR A SEMICONDUCTOR WAFER,” filed Feb. 10, 2003, the contents of which are incorporated herein by reference.
  • [0017]
    The controller 180 can be coupled to the process module 110, the recirculation system 120, the process chemistry supply system 130, the high-pressure fluid supply system 140, the exhaust control system 150, the pressure control system 160, and the pre-injection assembly 170. Alternately, controller 180 can be coupled to one or more additional controllers/computers (not shown), and controller 180 can obtain setup, configuration, and/or recipe information from an additional controller/computer.
  • [0018]
    In FIG. 1, singular processing elements (110, 120, 130, 140, 150, 160, 170, and 180) are shown, but this is not required for the invention. The semiconductor processing system 100 can comprise any number of processing elements having any number of controllers associated with them in addition to independent processing elements.
  • [0019]
    The controller 180 can be used to configure any number of processing elements (110, 120, 130, 140, 150, 160, and 170), and the controller 180 can collect, provide, process, store, and display data from processing elements. The controller 180 can comprise a number of applications for controlling one or more of the processing elements. For example, controller 180 can include a GUI component (not shown) that can provide easy to use interfaces that enable a user to monitor and/or control one or more processing elements.
  • [0020]
    The process module 110 can include an upper assembly 112 and a lower assembly 116, and the upper assembly 112 can be coupled to the lower assembly 116. In an alternate embodiment, a frame and or injection ring can be included and can be coupled to an upper assembly and a lower assembly. The upper assembly 112 can comprise a heater (not shown) for heating the process chamber, the substrate, or the processing fluid, or a combination of two or more thereof. Alternately, a heater is not required in the upper assembly 112. In another embodiment, the lower assembly 116 can comprise a heater (not shown) for heating the process chamber, the substrate, or the processing fluid, or a combination of two or more thereof. The process module 110 can include means for flowing a processing fluid through the processing chamber 108. In one example, a circular flow pattern can be established, and in another example, a substantially linear flow pattern can be established. Alternately, the means for flowing can be configured differently. The lower assembly 116 can comprise one or more lifters (not shown) for moving the chuck 118 and/or the substrate 105. Alternately, a lifter is not required.
  • [0021]
    In one embodiment, the process module 110 can include a holder or chuck 118 for supporting and holding the substrate 105 while processing the substrate 105. The holder or chuck 118 can also be configured to heat or cool the substrate 105 before, during, and/or after processing the substrate 105. Alternately, the process module 110 can include a platen for supporting and holding the substrate 105 while processing the substrate 105.
  • [0022]
    A transfer system (not shown) can be used to move a substrate into and out of the processing chamber 108 through a slot (not shown). In one example, the slot can be opened and closed by moving the chuck, and in another example, the slot can be controlled using a gate valve.
  • [0023]
    The substrate can include semiconductor material, metallic material, dielectric material, ceramic material, or polymer material, or a combination of two or more thereof. The semiconductor material can include Si, Ge, Si/Ge, or GaAs. The metallic material can include Cu, Al, Ni, Pb, Ti, Ta, or W, or combinations of two or more thereof. The dielectric material can include Si, O, N, H, P, or C, or combinations of two or more thereof. The ceramic material can include Al, N, Si, C, or O, or combinations of two or more thereof.
  • [0024]
    In one embodiment, processing system 100 can further comprise temperature controlled process tubing (121, 125 and 171) for coupling the process module 110 to the recirculation system 120, and a recirculation loop 115 can be configured that includes a portion of the recirculation system, a portion of the process module 110, temperature controlled process tubing 121, and temperature controlled process tubing 125. In addition, the temperature-controlled process tubing (121, 125, and 171) can operate at temperatures that can range from 40 to 300 degrees Celsius and pressures that can range from 1000 psi. to 10,000 psi.
  • [0025]
    In alternate embodiments, temperature controlled process tubing may not be required. In one embodiment, the recirculation loop 115 comprises a volume of approximately one liter. In alternate embodiments, the volume of the recirculation loop 115 can vary from approximately 0.5 liters to approximately 2.5 liters.
  • [0026]
    In addition, processing system 100 can comprise temperature-controlled process tubing 171 coupling the pre-injection assembly 170 to the process module 110. In alternate embodiments, temperature controlled process tubing may not be required. In addition, the controller can be coupled to and used to control the temperature-controlled process tubing 171. The pre-injection assembly 170 can comprise means (not shown) for providing temperature-controlled fluid to the processing chamber 108. Alternately, the pre-injection assembly 170 can comprise means (not shown) for providing temperature-controlled fluid to one or more elements in the recirculation loop 115. For example, the pre-injection assembly 170 can comprise means (not shown) for providing temperature-controlled CO2.
  • [0027]
    The temperature-controlled process tubing (121, 125, and/or 171) can comprise a heater (122, 126, and 172) that can cover a substantial portion (approximately ninety percent) of the outside surface area of the process tubing. For example, the heater can include a high temperature tape heater, such as Thermolyne® silicone rubber-encapsulated heating tape from Sigma Aldrich. In addition, the temperature-controlled process tubing (121, 125, and/or 171) can comprise an insulation layer (123, 127, and 173) that can cover a substantial portion (approximately ninety percent) of the outside surface area of the heater. For example, the insulation layer can include a high temperature insulation material, such as silicone foam from Quantum Silicones. The heater and insulation layer can be configured using one or more pieces that can be easily replaced during a maintenance operation.
  • [0028]
    Furthermore, the controller 180 can be coupled to and used to control the temperature-controlled process tubing 121, the temperature-controlled process tubing 125, and/or the temperature-controlled process tubing 171.
  • [0029]
    The pre-injection assembly 170 can operate at temperatures that can range from 40 to 300 degrees Celsius and pressures that can range from 1000 psi. to 10,000 psi. The flow rate from pre-injection assembly 170 can vary from approximately 0.01 liters/minute to approximately 100 liters/minute.
  • [0030]
    The recirculation system 120 can comprise one or more pumps (not shown) that can be used to regulate the flow of the supercritical processing solution through the processing chamber 108 and the other elements in the recirculation loop 115. The flow rate can vary from approximately 0.01 liters/minute to approximately 100 liters/minute.
  • [0031]
    The recirculation system 120 can comprise one or more valves (not shown) for regulating the flow of a supercritical processing solution through the recirculation loop 115. For example, the recirculation system 120 can comprise any number of back-flow valves, filters, pumps, and/or heaters (not shown) for maintaining a supercritical processing solution and flowing the supercritical process solution through the recirculation system 120 and through the processing chamber 108 in the process module 110.
  • [0032]
    Processing system 100 can comprise a process chemistry supply system 130. In the illustrated embodiment, the process chemistry supply system is coupled to the recirculation system 120 using one or more lines 135, but this is not required for the invention. In alternate embodiments, the process chemistry supply system can be configured differently and can be coupled to different elements in the processing system.
  • [0033]
    The process chemistry is introduced by the process chemistry supply system 130 into the fluid introduced by the high-pressure fluid supply system 140 at ratios that vary with the substrate properties, the chemistry being used, and the process being performed in the processing chamber 110. The ratio can vary from approximately 0.001 to approximately 15 percent by volume. For example, when the recirculation loop 115 comprises a volume of about one liter, the process chemistry volumes can range from approximately ten micro liters to approximately one hundred fifty milliliters. In alternate embodiments, the volume and/or the ratio can be higher or lower.
  • [0034]
    The process chemistry supply system 130 can comprise a cleaning chemistry assembly (not shown) for providing cleaning chemistry for generating supercritical cleaning solutions within the processing chamber. The cleaning chemistry can include peroxides and a fluoride source. For example, the peroxides can include hydrogen peroxide, benzoyl peroxide, or any other suitable peroxide, and the fluoride sources can include fluoride salts (such as ammonium fluoride salts), hydrogen fluoride, fluoride adducts (such as organic-ammonium fluoride adducts) and combinations thereof.
  • [0035]
    Further details of fluoride sources and methods of generating supercritical processing solutions with fluoride sources are described in U.S. patent application Ser. No. 10/442,557, filed May 10, 2003, and titled “TETRA-ORGANIC AMMONIUM FLUORIDE AND HF IN SUPERCRITICAL FLUID FOR PHOTORESIST AND RESIDUE REMOVAL”, and U.S. patent application Ser. No. 10/321,341, filed Dec. 16, 2002, and titled “FLUORIDE IN SUPERCRITICAL FLUID FOR PHOTORESIST POLYMER AND RESIDUE REMOVAL,” both are incorporated by reference herein.
  • [0036]
    In addition, the cleaning chemistry can include chelating agents, complexing agents, oxidants, organic acids, and inorganic acids that can be introduced into supercritical carbon dioxide with one or more carrier solvents, such as N,N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, and alcohols (such a methanol, ethanol and 1-propanol).
  • [0037]
    Furthermore, the cleaning chemistry can include solvents, co-solvents, surfactants, and/or other ingredients. Examples of solvents, co-solvents, and surfactants are disclosed in co-owned U.S. Pat. No. 6,500,605, entitled “REMOVAL OF PHOTORESIST AND RESIDUE FROM SUBSTRATE USING SUPERCRITICAL CARBON DIOXIDE PROCESS”, issued Dec. 31, 2002, and U.S. Pat. No. 6,277,753, entitled “REMOVAL OF CMP RESIDUE FROM SEMICONDUCTORS USING SUPERCRITICAL CARBON DIOXIDE PROCESS”, issued Aug. 21, 2001, both are incorporated by reference herein.
  • [0038]
    The process chemistry supply system 130 can be configured to introduce N-methylpyrrolidone (NMP), diglycol amine, hydroxylamine, di-isopropyl amine, tri-isopropyl amine, tertiary amines, catechol, ammonium fluoride, ammonium bifluoride, methylacetoacetamide, ozone, propylene glycol monoethyl ether acetate, acetylacetone, dibasic esters, ethyl lactate, CHF3, BF3, HF, other fluorine containing chemicals, or any mixture thereof. Other chemicals such as organic solvents can be utilized independently or in conjunction with the above chemicals to remove organic materials. The organic solvents can include, for example, an alcohol, ether, and/or glycol, such as acetone, diacetone alcohol, dimethyl sulfoxide (DMSO), ethylene glycol, methanol, ethanol, propanol, or isopropanol (IPA). For further details, see U.S. Pat. No. 6,306,564B1, filed May 27, 1998, and titled “REMOVAL OF RESIST OR RESIDUE FROM SEMICONDUCTORS USING SUPERCRITICAL CARBON DIOXIDE”, and U.S. Pat. No. 6,509,141B2, filed Sep. 3, 1999, and titled “REMOVAL OF PHOTORESIST AND PHOTORESIST RESIDUE FROM SEMICONDUCTORS USING SUPERCRITICAL CARBON DIOXIDE PROCESS”, both are incorporated by reference herein.
  • [0039]
    Moreover, the process chemistry supply system 130 can be configured to introduce a peroxide during a cleaning and/or rinsing process. The peroxide can be introduced with any one of the above process chemistries, or any mixture thereof. The peroxide can include organic peroxides, or inorganic peroxides, or a combination thereof. For example, organic peroxides can include 2-butanone peroxide; 2,4-pentanedione peroxide; peracetic acid; t-butyl hydroperoxide; benzoyl peroxide; or m-chloroperbenzoic acid (mCPBA). Other peroxides can include hydrogen peroxide. Alternatively, the peroxide can include a diacyl peroxide, such as: decanoyl peroxide; lauroyl peroxide; succinic acid peroxide; or benzoyl peroxide; or any combination thereof. Alternatively, the peroxide can include a dialkyl peroxide, such as: dicumyl peroxide; 2,5-di(t-butylperoxy)-2,5-dimethylhexane; t-butyl cumyl peroxide; α,α-bis(t-butylperoxy)diisopropylbenzene mixture of isomers; di(t-amyl)peroxide; di(t-butyl)peroxide; or 2,5-di(t-butylperoxy)-2,5-dimethyl-3-hexyne; or any combination thereof. Alternatively, the peroxide can include a diperoxyketal, such as: 1,1-di(t-butylperoxy)-3,3,5-trimethylcyclohexane; 1,1-di(t-butylperoxy)cyclohexane; 1,1-di(t-amylperoxy)-cyclohexane; n-butyl 4,4-di(t-butylperoxy)valerate; ethyl 3,3-di-(t-amylperoxy)butanoate; t-butyl peroxy-2-ethylhexanoate; or ethyl 3,3-di(t-butylperoxy)butyrate; or any combination thereof. Alternatively, the peroxide can include a hydroperoxide, such as: cumene hydroperoxide; or t-butyl hydroperoxide; or any combination thereof. Alternatively, the peroxide can include a ketone peroxide, such as: methyl ethyl ketone peroxide; or 2,4-pentanedione peroxide; or any combination thereof. Alternatively, the peroxide can include a peroxydicarbonate, such as: di(n-propyl)peroxydicarbonate; di(sec-butyl)peroxydicarbonate; or di(2-ethylhexyl)peroxydicarbonate; or any combination thereof. Alternatively, the peroxide can include a peroxyester, such as: 3-hydroxyl-1,1-dimethylbutyl peroxyneodecanoate; α-cumyl peroxyneodecanoate; t-amyl peroxyneodecanoate; t-butyl peroxyneodecanoate; t-butyl peroxypivalate; 2,5-di(2-ethyl hexanoylperoxy)-2,5-dimethylhexane; t-amyl peroxy-2-ethylhexanoate; t-butyl peroxy-2-ethylhexanoate; t-amyl peroxyacetate; t-butyl peroxyacetate; t-butyl peroxybenzoate; OO-(t-amyl) O-(2-ethylhexyl)monoperoxycarbonate; OO-(t-butyl) O-isopropyl monoperoxycarbonate; OO-(t-butyl) O-(2-ethylhexyl) monoperoxycarbonate; polyether poly-t-butylperoxy carbonate; or t-butyl peroxy-3,5,5-trimethylhexanoate; or any combination thereof. Alternatively, the peroxide can include any combination of peroxides listed above.
  • [0040]
    The process chemistry supply system 130 can comprise a rinsing chemistry assembly (not shown) for providing rinsing chemistry for generating supercritical rinsing solutions within the processing chamber. The rinsing chemistry can include one or more organic solvents including, but not limited to, alcohols and ketones. For example, the rinsing chemistry can comprise solvents, such as N, N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, and alcohols (such a methanol, ethanol and 2-propanol).
  • [0041]
    Moreover, the process chemistry supply system 130 can be configured to introduce treating chemistry for curing, cleaning, healing (or restoring the dielectric constant of low-k materials), or sealing, or any combination, low dielectric constant films (porous or non-porous). The chemistry can include hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), trichloromethylsilane (TCMS), dimethylsilyldiethylamine (DMSDEA), tetramethyldisilazane (TMDS), trimethylsilyldimethylamine (TMSDMA), dimethylsilyldimethylamine (DMSDMA), trimethylsilyldiethylamine (TMSDEA), bistrimethylsilyl urea (BTSU), bis(dimethylamino)methyl silane (B[DMA]MS), bis(dimethylamino)dimethyl silane (B[DMA]DS), HMCTS, dimethylaminopentamethyldisilane (DMAPMDS), dimethylaminodimethyldisilane (DMADMDS), disila-aza-cyclopentane (TDACP), disila-oza-cyclopentane (TDOCP), methyltrimethoxysilane (MTMOS), vinyltrimethoxysilane (VTMOS), or trimethylsilylimidazole (TMSI). Additionally, the chemistry can include N-tert-butyl-1,1-dimethyl-1-(2,3,4,5-tetramethyl-2,4-cyclopentadiene-1-yl)silanamine, 1,3-diphenyl-1,1,3,3-tetramethyldisilazane, or tert-butylchlorodiphenylsilane. For further details, see U.S. patent application Ser. No. 10/682,196, filed Oct. 10, 2003, and titled “METHOD AND SYSTEM FOR TREATING A DIELECTRIC FILM”, and U.S. patent application Ser. No. 10/379,984, filed Mar. 4, 2003, and titled “METHOD OF PASSIVATING LOW DIELECTRIC MATERIALS IN WAFER PROCESSING”, both incorporated by reference herein.
  • [0042]
    The processing system 100 can comprise a high-pressure fluid supply system 140. As shown in FIG. 1, the high-pressure fluid supply system 140 can be coupled to the recirculation system 120 using one or more lines 145, but this is not required. The inlet line 145 can be equipped with one or more back-flow valves, and/or heaters (not shown) for controlling the fluid flow from the high-pressure fluid supply system 140. In alternate embodiments, high-pressure fluid supply system 140 can be configured differently and coupled differently. For example, the high-pressure fluid supply system 140 can be coupled to the process module 110.
  • [0043]
    The high-pressure fluid supply system 140 can comprise a carbon dioxide source (not shown) and a plurality of flow control elements (not shown) for generating a supercritical fluid. For example, the carbon dioxide source can include a CO2 feed system, and the flow control elements can include supply lines, valves, filters, pumps, and heaters. The high-pressure fluid supply system 140 can comprise an inlet valve (not shown) that is configured to open and close to allow or prevent the stream of supercritical carbon dioxide from flowing into the processing chamber 108. For example, controller 180 can be used to determine fluid parameters such as pressure, temperature, process time, and flow rate.
  • [0044]
    The processing system 100 can also comprise a pressure control system 160. As shown in FIG. 1, the pressure control system 160 can be coupled to the process module 110 using one or more lines 165, but this is not required. Line 165 can be equipped with one or more back-flow valves, pumps, and/or heaters (not shown) for controlling the fluid flow to pressure control system 160. In alternate embodiments, pressure control system 160 can be configured differently and coupled differently. For example, the pressure control system 160 can also include one or more pumps (not shown), and a sealing means (not shown) for sealing the processing chamber. In addition, the pressure control system 160 can comprise means for raising and lowering the substrate and/or the chuck.
  • [0045]
    In addition, the processing system 100 can comprise an exhaust control system 150. Alternately, an exhaust system may not be required. As shown in FIG. 1, the exhaust control system 150 can be coupled to the process module 110 using one or more lines 155, but this is not required. Line 155 can be equipped with one or more back-flow valves, and/or heaters (not shown) for controlling the fluid flow to the exhaust control system 150. In alternate embodiments, exhaust control system 150 can be configured differently and coupled differently. The exhaust control system 150 can include an exhaust gas collection vessel (not shown) and can be used to remove contaminants from the processing fluid. Alternately, the exhaust control system 150 can be used to recycle the processing fluid.
  • [0046]
    In one embodiment, controller 180 can comprise a processor 182 and a memory 184. Memory 184 can be coupled to processor 182, and can be used for storing information and instructions to be executed by processor 182. Alternately, different controller configurations can be used. In addition, controller 180 can comprise a port 185 that can be used to couple processing system 100 to another system (not shown). Furthermore, controller 180 can comprise input and/or output devices (not shown).
  • [0047]
    In addition, one or more of the processing elements (110, 120, 130, 140, 150, 160, and 180) can include memory (not shown) for storing information and instructions to be executed during processing and processors for processing information and/or executing instructions. For example, the memory can be used for storing temporary variables or other intermediate information during the execution of instructions by the various processors in the system. One or more of the processing elements can comprise the means for reading data and/or instructions from a computer readable medium. In addition, one or more of the processing elements can comprise the means for writing data and/or instructions to a computer readable medium.
  • [0048]
    Memory devices can include at least one computer readable medium or memory for holding computer-executable instructions programmed according to the teachings of the invention and for containing data structures, tables, records, or other data described herein.
  • [0049]
    The processing system 100 can perform a portion or all of the processing steps of the invention in response to the controller 180 executing one or more sequences of one or more computer-executable instructions contained in a memory. Such instructions can be received by the controller from another computer, a computer readable medium, or a network connection.
  • [0050]
    Stored on any one or on a combination of computer readable media, the present invention includes software for controlling the processing system 100, for driving a device or devices for implementing the invention, and for enabling the processing system 100 to interact with a human user and/or another system, such as a factory system. Such software can include, but is not limited to, device drivers, operating systems, development tools, and applications software. Such computer readable media further includes the computer program product of the present invention for performing all or a portion (if processing is distributed) of the processing performed in implementing the invention.
  • [0051]
    The term “computer readable medium” as used herein refers to any medium that participates in providing instructions to a processor for execution and/or that participates in storing information before, during, and/or after executing an instruction. A computer readable medium can take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. The term “computer-executable instruction” as used herein refers to any computer code and/or software that can be executed by a processor, that provides instructions to a processor for execution and/or that participates in storing information before, during, and/or after executing an instruction.
  • [0052]
    Controller 180, processor 182, memory 184 and other processors and memory in other system elements as described thus far can, unless indicated otherwise below, be constituted by components known in the art or constructed according to principles known in the art. The computer readable medium and the computer executable instructions can also, unless indicated otherwise below, be constituted by components known in the art or constructed according to principles known in the art.
  • [0053]
    Controller 180 can use port 185 to obtain computer code and/or software from another system (not shown), such as a factory system. The computer code and/or software can be used to establish a control hierarchy. For example, the processing system 100 can operate independently, or can be controlled to some degree by a higher-level system (not shown).
  • [0054]
    The controller 180 can receive data from and/or send data to the pre-injection assembly 170. The controller 180 can include means for determining a temperature of the processing fluid in the pre-injection assembly 170, means for comparing the temperature to a threshold value, and means for altering the temperature of the processing fluid when the temperature is different from the threshold value. For example, additional cooling can be provided to the fluid in the recirculation loop when the temperature is greater than or equal to the threshold value, and additional heating can be provided to the fluid in the recirculation loop when the temperature is less than the threshold value.
  • [0055]
    In addition, the controller 180 can receive data from and/or send data to the temperature controlled process tubing 121 and/or the temperature-controlled process tubing 125. The controller 180 can include means for determining a temperature of the processing fluid in the process tubing (121, 125, and 171), means for comparing the temperature to a threshold value, and means for altering the temperature of the processing fluid when the temperature is different from the threshold value. For example, additional cooling can be provided to the fluid in the recirculation loop when the temperature is greater than or equal to the threshold value, and additional heating can be provided to the fluid in the recirculation loop when the temperature is less than the threshold value.
  • [0056]
    The controller 180 can use data from the pre-injection assembly 170 and/or the process tubing (121, 125, and 171) to determine when to alter, pause, and/or stop a process. The controller 180 can use the data and operational rules to determine when to change a process and how to change the process, and rules can be used to specify the action taken for normal processing and the actions taken on exceptional conditions. Operational rules can be used to determine which processes are monitored and which data is used. For example, rules can be used to determine how to manage the data when a process is changed, paused, and/or stopped. In general, rules allow system and/or tool operation to change based on the dynamic state of the system.
  • [0057]
    Controller 180 can receive, send, use, and/or generate pre-process data, process data, and post-process data, and this data can include lot data, batch data, run data, composition data, and history data. Pre-process data can be associated with an incoming substrate and can be used to establish an input state for a substrate and/or a current state for a process module. Process data can include process parameters. Post processing data can be associated with a processed substrate and can be used to establish an output state for a substrate The controller 180 can use the pre-process data to predict, select, or calculate a process recipe to use to process the substrate. A process recipe can include a multi-step process involving a set of process modules. Post-process data can be obtained at some point after the substrate has been processed. For example, post-process data can be obtained after a time delay that can vary from minutes to days.
  • [0058]
    In one embodiment, the controller 180 can compute a predicted fluid temperature based on the pre-process data, the process characteristics, and a process model. A process model can provide the relationship between one or more process recipe parameters, such as the temperature of the processing fluid and one or more process results. The controller 180 can compare the predicted value to the measured value to determine when to alter, pause, and/or stop a process.
  • [0059]
    In other embodiments, a reaction rate model can be used along with an expected fluid temperature at the substrate surface to compute a predicted value for the processing time, or a solubility model can be used along with an expected fluid temperature at the substrate surface to compute a predicted value for the processing time.
  • [0060]
    In another embodiment, the controller 180 can use historical data and/or process models to compute an expected value for the temperature of the fluid at various times during the process. The controller 180 can compare an expected temperature value to a measured temperature value to determine when to alter, pause, and/or stop a process.
  • [0061]
    In a supercritical cleaning/rinsing process, the desired process result can be a process result that is measurable using an optical measuring device, such as a SEM and/or TEM. For example, the desired process result can be an amount of residue and/or contaminant in a via or on the surface of a substrate. After one or more cleaning process run, the desired process can be measured.
  • [0062]
    In addition, at least one of the processing elements (110, 120, 130, 140, 150, 160, 170, and 180) can comprise a GUI component and/or a database component (not shown). In alternate embodiments, the GUI component and/or the database component may not be required.
  • [0063]
    It will be appreciated that the controller 180 can perform other functions in addition to those discussed here. The controller 180 can monitor variables associated with the other components in the processing system 100 and take actions based on these variables. For example, the controller 180 can process these variables, display these variables and/or results on a GUI screen, determine a fault condition, determine a response to a fault condition, and alert an operator.
  • [0064]
    FIG. 2 illustrates a simplified block diagram of a pre-injection assembly in accordance with an embodiment of the invention. In the illustrated embodiment, a pre-injection assembly 170 is shown that includes a fluid inlet means 210 having an input port 205, a supply assembly 220, a fluid outlet means 230 having an output port 235, and a controller 250. In alternate embodiments, different configurations can be used. For example, the pre-injection assembly 170 can be a portion of the high-pressure fluid supply system 140.
  • [0065]
    Input port 205 can be coupled to a high-pressure fluid source (not shown). For example, the high-pressure fluid source can provide a process fluid that can comprise gaseous, liquid, supercritical, or near-supercritical carbon dioxide, or combinations thereof, and the high-pressure fluid source can include one or more fluid cylinders, and/or one or more storage vessels.
  • [0066]
    The fluid inlet means 210 can comprise a flow control valve (not shown) that can be used for controlling the flow into the pre-injection assembly 170. In an alternate embodiment, the fluid inlet means 210 can include a heater and a sensor for pre-heating the fluid. In additional embodiments, the fluid inlet means 210 can include a regulator, a valve, a pump, a vent, a coupling, a filter, piping, and/or safety devices (not shown). In addition, the fluid inlet means 210 can comprise one or more flow restrictors for regulating the flow. For example, flow restrictors having different sizes can be used to vary the flow rate, and smaller sized orifices can be used for slower flow and larger sized orifices for faster flow.
  • [0067]
    In one embodiment, the fluid inlet means 210 can be coupled to a supply assembly 220. In an alternate embodiment, a filter (not shown) can be used to couple the fluid inlet means 210 to a supply assembly 220.
  • [0068]
    Supply assembly 220 can comprise a chamber 222, heater subassembly 224, insulation 226, and a sensor subassembly 228. For example, the chamber 222 can be configured using a high strength metal, such as stainless steel 316L. Chamber 222 can have a volume that can vary from approximately three times to approximately twenty times the volume of the recirculation loop 115 (FIG. 1). The chamber 222 can have an operating pressure up to 10,000 psi, and an operating temperature up to 300 degrees Celsius.
  • [0069]
    Heater subassembly 224 can comprise a heating element (not shown) and can cover at least ninety percent of the outside surface area of the chamber 222. For example, heating element 224 can include a high temperature blanket heater, such as a silicone blanket heater from Watlow. Insulation 226 can comprise a high temperature material (not shown) and can cover at least ninety percent of the outside surface area of the heating element. For example, insulation 226 can include high-temperature insulation, such as Silicone foam from Quantum Silicones. Heater subassembly 224 and insulation 226 can maintain an operating temperature up to 300 degrees Celsius in the chamber 222. Heater subassembly 224 and insulation 226 can be configured using one or more pieces that can be easily replaced during a maintenance operation.
  • [0070]
    Sensor subassembly 228 can comprise one or more temperature sensors (not shown) coupled to the chamber 222 at different locations. Alternately, the sensor subassembly 228 can also include a flow sensor and/or pressure sensor (not shown) that can be coupled to the chamber 222 at different locations. Sensor subassembly 228 can measure operating temperatures up to 300 degrees Celsius in the chamber 222.
  • [0071]
    The sensor can comprise a temperature sensor that can include a thermocouple, a temperature-indicating resistor, a radiation type temperature sensor, a thermistor, a thermometer, a pyrometer, a micro-electromechanical (MEM) device, or a resistance temperature detector (RTD), or a combination thereof. The sensor can include a contact-type sensor or a non-contact sensor. For example, a K-type thermocouple, a Pt sensor, a bimetallic thermocouple, or a temperature indicating platinum resistor can be used. For example, sensor subassembly 228 can include a high temperature sensor, such as k-type thermocouple from Omega.
  • [0072]
    The controller 250 can be coupled to the heater subassembly 224 and the sensor subassembly 228 and can be used to control the heater subassembly 224 and the sensor subassembly 228. Alternately, controller 250 may not be required. For example, controller 180 can be used to control the heater subassembly 224 and the sensor subassembly 228. In additional embodiments, the supply assembly 220 can include a regulator, a valve, a pump, a vent, a coupling, a filter, piping, a cooling device, and/or safety devices (not shown).
  • [0073]
    In one embodiment, the supply assembly 220 can be coupled to a fluid outlet means 230. In an alternate embodiment, a filter (not shown) can be used to couple the supply assembly 220 to the fluid outlet means 230.
  • [0074]
    The fluid outlet means 230 can comprise a flow control valve (not shown) that can be used for controlling the flow out of the pre-injection assembly 170. For example, a multi-port valve can be used. In an alternate embodiment, the fluid outlet means 230 can include a heater and a sensor for post-heating the fluid. In additional embodiments, the fluid outlet means 230 can include a regulator, a valve, a sensor, a pump, a vent, a coupling, a filter, piping, and/or safety devices (not shown). For example, the fluid outlet means 230 can include a measuring means (not shown) for measuring the flow rate and/or temperature of the fluid passing therethrough. In addition, the fluid outlet means 230 can comprise one or more flow restrictors for regulating the flow. For example, flow restrictors having different sizes can be used to vary the flow rate, and smaller sized orifices can be used for slower flow and larger sized orifices for faster flow.
  • [0075]
    The pre-injection assembly 170 can be used to provide a temperature controlled supercritical fluid that can include supercritical carbon dioxide.
  • [0076]
    In an alternate embodiment, the pre-injection assembly 170 can be used to provide a temperature controlled supercritical fluid that can include supercritical carbon dioxide admixed with process chemistry. For example, the pre-injection assembly 170 can be coupled to the process chemistry supply system 130 (FIG. 1), and the can comprise a mixing vessel (not shown) and/or a storage vessel (not shown), and one or more vessels can be heated.
  • [0077]
    Controller 250 can also be used to control the fluid inlet means 210 and fluid outlet means 230. Alternately, controller 250 may not be required. For example, controller 180 can be used to control the fluid inlet means 210 and fluid outlet means 230.
  • [0078]
    During substrate processing, providing processing fluids at an incorrect temperature can have a negative affect on the process. For example, an incorrect temperature can affect the process chemistry, process dropout, and process uniformity. In one embodiment, the pre-injection assembly 170 is used during a major portion of the substrate processing so that the impact of temperature on the process is minimized.
  • [0079]
    In another embodiment, the pre-injection assembly 170 can be used during a maintenance or system cleaning operation in which cleaning chemistry is used to remove process by-products and/or particles from the interior surfaces of the system. This is a preventative maintenance operation in which maintaining the correct temperature prevents material from adhering to the interior surfaces of the system that can be dislodged later during processing and that can cause unwanted particle deposition on a substrate.
  • [0080]
    FIG. 3 illustrates an exemplary graph of pressure versus time for a supercritical process step in accordance with embodiments of the invention. In the illustrated embodiment, a graph 300 of pressure versus time is shown, and the graph 300 can be used to represent a supercritical cleaning process step, a supercritical rinsing process step, or a supercritical curing process step, or a combination thereof. Alternately, different pressures, different timing, and different sequences can be used for different processes. In addition, although a single time sequence is illustrated in FIG. 3, this is not required for the invention. Alternately, multi-sequence processes can be used.
  • [0081]
    Referring to FIGS. 1-3, prior to an initial time T0, the substrate to be processed can be placed within the processing chamber 108 and the processing chamber can be sealed. For example, during cleaning, rinsing, and/or curing processes, a substrate can have post-etch and/or post-ash residue thereon. The substrate, the processing chamber, and the other elements in the recirculation loop 115 can be heated to an operational temperature that can range from approximately 40 to approximately 300 degrees Celsius. For example, the temperature of temperature controlled process tubing (121, 125, and 171) can be established and/or maintained at the required operational value. Furthermore, temperature of pre-injection assembly 170 can be established and/or maintained at the required operational value.
  • [0082]
    During time T1, the processing chamber 108 and the other elements in the recirculation loop 115 can be pressurized. During at least one portion of the time T1, the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can be coupled into the flow path and can be used to provide temperature controlled carbon dioxide into the processing chamber and/or other elements in the recirculation loop 115. For example, the temperature variation of the temperature-controlled carbon dioxide can be controlled to be less than approximately ten degrees Celsius during the pressurization process. Alternately, the temperature variation can be controlled to be less than approximately five degrees Celsius.
  • [0083]
    During time T1, a pump (not shown) in the recirculation system 120 can be started and can be used to circulate the temperature controlled fluid through the monitoring system, the processing chamber, and the other elements in the recirculation loop. In one embodiment, sensors in the temperature controlled process tubing (121, 125, and 171) can operate while the fluid is being circulated and can provide temperature data for the fluid flowing at different points in the loop. Alternately, these sensors may not be operated during this portion of the time T1.
  • [0084]
    In one embodiment, when the pressure in the processing chamber 108 exceeds a critical pressure Pc (1,070 psi), process chemistry can be injected into the recirculation loop 115 using the process chemistry supply system 130. In one embodiment, additional high-pressure fluid is not provided when the process chemistry is injected. Alternately, additional high-pressure fluid can be provided when the process chemistry is injected.
  • [0085]
    In other embodiments, process chemistry can be injected into the processing chamber 108 before the pressure exceeds the critical pressure Pc (1,070 psi) using the process chemistry supply system 130. For example, the injection(s) of the process chemistries can begin upon reaching about 1100-1200 psi. In other embodiments, process chemistry is not injected during the T1 period.
  • [0086]
    In addition, sensors in the processing module 110 and/or the temperature controlled process tubing (121, 125, and 171) can provide data before, during, and/or after the process chemistry is injected, and data, such as temperature data, can be used to control the injection process. Process chemistry can be injected in a linear fashion, and the injection time can be based on a recirculation time. For example, the recirculation time can be determined based on the length of the recirculation path and the flow rate. In other embodiments, process chemistry can be injected in a non-linear fashion. For example, process chemistry can be injected in one or more steps.
  • [0087]
    The process chemistry can include a cleaning agent, a rinsing agent, or a curing agent, or a combination thereof that is injected into the supercritical fluid. One or more injections of process chemistries can be performed over the duration of time T1 to generate a supercritical processing solution with the desired concentrations of chemicals. The process chemistry, in accordance with the embodiments of the invention, can also include one more or more carrier solvents.
  • [0088]
    Still referring to FIGS. 1-3, during a second time T2, the supercritical processing solution can be re-circulated over the substrate and through the temperature controlled process tubing (121, 125, and 171), the processing chamber 108, and the other elements in the recirculation loop 115.
  • [0089]
    In one embodiment, sensors in the processing module 110 and/or the temperature controlled process tubing (121, 125, and 171) can provide data while the supercritical processing solution is being re-circulated, and data, such as temperature data, can be used to control the process. Alternately, one or more sensors may not be operated while the supercritical processing solution is being re-circulated. The high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can be used to control the chemical composition while the supercritical processing solution is being re-circulated. In one embodiment, additional high-pressure fluid is not provided, and additional process chemistry is not injected during the second time T2. Alternatively, additional high-pressure fluid can be provided, and/or additional process chemistry can be injected during the second time T2.
  • [0090]
    The processing chamber 108 can operate at a pressure above 1,500 psi during the second time T2. For example, the pressure can range from approximately 2,500 psi to approximately 3,100 psi, but can be any value so long as the operating pressure is sufficient to maintain supercritical conditions. The supercritical processing solution can be circulated over the substrate and through the recirculation loop 115. The supercritical conditions within the processing chamber 108 and the other elements in the recirculation loop 115 are maintained during the second time T2, and the supercritical processing solution continues to be circulated over the substrate and through the processing chamber 108 and the other elements in the recirculation loop 115. The recirculation system 120 can be used to regulate the flow of the supercritical processing solution through the processing chamber 108 and the other elements in the recirculation loop 115.
  • [0091]
    Still referring to FIGS. 1-3, during a third time T3, one or more push-through processes can be performed. The high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can comprise means for providing a first volume of temperature-controlled fluid during a push-through process, and the first volume can be larger than the volume of the recirculation loop. Alternately, the first volume can be less than or approximately equal to the volume of the recirculation loop. In addition, the temperature differential within the first volume of temperature-controlled fluid during the push-through process can be controlled to be less than approximately ten degrees Celsius. Alternately, the temperature differential can be controlled to be less than approximately five degrees Celsius.
  • [0092]
    In one embodiment, a sensor in the processing module 110, a sensor in the pre-injection assembly 170, or a sensor in the temperature controlled process tubing (121, 125, and 171), or a combination thereof can provide data before, during, and/or after a push-through process is performed, and data, such as temperature data, can be used to control the push-through process. Alternately, one or more sensors may not be operated during a push-through process. The sensor data can be used to control the fluid temperature and/or flow rate during a push-through process. For example, during the third time T3, one or more volumes of temperature controlled supercritical carbon dioxide can be fed into the recirculation loop 115 from the high-pressure fluid supply system 140 and/or the pre-injection assembly 170, and the supercritical processing solution along with process residue suspended or dissolved therein can be displaced from the processing chamber 108 and the other elements in the recirculation loop 115 through the exhaust control system 150. Providing temperature-controlled fluid during the push-through process prevents process residue suspended or dissolved within the fluid being displaced from the processing chamber 108 and the other elements in the recirculation loop 115 from dropping out and/or adhering to the processing chamber 108 and the other elements in the recirculation loop 115. In addition, during the third time T3, the temperature of the fluid supplied by the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can vary over a wider temperature range than the range used during the second time T2.
  • [0093]
    In the illustrated embodiment shown in FIG. 3, a single second time T2 is followed by a single third time T3, but this is not required. In alternate embodiments, other time sequences can be used to process a substrate.
  • [0094]
    During a fourth time T4, a pressure cycling process can be performed, and the processing chamber 108 can be cycled through one or more decompression and compression cycles. Alternately, one or more pressure cycles can occur during the push-through process. In other embodiments, a pressure cycling process is not required. The pressure can be cycled between a first pressure P3 and a second pressure P4 one or more times. In alternate embodiments, the first pressure P3 and a second pressure P4 can vary. In one embodiment, the pressure can be lowered by venting through the exhaust control system 150. For example, pressure cycling can be accomplished by lowering the pressure to below approximately 1,500 psi and raising the pressure to above approximately 2,500 psi. The pressure can be increased by using the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 to provide additional high-pressure fluid.
  • [0095]
    The high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can comprise means for providing a first volume of temperature-controlled fluid during a compression cycle, and the first volume can be larger than the volume of the recirculation loop. Alternately, the first volume can be less than or approximately equal to the volume of the recirculation loop. In addition, the temperature differential within the first volume of temperature-controlled fluid during the compression cycle can be controlled to be less than approximately ten degrees Celsius. Alternately, the temperature differential can be controlled to be less than approximately five degrees Celsius.
  • [0096]
    In addition, the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can comprise means for providing a second volume of temperature-controlled fluid during a decompression cycle, and the second volume can be larger than the volume of the recirculation loop. Alternately, the second volume can be less than or approximately equal to the volume of the recirculation loop. In addition, the temperature differential within the second volume of temperature-controlled fluid during the decompression cycle can be controlled to be less than approximately ten degrees Celsius. Alternately, the temperature differential can be controlled to be less than approximately five degrees Celsius.
  • [0097]
    In one embodiment, a sensor in the processing module 110, a sensor in the pre-injection assembly 170, or a sensor in the temperature controlled process tubing (121, 125, and 171), or a combination thereof can provide data before, during, and/or after a pressure cycling process is performed, and data, such as temperature data, can be used to control the pressure cycling process. Alternately, one or more sensors may not be operated during a pressure cycling process. The sensor data can be used to control the fluid temperature and/or flow rate during a pressure cycling process. For example, during the fourth time T4, one or more volumes of temperature controlled supercritical carbon dioxide can be fed into the processing chamber 108 and the other elements in the recirculation loop 115 from high-pressure fluid supply system 140 and/or the pre-injection assembly 170, and the supercritical processing solution along with process residue suspended or dissolved therein can be displaced from the processing chamber 108 and the other elements in the recirculation loop 115 through the exhaust control system 150.
  • [0098]
    Providing temperature-controlled fluid during the pressure cycling process prevents process residue suspended or dissolved within the fluid being displaced from the processing chamber 108 and the other elements in the recirculation loop 115 from dropping out and/or adhering to the processing chamber 108 and the other elements in the recirculation loop 115. In addition, during the fourth time T4, the temperature of the fluid supplied by the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can vary over a wider temperature range than the range used during the second time T2.
  • [0099]
    In the illustrated embodiment shown in FIG. 3, a single third time T3 is followed by a single fourth time T4, but this is not required. In alternate embodiments, other time sequences can be used to process a substrate.
  • [0100]
    In an alternate embodiment, the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can be switched off during a portion of the fourth time T4.
  • [0101]
    During a fifth time T5, the processing chamber 108 can be returned to lower pressure. For example, after a supercritical process is completed, the processing chamber can be vented or exhausted to a pressure compatible with a transfer system
  • [0102]
    In one embodiment, a sensor in the processing module 110, a sensor in the pre-injection assembly 170, or a sensor in the temperature controlled process tubing (121, 125, and 171), or a combination thereof can provide data before, during, and/or after a venting process is performed, and data, such as temperature data, can be used to control the venting process. Alternately, one or more sensors may not be operated during a venting process. The high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can comprise means for providing a volume of temperature-controlled fluid during a venting process, and the volume can be larger than the volume of the recirculation loop. Alternately, the volume can be less than or approximately equal to the volume of the recirculation loop. For example, during the fifth time T5, one or more volumes of temperature controlled supercritical carbon dioxide can be fed into the processing chamber 108 and the other elements in the recirculation loop 115 from the high-pressure fluid supply system 140 and/or the pre-injection assembly 170, and the remaining processing solution along with process residue suspended or dissolved therein can be displaced from the processing chamber 108 and the other elements in the recirculation loop 115 through the exhaust control system 150.
  • [0103]
    In the illustrated embodiment shown in FIG. 3, a single fourth time T4 is followed by a single fifth time T5, but this is not required. In alternate embodiments, other time sequences can be used to process a substrate.
  • [0104]
    In one embodiment, during a portion of the fifth time T5, the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can be switched off. In addition, the temperature of the fluid supplied by the high-pressure fluid supply system 140 and/or the pre-injection assembly 170 can vary over a wider temperature range than the range used during the second time T2. For example, the temperature can range below the temperature required for supercritical operation.
  • [0105]
    For substrate processing, the chamber pressure can be made substantially equal to the pressure inside of a transfer chamber (not shown) coupled to the processing chamber. In one embodiment, the substrate can be moved from the processing chamber into the transfer chamber, and moved to a second process apparatus or module to continue processing.
  • [0106]
    In the illustrated embodiment shown in FIG. 3, the pressure returns to an initial pressure P0, but this is not required for the invention. In alternate embodiments, the pressure does not have to return to P0, and the process sequence can continue with additional time steps such as those shown in time steps T1, T2, T3, T4, or T5
  • [0107]
    The graph 300 is provided for exemplary purposes only. It will be understood by those skilled in the art that a supercritical processing step can have any number of different time/pressures or temperature profiles without departing from the scope of the invention. Further, any number of cleaning, rinsing, and/or curing process sequences with each step having any number of compression and decompression cycles are contemplated. In addition, as stated previously, concentrations of various chemicals and species within a supercritical processing solution can be readily tailored for the application at hand and altered at any time within a supercritical processing step.
  • [0108]
    FIG. 4 illustrates a flow diagram of a method for monitoring the temperature of a high-pressure processing fluid flowing through a recirculation loop in a high-pressure processing system in accordance with an embodiment of the invention. Procedure 400 starts in 410 wherein a substrate can be positioned within a processing chamber that is part of the recirculation loop.
  • [0109]
    In 420, a process temperature can be determined.
  • [0110]
    In 430, a volume of fluid can be provided to the pre-injection assembly and the pre-injection assembly can heat the volume of fluid to the process temperature.
  • [0111]
    In 440, a first volume of temperature-controlled fluid can be provided from the pre-injection assembly to the processing chamber and the other elements in the recirculation loop. Alternately, the pre-injection assembly can provide different volumes to the processing chamber and/or other elements in the recirculation loop.
  • [0112]
    In 450, an additional volume of fluid can be provided to the pre-injection assembly and the pre-injection assembly can heat the additional volume of fluid to the process temperature.
  • [0113]
    In 460, procedure 400 can end. For example, the pre-injection assembly can maintain the fluid in the pre-injection assembly at the process temperature.
  • [0114]
    While the invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention, such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention.

Claims (14)

  1. 1. A system for regulating a processing fluid temperature within a high-pressure processing system, the system comprising:
    a high-pressure, temperature-controlled recirculation loop comprising a high-pressure, temperature-controlled processing chamber and a high-pressure, temperature-controlled recirculation system coupled to the high-pressure, temperature-controlled processing chamber, wherein the processing fluid flows through the high-pressure, temperature-controlled recirculation loop;
    a pre-injection assembly coupled to the high-pressure, temperature-controlled recirculation loop and comprising means for supplying high-pressure, temperature-controlled fluid to the high-pressure, temperature-controlled recirculation loop;
    a process chemistry supply system coupled to the high-pressure, temperature-controlled recirculation loop and comprising means for supplying process chemistry to the high-pressure, temperature-controlled recirculation loop; and
    a controller coupled to the high-pressure, temperature-controlled processing chamber, the high-pressure, temperature-controlled recirculation system, the pre-injection assembly, and the process chemistry supply system wherein the controller comprises means for determining required process temperature data, means for obtaining measured temperature data for the processing fluid in the pre-injection assembly, means for comparing the required process temperature data to the measured temperature data, and means for changing the temperature of the processing fluid in the pre-injection assembly when the measured temperature data is substantially greater than or substantially less than the required process temperature data.
  2. 2. The system as claimed in claim 1, wherein the pre-injection assembly comprises:
    a fluid inlet means comprising an input port;
    a supply assembly coupled to the fluid inlet means;
    a fluid outlet means comprising an output port and being coupled to the supply assembly; and
    a controller coupled to the fluid inlet means, coupled to the supply assembly, and coupled to the fluid outlet means.
  3. 3. The system as claimed in claim 2, wherein the supply assembly comprises a chamber, heater assembly, insulation, and a sensor subassembly.
  4. 4. The system as claimed in claim 3, wherein the chamber volume is between approximately three times and approximately twenty times the volume of the high-pressure, temperature-controlled recirculation loop and the chamber has an operating pressure up to 10,000 psi, and an operating temperature up to 300 degrees Celsius.
  5. 5. The system as claimed in claim 3, wherein the heater subassembly comprises a removable high temperature blanket heater.
  6. 6. The system as claimed in claim 3, wherein the insulation comprises a removable high-temperature insulating blanket.
  7. 7. The system as claimed in claim 3, wherein the sensor subassembly comprises a temperature sensor, a flow sensor, a pressure sensor, or a combination thereof.
  8. 8. The system as claimed in claim 7, wherein the temperature sensor comprises a thermocouple, a temperature-indicating resistor, a radiation type temperature sensor, a thermistor, a thermometer, a pyrometer, a micro-electromechanical (MEM) device, or a resistance temperature detector (RTD), or a combination thereof.
  9. 9. The system as claimed in claim 3, wherein the sensor subassembly is configured to operate at pressures above 3000 psi.
  10. 10. The system as claimed in claim 1, wherein the processing fluid comprises gaseous, liquid, supercritical, or near-supercritical carbon dioxide, or a combination of two or more thereof.
  11. 11. The system as claimed in claim 1, wherein the process chemistry comprises a cleaning agent, a rinsing agent, a curing agent, a drying agent, or an etching agent, or a combination of two or more thereof.
  12. 12. The system as claimed in claim 1, wherein the high-pressure, temperature-controlled recirculation loop further comprises temperature controlled process tubing coupling the high-pressure, temperature-controlled processing chamber to the high-pressure, temperature-controlled recirculation system, wherein the processing fluid flows through the temperature controlled process tubing.
  13. 13. The system as claimed in claim 12, wherein the temperature controlled process tubing comprises a heater and an insulation layer.
  14. 14-22. (canceled)
US12511231 2005-03-29 2009-07-29 Phase change based heating element system and method Abandoned US20100000681A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11093536 US20060226117A1 (en) 2005-03-29 2005-03-29 Phase change based heating element system and method
US12511231 US20100000681A1 (en) 2005-03-29 2009-07-29 Phase change based heating element system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12511231 US20100000681A1 (en) 2005-03-29 2009-07-29 Phase change based heating element system and method

Publications (1)

Publication Number Publication Date
US20100000681A1 true true US20100000681A1 (en) 2010-01-07

Family

ID=37082200

Family Applications (2)

Application Number Title Priority Date Filing Date
US11093536 Abandoned US20060226117A1 (en) 2005-03-29 2005-03-29 Phase change based heating element system and method
US12511231 Abandoned US20100000681A1 (en) 2005-03-29 2009-07-29 Phase change based heating element system and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11093536 Abandoned US20060226117A1 (en) 2005-03-29 2005-03-29 Phase change based heating element system and method

Country Status (1)

Country Link
US (2) US20060226117A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206949A1 (en) * 2007-02-28 2008-08-28 Semiconductor Technology Academic Research Center Apparatus for forming conductor, method for forming conductor, and method for manufacturing semiconductor device
US20100024778A1 (en) * 2008-08-01 2010-02-04 Goodrich Control Systems Fuel Pumping System
US20120006356A1 (en) * 2010-07-12 2012-01-12 Tokyo Electron Limited Substrate Processing Apparatus, Substrate Processing Method, and Computer-Readable Storage Medium
US8133806B1 (en) 2010-09-30 2012-03-13 S.O.I.Tec Silicon On Insulator Technologies Systems and methods for forming semiconductor materials by atomic layer deposition
US8486192B2 (en) 2010-09-30 2013-07-16 Soitec Thermalizing gas injectors for generating increased precursor gas, material deposition systems including such injectors, and related methods

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9096931B2 (en) * 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US8728832B2 (en) 2012-05-07 2014-05-20 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR20160059810A (en) 2014-11-19 2016-05-27 에이에스엠 아이피 홀딩 비.브이. Method of depositing thin film
KR20160076208A (en) 2014-12-22 2016-06-30 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182742B2 (en) *
US2625886A (en) * 1947-08-21 1953-01-20 American Brake Shoe Co Pump
US2873597A (en) * 1955-08-08 1959-02-17 Victor T Fahringer Apparatus for sealing a pressure vessel
US3642020A (en) * 1969-11-17 1972-02-15 Cameron Iron Works Inc Pressure operated{13 positive displacement shuttle valve
US3646948A (en) * 1969-01-06 1972-03-07 Hobart Mfg Co Hydraulic control system for a washing machine
US4145161A (en) * 1977-08-10 1979-03-20 Standard Oil Company (Indiana) Speed control
US4244557A (en) * 1977-10-07 1981-01-13 Leybold-Heraeus Gmbh High vacuum seal
US4245154A (en) * 1977-09-24 1981-01-13 Tokyo Ohka Kogyo Kabushiki Kaisha Apparatus for treatment with gas plasma
US4316750A (en) * 1981-01-16 1982-02-23 Western Electric Company, Inc. Apparatus and method for cleaning a flux station of a soldering system
US4367140A (en) * 1979-11-05 1983-01-04 Sykes Ocean Water Ltd. Reverse osmosis liquid purification apparatus
US4426388A (en) * 1982-04-02 1984-01-17 Merck & Co., Inc. 5-Benzothiazolesulfonamide derivatives for the topical treatment of elevated intraocular pressure
US4574184A (en) * 1982-10-20 1986-03-04 Kurt Wolf & Co. Kg Saucepan and cover for a cooking utensil, particulary a steam pressure cooking pan
US4730630A (en) * 1986-10-27 1988-03-15 White Consolidated Industries, Inc. Dishwasher with power filtered rinse
US4983223A (en) * 1989-10-24 1991-01-08 Chenpatents Apparatus and method for reducing solvent vapor losses
US5091207A (en) * 1989-07-20 1992-02-25 Fujitsu Limited Process and apparatus for chemical vapor deposition
US5186594A (en) * 1990-04-19 1993-02-16 Applied Materials, Inc. Dual cassette load lock
US5186718A (en) * 1989-05-19 1993-02-16 Applied Materials, Inc. Staged-vacuum wafer processing system and method
US5188515A (en) * 1990-06-08 1993-02-23 Lewa Herbert Ott Gmbh & Co. Diaphragm for an hydraulically driven diaphragm pump
US5190373A (en) * 1991-12-24 1993-03-02 Union Carbide Chemicals & Plastics Technology Corporation Method, apparatus, and article for forming a heated, pressurized mixture of fluids
US5191993A (en) * 1991-03-04 1993-03-09 Xorella Ag Device for the shifting and tilting of a vessel closure
US5193560A (en) * 1989-01-30 1993-03-16 Kabushiki Kaisha Tiyoda Sisakusho Cleaning system using a solvent
US5195878A (en) * 1991-05-20 1993-03-23 Hytec Flow Systems Air-operated high-temperature corrosive liquid pump
US5196134A (en) * 1989-12-20 1993-03-23 Hughes Aircraft Company Peroxide composition for removing organic contaminants and method of using same
US5197800A (en) * 1991-06-28 1993-03-30 Nordson Corporation Method for forming coating material formulations substantially comprised of a saturated resin rich phase
US5280693A (en) * 1991-10-14 1994-01-25 Krones Ag Hermann Kronseder Maschinenfabrik Vessel closure machine
US5285352A (en) * 1992-07-15 1994-02-08 Motorola, Inc. Pad array semiconductor device with thermal conductor and process for making the same
US5285845A (en) * 1991-01-15 1994-02-15 Nordinvent S.A. Heat exchanger element
US5288333A (en) * 1989-05-06 1994-02-22 Dainippon Screen Mfg. Co., Ltd. Wafer cleaning method and apparatus therefore
US5290361A (en) * 1991-01-24 1994-03-01 Wako Pure Chemical Industries, Ltd. Surface treating cleaning method
US5294261A (en) * 1992-11-02 1994-03-15 Air Products And Chemicals, Inc. Surface cleaning using an argon or nitrogen aerosol
US5298032A (en) * 1991-09-11 1994-03-29 Ciba-Geigy Corporation Process for dyeing cellulosic textile material with disperse dyes
US5378311A (en) * 1992-12-04 1995-01-03 Sony Corporation Method of producing semiconductor device
US5377705A (en) * 1993-09-16 1995-01-03 Autoclave Engineers, Inc. Precision cleaning system
US5397220A (en) * 1993-03-18 1995-03-14 Nippon Shokubai Co., Ltd. Canned motor pump
US5482564A (en) * 1994-06-21 1996-01-09 Texas Instruments Incorporated Method of unsticking components of micro-mechanical devices
US5486212A (en) * 1991-09-04 1996-01-23 The Clorox Company Cleaning through perhydrolysis conducted in dense fluid medium
US5494526A (en) * 1994-04-08 1996-02-27 Texas Instruments Incorporated Method for cleaning semiconductor wafers using liquified gases
US5500081A (en) * 1990-05-15 1996-03-19 Bergman; Eric J. Dynamic semiconductor wafer processing using homogeneous chemical vapors
US5501761A (en) * 1994-10-18 1996-03-26 At&T Corp. Method for stripping conformal coatings from circuit boards
US5706319A (en) * 1996-08-12 1998-01-06 Joseph Oat Corporation Reactor vessel seal and method for temporarily sealing a reactor pressure vessel from the refueling canal
US5704416A (en) * 1993-09-10 1998-01-06 Aavid Laboratories, Inc. Two phase component cooler
US5714299A (en) * 1996-11-04 1998-02-03 Xerox Corporation Processes for toner additives with liquid carbon dioxide
US5718956A (en) * 1994-12-29 1998-02-17 Bentley-Harris Inc. Reflective foam sleeve
US5726211A (en) * 1996-03-21 1998-03-10 International Business Machines Corporation Process for making a foamed elastometric polymer
US5725987A (en) * 1996-11-01 1998-03-10 Xerox Corporation Supercritical processes
US5727618A (en) * 1993-08-23 1998-03-17 Sdl Inc Modular microchannel heat exchanger
US5730874A (en) * 1991-06-12 1998-03-24 Idaho Research Foundation, Inc. Extraction of metals using supercritical fluid and chelate forming legand
US5870823A (en) * 1996-11-27 1999-02-16 International Business Machines Corporation Method of forming a multilayer electronic packaging substrate with integral cooling channels
US5872257A (en) * 1994-04-01 1999-02-16 University Of Pittsburgh Further extractions of metals in carbon dioxide and chelating agents therefor
US5872061A (en) * 1997-10-27 1999-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma etch method for forming residue free fluorine containing plasma etched layers
US5874795A (en) * 1995-12-28 1999-02-23 Japan Servo Co., Ltd Multi-phase permanent-magnet type electric rotating machine
US5873948A (en) * 1994-06-07 1999-02-23 Lg Semicon Co., Ltd. Method for removing etch residue material
US5876655A (en) * 1995-02-21 1999-03-02 E. I. Du Pont De Nemours And Company Method for eliminating flow wrinkles in compression molded panels
US5880017A (en) * 1994-08-08 1999-03-09 Hewlett-Packard Co. Method of bumping substrates by contained paste deposition
US5879459A (en) * 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US5880524A (en) * 1997-05-05 1999-03-09 Intel Corporation Heat pipe lid for electronic packages
US5881577A (en) * 1996-09-09 1999-03-16 Air Liquide America Corporation Pressure-swing absorption based cleaning methods and systems
US5882165A (en) * 1986-12-19 1999-03-16 Applied Materials, Inc. Multiple chamber integrated process system
US5888050A (en) * 1996-10-30 1999-03-30 Supercritical Fluid Technologies, Inc. Precision high pressure control assembly
US6010316A (en) * 1996-01-16 2000-01-04 The Board Of Trustees Of The Leland Stanford Junior University Acoustic micropump
US6013164A (en) * 1997-06-25 2000-01-11 Sandia Corporation Electokinetic high pressure hydraulic system
US6014312A (en) * 1997-03-17 2000-01-11 Curamik Electronics Gmbh Cooler or heat sink for electrical components or circuits and an electrical circuit with this heat sink
US6017820A (en) * 1998-07-17 2000-01-25 Cutek Research, Inc. Integrated vacuum and plating cluster system
US6019882A (en) * 1997-06-25 2000-02-01 Sandia Corporation Electrokinetic high pressure hydraulic system
US6021791A (en) * 1998-06-29 2000-02-08 Speedfam-Ipec Corporation Method and apparatus for immersion cleaning of semiconductor devices
US6024801A (en) * 1995-05-31 2000-02-15 Texas Instruments Incorporated Method of cleaning and treating a semiconductor device including a micromechanical device
US6023934A (en) * 1996-08-16 2000-02-15 American Superconductor Corp. Methods and apparatus for cooling systems for cryogenic power conversion electronics
US6029371A (en) * 1997-09-17 2000-02-29 Tokyo Electron Limited Drying treatment method and apparatus
US6171067B1 (en) * 1997-09-25 2001-01-09 Caliper Technologies Corp. Micropump
US6171645B1 (en) * 1995-11-16 2001-01-09 Texas Instruments Incorporated Polyol-based method for forming thin film aerogels on semiconductor substrates
US6174675B1 (en) * 1997-11-25 2001-01-16 Caliper Technologies Corp. Electrical current for controlling fluid parameters in microchannels
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US6182742B1 (en) * 1996-06-21 2001-02-06 Hitachi, Ltd. Cooling apparatus for use in an electronic system
US6186722B1 (en) * 1997-02-26 2001-02-13 Fujitsu Limited Chamber apparatus for processing semiconductor devices
US6186660B1 (en) * 1997-10-09 2001-02-13 Caliper Technologies Corp. Microfluidic systems incorporating varied channel dimensions
US6190459B1 (en) * 1998-01-07 2001-02-20 Tokyo Electron Limited Gas treatment apparatus
US6334266B1 (en) * 1999-09-20 2002-01-01 S.C. Fluids, Inc. Supercritical fluid drying system and method of use
US20020001929A1 (en) * 2000-04-25 2002-01-03 Biberger Maximilian A. Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
US20020014257A1 (en) * 1999-08-05 2002-02-07 Mohan Chandra Supercritical fluid cleaning process for precision surfaces
US6347918B1 (en) * 1999-01-27 2002-02-19 Applied Materials, Inc. Inflatable slit/gate valve
US20030003762A1 (en) * 2001-06-27 2003-01-02 International Business Machines Corporation Process of removing residue material from a precision surface
US20030008238A1 (en) * 2001-06-27 2003-01-09 International Business Machines Corporation Process of drying a cast polymeric film disposed on a workpiece
US20030008155A1 (en) * 2001-06-11 2003-01-09 Jsr Corporation Method for the formation of silica film, silica film, insulating film, and semiconductor device
US20030008518A1 (en) * 2001-07-03 2003-01-09 Ting-Chang Chang Method of avoiding dielectric layer deterioation with a low dielectric constant
US20030005948A1 (en) * 2001-05-31 2003-01-09 M-Fsi Ltd. Substrate Cleaning apparatus
US20030013311A1 (en) * 2001-07-03 2003-01-16 Ting-Chang Chang Method of avoiding dielectric layer deterioation with a low dielectric constant during a stripping process
US6509141B2 (en) * 1997-05-27 2003-01-21 Tokyo Electron Limited Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
US6508259B1 (en) * 1999-08-05 2003-01-21 S.C. Fluids, Inc. Inverted pressure vessel with horizontal through loading
US20030029479A1 (en) * 2001-08-08 2003-02-13 Dainippon Screen Mfg. Co, Ltd. Substrate cleaning apparatus and method
US6521466B1 (en) * 2002-04-17 2003-02-18 Paul Castrucci Apparatus and method for semiconductor wafer test yield enhancement
US20030036023A1 (en) * 2000-12-12 2003-02-20 Moreau Wayne M. Supercritical fluid(SCF) silylation process
US20040011386A1 (en) * 2002-07-17 2004-01-22 Scp Global Technologies Inc. Composition and method for removing photoresist and/or resist residue using supercritical fluids
US20040018452A1 (en) * 2002-04-12 2004-01-29 Paul Schilling Method of treatment of porous dielectric films to reduce damage during cleaning
US20040020518A1 (en) * 2001-02-15 2004-02-05 Deyoung James P. Methods for transferring supercritical fluids in microelectronic and other industrial processes
US20050014370A1 (en) * 2003-02-10 2005-01-20 Supercritical Systems, Inc. High-pressure processing chamber for a semiconductor wafer
US6848458B1 (en) * 2002-02-05 2005-02-01 Novellus Systems, Inc. Apparatus and methods for processing semiconductor substrates using supercritical fluids
US20050026547A1 (en) * 1999-06-03 2005-02-03 Moore Scott E. Semiconductor processor control systems, semiconductor processor systems, and systems configured to provide a semiconductor workpiece process fluid
US6851148B2 (en) * 1997-11-26 2005-02-08 Chart Inc. Carbon dioxide dry cleaning system
US20060003592A1 (en) * 2004-06-30 2006-01-05 Tokyo Electron Limited System and method for processing a substrate using supercritical carbon dioxide processing

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439689A (en) * 1948-04-13 Method of rendering glass
US609574A (en) * 1898-08-23 Island
US2617719A (en) * 1950-12-29 1952-11-11 Stanolind Oil & Gas Co Cleaning porous media
US3135211A (en) * 1960-09-28 1964-06-02 Integral Motor Pump Corp Motor and pump assembly
US3521765A (en) * 1967-10-31 1970-07-28 Western Electric Co Closed-end machine for processing articles in a controlled atmosphere
US3681171A (en) * 1968-08-23 1972-08-01 Hitachi Ltd Apparatus for producing a multilayer printed circuit plate assembly
US3623627A (en) * 1969-08-22 1971-11-30 Hunt Co Rodney Door construction for a pressure vessel
US3744660A (en) * 1970-12-30 1973-07-10 Combustion Eng Shield for nuclear reactor vessel
FR2128426B1 (en) * 1971-03-02 1980-03-07 Cnen
US3890176A (en) * 1972-08-18 1975-06-17 Gen Electric Method for removing photoresist from substrate
US3968885A (en) * 1973-06-29 1976-07-13 International Business Machines Corporation Method and apparatus for handling workpieces
US3993449A (en) * 1975-04-07 1976-11-23 City Of North Olmsted Apparatus for pollution abatement
GB1520522A (en) * 1975-06-16 1978-08-09 Ono Pharmaceutical Co 16-methyleneprostaglandins
US4341592A (en) * 1975-08-04 1982-07-27 Texas Instruments Incorporated Method for removing photoresist layer from substrate by ozone treatment
US4029517A (en) * 1976-03-01 1977-06-14 Autosonics Inc. Vapor degreasing system having a divider wall between upper and lower vapor zone portions
US4091643A (en) * 1976-05-14 1978-05-30 Ama Universal S.P.A. Circuit for the recovery of solvent vapor evolved in the course of a cleaning cycle in dry-cleaning machines or plants, and for the de-pressurizing of such machines
US4219333B1 (en) * 1978-07-03 1984-02-28
DE3000848A1 (en) * 1979-02-26 1980-09-04 Balzers Hochvakuum High vacuum valve
US4349415A (en) * 1979-09-28 1982-09-14 Critical Fluid Systems, Inc. Process for separating organic liquid solutes from their solvent mixtures
US4618769A (en) * 1985-01-04 1986-10-21 The United States Of America As Represented By The United States Department Of Energy Liquid chromatography/Fourier transform IR spectrometry interface flow cell
US5013366A (en) * 1988-12-07 1991-05-07 Hughes Aircraft Company Cleaning process using phase shifting of dense phase gases
EP0477035B1 (en) * 1990-09-21 1999-12-29 Dai Nippon Printing Co., Ltd. Process for producing a phase shift layer-containing photomask
US5242641A (en) * 1991-07-15 1993-09-07 Pacific Trinetics Corporation Method for forming filled holes in multi-layer integrated circuit packages
US5339539A (en) * 1992-04-16 1994-08-23 Tokyo Electron Limited Spindrier
KR940009563B1 (en) * 1992-09-04 1994-10-15 배순훈 Tableware washing machine
US5355901A (en) * 1992-10-27 1994-10-18 Autoclave Engineers, Ltd. Apparatus for supercritical cleaning
US5434107A (en) * 1994-01-28 1995-07-18 Texas Instruments Incorporated Method for planarization
US6262510B1 (en) * 1994-09-22 2001-07-17 Iancu Lungu Electronically switched reluctance motor
US5783495A (en) * 1995-11-13 1998-07-21 Micron Technology, Inc. Method of wafer cleaning, and system and cleaning solution regarding same
JP3415373B2 (en) * 1995-11-29 2003-06-09 東芝マイクロエレクトロニクス株式会社 Surface dissolution method and apparatus such as a semiconductor substrate
US6500605B1 (en) * 1997-05-27 2002-12-31 Tokyo Electron Limited Removal of photoresist and residue from substrate using supercritical carbon dioxide process
US6103638A (en) * 1997-11-07 2000-08-15 Micron Technology, Inc. Formation of planar dielectric layers using liquid interfaces
US6085762A (en) * 1998-03-30 2000-07-11 The Regents Of The University Of California Apparatus and method for providing pulsed fluids
US6642140B1 (en) * 1998-09-03 2003-11-04 Micron Technology, Inc. System for filling openings in semiconductor products
JP3772056B2 (en) * 1998-10-12 2006-05-10 株式会社東芝 The method of cleaning a semiconductor substrate
JP2000265945A (en) * 1998-11-10 2000-09-26 Uct Kk Chemical supplying pump, chemical supplying device, chemical supplying system, substrate cleaning device, chemical supplying method, and substrate cleaning method
US6343503B1 (en) * 1998-12-08 2002-02-05 Samsung Electronics Co., Ltd. Module appearance inspection apparatus
US7044143B2 (en) * 1999-05-14 2006-05-16 Micell Technologies, Inc. Detergent injection systems and methods for carbon dioxide microelectronic substrate processing systems
US6329118B1 (en) * 1999-06-21 2001-12-11 Intel Corporation Method for patterning dual damascene interconnects using a sacrificial light absorbing material
US6536450B1 (en) * 1999-07-07 2003-03-25 Semitool, Inc. Fluid heating system for processing semiconductor materials
US6712081B1 (en) * 1999-08-31 2004-03-30 Kobe Steel, Ltd. Pressure processing device
JP4014127B2 (en) * 2000-10-04 2007-11-28 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
US6767877B2 (en) * 2001-04-06 2004-07-27 Akrion, Llc Method and system for chemical injection in silicon wafer processing
FR2823134B1 (en) * 2001-04-10 2003-09-19 Novasep Protective device of the chromatographic bed in chromatographic columns a dynamic axial compression
US6561767B2 (en) * 2001-08-01 2003-05-13 Berger Instruments, Inc. Converting a pump for use in supercritical fluid chromatography
US6795177B2 (en) * 2001-11-01 2004-09-21 Axiom Analytical, Inc. Multipass sampling system for Raman spectroscopy
US6766810B1 (en) * 2002-02-15 2004-07-27 Novellus Systems, Inc. Methods and apparatus to control pressure in a supercritical fluid reactor
US7387868B2 (en) * 2002-03-04 2008-06-17 Tokyo Electron Limited Treatment of a dielectric layer using supercritical CO2
US6669785B2 (en) * 2002-05-15 2003-12-30 Micell Technologies, Inc. Methods and compositions for etch cleaning microelectronic substrates in carbon dioxide
US6800142B1 (en) * 2002-05-30 2004-10-05 Novellus Systems, Inc. Method for removing photoresist and post-etch residue using activated peroxide followed by supercritical fluid treatment
US20040050406A1 (en) * 2002-07-17 2004-03-18 Akshey Sehgal Compositions and method for removing photoresist and/or resist residue at pressures ranging from ambient to supercritical
US20040118812A1 (en) * 2002-08-09 2004-06-24 Watkins James J. Etch method using supercritical fluids
US20040048194A1 (en) * 2002-09-11 2004-03-11 International Business Machines Corporation Mehod for forming a tunable deep-ultraviolet dielectric antireflection layer for image transfer processing
US6960242B2 (en) * 2002-10-02 2005-11-01 The Boc Group, Inc. CO2 recovery process for supercritical extraction
US6924222B2 (en) * 2002-11-21 2005-08-02 Intel Corporation Formation of interconnect structures by removing sacrificial material with supercritical carbon dioxide
US20040177867A1 (en) * 2002-12-16 2004-09-16 Supercritical Systems, Inc. Tetra-organic ammonium fluoride and HF in supercritical fluid for photoresist and residue removal
US6929901B2 (en) * 2002-12-18 2005-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for reworking a lithographic process to provide an undamaged and residue free arc layer
US6876017B2 (en) * 2003-02-08 2005-04-05 Intel Corporation Polymer sacrificial light absorbing structure and method
JP2004249189A (en) * 2003-02-19 2004-09-09 Mitsubishi Gas Chem Co Inc Cleaning method
US20040168709A1 (en) * 2003-02-27 2004-09-02 Drumm James M. Process control, monitoring and end point detection for semiconductor wafers processed with supercritical fluids
US6875709B2 (en) * 2003-03-07 2005-04-05 Taiwan Semiconductor Manufacturing Comapny, Ltd. Application of a supercritical CO2 system for curing low k dielectric materials
US6875285B2 (en) * 2003-04-24 2005-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for dampening high pressure impact on porous materials
US7086638B2 (en) * 2003-05-13 2006-08-08 Applied Materials, Inc. Methods and apparatus for sealing an opening of a processing chamber
US6857437B2 (en) * 2003-06-18 2005-02-22 Ekc Technology, Inc. Automated dense phase fluid cleaning system
US7226512B2 (en) * 2003-06-18 2007-06-05 Ekc Technology, Inc. Load lock system for supercritical fluid cleaning
US7642649B2 (en) * 2003-12-01 2010-01-05 Texas Instruments Incorporated Support structure for low-k dielectrics
US20050118832A1 (en) * 2003-12-01 2005-06-02 Korzenski Michael B. Removal of MEMS sacrificial layers using supercritical fluid/chemical formulations
JP4464125B2 (en) * 2003-12-22 2010-05-19 ソニー株式会社 Making and silicon oxide film etching agent of the structure
US20050241672A1 (en) * 2004-04-28 2005-11-03 Texas Instruments Incorporated Extraction of impurities in a semiconductor process with a supercritical fluid
US20060102204A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method for removing a residue from a substrate using supercritical carbon dioxide processing
US20060102208A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited System for removing a residue from a substrate using supercritical carbon dioxide processing
US7704324B2 (en) * 2005-01-25 2010-04-27 General Electric Company Apparatus for processing materials in supercritical fluids and methods thereof
US7435447B2 (en) * 2005-02-15 2008-10-14 Tokyo Electron Limited Method and system for determining flow conditions in a high pressure processing system

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182742B2 (en) *
US2625886A (en) * 1947-08-21 1953-01-20 American Brake Shoe Co Pump
US2873597A (en) * 1955-08-08 1959-02-17 Victor T Fahringer Apparatus for sealing a pressure vessel
US3646948A (en) * 1969-01-06 1972-03-07 Hobart Mfg Co Hydraulic control system for a washing machine
US3642020A (en) * 1969-11-17 1972-02-15 Cameron Iron Works Inc Pressure operated{13 positive displacement shuttle valve
US4145161A (en) * 1977-08-10 1979-03-20 Standard Oil Company (Indiana) Speed control
US4245154A (en) * 1977-09-24 1981-01-13 Tokyo Ohka Kogyo Kabushiki Kaisha Apparatus for treatment with gas plasma
US4244557A (en) * 1977-10-07 1981-01-13 Leybold-Heraeus Gmbh High vacuum seal
US4367140A (en) * 1979-11-05 1983-01-04 Sykes Ocean Water Ltd. Reverse osmosis liquid purification apparatus
US4316750A (en) * 1981-01-16 1982-02-23 Western Electric Company, Inc. Apparatus and method for cleaning a flux station of a soldering system
US4426388A (en) * 1982-04-02 1984-01-17 Merck & Co., Inc. 5-Benzothiazolesulfonamide derivatives for the topical treatment of elevated intraocular pressure
US4574184A (en) * 1982-10-20 1986-03-04 Kurt Wolf & Co. Kg Saucepan and cover for a cooking utensil, particulary a steam pressure cooking pan
US4730630A (en) * 1986-10-27 1988-03-15 White Consolidated Industries, Inc. Dishwasher with power filtered rinse
US5882165A (en) * 1986-12-19 1999-03-16 Applied Materials, Inc. Multiple chamber integrated process system
US5193560A (en) * 1989-01-30 1993-03-16 Kabushiki Kaisha Tiyoda Sisakusho Cleaning system using a solvent
US5288333A (en) * 1989-05-06 1994-02-22 Dainippon Screen Mfg. Co., Ltd. Wafer cleaning method and apparatus therefore
US5186718A (en) * 1989-05-19 1993-02-16 Applied Materials, Inc. Staged-vacuum wafer processing system and method
US5091207A (en) * 1989-07-20 1992-02-25 Fujitsu Limited Process and apparatus for chemical vapor deposition
US4983223A (en) * 1989-10-24 1991-01-08 Chenpatents Apparatus and method for reducing solvent vapor losses
US5196134A (en) * 1989-12-20 1993-03-23 Hughes Aircraft Company Peroxide composition for removing organic contaminants and method of using same
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5186594A (en) * 1990-04-19 1993-02-16 Applied Materials, Inc. Dual cassette load lock
US5500081A (en) * 1990-05-15 1996-03-19 Bergman; Eric J. Dynamic semiconductor wafer processing using homogeneous chemical vapors
US5188515A (en) * 1990-06-08 1993-02-23 Lewa Herbert Ott Gmbh & Co. Diaphragm for an hydraulically driven diaphragm pump
US5285845A (en) * 1991-01-15 1994-02-15 Nordinvent S.A. Heat exchanger element
US5290361A (en) * 1991-01-24 1994-03-01 Wako Pure Chemical Industries, Ltd. Surface treating cleaning method
US5191993A (en) * 1991-03-04 1993-03-09 Xorella Ag Device for the shifting and tilting of a vessel closure
US5195878A (en) * 1991-05-20 1993-03-23 Hytec Flow Systems Air-operated high-temperature corrosive liquid pump
US5730874A (en) * 1991-06-12 1998-03-24 Idaho Research Foundation, Inc. Extraction of metals using supercritical fluid and chelate forming legand
US5197800A (en) * 1991-06-28 1993-03-30 Nordson Corporation Method for forming coating material formulations substantially comprised of a saturated resin rich phase
US5486212A (en) * 1991-09-04 1996-01-23 The Clorox Company Cleaning through perhydrolysis conducted in dense fluid medium
US5298032A (en) * 1991-09-11 1994-03-29 Ciba-Geigy Corporation Process for dyeing cellulosic textile material with disperse dyes
US5280693A (en) * 1991-10-14 1994-01-25 Krones Ag Hermann Kronseder Maschinenfabrik Vessel closure machine
US5190373A (en) * 1991-12-24 1993-03-02 Union Carbide Chemicals & Plastics Technology Corporation Method, apparatus, and article for forming a heated, pressurized mixture of fluids
US5285352A (en) * 1992-07-15 1994-02-08 Motorola, Inc. Pad array semiconductor device with thermal conductor and process for making the same
US5294261A (en) * 1992-11-02 1994-03-15 Air Products And Chemicals, Inc. Surface cleaning using an argon or nitrogen aerosol
US5378311A (en) * 1992-12-04 1995-01-03 Sony Corporation Method of producing semiconductor device
US5397220A (en) * 1993-03-18 1995-03-14 Nippon Shokubai Co., Ltd. Canned motor pump
US5727618A (en) * 1993-08-23 1998-03-17 Sdl Inc Modular microchannel heat exchanger
US5704416A (en) * 1993-09-10 1998-01-06 Aavid Laboratories, Inc. Two phase component cooler
US5377705A (en) * 1993-09-16 1995-01-03 Autoclave Engineers, Inc. Precision cleaning system
US5872257A (en) * 1994-04-01 1999-02-16 University Of Pittsburgh Further extractions of metals in carbon dioxide and chelating agents therefor
US5494526A (en) * 1994-04-08 1996-02-27 Texas Instruments Incorporated Method for cleaning semiconductor wafers using liquified gases
US5873948A (en) * 1994-06-07 1999-02-23 Lg Semicon Co., Ltd. Method for removing etch residue material
US5482564A (en) * 1994-06-21 1996-01-09 Texas Instruments Incorporated Method of unsticking components of micro-mechanical devices
US5880017A (en) * 1994-08-08 1999-03-09 Hewlett-Packard Co. Method of bumping substrates by contained paste deposition
US5501761A (en) * 1994-10-18 1996-03-26 At&T Corp. Method for stripping conformal coatings from circuit boards
US5718956A (en) * 1994-12-29 1998-02-17 Bentley-Harris Inc. Reflective foam sleeve
US5876655A (en) * 1995-02-21 1999-03-02 E. I. Du Pont De Nemours And Company Method for eliminating flow wrinkles in compression molded panels
US6024801A (en) * 1995-05-31 2000-02-15 Texas Instruments Incorporated Method of cleaning and treating a semiconductor device including a micromechanical device
US6171645B1 (en) * 1995-11-16 2001-01-09 Texas Instruments Incorporated Polyol-based method for forming thin film aerogels on semiconductor substrates
US5874795A (en) * 1995-12-28 1999-02-23 Japan Servo Co., Ltd Multi-phase permanent-magnet type electric rotating machine
US6010316A (en) * 1996-01-16 2000-01-04 The Board Of Trustees Of The Leland Stanford Junior University Acoustic micropump
US5726211A (en) * 1996-03-21 1998-03-10 International Business Machines Corporation Process for making a foamed elastometric polymer
US6182742B1 (en) * 1996-06-21 2001-02-06 Hitachi, Ltd. Cooling apparatus for use in an electronic system
US5706319A (en) * 1996-08-12 1998-01-06 Joseph Oat Corporation Reactor vessel seal and method for temporarily sealing a reactor pressure vessel from the refueling canal
US6023934A (en) * 1996-08-16 2000-02-15 American Superconductor Corp. Methods and apparatus for cooling systems for cryogenic power conversion electronics
US5881577A (en) * 1996-09-09 1999-03-16 Air Liquide America Corporation Pressure-swing absorption based cleaning methods and systems
US5888050A (en) * 1996-10-30 1999-03-30 Supercritical Fluid Technologies, Inc. Precision high pressure control assembly
US5725987A (en) * 1996-11-01 1998-03-10 Xerox Corporation Supercritical processes
US5714299A (en) * 1996-11-04 1998-02-03 Xerox Corporation Processes for toner additives with liquid carbon dioxide
US5870823A (en) * 1996-11-27 1999-02-16 International Business Machines Corporation Method of forming a multilayer electronic packaging substrate with integral cooling channels
US6186722B1 (en) * 1997-02-26 2001-02-13 Fujitsu Limited Chamber apparatus for processing semiconductor devices
US6014312A (en) * 1997-03-17 2000-01-11 Curamik Electronics Gmbh Cooler or heat sink for electrical components or circuits and an electrical circuit with this heat sink
US5880524A (en) * 1997-05-05 1999-03-09 Intel Corporation Heat pipe lid for electronic packages
US6509141B2 (en) * 1997-05-27 2003-01-21 Tokyo Electron Limited Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
US6019882A (en) * 1997-06-25 2000-02-01 Sandia Corporation Electrokinetic high pressure hydraulic system
US6013164A (en) * 1997-06-25 2000-01-11 Sandia Corporation Electokinetic high pressure hydraulic system
US5879459A (en) * 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US6029371A (en) * 1997-09-17 2000-02-29 Tokyo Electron Limited Drying treatment method and apparatus
US6171067B1 (en) * 1997-09-25 2001-01-09 Caliper Technologies Corp. Micropump
US6186660B1 (en) * 1997-10-09 2001-02-13 Caliper Technologies Corp. Microfluidic systems incorporating varied channel dimensions
US5872061A (en) * 1997-10-27 1999-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma etch method for forming residue free fluorine containing plasma etched layers
US6174675B1 (en) * 1997-11-25 2001-01-16 Caliper Technologies Corp. Electrical current for controlling fluid parameters in microchannels
US6851148B2 (en) * 1997-11-26 2005-02-08 Chart Inc. Carbon dioxide dry cleaning system
US6190459B1 (en) * 1998-01-07 2001-02-20 Tokyo Electron Limited Gas treatment apparatus
US6021791A (en) * 1998-06-29 2000-02-08 Speedfam-Ipec Corporation Method and apparatus for immersion cleaning of semiconductor devices
US6017820A (en) * 1998-07-17 2000-01-25 Cutek Research, Inc. Integrated vacuum and plating cluster system
US6347918B1 (en) * 1999-01-27 2002-02-19 Applied Materials, Inc. Inflatable slit/gate valve
US20050026547A1 (en) * 1999-06-03 2005-02-03 Moore Scott E. Semiconductor processor control systems, semiconductor processor systems, and systems configured to provide a semiconductor workpiece process fluid
US20020014257A1 (en) * 1999-08-05 2002-02-07 Mohan Chandra Supercritical fluid cleaning process for precision surfaces
US6508259B1 (en) * 1999-08-05 2003-01-21 S.C. Fluids, Inc. Inverted pressure vessel with horizontal through loading
US6334266B1 (en) * 1999-09-20 2002-01-01 S.C. Fluids, Inc. Supercritical fluid drying system and method of use
US20020001929A1 (en) * 2000-04-25 2002-01-03 Biberger Maximilian A. Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
US20030036023A1 (en) * 2000-12-12 2003-02-20 Moreau Wayne M. Supercritical fluid(SCF) silylation process
US20040020518A1 (en) * 2001-02-15 2004-02-05 Deyoung James P. Methods for transferring supercritical fluids in microelectronic and other industrial processes
US20030005948A1 (en) * 2001-05-31 2003-01-09 M-Fsi Ltd. Substrate Cleaning apparatus
US20030008155A1 (en) * 2001-06-11 2003-01-09 Jsr Corporation Method for the formation of silica film, silica film, insulating film, and semiconductor device
US20030003762A1 (en) * 2001-06-27 2003-01-02 International Business Machines Corporation Process of removing residue material from a precision surface
US20030008238A1 (en) * 2001-06-27 2003-01-09 International Business Machines Corporation Process of drying a cast polymeric film disposed on a workpiece
US20030013311A1 (en) * 2001-07-03 2003-01-16 Ting-Chang Chang Method of avoiding dielectric layer deterioation with a low dielectric constant during a stripping process
US20030008518A1 (en) * 2001-07-03 2003-01-09 Ting-Chang Chang Method of avoiding dielectric layer deterioation with a low dielectric constant
US20030029479A1 (en) * 2001-08-08 2003-02-13 Dainippon Screen Mfg. Co, Ltd. Substrate cleaning apparatus and method
US6848458B1 (en) * 2002-02-05 2005-02-01 Novellus Systems, Inc. Apparatus and methods for processing semiconductor substrates using supercritical fluids
US20040018452A1 (en) * 2002-04-12 2004-01-29 Paul Schilling Method of treatment of porous dielectric films to reduce damage during cleaning
US6521466B1 (en) * 2002-04-17 2003-02-18 Paul Castrucci Apparatus and method for semiconductor wafer test yield enhancement
US20040011386A1 (en) * 2002-07-17 2004-01-22 Scp Global Technologies Inc. Composition and method for removing photoresist and/or resist residue using supercritical fluids
US20050014370A1 (en) * 2003-02-10 2005-01-20 Supercritical Systems, Inc. High-pressure processing chamber for a semiconductor wafer
US20060003592A1 (en) * 2004-06-30 2006-01-05 Tokyo Electron Limited System and method for processing a substrate using supercritical carbon dioxide processing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206949A1 (en) * 2007-02-28 2008-08-28 Semiconductor Technology Academic Research Center Apparatus for forming conductor, method for forming conductor, and method for manufacturing semiconductor device
US20100024778A1 (en) * 2008-08-01 2010-02-04 Goodrich Control Systems Fuel Pumping System
US20120006356A1 (en) * 2010-07-12 2012-01-12 Tokyo Electron Limited Substrate Processing Apparatus, Substrate Processing Method, and Computer-Readable Storage Medium
US8133806B1 (en) 2010-09-30 2012-03-13 S.O.I.Tec Silicon On Insulator Technologies Systems and methods for forming semiconductor materials by atomic layer deposition
US8486192B2 (en) 2010-09-30 2013-07-16 Soitec Thermalizing gas injectors for generating increased precursor gas, material deposition systems including such injectors, and related methods
US8486193B2 (en) 2010-09-30 2013-07-16 Soitec Systems for forming semiconductor materials by atomic layer deposition
US8785316B2 (en) 2010-09-30 2014-07-22 Soitec Methods for forming semiconductor materials by atomic layer deposition using halide precursors

Also Published As

Publication number Publication date Type
US20060226117A1 (en) 2006-10-12 application

Similar Documents

Publication Publication Date Title
US6158446A (en) Ultra-low particle semiconductor cleaner
US6004399A (en) Ultra-low particle semiconductor cleaner for removal of particle contamination and residues from surface oxide formation on semiconductor wafers
US8393091B2 (en) Substrate processing method, and method of manufacturing semiconductor device
US5772784A (en) Ultra-low particle semiconductor cleaner
US6491763B2 (en) Processes for treating electronic components
US5940985A (en) Apparatus and method for drying substrates
US6238488B1 (en) Method of cleaning film forming apparatus, cleaning system for carrying out the same and film forming system
US6239038B1 (en) Method for chemical processing semiconductor wafers
US20040103922A1 (en) Method of high pressure treatment
US6242165B1 (en) Supercritical compositions for removal of organic material and methods of using same
US5279705A (en) Gaseous process for selectively removing silicon nitride film
US20080131623A1 (en) Method and apparatus to apply surface release coating for imprint mold
US5399200A (en) Module in an integrated delivery system for chemical vapors from liquid sources
US6841031B2 (en) Substrate processing apparatus equipping with high-pressure processing unit
US6804619B1 (en) Process control based on tool health data
US20040259370A1 (en) Vapor phase etching MEMS devices
US20070212846A1 (en) Substrate processing apparatus, method for examining substrate processing conditions, and storage medium
US7264680B2 (en) Process and apparatus for treating a workpiece using ozone
US20020104552A1 (en) Systems and methods for forming processing streams
US20020014257A1 (en) Supercritical fluid cleaning process for precision surfaces
US20050215063A1 (en) System and methods for etching a silicon wafer using HF and ozone
US20060102208A1 (en) System for removing a residue from a substrate using supercritical carbon dioxide processing
US20040140365A1 (en) Substrate treating apparatus
US20010037822A1 (en) Vapor drying system and method
US20060081182A1 (en) Method of cleaning thin film deposition system, thin film deposition system and program

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUPERCRITICAL SYSTEMS INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERTRAM, RONALD T.;HILLMAN, JOSEPH T.;BIBERGER, MAXIMILAN A.;REEL/FRAME:023020/0465;SIGNING DATES FROM 20050418 TO 20050426

AS Assignment

Owner name: TOYKO ELECTRON LIMITED, JAPAN

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SUPERCRITICAL SYSTEMS, INC.;REEL/FRAME:023095/0437

Effective date: 20090806