US20090314348A1 - Terrestrial solar power system using iii-v semiconductor solar cells - Google Patents

Terrestrial solar power system using iii-v semiconductor solar cells Download PDF

Info

Publication number
US20090314348A1
US20090314348A1 US12/549,340 US54934009A US2009314348A1 US 20090314348 A1 US20090314348 A1 US 20090314348A1 US 54934009 A US54934009 A US 54934009A US 2009314348 A1 US2009314348 A1 US 2009314348A1
Authority
US
United States
Prior art keywords
solar cell
system
solar
defined
concentrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/549,340
Inventor
Daniel McGlynn
Paul R. Sharps
Arthur Comfeld
Mark Stan
Original Assignee
Mcglynn Daniel
Sharps Paul R
Arthur Comfeld
Mark Stan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/500,053 priority Critical patent/US20080029151A1/en
Application filed by Mcglynn Daniel, Sharps Paul R, Arthur Comfeld, Mark Stan filed Critical Mcglynn Daniel
Priority to US12/549,340 priority patent/US20090314348A1/en
Publication of US20090314348A1 publication Critical patent/US20090314348A1/en
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION SECURITY AGREEMENT Assignors: EMCORE CORPORATION, EMCORE SOLAR POWER, INC.
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/544Solar cells from Group III-V materials

Abstract

A system for generating electrical power from solar radiation utilizing a III-V compound multijunction semiconductor solar cell; a concentrator for focusing sunlight on the solar cell; and a heat spreader connected to the solar cell for cooling the cell. The solar cell is preferably an inverted metamorphic multijunction solar cell.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is a continuation of U.S. patent application Ser. No. 11/500,053, filed Aug. 7, 2006, which is related to co-pending U.S. patent application Ser. No. 11/109,016 filed Apr. 19, 2005, and Ser. No. 11/280,379 filed Nov. 16, 2005.
  • This application is also related to co-pending U.S. patent application Ser. No. 11/445,793 filed Jun. 2, 2006 and assigned to the common assignee.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to terrestrial solar power systems for the conversion of sunlight into electrical energy, and, more particularly, to the use of III-V compound semiconductor solar cells in conjunction with reflector concentrators which are connected in an array for unitary movement to track the sun.
  • 2. Description of the Related Art
  • Commercially available silicon solar cells for terrestrial solar power application have efficiencies ranging from 8% to 15%. Compound semiconductor solar cells, based on III-V compounds, have 28% efficiency in normal operating conditions and 32.6% efficiency under concentration. Moreover, it is well known that concentrating solar energy onto the photovoltaic cell increases the cell's efficiency.
  • Terrestrial solar power systems currently use silicon solar cells in view of their low cost and widespread availability. Although compound semiconductor solar cells have been widely used in satellite applications, in which their power-to-weight efficiencies are more important than cost-per-watt considerations in selecting such devices, such solar cells have not yet been designed and configured for terrestrial systems, nor have terrestrial solar power systems been configured and optimized to utilize compound semiconductor solar cells.
  • In conventional solar cells constructed with silicon (Si) substrates, one electrical contact is typically placed on a light absorbing or front side of the solar cell and a second contact is placed on the back side of the cell. A photoactive semiconductor is disposed on a light-absorbing side of the substrate and includes one or more p-n junctions, which creates electron flow as light is absorbed within the cell.
  • The contact on the face of the cell where light enters is generally expanded in the form of a grid pattern over the surface of the front side and is generally composed of a good conductor such as a metal. The grid pattern does not cover the entire face of the cell since grid materials, though good electrical conductors, are generally not transparent to light.
  • The grid pattern on the face of the cell is generally widely spaced to allow light to enter the solar cell but not to the extent that the electrical contact layer will have difficulty collecting the current produced by the electron flow in the cell. The back electrical contact has not such diametrically opposing restrictions. The back contact simply functions as an electrical contact and thus typically covers the entire back surface of the cell. Because the back contact must be a very good electrical conductor, it is almost always made of metal layer.
  • The placement of both anode and cathode contacts on the back side of the cell simplifies the interconnection of individual solar cells in a horizontal array, in which the cells are electrically connected in series. Such back contact designs are known from PCT Patent Publication WO 2005/076960 A2 of Gee et al. for silicon cells, and U.S. patent application Ser. No. 11/109,016 filed Apr. 19, 2005, herein incorporated by reference, of the present assignee, for compound semiconductor solar cells.
  • Another aspect of terrestrial solar power system is the use of concentrators (such as lenses and mirrors) to focus the incoming sun rays onto the solar cell or solar cell array. The geometric design of such systems also requires a solar tracking mechanism, which allows the plane of the solar cell to continuously face the sun as the sun traverses the sky during the day, thereby optimizing the amount of sunlight impinging upon the cell.
  • Still another aspect of concentrator-based solar power cell configuration design is the design of heat dissipating structures or coolant techniques for dissipating the associated heat generated by the intense light impinging on the surface of the semiconductor body. Prior art designs, such as described in PCT Patent Application No. 02/080286 A1, published Oct. 10, 2002, utilize a complex coolant flow path in thermal contact with the (silicon) photovoltaic cells.
  • Still another aspect of a solar cell system is the physical structure of the semiconductor material constituting the solar cell. Solar cells are often fabricated in vertical, multijunction structures, and disposed in horizontal arrays, with the individual solar cells connected together in an electrical series. The shape and structure of an array, as well as the number of cells it contains, are determined in part by the desired output voltage and current. One type of multijunction structure useful in the design according to the present invention is the inverted metamorphic solar cell structures, such as described in U.S. Pat. No. 6,951,819, M. W. Wanless et al, Lattice Mismatched Approaches for High Performance, III-V Photovoltaic Energy Converters (Conference Proceedings of the 31.sup.st IEEE Photovoltaic Specialists Conference, Jan. 3-7, 2005, IEEE Press, 2005) and U.S. patent application Ser. No. 11/445,793 of the present assignee, filed Jun. 2, 2006, and herein incorporated by reference
  • Although a variety of design features described above have been known for use in solar cell arrays and solar energy systems, they have not been utilized together or adapted in an integrated manner in a terrestrial solar energy system prior to the present invention.
  • SUMMARY OF THE INVENTION 1. Objections of the Invention
  • It is an object of the present invention to provide an improved multijunction solar cell for terrestrial power application
  • It is another object of the invention to provide an inverted metamorphic solar cell for terrestrial power applications.
  • It is still another object of the invention to provide an inverted metamorphic solar cell as a thin, flexible film that conforms to the non-planar support of a solar concentrator.
  • It is still another object of the invention to provide a solar cell as a thin, flexible film that conforms to the non-planar support of a heat spreader.
  • It is still another object of the invention to provide a solar cell as a thin, flexible film that conforms to the non-planar image plane of a solar concentrator.
  • It is still another object of the invention to provide a III-V semiconductor solar cell with a reflective or refractive solar concentrator for terrestrial power applications.
  • It is still another object of the invention to provide a III-V semiconductor solar cell with a solar tracker for terrestrial power applications.
  • Some implementations or embodiments of the invention may achieve fewer than all of the foregoing objects.
  • 2. Features of the Invention
  • Briefly, and in general terms, the invention provides a system for generating electrical power form solar radiation utilizing a III-V compound semiconductor solar cell, a concentrator for focusing sunlight on the solar cell, including a concave trough-shaped reflector, a solar tracker coupled to said concentrator so as to align the concentrator with the rays of the sun as the sun traverses the sky so that the sunlight is focused on the solar cell, a heat spreader connected to said solar cell for cooling said cell, and an electrical circuit connected to the solar cell for transferring electrical energy from the cell.
  • In another aspect, the present invention provides a thin, flexible solar cell including a semiconductor body having an upper surface; a multijunction solar cell disposed on the upper surfaces; a first solar subcell on the substrate having a first band gap; a second solar subcell disposed over the first subcell and having a second band gap smaller than the first band gap; and a grading interlayer disposed over the second subcell interlayer having a third band gap larger than the second band gap, and a third solar subcell over the second solar subcell such that the third solar subcell is lattice mismatched with respect to the second subcell and the third subcell has a fourth band gap smaller than the third band gap, and a support for mounting the solar cell in a non-planar configuration so as to capture the sunlight in a concentrator.
  • In one aspect, the present invention provides a solar cell including a semiconductor structure that includes a first III-V semiconductor region forming a first surface of the semiconductor structure and having a first polarity and a second III-V semiconductor region forming a second surface of the semiconductor structure and having a second polarity. The structure further includes at least one insulating via formed in the semiconductor structure from the first surface to the second surface, an electrical connection extending through the via and an insulated contact pad on the first surface of the semiconductor structure, the electrical connection extending from the second semiconductor region to the insulated contact pad so as to form a terminal of the second semiconductor region on the first surface, and a heat dissipating support on which the solar cell is mounted.
  • In another aspect, the present invention provides a solar cell module including a thin film semiconductor body including a multijunction solar cell and having first and second electrical contacts on the back surface thereof, a support for mounting the solar cell and making electrical contact with the first and second contacts, and a heat spreader attached to the support for dissipating heat from the semiconductor body.
  • Some implementations or embodiments of the present invention may incorporate or implement fewer of the aspects and features noted in the foregoing summaries.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a highly simplified block diagram of a terrestrial solar cell system under an illustrated embodiment of the invention;
  • FIG. 2 shows a cross-sectional view of an inverted metamorphic solar cell that may be used in the present invention;
  • FIG. 3 shows an enlarged cross-sectional view of a first embodiment of the collection optics used in the present invention; and
  • FIG. 4 shows a cross-sectional view of a second embodiment of the collection optics used in the present invention.
  • Additional objects, advantages, and novel features of the present invention will become apparent to those skilled in the art from this disclosure, including the following detailed description as well as by practice of the invention. While the invention is described below with reference to preferred embodiments, it should be understood that the invention is not limited thereto. Those of ordinary skill in the art having access to the teachings herein will recognize additional applications, modifications and embodiments in other fields, which are within the scope of the invention as disclosed and claimed herein and with respect to which the invention could be of utility.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Details of the present invention will now be described including exemplary aspects and embodiments thereof. Referring to the drawings and the following description, like reference numbers are used to identify like or functionally similar elements, and are intended to illustrate major features of exemplary embodiments in a highly simplified diagrammatic manner. Moreover, the drawings are not intended to depict every feature of the actual embodiment nor the relative dimensions of the depicted elements, and are not drawn to scale.
  • The present invention relates generally to terrestrial solar power systems for the conversion of sunlight into electrical energy, and to the use of III-V compound semiconductor solar cells in conjunction with optical components such as reflectors or concentrators which are connected in an array for unitary movement to track the sun.
  • In one aspect, the invention relates to the design of a solar power system as depicted in FIG. 1. FIG. 1 depicts the sun 100 traversing the sky along a path 101 which varies with latitude and day of the year. Solar collectors 102 are pointed at the sun so as to maximize the exposure of the solar cells (not shown) directly to the sun's parallel incoming rays. The collectors 102 may be organized as an array which is mounted on a rotatable platform 103 to allow the array to track the sun 100 as the sun moves during the day. The platform 103 is in turn mounted on a fixed support 104 which may be mounted on a building or other terrestrial structure. The support 104 may include electrical circuitry to transfer the electrical current supplied by the array 102 to a battery, power distribution system, or grid.
  • A solar tracking arrangement 106 is provided which may either store solar angle data in a database, or utilize photodetectors or other optical components 107 to detect the position of the sun 100. The tracking arrangement processes the stored or detected sun angle information, and transmits appropriate control signals to the support 104 to cause the platform 103 and collector optics array 102 to be continuously positioned both in azimuth and altitude angles by means of a drive 105, schematically shown in the Figure. A variety of solar tracking arrangements are known to those skilled in the art, and therefore need not be described in detail here.
  • FIG. 2 depicts the multijunction inverted metamorphic solar cell that may be used in one embodiment of the present invention, including three subcells A, B and C. More particularly, the solar cell is formed using the process in U.S. patent application Ser. No. 11/445,793 filed Jun. 2, 2006. As shown in the Figure, the top surface of the solar cell includes grid lines 501 which are directly deposited over the contact layer 105. An antireflective (ARC) dielectric layer 130 is deposited over the entire surface of the solar cell. An adhesive is deposited over the ARC layer to secure a cover glass. The solar cell structure includes a window layer 106 adjacent to the contact layer 105. The subcell A, consisting of an n+ emitter layer 107 and a p-type base layer 108, is then formed on the window layer 106.
  • In the preferred embodiment, the n+ type emitter layer 107 is composed of InGA(Al)P, and the base layer 108 is composed of InGa(Al)P.
  • Adjacent to the base layer 108 is deposited a back surface field (“BSF”) layer 109 used to reduce recombination loss. The BSF layer 109 drives minority carriers from the region near the base/BSF interface surface to minimize the effect of recombination loss.
  • On the BSF layer 109 is deposited a sequence of heavily doped p-type and n-type layers 110 which forms a tunnel diode, a circuit element that functions to electrically connect cell A to cell B.
  • On the tunnel diode layers 110 a window layer 111 is deposited. The window layer 111 used in the subcell B also operates to reduce the recombination loss. The window layer 111 also improves the passivation of the cell surface of the underlying junctions. It should be apparent to one skilled in the art, that additional layer(s) may be added or deleted in the cell structure without departing from the scope of the present invention.
  • On the window layer 111 of cell B are deposited: the emitter layer 112, and the p-type base layer 113. These layers are preferably composed of InGaP and In0.015GaAs respectively, although any other suitable materials consistent with lattice constant and band gap requirements may be used as well.
  • On cell B is deposited a BSF layer 114 which performs the same function as the BSF layer 109. A p++/n++ tunnel diode 115 is deposited over the BSF layer 114 similar to the layers 110, again forming a circuit element that functions here to electrically connect cell B to cell C. A buffer layer 115 a, preferably InGaAs, is deposited over the tunnel diode 115 and has a thickness of about 1.0 micron. A metamorphic buffer layer 116 is deposited over the buffer layer 115 a which is preferably a compositionally step-graded InGaAlAs series of layers with monotonically changing lattice constant to achieve a transition in lattice constant from cell B to subcell C. The bandgap of layer 116 is 1.5 ev constant with a value slightly greater than the bandgap of the middle cell B.
  • In one embodiment, as suggested in the Wanless et al. paper, the step grade contains nine compositionally graded steps with each step layer having a thickness of 0.25 micron. In the preferred embodiment, the interlayer is composed of InGaAlAs, with monotonically changing lattice constant, such that the bandgap remains constant at 1.50 ev.
  • Over the metamorphic buffer layer 116 is a window layer 117 composed of In0.78GaP, followed by subcell C having n+ emitter layer 118 and p-type base layer 119. These layers are preferably composed of In0.30GaAs.
  • A BSF layer 120 is deposited over base layer 119. The BSF layer 120 performs the same function with respect to cell C as BSF layers 114 and 109.
  • A p+ contact layer 121 is deposited over BSF layer 120 and a metal contact layer 122, preferably a sequence of Ti/Au/Ag/Au layers is applied over layer 121.
  • FIG. 3 is a view of a first embodiment of the present invention using a Cassegrain reflector arrangement. In such an arrangement, the solar cell 204 may be mounted in the center of the reflector 301, and a passive heat spreader 302, with cooling fins 303, may be provided.
  • In most general terms, the solar cell module is a thin film semiconductor body including a multijunction solar cell having first and second electrical contacts on the back surface thereof. The module includes a support for mounting the solar cell and making electrical contact with the first and second contacts. A heat spreader 302 is attached to the support of the reflector 301 for dissipating heat from the semiconductor body.
  • FIG. 4 is an enlarged view of a parabolic trough solar collector 400 according to a second embodiment of the present invention. The trough 401 is one embodiment of the collector optics 102, the trough 401 is positioned to face the sun so that the incoming parallel rays are focused at a focal point along a line, approximately at the center of tube element 402. In one embodiment, the solar cell 406 (such as described in FIG. 2) may be mounted and supported by the tube 402. The tube 402 may be composed of two electrically isolated elements 403 and 404 supported by a dielectric outer support 405. The metallic elements 403 and 404 function as a heat spreader, and may be filled with a circulating liquid to provide even greater cooling to the solar cell 406. The tube 402 is suspended at the focal point by means of a support bracket 408.
  • One aspect of the present invention depicted in FIG. 4 is that the solar cell 406 is a flexible thin film and shaped so as to conform to the surface of the tube 402, which has a non-planar configuration, in this embodiment being cylindrical. The design of the solar cell 406 may include a metal via 407 which makes an electrical connection between the top surface of the cell 406 and element 404. The bottom surface of the cell 406 makes electrical contact with element 403.
  • Although this invention has been described in certain specific embodiments, many additional modifications and variations would be apparent to those skilled in the art. The present invention is therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims, and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.
  • It will be understood that each of the elements described above, or two or more together, also may find a useful application in other types of constructions differing from the types described above.
  • While the invention has been illustrated and described as embodied in a solar power system using III-V compound semiconductors, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
  • Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the following claims.

Claims (20)

1. A system for generating electrical power from solar radiation comprising:
a thin flexible film III-V compound semiconductor solar cell including first and second electrical contacts on a same side of the solar cell;
a concentrator for focusing sunlight on the solar cell, wherein the concentrator has a non-planer outer surface and a non-planer inner surface;
a solar tracker coupled to said concentrator to align the concentrator with the rays of the sun as the sun traverses the sky so that the rays of the sun are focused on the solar cell;
a heat spreader at the inner surface of the concentrator and connected to said solar cell for cooling said cell; and
an electrical circuit connected to said solar cell for transferring electrical energy from said cell, wherein the thin flexible film solar cell is shaped to conform to the non-planer outer surface of the concentrator on said same side of the solar cell.
2. A system as defined in claim 1, wherein said heat spreader is a metal structure with cooling fins.
3. A system as defined in claim 1, wherein said heat spreader is water cooled.
4. A system as defined in claim 1, wherein said solar cell is an inverted metamorphic cell with an insulated via extending therethrough so that the anode and cathode contacts are on one side thereof.
5. A system as defined in claim 1, further comprising a support module for mounting the solar cell, and a via contact for making electrical contact to one of the first and second electrical contacts.
6. A system for generating electrical power from solar radiation comprising:
a thin flexible film III-V compound semiconductor solar cell including first and second electrical contacts on a same side of the solar cell;
an optical concentrator for focusing rays of the sun on the solar cell;
a cylindrical support having an outer surface and an inner surface, wherein the cylindrical support comprises of a first electrically conductive element, a second electrically conductive element electrically isolated from the first electrically conductive element, and a dielectric portion for separating the first and second electrically conductive elements; and
a solar tracker coupled to said optical concentrator to align the concentrator with the rays of the sun as the sun traverses the sky so that the rays of the sun are focused by said optical concentrator on the solar cell,
wherein the thin flexible film solar cell is shaped to conform to the outer surface of the cylindrical support on said same side of the solar cell, and wherein the first electrically conductive element is electrically connected to the first electrical contact and the second electrically conductive element is electrically connected to the second electrical contact.
7. A system as defined in claim 6, further comprising a heat spreader with a metal structure and cooling fins.
8. A system as defined in claim 7, wherein said heat spreader is water cooled.
9. A system as defined in claim 6, wherein said solar cell is an inverted metamorphic cell with an insulated via extending therethrough.
10. A system as defined in claim 6, further comprising a support bracket to suspend the cylindrical tube concentrator a focal point along a line approximately at a center of the cylindrical tube concentrator.
11. A system as defined in claim 6, further comprising a via contact for making electrical contact to one of the first and second electrical contacts.
12. A system as defined in claim 6, further comprising an electrical circuit connected to said solar cell for transferring electrical energy from said cell.
13. A system as defined in claim 6, wherein at least one of the first and second electrically conductive elements is a heat spreader with a metal structure.
14. A system for generating electrical power from solar radiation comprising:
a thin flexible film III-V compound semiconductor photovoltaic solar cell including a semiconductor body; a first solar subcell in said body having a first band gap; a second solar subcell in said body disposed adjacent said first subcell in said body and having a second band gap smaller than said first band gap; a grading interlayer disposed adjacent said second subcell in said body and having a third band gap greater than said second band gap; and a third solar subcell disposed adjacent said interlayer in said body and being lattice mismatched with respect to said second subcell and having a fourth band gap smaller than said third band gap;
an optical concentrator for focusing sunlight on the photovoltaic solar cell; and
a cylindrical support having an outer surface and an inner surface and comprising of a first electrically conductive element, a second electrically conductive element electrically isolated from the first electrically conductive element, and a dielectric portion for separating the first and second electrically conductive elements, wherein the thin flexible film solar cell is shaped to conform to the outer surface of the cylindrical support on said same side of the solar cell.
15. A system as defined in claim 14, further comprising a solar tracker coupled to said optical concentrator so as to align the concentrator with the rays of the sun as the sun traverses the sky so that the rays of the sun are focused on the solar cell.
16. A system as defined in claim 14, further comprising an electrical circuit connected to said photovoltaic solar cell for transferring electrical energy from said cell.
17. A system as defined in claim 14, wherein said first solar subcell is composed of InGaAlP.
18. A system as defined in claim 14, wherein said third solar subcell is composed of In0.30GaAs.
19. A system as defined in claim 14, wherein the concentrator is a Cassegrain reflector.
20. A system as defined in claim 14, further comprising a heat spreader adjacent said solar cell for cooling said solar cell.
US12/549,340 2006-08-07 2009-08-27 Terrestrial solar power system using iii-v semiconductor solar cells Abandoned US20090314348A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/500,053 US20080029151A1 (en) 2006-08-07 2006-08-07 Terrestrial solar power system using III-V semiconductor solar cells
US12/549,340 US20090314348A1 (en) 2006-08-07 2009-08-27 Terrestrial solar power system using iii-v semiconductor solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/549,340 US20090314348A1 (en) 2006-08-07 2009-08-27 Terrestrial solar power system using iii-v semiconductor solar cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/500,053 Continuation US20080029151A1 (en) 2006-08-07 2006-08-07 Terrestrial solar power system using III-V semiconductor solar cells

Publications (1)

Publication Number Publication Date
US20090314348A1 true US20090314348A1 (en) 2009-12-24

Family

ID=39027972

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/500,053 Abandoned US20080029151A1 (en) 2006-08-07 2006-08-07 Terrestrial solar power system using III-V semiconductor solar cells
US12/417,367 Active 2028-08-17 US8513518B2 (en) 2006-08-07 2009-04-02 Terrestrial solar power system using III-V semiconductor solar cells
US12/549,340 Abandoned US20090314348A1 (en) 2006-08-07 2009-08-27 Terrestrial solar power system using iii-v semiconductor solar cells

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/500,053 Abandoned US20080029151A1 (en) 2006-08-07 2006-08-07 Terrestrial solar power system using III-V semiconductor solar cells
US12/417,367 Active 2028-08-17 US8513518B2 (en) 2006-08-07 2009-04-02 Terrestrial solar power system using III-V semiconductor solar cells

Country Status (1)

Country Link
US (3) US20080029151A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090188546A1 (en) * 2006-08-07 2009-07-30 Mcglynn Daniel Terrestrial solar power system using iii-v semiconductor solar cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US20100031994A1 (en) * 2008-08-07 2010-02-11 Emcore Corporation Wafer Level Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20100116329A1 (en) * 2008-06-09 2010-05-13 Fitzgerald Eugene A Methods of forming high-efficiency solar cell structures
US20100122724A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20100233839A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. String Interconnection and Fabrication of Inverted Metamorphic Multijunction Solar Cells
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US20110030774A1 (en) * 2009-08-07 2011-02-10 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Back Contacts
US20110124146A1 (en) * 2009-05-29 2011-05-26 Pitera Arthur J Methods of forming high-efficiency multi-junction solar cell structures
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
US8236600B2 (en) 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US8604330B1 (en) 2010-12-06 2013-12-10 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
CN103684210A (en) * 2012-08-30 2014-03-26 中国科学院上海高等研究院 Spectral compensation type solar photovoltaic power generation system
US8686282B2 (en) 2006-08-07 2014-04-01 Emcore Solar Power, Inc. Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells
US8753918B2 (en) 2008-07-16 2014-06-17 Emcore Solar Power, Inc. Gallium arsenide solar cell with germanium/palladium contact
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
EP2827380A1 (en) * 2013-07-19 2015-01-21 Emcore Solar Power, Inc. Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US9287438B1 (en) 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166067A1 (en) * 2006-08-07 2014-06-19 Emcore Solar Power, Inc. Solar power system for aircraft, watercraft, or land vehicles using inverted metamorphic multijunction solar cells
US20100093127A1 (en) * 2006-12-27 2010-04-15 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
US20080185038A1 (en) * 2007-02-02 2008-08-07 Emcore Corporation Inverted metamorphic solar cell with via for backside contacts
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US8759138B2 (en) 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
ITAQ20080009A1 (en) * 2008-06-12 2009-12-13 Yoav Banin secondary system implementation for the pointing precision, mounted on trackers for solar concentration systems, capable of performing spatial rotations in order to ensure alignment with the sun's rays of the concentrator or groups of
US7741146B2 (en) 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US20100101630A1 (en) * 2008-10-24 2010-04-29 Emcore Solar Power, Inc. Terrestrial Solar Tracking Photovoltaic Array with Slew Speed Reducer
US8378281B2 (en) 2008-10-24 2013-02-19 Suncore Photovoltaics, Inc. Terrestrial solar tracking photovoltaic array with offset solar cell modules
US8536504B2 (en) 2008-10-24 2013-09-17 Suncore Photovoltaics, Inc. Terrestrial solar tracking photovoltaic array with chain drive
US20100170559A1 (en) * 2009-01-06 2010-07-08 Emcore Solar Power, Inc. System and Method for the Generation of Electrical Power from Sunlight
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US9140468B2 (en) * 2009-05-07 2015-09-22 Michael Lee Gomery Solar power unit
US8680391B2 (en) 2009-07-24 2014-03-25 Cewa Technologies, Inc. Solar concentrator configuration with improved manufacturability and efficiency
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US8961687B2 (en) * 2009-08-31 2015-02-24 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor growth
US8575471B2 (en) * 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US9806215B2 (en) * 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
WO2011035075A2 (en) * 2009-09-16 2011-03-24 Solar Logic Incorporated Solar energy power generation system
US9835142B2 (en) 2009-09-16 2017-12-05 Solar Logic Incorporated Bladeless turbine
US9163512B2 (en) 2009-09-16 2015-10-20 Solar Logic Incorporated Bladeless turbine
US20110120539A1 (en) * 2009-11-25 2011-05-26 Light Prescriptions Innovators, Llc On-window solar-cell heat-spreader
US9837563B2 (en) * 2009-12-17 2017-12-05 Epir Technologies, Inc. MBE growth technique for group II-VI inverted multijunction solar cells
US8507365B2 (en) * 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
US8453328B2 (en) 2010-06-01 2013-06-04 Suncore Photovoltaics, Inc. Methods and devices for assembling a terrestrial solar tracking photovoltaic array
WO2011156020A1 (en) 2010-06-10 2011-12-15 Wolter James F Solar panel system with monocoque supporting structure
US8592738B1 (en) 2010-07-01 2013-11-26 Suncore Photovoltaics, Inc. Alignment device for use with a solar tracking photovoltaic array
WO2012074524A1 (en) 2010-12-01 2012-06-07 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
US9041027B2 (en) 2010-12-01 2015-05-26 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US20120312349A1 (en) * 2011-06-09 2012-12-13 Arkadiy Farberov Stationary concentrated solar power module
US9496822B2 (en) 2012-09-24 2016-11-15 Lockheed Martin Corporation Hurricane proof solar tracker
US9714756B2 (en) 2013-03-15 2017-07-25 Morgan Solar Inc. Illumination device
US9960303B2 (en) 2013-03-15 2018-05-01 Morgan Solar Inc. Sunlight concentrating and harvesting device
EP2971950A4 (en) 2013-03-15 2017-04-12 Morgan Solar Inc. Light panel, optical assembly with improved interface and light panel with improved manufacturing tolerances
US9758261B1 (en) 2015-01-15 2017-09-12 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with lightweight laminate substrate
US10403778B2 (en) 2015-10-19 2019-09-03 Solaero Technologies Corp. Multijunction solar cell assembly for space applications
US10270000B2 (en) 2015-10-19 2019-04-23 Solaero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US10361330B2 (en) 2015-10-19 2019-07-23 Solaero Technologies Corp. Multijunction solar cell assemblies for space applications
US10256359B2 (en) 2015-10-19 2019-04-09 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US9935209B2 (en) 2016-01-28 2018-04-03 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10263134B1 (en) 2016-05-25 2019-04-16 Solaero Technologies Corp. Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US9985161B2 (en) 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565719A (en) * 1967-05-17 1971-02-23 Nasa Solar panel fabrication
US3999283A (en) * 1975-06-11 1976-12-28 Rca Corporation Method of fabricating a photovoltaic device
US4001864A (en) * 1976-01-30 1977-01-04 Gibbons James F Semiconductor p-n junction solar cell and method of manufacture
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4759803A (en) * 1987-08-07 1988-07-26 Applied Solar Energy Corporation Monolithic solar cell and bypass diode system
US5009720A (en) * 1988-11-16 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Solar cell
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5374317A (en) * 1990-09-26 1994-12-20 Energy Systems Solar, Incorporated Multiple reflector concentrator solar electric power system
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6103970A (en) * 1998-08-20 2000-08-15 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
US6239354B1 (en) * 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6300557B1 (en) * 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
US6300558B1 (en) * 1999-04-27 2001-10-09 Japan Energy Corporation Lattice matched solar cell and method for manufacturing the same
US6316716B1 (en) * 1999-05-11 2001-11-13 Angewandte Solarenergie - Ase Gmbh Solar cell and method for producing such a cell
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US20020040727A1 (en) * 2000-06-20 2002-04-11 Stan Mark A. Apparatus and method for optimizing the efficiency of germanium junctions in multi-junction solar cells
US6372980B1 (en) * 1995-12-06 2002-04-16 University Of Houston Multi-quantum well tandem solar cell
US6384317B1 (en) * 1997-05-30 2002-05-07 Imec Vzw Solar cell and process of manufacturing the same
US6452086B1 (en) * 1998-10-05 2002-09-17 Astrium Gmbh Solar cell comprising a bypass diode
US20020164834A1 (en) * 1999-07-14 2002-11-07 Boutros Karim S. Monolithic bypass-diode and solar-cell string assembly
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US20030041894A1 (en) * 2000-12-12 2003-03-06 Solarflex Technologies, Inc. Thin film flexible solar cell
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US20030140962A1 (en) * 2001-10-24 2003-07-31 Sharps Paul R. Apparatus and method for integral bypass diode in solar cells
US20030145884A1 (en) * 2001-10-12 2003-08-07 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6680432B2 (en) * 2001-10-24 2004-01-20 Emcore Corporation Apparatus and method for optimizing the efficiency of a bypass diode in multijunction solar cells
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
US20040045598A1 (en) * 2002-09-06 2004-03-11 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US20040261839A1 (en) * 2003-06-26 2004-12-30 Gee James M Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US20050051205A1 (en) * 2003-09-05 2005-03-10 Mook William H. Solar based electrical energy generation with spectral cooling
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20050274411A1 (en) * 2004-06-15 2005-12-15 King Richard R Solar cells having a transparent composition-graded buffer layer
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US20060144435A1 (en) * 2002-05-21 2006-07-06 Wanlass Mark W High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US20060231130A1 (en) * 2005-04-19 2006-10-19 Sharps Paul R Solar cell with feedthrough via
US20070277873A1 (en) * 2006-06-02 2007-12-06 Emcore Corporation Metamorphic layers in multijunction solar cells

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976508A (en) * 1974-11-01 1976-08-24 Mobil Tyco Solar Energy Corporation Tubular solar cell devices
US4192583A (en) * 1977-10-21 1980-03-11 The United States Of America As Represented By The United States Department Of Energy Solar receiver heliostat reflector having a linear drive and position information system
JPS60160181A (en) 1984-01-30 1985-08-21 Mitsubishi Electric Corp Amorphous solar cell
US5383976A (en) * 1992-06-30 1995-01-24 Jx Crystals, Inc. Compact DC/AC electric power generator using convective liquid cooled low bandgap thermophotovoltaic cell strings and regenerative hydrocarbon burner
AUPM996094A0 (en) 1994-12-08 1995-01-05 Pacific Solar Pty Limited Multilayer solar cells with bypass diode protection
JPH0964397A (en) 1995-08-29 1997-03-07 Canon Inc Solar cell and solar cell module
WO1999062125A1 (en) 1998-05-28 1999-12-02 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
GB9901513D0 (en) 1999-01-25 1999-03-17 Eev Ltd Solar cell arrangements
AUPR403801A0 (en) 2001-03-28 2001-04-26 Solar Systems Pty Ltd System for generating electrical power from solar radiation
US20080029151A1 (en) * 2006-08-07 2008-02-07 Mcglynn Daniel Terrestrial solar power system using III-V semiconductor solar cells
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20090078311A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20090078308A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20090229658A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20090288703A1 (en) * 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US20100012175A1 (en) * 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565719A (en) * 1967-05-17 1971-02-23 Nasa Solar panel fabrication
US3999283A (en) * 1975-06-11 1976-12-28 Rca Corporation Method of fabricating a photovoltaic device
US4001864A (en) * 1976-01-30 1977-01-04 Gibbons James F Semiconductor p-n junction solar cell and method of manufacture
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4759803A (en) * 1987-08-07 1988-07-26 Applied Solar Energy Corporation Monolithic solar cell and bypass diode system
US5009720A (en) * 1988-11-16 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Solar cell
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5374317A (en) * 1990-09-26 1994-12-20 Energy Systems Solar, Incorporated Multiple reflector concentrator solar electric power system
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US6372980B1 (en) * 1995-12-06 2002-04-16 University Of Houston Multi-quantum well tandem solar cell
US6384317B1 (en) * 1997-05-30 2002-05-07 Imec Vzw Solar cell and process of manufacturing the same
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6359210B2 (en) * 1998-05-28 2002-03-19 Tecstar Power System, Inc. Solar cell having an integral monolithically grown bypass diode
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US6103970A (en) * 1998-08-20 2000-08-15 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
US6326540B1 (en) * 1998-08-20 2001-12-04 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
US6452086B1 (en) * 1998-10-05 2002-09-17 Astrium Gmbh Solar cell comprising a bypass diode
US6239354B1 (en) * 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6300557B1 (en) * 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
US6300558B1 (en) * 1999-04-27 2001-10-09 Japan Energy Corporation Lattice matched solar cell and method for manufacturing the same
US6316716B1 (en) * 1999-05-11 2001-11-13 Angewandte Solarenergie - Ase Gmbh Solar cell and method for producing such a cell
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US20020164834A1 (en) * 1999-07-14 2002-11-07 Boutros Karim S. Monolithic bypass-diode and solar-cell string assembly
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US20020040727A1 (en) * 2000-06-20 2002-04-11 Stan Mark A. Apparatus and method for optimizing the efficiency of germanium junctions in multi-junction solar cells
US20030041894A1 (en) * 2000-12-12 2003-03-06 Solarflex Technologies, Inc. Thin film flexible solar cell
US20030145884A1 (en) * 2001-10-12 2003-08-07 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US6680432B2 (en) * 2001-10-24 2004-01-20 Emcore Corporation Apparatus and method for optimizing the efficiency of a bypass diode in multijunction solar cells
US20030140962A1 (en) * 2001-10-24 2003-07-31 Sharps Paul R. Apparatus and method for integral bypass diode in solar cells
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US20060144435A1 (en) * 2002-05-21 2006-07-06 Wanlass Mark W High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
US20040045598A1 (en) * 2002-09-06 2004-03-11 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20040261839A1 (en) * 2003-06-26 2004-12-30 Gee James M Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US20050051205A1 (en) * 2003-09-05 2005-03-10 Mook William H. Solar based electrical energy generation with spectral cooling
US20050274411A1 (en) * 2004-06-15 2005-12-15 King Richard R Solar cells having a transparent composition-graded buffer layer
US20060231130A1 (en) * 2005-04-19 2006-10-19 Sharps Paul R Solar cell with feedthrough via
US20070277873A1 (en) * 2006-06-02 2007-12-06 Emcore Corporation Metamorphic layers in multijunction solar cells

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US8513518B2 (en) * 2006-08-07 2013-08-20 Emcore Solar Power, Inc. Terrestrial solar power system using III-V semiconductor solar cells
US8686282B2 (en) 2006-08-07 2014-04-01 Emcore Solar Power, Inc. Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells
US20090188546A1 (en) * 2006-08-07 2009-07-30 Mcglynn Daniel Terrestrial solar power system using iii-v semiconductor solar cells
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US9231147B2 (en) 2007-09-24 2016-01-05 Solaero Technologies Corp. Heterojunction subcells in inverted metamorphic multijunction solar cells
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US9356176B2 (en) 2007-09-24 2016-05-31 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with metamorphic layers
US10374112B2 (en) 2007-09-24 2019-08-06 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell including a metamorphic layer
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20100116329A1 (en) * 2008-06-09 2010-05-13 Fitzgerald Eugene A Methods of forming high-efficiency solar cell structures
US20100116942A1 (en) * 2008-06-09 2010-05-13 Fitzgerald Eugene A High-efficiency solar cell structures
US9601652B2 (en) 2008-07-16 2017-03-21 Solaero Technologies Corp. Ohmic N-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US8987042B2 (en) 2008-07-16 2015-03-24 Solaero Technologies Corp. Ohmic N-contact formed at low temperature in inverted metamorphic multijunction solar cells
US8753918B2 (en) 2008-07-16 2014-06-17 Emcore Solar Power, Inc. Gallium arsenide solar cell with germanium/palladium contact
US9287438B1 (en) 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
US20100031994A1 (en) * 2008-08-07 2010-02-11 Emcore Corporation Wafer Level Interconnection of Inverted Metamorphic Multijunction Solar Cells
US8263853B2 (en) 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US8586859B2 (en) 2008-08-07 2013-11-19 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US8236600B2 (en) 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122724A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US9691929B2 (en) 2008-11-14 2017-06-27 Solaero Technologies Corp. Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US7960201B2 (en) 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US20100233839A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. String Interconnection and Fabrication of Inverted Metamorphic Multijunction Solar Cells
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US8969712B2 (en) 2009-03-10 2015-03-03 Solaero Technologies Corp. Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US10008623B2 (en) 2009-03-10 2018-06-26 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US20110124146A1 (en) * 2009-05-29 2011-05-26 Pitera Arthur J Methods of forming high-efficiency multi-junction solar cell structures
US20110132445A1 (en) * 2009-05-29 2011-06-09 Pitera Arthur J High-efficiency multi-junction solar cell structures
US20110030774A1 (en) * 2009-08-07 2011-02-10 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Back Contacts
US8263856B2 (en) 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
US8604330B1 (en) 2010-12-06 2013-12-10 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
US9178095B2 (en) 2010-12-06 2015-11-03 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
CN103684210A (en) * 2012-08-30 2014-03-26 中国科学院上海高等研究院 Spectral compensation type solar photovoltaic power generation system
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
EP2827380A1 (en) * 2013-07-19 2015-01-21 Emcore Solar Power, Inc. Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells

Also Published As

Publication number Publication date
US20080029151A1 (en) 2008-02-07
US20090188546A1 (en) 2009-07-30
US8513518B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
US9276156B2 (en) Solar cells having a transparent composition-graded buffer layer
Jha Solar cell technology and applications
US6103970A (en) Solar cell having a front-mounted bypass diode
US6653551B2 (en) Stationary photovoltaic array module design for solar electric power generation systems
CN101510571B (en) Module for concentrated photovoltaic system for iii-v semiconductor solar cell
AU604509B2 (en) Heterojunction p-i-n photovoltaic cell
US6515217B1 (en) Solar cell having a three-dimensional array of photovoltaic cells enclosed within an enclosure having reflective surfaces
US8039731B2 (en) Photovoltaic concentrator for solar energy system
US5902417A (en) High efficiency tandem solar cells, and operating method
DE112006002868B4 (en) Method for positioning a photovoltaic module
US20070089778A1 (en) Concentrator solar photovol taic array with compact tailored imaging power units
US20070157964A1 (en) Interconnects for solar cell devices
US6440769B2 (en) Photovoltaic device with optical concentrator and method of making the same
US20030213514A1 (en) Concentrating photovoltaic cavity converters for extreme solar-to-electric conversion efficiencies
US4332973A (en) High intensity solar cell
US7394016B2 (en) Bifacial elongated solar cell devices with internal reflectors
US6469241B1 (en) High concentration spectrum splitting solar collector
US7196262B2 (en) Bifacial elongated solar cell devices
US4710588A (en) Combined photovoltaic-thermoelectric solar cell and solar cell array
US7915517B2 (en) Bifacial photovoltaic devices
JP2010510668A (en) Curved focal plane receiver for concentrating in a photovoltaic system
US20100236603A1 (en) Concentrator-Type Photovoltaic (CPV) Modules, Receiver and Sub-Receivers and Methods of Forming Same
US6333458B1 (en) Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator
Sharaf et al. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I–Fundamentals, design considerations and current technologies
US4110122A (en) High-intensity, solid-state-solar cell device

Legal Events

Date Code Title Description
AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, ARIZONA

Free format text: SECURITY AGREEMENT;ASSIGNORS:EMCORE CORPORATION;EMCORE SOLAR POWER, INC.;REEL/FRAME:026304/0142

Effective date: 20101111

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION