US20090297351A1 - Compressor rotor blade undercut - Google Patents

Compressor rotor blade undercut Download PDF

Info

Publication number
US20090297351A1
US20090297351A1 US12/127,889 US12788908A US2009297351A1 US 20090297351 A1 US20090297351 A1 US 20090297351A1 US 12788908 A US12788908 A US 12788908A US 2009297351 A1 US2009297351 A1 US 2009297351A1
Authority
US
United States
Prior art keywords
dovetail
rotor blade
airfoil
undercut groove
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/127,889
Inventor
Ravichand Brahmasuraih
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US12/127,889 priority Critical patent/US20090297351A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAHMASURAIH, RAVICHAND
Priority to DE102009025814A priority patent/DE102009025814A1/en
Priority to FR0953388A priority patent/FR2931904A1/en
Priority to JP2009124881A priority patent/JP2009287556A/en
Priority to CNA2009101492055A priority patent/CN101592163A/en
Publication of US20090297351A1 publication Critical patent/US20090297351A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps

Definitions

  • This present application relates generally to compressor blades in turbine engines. More specifically, but not by way of limitation, the present application relates to compressor rotor blades that are designed and configured to reduce operational stresses to certain areas of the blade such that the blade is more resistant to erosion.
  • the compressor In a gas turbine engine, the compressor generally includes multiple stages that have a row of rotor blades (also commonly referred to as “rotor airfoils” or “compressor blades”) and stator blades (also commonly referred to as “stator airfoils”).
  • the rotor blades rotate about a rotor and, thusly, impart kinetic energy to the airflow through the compressor.
  • a row of stator blades Directly following the row of rotor blades is a row of stator blades, which remain stationary. Acting in concert, the rotor blades and stator blades turn the airflow and slow the air velocity, respectively, which increases the static pressure of the airflow through the compressor.
  • Rotor and stator blades generally are secured to rotor wheels and the stator case, respectively, by means of a dovetail or root or base attachment.
  • a water wash is preformed periodically to clean the rotor and stator blades.
  • water is sprayed directly into the inlet of an operating compressor.
  • the water impacts the first stage rotor blade, and then is carried along with the flow of air through the compressor such that the remaining rotor and stator blades are also cleaned.
  • rotor blades are subject to high levels of mechanical stresses during operation because of the rotational velocity of the compressor.
  • This high level of stress affects the rate at which the erosion on the leading edges of the rotor blades occurs. That is, the amount of erosion experienced by the leading edge of the rotor blades is generally proportional to the level of stress being experienced at that location. As the stress increases, so does the rate of erosion.
  • the high stress levels and the accrued erosion can lead to a high cycle fatigue crack in the rotor blade, which ultimately can lead to blade failure.
  • a rotor blade failure that occurs during operation can lead to catastrophic damage to the downstream components of the turbine.
  • there is a continuing need for improved systems, methods and apparatus that better protect against this possibility More particularly, there is a need for improved rotor blades that function with reduced stress levels at the leading edge such that the blades are more erosion resistant.
  • a rotor blade for an axial compressor may include an airfoil, which includes a leading edge, and a root, which includes a platform, the platform being the outer radial face of the root from which the airfoil extends, and a dovetail, the dovetail including a dovetail leading-face, which is the face of the dovetail that generally points up-stream once the rotor blade is installed in the axial compressor.
  • the rotor blade may include an undercut groove that is formed on the dovetail leading-face that undercuts at least partially the intersection of the leading edge of the airfoil and the platform.
  • the present application further describes a rotor blade for an axial compressor that may include an airfoil and a root.
  • the airfoil may include an airfoil suction-side, an airfoil pressure-side, and a leading edge, which is the edge defined between the airfoil suction-side and the airfoil pressure-side that generally points up-stream once the rotor blade is installed in the axial compressor.
  • the root may include a platform, which is the outer radial face of the root from which the airfoil extends, and a dovetail that is used to connect the rotor blade to a rotor wheel.
  • the dovetail may include a dovetail leading-face, which is the face of the dovetail that generally points up-stream once the rotor blade is installed in the axial compressor, a dovetail suction-side and a dovetail pressure-side.
  • the rotor blade also may include an undercut groove that is formed on the dovetail leading-face that substantially undercuts the intersection of the leading edge of the airfoil and the platform. The undercut groove may begin in the approximate center of the dovetail leading-face and extends toward an edge of the dovetail that separates the dovetail leading-face and the dovetail pressure side.
  • FIG. 1 is a perspective view of a typical compressor rotor blade.
  • FIG. 2 is a perspective view of a compressor rotor blade illustrating an undercut groove according to an exemplary embodiment of the present application.
  • FIG. 3 is a perspective view of a compressor rotor blade illustrating an undercut groove according to an alternative embodiment of the present application.
  • FIG. 1 demonstrates a conventional rotor blade 10 .
  • the rotor blade 10 may include an airfoil 12 , which, when spun about the rotor, imparts kinetic energy to air flowing through the compressor, and a base or root 13 .
  • the airfoil 12 generally includes a suction-side 14 (i.e., convex-side) and a pressure-side 16 (i.e., concave-side).
  • the airfoil 12 further has a leading edge 17 , which is the edge between the suction-side 14 and the pressure-side 16 that generally points up-stream once the rotor blade 10 is installed in the compressor.
  • the root 13 includes a platform 18 , which is the outward radial face of the root 13 from which the airfoil 12 extends.
  • the platform 18 may be integrally joined to the root 13 of the rotor blade 10 .
  • the platform 18 defines the radial inner boundary of the airflow across the airfoil 12 .
  • the root 13 further generally includes a dovetail 20 that connects via a complimentary groove in the rotor wheel (not shown) to secure the rotor blade 10 in the appropriate position within the compressor.
  • the dovetail 20 may include a dovetail leading-face 22 , which constitutes the leading-face of the dovetail 18 , i.e., the face of the dovetail 18 that, once installed, generally points up-stream in the compressor.
  • the dovetail 20 further may include a dovetail suction-side 24 (which is on the same side as the airfoil suction-side 14 ) and a dovetail pressure-side 26 (which is on the same side as the airfoil pressure-side 16 ).
  • the dovetail 20 of the rotor blade 10 of FIG. 1 fits somewhat loosely in the corresponding compressor wheel slot until the rotor begins to rotate.
  • centrifugal force pushes the dovetail 20 firmly radially outward against the slot (or other retainment feature) in the compressor wheel.
  • the reaction force is developed at the pressure face of the wheel, which counteracts the centrifugal forces created by the rotating blade 10 .
  • the centrifugal force creates stresses in the rotor blade 10 .
  • the stresses typically concentrate in the airfoil 12 at certain locations.
  • One of the locations of concentrated stress is the inner radial portion of the leading edge 17 of the airfoil 12 (i.e., the leading edge 17 near where it connects to the platform 18 ).
  • This location of concentrated stress will hereafter generally be referred to as the “base of the leading edge” or “leading edge base” (and noted on the FIGS. as 28 ).
  • the high stresses during operation at the leading edge base 28 causes water erosion to degrade and weaken the rotor blade 10 more rapidly at this location. This degradation may negatively impact the useful life of the rotor blade 10 .
  • a rotor blade 30 such as, for example, a rotor blade used in the axial compressor of an industrial gas turbine engine, generally includes an airfoil 12 , with a suction-side 14 and a pressure-side 16 , a root 13 , with a platform 18 and a dovetail 20 (which includes a dovetail leading-face 22 , a dovetail suction-side 24 , and a dovetail pressure-side 26 ) that is used to connect the blade to the compressor wheel (not shown).
  • the dovetail 20 attaches the rotor blade 10 to the rim of the wheel such that an array of rotor blades 10 is arranged around the perimeter of the wheel to form an annular row of blades 10 .
  • FIG. 2 further illustrates an undercut groove 32 according to an exemplary embodiment of the present invention, which, in use, may advantageously reduce the stress experienced by the airfoil 12 at the leading edge base 28 (which, as described above, is the area of the leading edge 17 near where the leading edge 17 connects to the platform 18 ).
  • the undercut groove 32 generally may include a groove formed in the dovetail leading-face 22 just radially inward of radial height of the platform 18 and approximately under (i.e., radially inward of) the intersection of the leading edge 17 and the platform 18 .
  • the description of the location of the undercut groove 32 is meant to generally describe the location of the groove in relation to where the leading edge 17 connects to the platform 18 , and also in relation to the dovetail leading-face 22 , the dovetail pressure side 26 , and the dovetail suction side 24 .
  • the rotor blade structure elements identified in the preceding sentence may take a slightly different form and be referred to with alternative names (for example, when the manner in which the rotor blade 10 is connected to the wheel is different from the dovetail-slot arrangement described above).
  • the present application may still be applicable to such rotor blades as long as the basic shape and relative location of the undercut groove 32 remains substantially similar.
  • specific names, such as “dovetail”, are used herein to describe certain features of the rotor blade 10 , it is intended that these names not be limiting and that this application should remain applicable to rotor blades having substantially similar features.
  • the undercut groove 32 may include the following characteristics, though each of these attributes may not be included in every embodiment.
  • the undercut groove 32 generally is a groove that extends through the dovetail leading-face 22 into the dovetail 20 such that the intersection of the platform 18 and the leading edge 17 is undercut.
  • undercut may be defined to mean that the undercut groove 32 extends into the dovetail 20 such that the volume of dovetail 20 beneath and in close proximity to the intersection of the platform 18 and the leading edge 17 is at least partially (and, in other embodiments, substantially or completely) removed.
  • the location of the removed volume of dovetail 20 may also be described as a volume that is in close proximity to the platform 18 and more radially inward than the intersection of the platform 18 and the leading edge 17 . That is, the undercut groove 32 extends to a depth in the dovetail so that it is axially aligned with at least a portion of the intersection of the platform 18 and the leading edge 17 .
  • the undercut groove 32 may begin substantially in the approximate center of the dovetail leading-face 22 and extend toward the edge of the dovetail 20 that separates the dovetail leading-face 22 and the dovetail pressure side 26 . As such, and as illustrated in FIG. 2 , the undercut groove 32 may open through the dovetail pressure side 26 .
  • the undercut groove 32 may form an approximate profile when viewed on the dovetail leading-face 22 and on the dovetail pressure-side 26 .
  • the profile may be substantially rectangular (note that one side of the rectangle is missing because of the fact that the undercut groove 32 extends through the edge of the dovetail 20 that separates the dovetail leading-face 22 and the dovetail pressure side 26 ).
  • the rectangular shape may form an approximate “U” shape, though, when viewed from the perspective in FIG. 2 , the “U” appears as if it has been rotated approximately 90 degrees counterclockwise. Note that in other embodiments, the angle of rotation, as it appears from the perspective in FIG. 2 , may slightly larger or smaller than 90 degrees.
  • the profile also may be somewhat rectangular (note that, like above, one of the sides of the rectangle also is missing). Because of the fillet regions in the corners, the rectangular shape on the dovetail pressure-side 26 also may form an approximate “U” shape, though, in this case, when viewed from the perspective in FIG. 2 , the “U” appears as if it is laying on its side, i.e., as if it has been rotated approximately 90 degrees clockwise. Note that in other embodiments, the angle of rotation, as it appears from the perspective in FIG. 2 , may slightly larger or smaller than 90 degrees.
  • the undercut groove 32 may be formed such that the radially outward edge of the groove 32 is just below (or radially inward of) the platform 18 . Generally, the distance between the radially outward edge of the undercut groove 32 and the platform will be approximately 0.1 to 1.0 inches, though measurements outside of this range are also possible.
  • the radially outward edge of the undercut groove 32 may be oriented such that it is substantially parallel to the dovetail platform 18 . In forming the undercut groove 32 , the angle of the cut into the dovetail leading-face 22 and the size of the cut may be optimized. In some embodiments and as seen in FIG.
  • the angle of the cut into the dovetail leading-face 22 may be approximately 90 degrees with respect to a mean camber line of the airfoil 12 at the platform 18 section. In this manner, the loading on the undercut groove 32 in operation is generally distributed along the length of the groove.
  • the depth of the undercut groove 32 will affect the distance through which the operational stresses get relocated from the leading edge base 28 of the airfoil 12 . Deeper grooves generally mean that the leading edge base 28 will experience lower stresses during operation.
  • the undercut groove 32 will have a depth such that the groove 32 enters a stress line of the compressor rotor blade at the leading edge base 18 caused by blade load during operation. That is, the depth of the undercut groove 32 will be such so that the area in the dovetail that is radially inward of the intersection of the platform 18 and the leading edge 17 is at least partially (and, in other embodiments, substantially or completely) removed.
  • the undercut groove 32 generally causes a change to the load path direction away from the leading edge 17 .
  • the groove reduces the stress developed at the leading edge 17 of the airfoil 12 , especially at the leading edge base 28 where the airfoil 12 attaches the platform 18 .
  • stress reduction occurs because the leading edge base 28 is essentially disconnected from the dovetail 20 directly.
  • lowering the stress at the leading edge 17 and/or the leading edge base 28 generally means a reduction of erosion at these locations and a longer part life for the rotor blades 10 .
  • the shape of the undercut groove 32 is relatively simple to manufacture.
  • the undercut groove 32 may have a shape that is conducive to retaining an inserted plug.
  • the undercut groove 32 may taper such that the width of the undercut groove 32 is narrowed at the dovetail leading face 22 and wider as the undercut groove 32 extends into the dovetail 20 . That is, the undercut groove 32 flares outwardly from the opening at the dovetail leading-face 22 such that the groove 32 becomes wider as it extends into the dovetail 20 .
  • a plug that is formed to fit relatively snugly in the undercut groove 32 will not be able to exit the undercut groove 32 from the dovetail leading-face 22 because the groove opening is too narrow.
  • Such a plug though, will be able to be conveniently inserted from the dovetail pressure-side 26 .
  • the plug may be made of any material that is able to withstand the harsh conditions within the compressor; for example, the plug may be made of nylon.
  • the undercut groove 32 may be used in first stage rotor blades, where erosion often is most harsh. In other embodiments, the undercut groove 32 may be used in all stages of the compressor.

Abstract

A rotor blade for an axial compressor that may include an airfoil, which includes a leading edge, and a root, which includes a platform, the platform being the outer radial face of the root from which the airfoil extends, and a dovetail, the dovetail including a dovetail leading-face, which is the face of the dovetail that generally points up-stream once the rotor blade is installed in the axial compressor. The rotor blade may include an undercut groove that is formed on the dovetail leading-face that undercuts at least partially the intersection of the leading edge of the airfoil and the platform.

Description

    BACKGROUND OF THE INVENTION
  • This present application relates generally to compressor blades in turbine engines. More specifically, but not by way of limitation, the present application relates to compressor rotor blades that are designed and configured to reduce operational stresses to certain areas of the blade such that the blade is more resistant to erosion.
  • In a gas turbine engine, the compressor generally includes multiple stages that have a row of rotor blades (also commonly referred to as “rotor airfoils” or “compressor blades”) and stator blades (also commonly referred to as “stator airfoils”). The rotor blades rotate about a rotor and, thusly, impart kinetic energy to the airflow through the compressor. Directly following the row of rotor blades is a row of stator blades, which remain stationary. Acting in concert, the rotor blades and stator blades turn the airflow and slow the air velocity, respectively, which increases the static pressure of the airflow through the compressor. Usually multiple stages of rotor blades and stator blades are stacked in an axial flow compressor to achieve the required discharge to inlet air pressure ratio. Rotor and stator blades generally are secured to rotor wheels and the stator case, respectively, by means of a dovetail or root or base attachment.
  • To improve compressor performance, a water wash is preformed periodically to clean the rotor and stator blades. During this process, water is sprayed directly into the inlet of an operating compressor. The water impacts the first stage rotor blade, and then is carried along with the flow of air through the compressor such that the remaining rotor and stator blades are also cleaned. The impact of the water on the rotor blades, particularly the leading edges of the rotor blades in the first stage, causes erosion. This erosion generally results in the formation of small pits and/or crevices along the leading edge of the rotor blades. As this process is repeated, the pits and crevices deepen and widen.
  • As one of ordinary skill in the art will appreciate, rotor blades are subject to high levels of mechanical stresses during operation because of the rotational velocity of the compressor. This high level of stress affects the rate at which the erosion on the leading edges of the rotor blades occurs. That is, the amount of erosion experienced by the leading edge of the rotor blades is generally proportional to the level of stress being experienced at that location. As the stress increases, so does the rate of erosion. Over time, the high stress levels and the accrued erosion can lead to a high cycle fatigue crack in the rotor blade, which ultimately can lead to blade failure. Of course, a rotor blade failure that occurs during operation can lead to catastrophic damage to the downstream components of the turbine. As a result, there is a continuing need for improved systems, methods and apparatus that better protect against this possibility. More particularly, there is a need for improved rotor blades that function with reduced stress levels at the leading edge such that the blades are more erosion resistant.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The present application thus describes a rotor blade for an axial compressor that may include an airfoil, which includes a leading edge, and a root, which includes a platform, the platform being the outer radial face of the root from which the airfoil extends, and a dovetail, the dovetail including a dovetail leading-face, which is the face of the dovetail that generally points up-stream once the rotor blade is installed in the axial compressor. The rotor blade may include an undercut groove that is formed on the dovetail leading-face that undercuts at least partially the intersection of the leading edge of the airfoil and the platform.
  • The present application further describes a rotor blade for an axial compressor that may include an airfoil and a root. The airfoil may include an airfoil suction-side, an airfoil pressure-side, and a leading edge, which is the edge defined between the airfoil suction-side and the airfoil pressure-side that generally points up-stream once the rotor blade is installed in the axial compressor. The root may include a platform, which is the outer radial face of the root from which the airfoil extends, and a dovetail that is used to connect the rotor blade to a rotor wheel. The dovetail may include a dovetail leading-face, which is the face of the dovetail that generally points up-stream once the rotor blade is installed in the axial compressor, a dovetail suction-side and a dovetail pressure-side. The rotor blade also may include an undercut groove that is formed on the dovetail leading-face that substantially undercuts the intersection of the leading edge of the airfoil and the platform. The undercut groove may begin in the approximate center of the dovetail leading-face and extends toward an edge of the dovetail that separates the dovetail leading-face and the dovetail pressure side.
  • These and other features of the present application will become apparent upon review of the following detailed description of the preferred embodiments when taken in conjunction with the drawings and the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and advantages of this invention will be more completely understood and appreciated by careful study of the following more detailed description of exemplary embodiments of the invention taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a perspective view of a typical compressor rotor blade.
  • FIG. 2 is a perspective view of a compressor rotor blade illustrating an undercut groove according to an exemplary embodiment of the present application.
  • FIG. 3 is a perspective view of a compressor rotor blade illustrating an undercut groove according to an alternative embodiment of the present application.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the figures, where the various numbers represent like parts throughout the several views, FIG. 1 demonstrates a conventional rotor blade 10. As one of ordinary skill in the art will appreciate, the rotor blade 10 may include an airfoil 12, which, when spun about the rotor, imparts kinetic energy to air flowing through the compressor, and a base or root 13. The airfoil 12 generally includes a suction-side 14 (i.e., convex-side) and a pressure-side 16 (i.e., concave-side). The airfoil 12 further has a leading edge 17, which is the edge between the suction-side 14 and the pressure-side 16 that generally points up-stream once the rotor blade 10 is installed in the compressor.
  • The root 13 includes a platform 18, which is the outward radial face of the root 13 from which the airfoil 12 extends. The platform 18 may be integrally joined to the root 13 of the rotor blade 10. The platform 18 defines the radial inner boundary of the airflow across the airfoil 12. As one of ordinary skill in the art will appreciate, the root 13 further generally includes a dovetail 20 that connects via a complimentary groove in the rotor wheel (not shown) to secure the rotor blade 10 in the appropriate position within the compressor. The dovetail 20 may include a dovetail leading-face 22, which constitutes the leading-face of the dovetail 18, i.e., the face of the dovetail 18 that, once installed, generally points up-stream in the compressor. The dovetail 20 further may include a dovetail suction-side 24 (which is on the same side as the airfoil suction-side 14) and a dovetail pressure-side 26 (which is on the same side as the airfoil pressure-side 16).
  • In use, the dovetail 20 of the rotor blade 10 of FIG. 1 fits somewhat loosely in the corresponding compressor wheel slot until the rotor begins to rotate. As the wheel rotates, centrifugal force pushes the dovetail 20 firmly radially outward against the slot (or other retainment feature) in the compressor wheel. The reaction force is developed at the pressure face of the wheel, which counteracts the centrifugal forces created by the rotating blade 10. The centrifugal force creates stresses in the rotor blade 10. As one of ordinary skill in the art will appreciate, the stresses typically concentrate in the airfoil 12 at certain locations. One of the locations of concentrated stress is the inner radial portion of the leading edge 17 of the airfoil 12 (i.e., the leading edge 17 near where it connects to the platform 18). This location of concentrated stress will hereafter generally be referred to as the “base of the leading edge” or “leading edge base” (and noted on the FIGS. as 28). As described above, the high stresses during operation at the leading edge base 28 causes water erosion to degrade and weaken the rotor blade 10 more rapidly at this location. This degradation may negatively impact the useful life of the rotor blade 10.
  • In an exemplary embodiment of the present application, as seen in FIG. 2, a rotor blade 30, such as, for example, a rotor blade used in the axial compressor of an industrial gas turbine engine, generally includes an airfoil 12, with a suction-side 14 and a pressure-side 16, a root 13, with a platform 18 and a dovetail 20 (which includes a dovetail leading-face 22, a dovetail suction-side 24, and a dovetail pressure-side 26) that is used to connect the blade to the compressor wheel (not shown). Generally, the dovetail 20 attaches the rotor blade 10 to the rim of the wheel such that an array of rotor blades 10 is arranged around the perimeter of the wheel to form an annular row of blades 10.
  • FIG. 2 further illustrates an undercut groove 32 according to an exemplary embodiment of the present invention, which, in use, may advantageously reduce the stress experienced by the airfoil 12 at the leading edge base 28 (which, as described above, is the area of the leading edge 17 near where the leading edge 17 connects to the platform 18). The undercut groove 32 generally may include a groove formed in the dovetail leading-face 22 just radially inward of radial height of the platform 18 and approximately under (i.e., radially inward of) the intersection of the leading edge 17 and the platform 18. Note that the description of the location of the undercut groove 32 is meant to generally describe the location of the groove in relation to where the leading edge 17 connects to the platform 18, and also in relation to the dovetail leading-face 22, the dovetail pressure side 26, and the dovetail suction side 24. Under certain circumstances, the rotor blade structure elements identified in the preceding sentence may take a slightly different form and be referred to with alternative names (for example, when the manner in which the rotor blade 10 is connected to the wheel is different from the dovetail-slot arrangement described above). One of ordinary skill in the relevant art will readily appreciate that the present application may still be applicable to such rotor blades as long as the basic shape and relative location of the undercut groove 32 remains substantially similar. Thus, though specific names, such as “dovetail”, are used herein to describe certain features of the rotor blade 10, it is intended that these names not be limiting and that this application should remain applicable to rotor blades having substantially similar features.
  • In one or more embodiments of the present application, the undercut groove 32 may include the following characteristics, though each of these attributes may not be included in every embodiment. The undercut groove 32 generally is a groove that extends through the dovetail leading-face 22 into the dovetail 20 such that the intersection of the platform 18 and the leading edge 17 is undercut. Per the perspective and orientation of the rotor blade 10 in FIG. 2, undercut may be defined to mean that the undercut groove 32 extends into the dovetail 20 such that the volume of dovetail 20 beneath and in close proximity to the intersection of the platform 18 and the leading edge 17 is at least partially (and, in other embodiments, substantially or completely) removed. The location of the removed volume of dovetail 20 may also be described as a volume that is in close proximity to the platform 18 and more radially inward than the intersection of the platform 18 and the leading edge 17. That is, the undercut groove 32 extends to a depth in the dovetail so that it is axially aligned with at least a portion of the intersection of the platform 18 and the leading edge 17.
  • As illustrated, the undercut groove 32 may begin substantially in the approximate center of the dovetail leading-face 22 and extend toward the edge of the dovetail 20 that separates the dovetail leading-face 22 and the dovetail pressure side 26. As such, and as illustrated in FIG. 2, the undercut groove 32 may open through the dovetail pressure side 26.
  • The undercut groove 32 may form an approximate profile when viewed on the dovetail leading-face 22 and on the dovetail pressure-side 26. As illustrated in FIG. 2, on the dovetail leading-face 22, the profile may be substantially rectangular (note that one side of the rectangle is missing because of the fact that the undercut groove 32 extends through the edge of the dovetail 20 that separates the dovetail leading-face 22 and the dovetail pressure side 26). In some embodiments and as illustrated in FIG. 2, because of the fillet regions the corners and the opening through the dovetail pressure side 26, the rectangular shape may form an approximate “U” shape, though, when viewed from the perspective in FIG. 2, the “U” appears as if it has been rotated approximately 90 degrees counterclockwise. Note that in other embodiments, the angle of rotation, as it appears from the perspective in FIG. 2, may slightly larger or smaller than 90 degrees.
  • On the dovetail pressure-side 26, the profile also may be somewhat rectangular (note that, like above, one of the sides of the rectangle also is missing). Because of the fillet regions in the corners, the rectangular shape on the dovetail pressure-side 26 also may form an approximate “U” shape, though, in this case, when viewed from the perspective in FIG. 2, the “U” appears as if it is laying on its side, i.e., as if it has been rotated approximately 90 degrees clockwise. Note that in other embodiments, the angle of rotation, as it appears from the perspective in FIG. 2, may slightly larger or smaller than 90 degrees.
  • The undercut groove 32 may be formed such that the radially outward edge of the groove 32 is just below (or radially inward of) the platform 18. Generally, the distance between the radially outward edge of the undercut groove 32 and the platform will be approximately 0.1 to 1.0 inches, though measurements outside of this range are also possible. The radially outward edge of the undercut groove 32 may be oriented such that it is substantially parallel to the dovetail platform 18. In forming the undercut groove 32, the angle of the cut into the dovetail leading-face 22 and the size of the cut may be optimized. In some embodiments and as seen in FIG. 2, the angle of the cut into the dovetail leading-face 22 may be approximately 90 degrees with respect to a mean camber line of the airfoil 12 at the platform 18 section. In this manner, the loading on the undercut groove 32 in operation is generally distributed along the length of the groove.
  • The depth of the undercut groove 32 will affect the distance through which the operational stresses get relocated from the leading edge base 28 of the airfoil 12. Deeper grooves generally mean that the leading edge base 28 will experience lower stresses during operation. In some embodiments, the undercut groove 32 will have a depth such that the groove 32 enters a stress line of the compressor rotor blade at the leading edge base 18 caused by blade load during operation. That is, the depth of the undercut groove 32 will be such so that the area in the dovetail that is radially inward of the intersection of the platform 18 and the leading edge 17 is at least partially (and, in other embodiments, substantially or completely) removed.
  • In operation, the undercut groove 32 generally causes a change to the load path direction away from the leading edge 17. The groove reduces the stress developed at the leading edge 17 of the airfoil 12, especially at the leading edge base 28 where the airfoil 12 attaches the platform 18. In general, as one of ordinary skill in the art will appreciate, stress reduction occurs because the leading edge base 28 is essentially disconnected from the dovetail 20 directly. As described above, lowering the stress at the leading edge 17 and/or the leading edge base 28 generally means a reduction of erosion at these locations and a longer part life for the rotor blades 10. Further, the shape of the undercut groove 32 is relatively simple to manufacture.
  • As one of ordinary skill in the art will appreciate, it may be desirable to fill the undercut groove 32 with a plug (not shown) during operation. As illustrated in FIG. 3, the undercut groove 32, in an alternative embodiment, may have a shape that is conducive to retaining an inserted plug. In such an embodiment, the undercut groove 32 may taper such that the width of the undercut groove 32 is narrowed at the dovetail leading face 22 and wider as the undercut groove 32 extends into the dovetail 20. That is, the undercut groove 32 flares outwardly from the opening at the dovetail leading-face 22 such that the groove 32 becomes wider as it extends into the dovetail 20. With this configuration, a plug that is formed to fit relatively snugly in the undercut groove 32 will not be able to exit the undercut groove 32 from the dovetail leading-face 22 because the groove opening is too narrow. Such a plug, though, will be able to be conveniently inserted from the dovetail pressure-side 26. The plug may be made of any material that is able to withstand the harsh conditions within the compressor; for example, the plug may be made of nylon.
  • In some embodiments, the undercut groove 32 may be used in first stage rotor blades, where erosion often is most harsh. In other embodiments, the undercut groove 32 may be used in all stages of the compressor.
  • From the above description of preferred embodiments of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims. Further, it should be apparent that the foregoing relates only to the described embodiments of the present application and that numerous changes and modifications may be made herein without departing from the spirit and scope of the application as defined by the following claims and the equivalents thereof.

Claims (20)

1. A rotor blade for an axial compressor that comprises an airfoil, which includes a leading edge, and a root, which includes a platform, the platform being the outer radial face of the root from which the airfoil extends, and a dovetail, the dovetail including a dovetail leading-face, which is the face of the dovetail that generally points up-stream once the rotor blade is installed in the axial compressor, the rotor blade comprising:
an undercut groove that is formed on the dovetail leading-face that undercuts at least partially the intersection of the leading edge of the airfoil and the platform.
2. The rotor blade according to claim 1, wherein:
the airfoil further includes an airfoil suction-side and an airfoil pressure-side;
the leading edge of the airfoil is the edge defined between the airfoil suction-side and the airfoil pressure-side that generally points up-stream once the rotor blade is installed in the axial compressor;
the dovetail is used, at least in part, to connect the rotor blade to a rotor wheel; and
the dovetail further includes a dovetail suction-side and a dovetail pressure-side, each of which, respectively, correspond to the same side of the rotor blade as the airfoil suction-side and the airfoil pressure-side.
3. The rotor blade according to claim 1, wherein the undercut groove substantially undercuts the intersection of the leading edge of the airfoil and the platform.
4. The rotor blade according to claim 1, wherein the undercut groove completely undercuts the intersection of the leading edge of the airfoil and the platform.
5. The rotor blade according to claim 1, wherein the phrase “undercuts at least partially the intersection of a leading edge of the airfoil and the platform” is defined to mean that the undercut groove extends to a depth in the dovetail such that a portion of the undercut groove is axially aligned with at least a portion of the intersection of the leading edge of the airfoil and the platform.
6. The rotor blade according to claim 1, wherein the undercut groove is positioned such that it is in close proximity to and radially inward of the radial height of the platform.
7. The rotor blade according to claim 6, wherein the distance between the outward most radial height of the undercut groove and the radial height of the platform is between approximately 0.1 to 1.0 inches.
8. The rotor blade according to claim 6, wherein the undercut groove begins in the approximate center of the dovetail leading-face and extends toward an edge of the dovetail that separates the dovetail leading-face and the dovetail pressure side.
9. The rotor blade according to claim 8, wherein the undercut groove extends through the dovetail pressure-side such that the undercut groove is open through the dovetail pressure-side.
10. The rotor blade according to claim 9, wherein the undercut groove tapers such that the width of the undercut groove is narrower at the dovetail leading-face and wider as the undercut groove extends into the dovetail.
11. The rotor blade according to claim 8, wherein the undercut groove is substantially parallel to the platform.
12. The rotor blade according to claim 1, wherein the undercut groove comprises a substantially rectangular profile on the dovetail leading-face and on the dovetail pressure-side.
13. The rotor blade according to claim 1, wherein the undercut groove comprises a substantially “U” shape profile on the dovetail leading-face and on the dovetail pressure-side.
14. The rotor blade according to claim 1, wherein the angle of the cut into the dovetail leading-face that is made to form the undercut groove is approximately 90 degrees with respect to a mean camber line of the airfoil at the platform.
15. The rotor blade according to claim 1, wherein the depth of the undercut groove is such to that the undercut groove enters the stress line of the rotor blade at a base of the leading edge that is caused by blade load during operation of the axial compressor.
16. The rotor blade according to claim 1, wherein the rotor blade is configured to function in a first stage of the axial compressor.
17. A rotor blade for an axial compressor that includes an airfoil and a root, the airfoil including an airfoil suction-side, an airfoil pressure-side, and a leading edge, which is the edge defined between the airfoil suction-side and the airfoil pressure-side that generally points up-stream once the rotor blade is installed in the axial compressor, the root including a platform, which is the outer radial face of the root from which the airfoil extends, and a dovetail that is used to connect the rotor blade to a rotor wheel, the dovetail including a dovetail leading-face, which is the face of the dovetail that generally points up-stream once the rotor blade is installed in the axial compressor, a dovetail suction-side and a dovetail pressure-side, the rotor blade comprising:
an undercut groove that is formed on the dovetail leading-face that substantially undercuts the intersection of the leading edge of the airfoil and the platform;
wherein the undercut groove begins in the approximate center of the dovetail leading-face and extends toward an edge of the dovetail that separates the dovetail leading-face and the dovetail pressure side.
18. The rotor blade according to claim 17, wherein the undercut groove extends through the through the dovetail pressure-side such that the undercut groove is open through the dovetail pressure-side.
19. The rotor blade according to claim 18, wherein:
the distance between the outward most radial height of the undercut groove and the radial height of the platform is approximately 0.1 to 1.0 inches; and
the undercut groove is substantially parallel to the platform.
20. The rotor blade according to claim 17, wherein the angle of the cut into the dovetail leading-face is approximately 90 degrees with respect to a mean camber line of the airfoil at the platform.
US12/127,889 2008-05-28 2008-05-28 Compressor rotor blade undercut Abandoned US20090297351A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/127,889 US20090297351A1 (en) 2008-05-28 2008-05-28 Compressor rotor blade undercut
DE102009025814A DE102009025814A1 (en) 2008-05-28 2009-05-15 Undercut on a compressor rotor blade
FR0953388A FR2931904A1 (en) 2008-05-28 2009-05-20 COMPRESSOR ROTOR BLADE CLEARANCE
JP2009124881A JP2009287556A (en) 2008-05-28 2009-05-25 Undercut of compressor rotor blade
CNA2009101492055A CN101592163A (en) 2008-05-28 2009-05-27 The undercutting of compressor rotor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/127,889 US20090297351A1 (en) 2008-05-28 2008-05-28 Compressor rotor blade undercut

Publications (1)

Publication Number Publication Date
US20090297351A1 true US20090297351A1 (en) 2009-12-03

Family

ID=41254222

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/127,889 Abandoned US20090297351A1 (en) 2008-05-28 2008-05-28 Compressor rotor blade undercut

Country Status (5)

Country Link
US (1) US20090297351A1 (en)
JP (1) JP2009287556A (en)
CN (1) CN101592163A (en)
DE (1) DE102009025814A1 (en)
FR (1) FR2931904A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130017095A1 (en) * 2011-07-12 2013-01-17 Ching-Pang Lee Flow directing member for gas turbine engine
US20160032739A1 (en) * 2014-08-01 2016-02-04 Mitsubishi Hitachi Power Systems, Ltd. Axial flow compressor and gas turbine equipped with axial flow compressor
US9359905B2 (en) 2012-02-27 2016-06-07 Solar Turbines Incorporated Turbine engine rotor blade groove
US20170241275A1 (en) * 2014-10-28 2017-08-24 Siemens Aktiengesellschaft Turbine rotor blade
CN107143381A (en) * 2017-06-06 2017-09-08 哈尔滨汽轮机厂有限责任公司 It is a kind of to reduce the gas turbine turbine first order movable vane piece of stress
EP2993300B1 (en) * 2014-09-05 2018-06-06 United Technologies Corporation Gas turbine engine airfoil structure
US10190595B2 (en) 2015-09-15 2019-01-29 General Electric Company Gas turbine engine blade platform modification
US11098729B2 (en) 2016-08-04 2021-08-24 General Electric Company Gas turbine wheel assembly, method of modifying a compressor wheel, and method of mounting a blade to a gas turbine wheel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8550783B2 (en) 2011-04-01 2013-10-08 Alstom Technology Ltd. Turbine blade platform undercut
JP2015135061A (en) * 2014-01-16 2015-07-27 株式会社Ihi Blade connection part structure and jet engine using the same
CN109114832B (en) * 2018-07-26 2020-12-11 郑州轻工业学院 Intelligent double-screw compressor for contract energy management and intelligent control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480957A (en) * 1983-04-14 1984-11-06 General Electric Company Dynamic response modification and stress reduction in dovetail and blade assembly
US6390775B1 (en) * 2000-12-27 2002-05-21 General Electric Company Gas turbine blade with platform undercut
US20040076521A1 (en) * 2002-10-18 2004-04-22 Martin Nicholas Francis Undercut leading edge for compressor blades and related method
US6902376B2 (en) * 2002-12-26 2005-06-07 General Electric Company Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US20050232777A1 (en) * 2002-12-26 2005-10-20 General Electric Company Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US7147440B2 (en) * 2003-10-31 2006-12-12 General Electric Company Methods and apparatus for cooling gas turbine engine rotor assemblies
US20080063529A1 (en) * 2006-09-13 2008-03-13 General Electric Company Undercut fillet radius for blade dovetails

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040213672A1 (en) * 2003-04-25 2004-10-28 Gautreau James Charles Undercut leading edge for compressor blades and related method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480957A (en) * 1983-04-14 1984-11-06 General Electric Company Dynamic response modification and stress reduction in dovetail and blade assembly
US6390775B1 (en) * 2000-12-27 2002-05-21 General Electric Company Gas turbine blade with platform undercut
US20040076521A1 (en) * 2002-10-18 2004-04-22 Martin Nicholas Francis Undercut leading edge for compressor blades and related method
US6769877B2 (en) * 2002-10-18 2004-08-03 General Electric Company Undercut leading edge for compressor blades and related method
US6902376B2 (en) * 2002-12-26 2005-06-07 General Electric Company Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US20050232777A1 (en) * 2002-12-26 2005-10-20 General Electric Company Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US7121803B2 (en) * 2002-12-26 2006-10-17 General Electric Company Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US7165944B2 (en) * 2002-12-26 2007-01-23 General Electric Company Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US7147440B2 (en) * 2003-10-31 2006-12-12 General Electric Company Methods and apparatus for cooling gas turbine engine rotor assemblies
US20080063529A1 (en) * 2006-09-13 2008-03-13 General Electric Company Undercut fillet radius for blade dovetails
US7594799B2 (en) * 2006-09-13 2009-09-29 General Electric Company Undercut fillet radius for blade dovetails

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130017095A1 (en) * 2011-07-12 2013-01-17 Ching-Pang Lee Flow directing member for gas turbine engine
US8721291B2 (en) * 2011-07-12 2014-05-13 Siemens Energy, Inc. Flow directing member for gas turbine engine
US9359905B2 (en) 2012-02-27 2016-06-07 Solar Turbines Incorporated Turbine engine rotor blade groove
RU2626871C2 (en) * 2012-02-27 2017-08-02 Соулар Тёрбинз Инкорпорейтед Rotor blade for gas-turbine engine (variants)
US20160032739A1 (en) * 2014-08-01 2016-02-04 Mitsubishi Hitachi Power Systems, Ltd. Axial flow compressor and gas turbine equipped with axial flow compressor
EP2993300B1 (en) * 2014-09-05 2018-06-06 United Technologies Corporation Gas turbine engine airfoil structure
US10260350B2 (en) 2014-09-05 2019-04-16 United Technologies Corporation Gas turbine engine airfoil structure
US20170241275A1 (en) * 2014-10-28 2017-08-24 Siemens Aktiengesellschaft Turbine rotor blade
US10781703B2 (en) * 2014-10-28 2020-09-22 Siemens Aktiengesellschaft Turbine rotor blade
US10190595B2 (en) 2015-09-15 2019-01-29 General Electric Company Gas turbine engine blade platform modification
US11098729B2 (en) 2016-08-04 2021-08-24 General Electric Company Gas turbine wheel assembly, method of modifying a compressor wheel, and method of mounting a blade to a gas turbine wheel
CN107143381A (en) * 2017-06-06 2017-09-08 哈尔滨汽轮机厂有限责任公司 It is a kind of to reduce the gas turbine turbine first order movable vane piece of stress

Also Published As

Publication number Publication date
FR2931904A1 (en) 2009-12-04
CN101592163A (en) 2009-12-02
DE102009025814A1 (en) 2009-12-03
JP2009287556A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US20090297351A1 (en) Compressor rotor blade undercut
US7165944B2 (en) Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
RU2495254C2 (en) Impeller blade of compressor with variable elliptical connection
JP6126995B2 (en) Wings and platform assembly for subsonic flow
RU2525363C2 (en) Turbine wheel and turbomachine with such wheel
US9359905B2 (en) Turbine engine rotor blade groove
US7972109B2 (en) Methods and apparatus for fabricating a fan assembly for use with turbine engines
RU2516755C2 (en) Turbo compressor impeller erosion indicator
EP2721306B1 (en) Turbomachine element
US20060182623A1 (en) Taking air away from the tips of the rotor wheels of a high pressure compressor in a turbojet
KR101541435B1 (en) Unflared compressor blade
US7121803B2 (en) Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US8221083B2 (en) Asymmetrical rotor blade fir-tree attachment
EP3208467B1 (en) Compressor rotor for supersonic flutter and/or resonant stress mitigation
CN103459777B (en) Sealing ring for a turbine stage of an aircraft turbomachine, comprising slotted anti-rotation pegs
KR100847942B1 (en) Undercut leading edge for compressor blades and related method
EP4130430A1 (en) Integrated bladed rotor
US7104759B2 (en) Compressor blade platform extension and methods of retrofitting blades of different blade angles
US6752594B2 (en) Split blade frictional damper
EP3372786B1 (en) High-pressure compressor rotor blade with leading edge having indent segment
US7029237B2 (en) Retention capacity of blade having an asymmetrical hammerhead connection
US20040213672A1 (en) Undercut leading edge for compressor blades and related method
US20100322775A1 (en) Anti-Erosion shield for rotor blades
EP2997230B1 (en) Tangential blade root neck conic

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY,NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRAHMASURAIH, RAVICHAND;REEL/FRAME:021007/0378

Effective date: 20080520

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION