US20090283488A1 - Seismically hardened two-post electronic equipment rack - Google Patents
Seismically hardened two-post electronic equipment rack Download PDFInfo
- Publication number
- US20090283488A1 US20090283488A1 US12/468,865 US46886509A US2009283488A1 US 20090283488 A1 US20090283488 A1 US 20090283488A1 US 46886509 A US46886509 A US 46886509A US 2009283488 A1 US2009283488 A1 US 2009283488A1
- Authority
- US
- United States
- Prior art keywords
- frame
- seismically
- hardened
- mounting rack
- post mounting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/18—Construction of rack or frame
- H05K7/186—Construction of rack or frame for supporting telecommunication equipment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q1/00—Details of selecting apparatus or arrangements
- H04Q1/02—Constructional details
- H04Q1/03—Power distribution arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q1/00—Details of selecting apparatus or arrangements
- H04Q1/02—Constructional details
- H04Q1/06—Cable ducts or mountings specially adapted for exchange installations
- H04Q1/062—Cable ducts or mountings specially adapted for exchange installations vertical management arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q1/00—Details of selecting apparatus or arrangements
- H04Q1/02—Constructional details
- H04Q1/09—Frames or mounting racks not otherwise provided for
Definitions
- the present invention relates generally to two-post mounting racks, and, in particular, to seismically hardened two-post electronic equipment racks.
- Two-post mounting racks for electronic equipment are well known. However, many two-post mounting racks are vulnerable to seismic events. Prior art solutions to this problem are bulky, heavy, consume large areas of floor space, and/or are ineffective. Thus, an improved seismically hardened two-post electronic equipment rack is needed.
- a further problem is that cables cannot be routed through a raised floor beneath such a rack in the footprint of the rack.
- a seismically hardened two-post electronic equipment rack that allows cables to be routed through its footprint is needed.
- a still further problem is that seismic spacing requirements create, in some implementations, unused space between adjacent racks. Because of the importance of using all available space, a need exists for a rack that allows such space to be utilized.
- the present invention comprises a two-post mounting rack.
- the present invention according to one aspect includes a frame bottom, a frame top, a pair of frame uprights interconnected between the frame bottom and the frame top, and a base assembly for supporting the frame bottom on a surface.
- the frame bottom, the frame top, the pair of frame uprights, and the base assembly are seismically hardened.
- the present invention according to another aspect is a seismically hardened two-post mounting rack substantially as shown and described.
- the present invention according to another aspect is a mounting rack system substantially as shown and described.
- the present invention according to another aspect includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top.
- Each frame upright has a closed cross-sectional shape.
- each frame upright may include a box beam;
- the closed cross-sectional shape may be fabricated by welding together an inner channel member and an outer channel member;
- each of the inner and outer channel members may be generally U-shaped in cross section;
- the inner and outer channel members may jointly define the closed cross-sectional shape;
- the inner channel member may have wings extending outwardly at either side of the U shape of the inner channel member at an angle that is generally perpendicular to opposing sides of the U shape; the wings may be welded to the interior base of the U shape of the outer channel member to define the closed cross-sectional shape;
- the seismically hardened two-post mounting rack may further include a base assembly for supporting the frame bottom on a surface;
- the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom;
- the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright;
- the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame
- the present invention according to another aspect includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top.
- Each frame upright includes a flange with apertures adapted to provide a mounting location for cable management projections.
- the flange may be disposed at a distance forward from the main portion of the frame upright;
- the seismically hardened two-post mounting rack may further include a base assembly for supporting the frame bottom on a surface;
- the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom;
- the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright,
- the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame upright; and the seismically hardened two-post mounting rack may further include a cable raceway attached to the frame top.
- the present invention according to another includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, a pair of frame uprights interconnected between the frame bottom and the frame top, and a base assembly for supporting the frame bottom on a surface.
- the base assembly includes two separate end gusset members.
- each end gusset member may include two corner gussets; each corner gusset may include a floor plate and a riser plate; each floor plate may have an anchor plate attached thereto; the floor plates and anchor plates may each have a slot therein that are aligned with one another; the riser plates may extend upwardly relative to the floor plate; portions of the riser plates may be welded to an adjacent frame upright; the two corner gussets in each end gusset member may be connected by a bridge member; the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom; the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright; the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame upright; and the seismically hardened two-post mounting rack may further include a cable raceway attached to the frame top.
- the present invention according to another aspect includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top.
- the frame top includes an upper cross-member and two lateral reinforcement plates.
- the seismically hardened two-post mounting rack may further include a series of welded, interlocking tabs and slots along the upper cross-member, the lateral reinforcement plates, and the upper end of each frame upright; the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom; the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright; the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame upright; and the seismically hardened two-post mounting rack may further include a cable raceway attached to the frame top.
- the present invention according to another aspect is a mounting rack system including a first two-post mounting rack, having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top; and a second two-post mounting rack disposed next to the first two-post mounting rack, having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top; wherein cable management projections are mounted on the frame upright, in the first two-post mounting rack, that is closest to the second two-post mounting rack, and cable management projections are mounted on the frame upright, in the second two-post mounting rack, that is closest to the first two-post mounting rack; and wherein a space is established between (i) the frame upright, in the first two-post mounting rack, that is closest to the second two-post mounting rack, and (ii) the frame upright, in the second two-post mounting rack, that is closest to the first two-post mounting rack; such that a virtual vertical cable manager is created between the first and second two
- the present invention according to still another aspect is a mounting rack system including: a first two-post mounting rack; a second two-post mounting rack, disposed laterally adjacent to, but spaced apart from, the first two-post mounting rack; and a virtual vertical cable manager, created by and between the first and second adjacent two-post mounting racks.
- FIG. 1 is a top isometric view of a two-post mounting rack in accordance with a preferred embodiment of the present invention
- FIG. 2 is a bottom isometric view of the rack of FIG. 1 ;
- FIG. 3 is a front plan view of the rack of FIG. 1 ;
- FIG. 4 is an enlarged isometric view of a lower portion of the rack of FIG. 1 ;
- FIG. 5 is an enlarged isometric view of a lower portion of the rack of FIG. 2 ;
- FIG. 6 is a side cross-sectional view of a lower portion of the rack of FIG. 3 , taken along line 6 - 6 ;
- FIG. 7 is a top cross-sectional view of the rack of FIG. 3 , taken along line 7 - 7 ;
- FIG. 8 is an enlarged isometric view of an upper portion of the rack of FIG. 1 ;
- FIG. 9 is an enlarged isometric view of an upper portion of the rack of FIG. 2 ;
- FIG. 10 is a side cross-sectional view of an upper portion of the rack of FIG. 3 , taken along line 10 - 10 ;
- FIG. 11 is a front cross-sectional view of an upper portion of the rack of FIG. 10 , taken along line 11 - 11 ;
- FIG. 12 is an enlarged top plan view of a side portion of the rack of FIG. 1 ;
- FIG. 13 is a front cross-sectional view of a lower portion of the rack of FIG. 6 , taken along line 13 - 13 ;
- FIG. 14 is a top cross-sectional view, similar to the view of FIG. 7 , of the rack of FIG. 3 , schematically illustrating the use of conduits to route cables through the floor directly in front of and behind the rack;
- FIG. 15 is a top cross-sectional view, similar to the view of FIG. 7 , of the rack of FIG. 3 , schematically illustrating the placement of the rack on a raised floor;
- FIG. 16 is a top isometric view of the rack of FIG. 1 , illustrating various optional features and accessories of the rack;
- FIG. 17 is a top cross-sectional view, similar to the view of FIG. 7 , of two racks like that of FIG. 3 , schematically illustrating the creation of a virtual vertical cable manager between the two racks;
- FIG. 18 is a top cross-sectional view, similar to the view of FIG. 7 , of two racks like that of FIG. 3 , schematically illustrating the creation of another virtual vertical cable manager between the two racks.
- any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
- a picnic basket having an apple describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.”
- a picnic basket having a single apple describes “a picnic basket having only one apple.”
- welding and “welded” generally denote the use of any suitable type of conventional weld or welding technique, particularly including, but not limited to, skip welding, continuous welding, fill welding and plug welding, either alone, in combination with one other or in combination with other welds or welding techniques.
- FIGS. 1-3 are a top isometric view, a bottom isometric view and a front plan view, respectively, of a two-post mounting rack 10 in accordance with a preferred embodiment of the present invention.
- the two-post mounting rack 10 includes a frame bottom 20 , two frame uprights 40 , a frame top 60 , a set of vertical mounting rails 104 and a base assembly 80 . Each of these will be further described hereinbelow.
- FIG. 4 is an enlarged isometric view of a lower portion of the rack 10 of FIG. 1
- FIG. 5 is an enlarged isometric view of a lower portion of the rack 10 of FIG. 2
- FIG. 6 is a side cross-sectional view of a lower portion of the rack 10 of FIG. 3 , taken along line 6 - 6
- the frame bottom 20 includes a lower cross-member 22 and two lateral gusset plates 24 , 26 .
- the lower cross-member 22 is generally U-shaped in cross-section with a top plate 28 and two side plates 30 , 32 .
- the lower cross-member 22 further includes a tab 34 at each corner, perhaps best shown in FIGS. 5 and 6 .
- Each lateral gusset plates 24 , 26 is preferably skip welded along its edges to a respective side plate 30 , 32 of the lower cross-member 22 .
- Notches 36 may be provided along the bottom edges of the side plates 30 , 32 such that the gusset plates 24 , 26 may be affixed to the side plates 30 , 32 via a skip weld along the full length of each notch 36 .
- FIG. 7 is a top cross-sectional view of the rack 10 of FIG. 3 , taken along line 7 - 7 .
- each frame upright 40 includes an inner upright member 42 and an outer upright member 44 .
- the inner upright member 42 has a cross-section that is generally in the shape of a “U”, formed from a U-base 46 and two U-sides 48 , with wings 50 extending laterally from the distal ends of the U-sides 48 ; i.e., from the top of the “U.”
- the outer upright member 44 has a cross-section that is likewise generally in the shape of a “U”, formed from a U-base 52 and two side flanges 54 , but the U-base 52 of the outer upright member 44 is dimensioned such that the entire width of the inner upright member 42 , including the “U” portion as well as the wing 50 , may be accommodated between the side flanges 54 of the outer upright member 44 .
- the inner and outer upright members 42 , 44 are affixed to each other, preferably at least via spot welding between the wings 50 of the inner upright member 42 and the U-base 52 of the outer upright member 44 , to form one continuous closed shaped section which gives the structural strength to endure the severe front-to-back, side-to-side forces that a seismic rack must survive to pass seismic testing.
- Each frame upright 40 is attached at its lower end to a respective end of the frame bottom 20 .
- the tabs 34 of the lower cross-member 22 , as well as the edges along the ends of the lower cross-member are preferably skip welded to the U-base 46 of the inner upright members 42
- the lateral gusset plates 24 , 26 are preferably plug welded to the U-sides 48 of the inner upright members 42
- the edges of the lateral gusset plates 24 , 26 are preferably additionally skip welded and continuous welded to the U-sides 48 of the inner upright members 42 .
- Interior corners between the top surface of the top plate 28 , the interior surfaces of the gusset plates 24 , 26 and the interior surfaces of the U-base 46 of the inner upright member 42 , one example of which is fully visible in FIG. 4 , are preferably fill welded. In constructing the rack 10 , it is preferred that all components are positioned correctly and secured to prevent any movement during welding process.
- the vertical mounting rails 104 may be installed along the inner upright members 42 to facilitate the mounting of electronic equipment and accessories thereto.
- Such mounting rails 104 may be of conventional construction and preferably each comprises an angle iron having a line of mounting apertures 106 penetrating one member thereof.
- the mounting apertures 106 are preferably disposed according to a standardized hole-spacing pattern.
- RMU rack mounting unit
- an RMU is defined as 1.75 inches in height. Electrical components as well as accessories, which include horizontal raceways, patch panels, and the like, are also commonly measured in RMUs.
- a 2 RMU component is one which is 3.50 inches or less in height.
- a rack which has 45 RMUs may accommodate components and accessories totaling 45 RMUs.
- components and accessories are frequently installed only at vertical locations corresponding to a whole number of RMUs in order to avoid interfering with adjacent components and accessories.
- the mounting apertures 106 are arranged in a pattern that repeats every RMU spacing.
- the mounting rails 104 on each frame upright 40 may be spaced front-to-back at a spacing that matches conventional spacing, thereby permitting conventional equipment accessories to be used without modification.
- the vertical mounting rails 104 may preferably be attached to the inner upright members 42 via any of several selectable series of mounting openings 108 , perhaps best seen in FIGS. 4 , 8 and 9 . More preferably, four vertical series of mounting openings 108 are provided, with a distance of 1.5 inches between the front-most series and the second series, 1.75 inches between the second series and the third series, and 1.5 inches between the third series and the rear-most series.
- each of the vertical mounting rails 104 may be displaced 0.625 inches from the mounting openings used for its mounting, then the mounting surfaces of the vertical mounting rails 104 may be spaced 6 inches (0.625 inches+1.5 inches+1.75 inches+1.5 inches+0.625 inches), 4.5 inches (0.625 inches+1.5 inches+1.75 inches+0.625 inches), 3 inches (0.625 inches+1.75 inches+0.625 inches) or 2.75 inches (0.625 inches+1.5 inches+0.625 inches) apart, depending upon the specific series of openings 108 chosen for the installation location of the mounting rails 104 .
- the inner upright members 42 may be provided with built-in nuts, visible for example in FIG. 7 , to facilitate attachment.
- FIG. 8 is an enlarged isometric view of an upper portion of the rack 10 of FIG. 1 ;
- FIG. 9 is an enlarged isometric view of an upper portion of the rack 10 of FIG. 2 ;
- FIG. 10 is a side cross-sectional view of an upper portion of the rack 10 of FIG. 3 , taken along line 10 - 10 ;
- FIG. 11 is a front cross-sectional view of an upper portion of the rack 10 of FIG. 10 , taken along line 11 - 11 .
- the frame top 60 includes an upper cross-member 62 and two lateral reinforcement plates 64 , 66 .
- the upper cross-member 62 is generally U-shaped in cross-section with a top plate 68 and two side plates 70 , 72 .
- Each lateral reinforcement plate 64 , 66 further includes a mounting tab 74 at each end, perhaps best shown in FIGS. 9 and 10 .
- the frame top 60 is attached at its ends to the upper ends of the frame uprights 40 .
- the edges of the mounting tabs 74 are preferably skip welded to the U-bases 46 of the inner upright members 42 and the side plates 70 , 72 of the upper cross-member 62 are preferably additionally skip welded to the U-sides 48 and wings 50 of the inner upright members 42 .
- FIG. 12 is an enlarged top plan view of a side portion of the rack 10 of FIG. 1 .
- further strength and rigidity is provided by a series of welded, interlocking tabs and slots along the upper cross-member 62 , the lateral reinforcement plates 64 , 66 , and the upper end of the inner upright member 42 .
- each lateral reinforcement plate 64 , 66 includes a plurality of tabs 76 along its upper edge, perhaps best shown in FIG. 9 .
- Each tab 76 is arranged to fit into a corresponding slot 78 penetrating the upper cross-member 62 along the intersection between the top plate 68 and one of the side plates 70 , 72 .
- a tab 56 also extends upward from the upper end of the inner upright member 42 and is arranged to fit into a corresponding slot 58 , also penetrating the upper cross-member 62 along the intersection between the top plate 68 and one of the side plates 70 , 72 .
- the side plates 70 , 72 of the upper cross-member 62 further include a plurality of doubler tabs 59 , 79 extending upward therefrom, each arranged to align with a corresponding tab 56 , 76 when the tab is properly inserted through its corresponding slot 58 , 78 .
- Each lateral reinforcement plate 64 , 66 is preferably skip welded along its edges to a respective side plate 70 , 72 of the upper cross-member 62 and the tabs 56 , 76 are preferably welded to the upper cross-member 62 and ground smooth. Furthermore, each tab 56 , 76 is welded to its corresponding doubler tab 59 , 79 . In constructing the rack 10 , it is preferred that all components are positioned correctly and secured to prevent any movement during welding process.
- FIG. 13 is a front cross-sectional view of a lower portion of the rack 10 of FIG. 6 , taken along line 13 - 13 .
- the base assembly 80 which with the frame bottom 20 supports the rack 10 on a floor surface (not shown), includes two end gusset members 82 and a plurality of corner anchor plates 84 .
- Each end gusset member 82 includes two corner gussets 86 , each including a floor plate 88 and a riser plate 90 , connected by a bridge member 92 .
- a slot 94 perhaps best seen in FIG.
- each anchor plate 84 is overlaid on top of a respective floor plate 88 such that their slots 96 , 94 are aligned as shown in FIG. 4 .
- the anchor plates 84 are skip welded in place on the floor plates 88 and further plug welded to the floor plates 88 , except that in at least some embodiments, no welding occurs between the anchor plates 84 and the gusset plates 24 , 26 .
- the edge of the cross-members 22 and the edge of the gusset plates 24 , 26 are all welded together along each of the four lines where these elements come into close proximity.
- Each of the frame uprights 40 is attached at its lower end to a respective end of the base assembly 80 .
- the riser plate 90 of each corner gusset 86 is welded along their upper edge to the wings 50 , but in at least some embodiments the riser plates 90 are not directly attached, by welding or any other any means, along their vertical edge to the wings 50 or the U-sides 48 .
- the outer edge of the wings 50 , the outer surface of the riser plates 90 , and the outer edge of the U-bases 52 are all welded together along the four lines where these elements come into close proximity.
- the lower edge of the U-bases 52 , the lower edge of the wings 50 , and the bottom surface of the floor plates 88 are all welded together along the four lines where these elements come into close proximity. In constructing the rack 10 , it is preferred that all components are positioned correctly and secured to prevent any movement during the welding process.
- FIG. 14 is a top cross-sectional view, similar to the view of FIG. 7 , of the rack 10 of FIG. 3 , schematically illustrating the use of conduits 12 to route cables through the floor directly in front of and behind the rack 10 .
- the space 14 between the corner gussets 86 both in front of and behind the rack 10 of the present invention is sufficient to permit a substantial number of cables to be routed therebetween.
- three cable conduits 12 having a diameter of 4 inches, as is conventional, may be placed side by side in each of the spaces 14 between the corner gussets 86 both in front of and behind the rack 10 .
- Cables from such conduits 12 may be routed through a raised floor beneath the rack 10 and up into the rack 10 itself. Unlike prior art racks, cables may thus be routed through a floor surface beneath the rack 10 within the overall footprint of the rack 10 , which is quite advantageous in reducing the amount of floor space consumed in an installation.
- FIG. 15 is a top cross-sectional view, similar to the view of FIG. 7 , of the rack 10 of FIG. 3 , schematically illustrating the placement of the rack 10 on a raised floor.
- FIG. 15 illustrates a particular commercial embodiment of the rack of the present invention, of a class of racks known as “19 inch racks,” wherein the vertical mounting rails 104 are disposed to accept and support “19 inch” equipment and accessories, a width of 19 inches being very common in conventional commercial two-post racks.
- the rack is 10 shown placed on a set of four floor tiles 16 comprising a portion of a raised floor.
- the floor tiles 16 shown are likewise of conventional dimensions, i.e., 24 inches wide and 24 inches long.
- the “19 inch” rack 10 that is illustrated has external dimensions of slightly less than 24 inches (23.920 inches in at least one commercial embodiment) and thus fits easily within the boundaries of a single 24-inch-by-24 inch floor tile 16 .
- the rack of the present invention of a class of racks known as “19 inch racks,” wherein the vertical mounting rails 104 are disposed to accept and support “23 inch” equipment and accessories, a width of 23 inches being very common in conventional commercial two-post racks, and that the “23 inch” rack has external dimensions of slightly less than 28 inches (27.920 inches in at least one commercial embodiment).
- the narrow width of racks 10 constructed according to the designs set forth herein advantageously permits more racks to be installed in the same room space. Perhaps even more advantageously, the narrow width of racks 10 constructed according to the designs set forth herein aids the installer when replacing conventional racks in an existing installation with racks 10 of the present invention, because a replacement rack 10 constructed according to the designs set forth herein may be able to fit in the same footprint of the conventional rack being replaced. This allows the installer to replace a single rack without having to shift or otherwise move an entire row of existing racks merely to accommodate the new rack 10 .
- a “19 inch” rack may be constructed having a footprint of 23.920 inches wide by 15.00 inches deep, and that a “23 inch” rack may be constructed having a footprint of 27.920 inches wide by 15.00 inches deep.
- the distance between the floor plates 88 on both the front and rear of such a “19 inch” rack is preferably at least 12 inches, and more preferably at least 14 inches inches, thereby permitting three conduits or cable bundles at least 4 inches wide (or 4 inches in diameter) to be placed side by side between the floor plates 88 , and that the distance between the floor plates 88 on both the front and rear of such a “23 inch” rack is preferably at least 16 inches, and more preferably at least 18 inches, thereby permitting four conduits or cable bundles at least 4 inches wide (or 4 inches in diameter) to be placed side by side between the floor plates 88 .
- the distance between the floor plates 88 on both the front and rear of a “19 inch” rack is 14.10 inches, and the distance between the floor
- the overall rigidity of the rack 10 is significantly enhanced through the use of gussets and other reinforcing layers to transfer forces from one structural element to another, but manufacturability is enhanced and material lists are reduced through use in most or all places of only a single reinforcing layer to accomplish such transference.
- Examples include the upper cross-member 62 reinforced with the reinforcement plates 64 , 66 and transference of forces between the upper cross-member 62 and inner upright member 42 via the reinforcement plates 64 , 66 , the lower cross-member 22 reinforced with the lateral gusset plates 24 , 26 and the transference of forces between the lower cross-member 22 and the inner upright member 42 via the lateral gusset plates 24 , 26 and the tabs 34 , the inner upright member 42 reinforced with the outer upright members 44 and the transference of forces between the frame uprights 40 and the gusset members 82 , and the gusset floor plates 88 reinforced with the corner anchor plates 84 and the transference of forces between the frame uprights 40 and the floor via the gusset risers 90 and the gusset floor plates 88 .
- FIG. 16 is a top isometric view of the rack 10 of FIG. 1 , illustrating various additional features and components that may be used with the rack 10 .
- the rack 10 may be anchored to the floor beneath the rack 10 using appropriate floor anchors (not shown), which in at least some embodiments are seismically-rated floor anchors.
- floor anchors not shown
- Such anchors conventionally use a washer 102 or similar structure, shown added on top of the anchor plate 84 and floor plate 88 of each corner gusset 86 in FIG. 16 .
- Such a washer structure 102 may prevent damage to the anchor and floor plates 84 , 88 and may prevent a tie-down bolt or other floor anchor from twisting through the slots 96 , 94 if one or more structure is damaged during a seismic event.
- a generally-conventional two-plug power outlet 110 may be attached to the bottom of the rack 10 to provide a power source for electronic equipment, accessories, and the like (not shown) mounted or supported in or on the rack 10 .
- Mounting apertures 112 visible in FIG. 4 and penetrating both each lateral gusset plate 24 , 26 and a respective side plate 30 , 32 of the lower cross-member 22 , may be used to attach the outlet 110 to the frame bottom 20 .
- a ground terminal block 114 may be mounted on studs 116 at the top or bottom of the rack 10 .
- a power strip 118 may be mounted in a channel 120 created between any of the U-sides 48 of the inner upright members 42 , the inner upright member wing 50 adjacent to it and the corresponding outer upright member side flange 54 adjacent to it.
- the power strip 118 may be of any desired length (height) in order to provide industry standard power outlets 122 at convenient locations accessible to electronic equipment (not shown) mounted in the rack 10 .
- the power strip 118 may be mounted in the channel 120 for quick and easy removal through use of conventional bolts or the like on the back thereof, arranged to be inserted through, and supported by, keyhole openings 124 penetrating the wings 50 of the inner upright members 42 and the U-base 52 of the outer upright members 44 , such openings 124 being arranged at appropriate locations along the length thereof.
- the power strip 118 itself may be powered by plugging its power cord into one of the outlets in the two plug-power outlet 110 provided at the bottom of the rack 10 .
- Seismically hardening a two-post electronic equipment rack such as the rack 10 described and illustrated herein, may be particularly useful when power outlets, such as the two plug-power outlet 110 and power strip 118 shown in FIG. 16 , are mounted directly thereon, because of the importance of maintaining safe electrical connections during the occurrence of a seismic event.
- power outlets such as the two plug-power outlet 110 and power strip 118 shown in FIG. 16
- By maintaining the structural integrity of the rack the physical relationship between equipment and accessories and the outlets into which they are plugged may likewise be preserved. Such integrity may be preserved by using the seismically hardened two post rack 10 in accordance with one or more preferred embodiments of the present invention.
- one or more cable guides 126 may be mounted on the side flanges 54 of the outer upright members 44 of the rack 10 .
- Each cable guide 126 includes a linear projection support bracket 128 and a plurality of T-shaped projections 130 forwardly extending therefrom.
- the projection support bracket 128 has a plurality of evenly-spaced resilient plug mounts (not illustrated), extending rearward from the back thereof, that are adapted to mate with rectangular apertures 132 in the side flanges 54 of the outer upright members 44 .
- the cable guide 126 may be mounted on a side flange 54 by aligning the plug mounts with the rectangular apertures 132 in the side flanges 54 and then inserting them through the apertures 132 such that one or more resilient features on the plug mounts are deflected and then spring back into place as the plug mounts become fully seated in the rectangular apertures 132 .
- Bosses are preferably disposed on the plug mounts to maintain the plug mounts, and thus the cable guides 126 , in place.
- Each T-shaped projection 130 includes a reinforced base, a shaft and a crosspiece.
- Each pair of adjacent T-shaped projections 130 defines a cable ring formed by the respective bases, shafts and crosspieces of the projections 130 and the body of the projection support bracket 128 .
- An opening into each cable ring is provided by a gap between the ends of the crosspieces of each pair of adjacent projections 130 . This gap permits cables to be inserted into the ring by passing them sideways through the gap.
- the respective projections 130 are evenly spaced along the length of the cable guide 126 at a standardized spacing.
- the spacing between the respective projections 130 is equal to a single standard rack mounting unit (“RMU”), but it should be obvious that other standard spacings could be used such as spacings measured in alternative units or spacings which are multiples of the RMU.
- RMU rack mounting unit
- the cable guide 126 may be formed from a different material than the side flanges 54 .
- the side flanges 54 may preferably be formed from metal
- the cable guides 126 may be injection-molded from plastic in order to create rounded or beveled edges along the edges of the T-shaped projections 130 .
- the rounded edges of the cable rings do not chafe cables inserted therein like the sharp metal edges of prior art raceways would, while the rounded edges and corners of the edges of the ends of the crosspieces enable cables being installed in the cable rings to be smoothly guided through the gaps.
- each cable ring includes a C-shaped opening having concave top and bottom portions and a narrow entry gap relative to the width and height of the ring, thus maximizing the utility of the cable ring in receiving while still retaining a large number of cables. It will be appreciated, however, that other types of cable guides may likewise be utilized without departing from the scope of one or more aspects of the present invention.
- a cable raceway, runway, trough, or other raceway devices may be mounted to the top of the rack 10 .
- cables may be routed horizontally through such raceway devices to and from other raceway devices mounted on other racks or cabinets, suspended from the ceiling, or the like.
- cables may further be routed from such raceway devices downward toward electronic equipment and routing accessories mounted in the rack, including the cable guides 126 described previously.
- One such raceway assembly 134 is illustrated in FIG. 16 and may be mounted to the upper cross-member 62 via mounting apertures 136 such as those illustrated in FIG. 16 .
- Such a raceway assembly 134 may be centered front-to-back on the rack 10 or may be offset a desired distance forward or backward relative to the rack 10 . Such adjustability may be facilitated by providing multiple rows of mounting apertures 136 , one of which is centered front-to-back, at least one of which is arranged forward of the centered row, and at least one of which is arranged rearward of the centered row.
- Modular raceways relevant details of which may be described in the aforementioned U.S. Pat. No. 6,394,398 may be utilized to route cables from the top of one rack 10 to another rack.
- Seismically hardening a two-post electronic equipment rack such as the rack 10 described and illustrated herein, may be particularly useful when used in conjunction with cable raceway devices, such as the raceway assembly 134 shown in FIG. 16 , because the collapse of a rack on which such raceway devices are supported may likewise cause the collapse of large portions of adjacent cable support structures because of the sudden shift in weight of cables mounted thereon. Such a collapse may likewise affect adjacent racks and cabinets, thereby exacerbating the sudden and irregular forces already placed on them more directly by a seismic event. Such a collapse may be prevented by using the seismically hardened two post rack 10 in accordance with one or more preferred embodiments of the present invention.
- FIG. 17 is a top cross-sectional view, similar to the view of FIG. 7 , of two racks 10 like that of FIG. 3 , schematically illustrating the creation of a virtual vertical cable manager 138 between the two racks 10
- FIG. 18 is a top cross-sectional view, similar to the view of FIG. 7 , of two racks 10 like that of FIG. 3 , schematically illustrating the creation of another virtual vertical cable manager 238 between the two racks 10 .
- a virtual vertical cable manager 138 , 238 is defined and created by the U bases 52 of adjacent outer upright members 44 on two different racks 10 and the cable management projections 130 mounted thereon.
- the space created i.e., the virtual vertical cable management channel 140 , 240 , has a minimum width of x inches, which in the illustrated embodiment is defined as the distance between the outer surfaces of the respective U bases 52 .
- x inches the distance between the outer surfaces of the respective U bases 52 .
- the actual cross-sectional shape of the space is dependent on the exact structures, dimensions and the like selected or used to create the space.
- Such a distance is often mandated by concrete floor anchor standards, which in at least some localities dictate that floor anchors must be some at least some minimum distance y apart to avoid tearing chunks of concrete out during a seismic event.
- floor anchors must, in at least some localities, be at least 9.5 inches apart, thereby creating considerable space between adjacent racks 10 .
- virtual vertical cable managers may likewise be created between two-post mounting racks that are not seismically hardened without departing from the scope of the present invention.
- virtual vertical cable managers 138 , 238 permits vertical cable management to be accomplished without necessitating the purchase of an actual vertical cable manager component, thereby providing cost savings, flexibility, ease of installation, and the like. It is also possible to convert between a single-sided virtual vertical cable manager 138 (as shown in FIG. 17 ) and a double-sided virtual vertical cable manager 238 (as shown in FIG. 18 ) merely by adding (or removing) projections 130 or the like. Furthermore, unlike conventional vertical cable managers, there is no need for a structural support panel or cross-members within the virtual vertical cable manager 138 , 238 to provide structural strength. This improves the front-back cable pass-through management since an installer no longer needs to thread cables through designated pass-through openings.
- this invention allows the middle panel to be non-structural if a customer wants to have a panel or divider to separate a front channel and a back channel.
- the panel can be made out of non-structural material such as wire, plastic, tubular, thin sheet metal, or the like. This opens up a window of great flexibility of cable management within the vertical cable manager.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Details Of Indoor Wiring (AREA)
- Patch Boards (AREA)
Abstract
A two-post mounting rack includes a frame bottom, a frame top, a pair of frame uprights interconnected between the frame bottom and the frame top, and a base assembly for supporting the frame bottom on a surface. One or more of the frame bottom, the frame top, the pair of frame uprights, and the base assembly are seismically hardened. Each frame upright has a closed cross-sectional shape. Each frame upright includes a flange with apertures adapted to provide a mounting location for cable management projections. The base assembly includes two separate end gusset members. Each end gusset member includes two corner gussets. Each corner gusset includes a floor plate and a riser plate. The two corner gussets in each end gusset member are connected by a bridge member. The frame top includes an upper cross-member and two lateral reinforcement plates.
Description
- The present application is a U.S. nonprovisional patent application of, and claims priority under 35 U.S.C. § 119(e) to, U.S. provisional patent application Ser. No. 61/054,457, filed May 19, 2008, and U.S. provisional patent application Ser. No. 61/059,738, filed Jun. 6, 2008, each of which is incorporated by reference herein.
- The entirety of each of the following patents or patent applications is incorporated herein by reference:
-
- (a) U.S. Pat. No. 6,394,398 to Reed et al.;
- (b) U.S. Pat. No. 7,119,282 to Krietzman, et al.; and
- (c) U.S. Provisional Patent Application No. 61/020,745 to Garza et al., filed Jan. 14, 2008 and entitled “CABLE MANAGEMENT SYSTEM.”
- All of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
- 1. Field of the Present Invention
- The present invention relates generally to two-post mounting racks, and, in particular, to seismically hardened two-post electronic equipment racks.
- 2. Background
- Two-post mounting racks for electronic equipment are well known. However, many two-post mounting racks are vulnerable to seismic events. Prior art solutions to this problem are bulky, heavy, consume large areas of floor space, and/or are ineffective. Thus, an improved seismically hardened two-post electronic equipment rack is needed.
- A further problem is that cables cannot be routed through a raised floor beneath such a rack in the footprint of the rack. Thus, a seismically hardened two-post electronic equipment rack that allows cables to be routed through its footprint is needed.
- A still further problem is that seismic spacing requirements create, in some implementations, unused space between adjacent racks. Because of the importance of using all available space, a need exists for a rack that allows such space to be utilized.
- The present invention comprises a two-post mounting rack. Broadly defined, the present invention according to one aspect includes a frame bottom, a frame top, a pair of frame uprights interconnected between the frame bottom and the frame top, and a base assembly for supporting the frame bottom on a surface. In features of this aspect, one or more of the frame bottom, the frame top, the pair of frame uprights, and the base assembly are seismically hardened.
- The present invention according to another aspect is a seismically hardened two-post mounting rack substantially as shown and described.
- The present invention according to another aspect is a mounting rack system substantially as shown and described.
- Broadly defined, the present invention according to another aspect includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top. Each frame upright has a closed cross-sectional shape.
- In features of this aspect, each frame upright may include a box beam; the closed cross-sectional shape may be fabricated by welding together an inner channel member and an outer channel member; each of the inner and outer channel members may be generally U-shaped in cross section; the inner and outer channel members may jointly define the closed cross-sectional shape; the inner channel member may have wings extending outwardly at either side of the U shape of the inner channel member at an angle that is generally perpendicular to opposing sides of the U shape; the wings may be welded to the interior base of the U shape of the outer channel member to define the closed cross-sectional shape; the seismically hardened two-post mounting rack may further include a base assembly for supporting the frame bottom on a surface; the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom; the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright; the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame upright; and the seismically hardened two-post mounting rack may further include a cable raceway attached to the frame top.
- Broadly defined, the present invention according to another aspect includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top. Each frame upright includes a flange with apertures adapted to provide a mounting location for cable management projections.
- In features of this aspect, the flange may be disposed at a distance forward from the main portion of the frame upright; the seismically hardened two-post mounting rack may further include a base assembly for supporting the frame bottom on a surface; the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom; the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright, the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame upright; and the seismically hardened two-post mounting rack may further include a cable raceway attached to the frame top.
- Broadly defined, the present invention according to another includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, a pair of frame uprights interconnected between the frame bottom and the frame top, and a base assembly for supporting the frame bottom on a surface. The base assembly includes two separate end gusset members.
- In features of this aspect, each end gusset member may include two corner gussets; each corner gusset may include a floor plate and a riser plate; each floor plate may have an anchor plate attached thereto; the floor plates and anchor plates may each have a slot therein that are aligned with one another; the riser plates may extend upwardly relative to the floor plate; portions of the riser plates may be welded to an adjacent frame upright; the two corner gussets in each end gusset member may be connected by a bridge member; the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom; the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright; the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame upright; and the seismically hardened two-post mounting rack may further include a cable raceway attached to the frame top.
- Broadly defined, the present invention according to another aspect includes a seismically hardened two-post mounting rack having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top. The frame top includes an upper cross-member and two lateral reinforcement plates.
- In features of this aspect, the seismically hardened two-post mounting rack may further include a series of welded, interlocking tabs and slots along the upper cross-member, the lateral reinforcement plates, and the upper end of each frame upright; the seismically hardened two-post mounting rack may further include a power outlet attached to the frame bottom; the seismically hardened two-post mounting rack may further include a power strip attached to a frame upright; the seismically hardened two-post mounting rack may further include one or more cable guides attached to a frame upright; and the seismically hardened two-post mounting rack may further include a cable raceway attached to the frame top.
- The present invention according to another aspect is a mounting rack system including a first two-post mounting rack, having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top; and a second two-post mounting rack disposed next to the first two-post mounting rack, having a frame bottom, a frame top, and a pair of frame uprights interconnected between the frame bottom and the frame top; wherein cable management projections are mounted on the frame upright, in the first two-post mounting rack, that is closest to the second two-post mounting rack, and cable management projections are mounted on the frame upright, in the second two-post mounting rack, that is closest to the first two-post mounting rack; and wherein a space is established between (i) the frame upright, in the first two-post mounting rack, that is closest to the second two-post mounting rack, and (ii) the frame upright, in the second two-post mounting rack, that is closest to the first two-post mounting rack; such that a virtual vertical cable manager is created between the first and second two-post mounting racks.
- The present invention according to still another aspect is a mounting rack system including: a first two-post mounting rack; a second two-post mounting rack, disposed laterally adjacent to, but spaced apart from, the first two-post mounting rack; and a virtual vertical cable manager, created by and between the first and second adjacent two-post mounting racks.
- Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
- Further features, embodiments, and advantages of the present invention will become apparent from the following detailed description with reference to the drawings, wherein:
-
FIG. 1 is a top isometric view of a two-post mounting rack in accordance with a preferred embodiment of the present invention; -
FIG. 2 is a bottom isometric view of the rack ofFIG. 1 ; -
FIG. 3 is a front plan view of the rack ofFIG. 1 ; -
FIG. 4 is an enlarged isometric view of a lower portion of the rack ofFIG. 1 ; -
FIG. 5 is an enlarged isometric view of a lower portion of the rack ofFIG. 2 ; -
FIG. 6 is a side cross-sectional view of a lower portion of the rack ofFIG. 3 , taken along line 6-6; -
FIG. 7 is a top cross-sectional view of the rack ofFIG. 3 , taken along line 7-7; -
FIG. 8 is an enlarged isometric view of an upper portion of the rack ofFIG. 1 ; -
FIG. 9 is an enlarged isometric view of an upper portion of the rack ofFIG. 2 ; -
FIG. 10 is a side cross-sectional view of an upper portion of the rack ofFIG. 3 , taken along line 10-10; -
FIG. 11 is a front cross-sectional view of an upper portion of the rack ofFIG. 10 , taken along line 11-11; -
FIG. 12 is an enlarged top plan view of a side portion of the rack ofFIG. 1 ; -
FIG. 13 is a front cross-sectional view of a lower portion of the rack ofFIG. 6 , taken along line 13-13; -
FIG. 14 is a top cross-sectional view, similar to the view ofFIG. 7 , of the rack ofFIG. 3 , schematically illustrating the use of conduits to route cables through the floor directly in front of and behind the rack; -
FIG. 15 is a top cross-sectional view, similar to the view ofFIG. 7 , of the rack ofFIG. 3 , schematically illustrating the placement of the rack on a raised floor; -
FIG. 16 is a top isometric view of the rack ofFIG. 1 , illustrating various optional features and accessories of the rack; -
FIG. 17 is a top cross-sectional view, similar to the view ofFIG. 7 , of two racks like that ofFIG. 3 , schematically illustrating the creation of a virtual vertical cable manager between the two racks; and -
FIG. 18 is a top cross-sectional view, similar to the view ofFIG. 7 , of two racks like that ofFIG. 3 , schematically illustrating the creation of another virtual vertical cable manager between the two racks. - As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art (“Ordinary Artisan”) that the present invention has broad utility and application. Furthermore, any embodiment discussed and identified as being “preferred” is considered to be part of a best mode contemplated for carrying out the present invention. Other embodiments also may be discussed for additional illustrative purposes in providing a full and enabling disclosure of the present invention. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present invention.
- Accordingly, while the present invention is described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present invention, and is made merely for the purposes of providing a full and enabling disclosure of the present invention. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to limit the scope of patent protection afforded the present invention, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection afforded the present invention be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.
- Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
- Additionally, it is important to note that each term used herein refers to that which the Ordinary Artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the Ordinary Artisan based on the contextual use of such term—differs in any way from any particular dictionary definition of such term, it is intended that the meaning of the term as understood by the Ordinary Artisan should prevail.
- Furthermore, it is important to note that, as used herein, “a” and “an” each generally denotes “at least one,” but does not exclude a plurality unless the contextual use dictates otherwise. Thus, reference to “a picnic basket having an apple” describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.” In contrast, reference to “a picnic basket having a single apple” describes “a picnic basket having only one apple.”
- When used herein to join a list of items, “or” denotes “at least one of the items,” but does not exclude a plurality of items of the list. Thus, reference to “a picnic basket having cheese or crackers” describes “a picnic basket having cheese without crackers”, “a picnic basket having crackers without cheese”, and “a picnic basket having both cheese and crackers.” Finally, when used herein to join a list of items, “and” denotes “all of the items of the list.” Thus, reference to “a picnic basket having cheese and crackers” describes “a picnic basket having cheese, wherein the picnic basket further has crackers,” as well as describes “a picnic basket having crackers, wherein the picnic basket further has cheese.”
- Also, as used herein, “welding” and “welded” generally denote the use of any suitable type of conventional weld or welding technique, particularly including, but not limited to, skip welding, continuous welding, fill welding and plug welding, either alone, in combination with one other or in combination with other welds or welding techniques.
- Referring now to the drawings, in which like numerals represent like components throughout the several views, the preferred embodiments of the present invention are next described. The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
-
FIGS. 1-3 are a top isometric view, a bottom isometric view and a front plan view, respectively, of a two-post mounting rack 10 in accordance with a preferred embodiment of the present invention. As shown therein, the two-post mounting rack 10 includes a frame bottom 20, twoframe uprights 40, aframe top 60, a set of vertical mountingrails 104 and abase assembly 80. Each of these will be further described hereinbelow. -
FIG. 4 is an enlarged isometric view of a lower portion of therack 10 ofFIG. 1 ,FIG. 5 is an enlarged isometric view of a lower portion of therack 10 ofFIG. 2 , andFIG. 6 is a side cross-sectional view of a lower portion of therack 10 ofFIG. 3 , taken along line 6-6. As shown therein, the frame bottom 20 includes alower cross-member 22 and twolateral gusset plates lower cross-member 22 is generally U-shaped in cross-section with atop plate 28 and twoside plates lower cross-member 22 further includes atab 34 at each corner, perhaps best shown inFIGS. 5 and 6 . Eachlateral gusset plates respective side plate lower cross-member 22.Notches 36, perhaps best seen inFIG. 5 , may be provided along the bottom edges of theside plates gusset plates side plates notch 36. -
FIG. 7 is a top cross-sectional view of therack 10 ofFIG. 3 , taken along line 7-7. As shown therein, eachframe upright 40 includes aninner upright member 42 and anouter upright member 44. Theinner upright member 42 has a cross-section that is generally in the shape of a “U”, formed from a U-base 46 and two U-sides 48, withwings 50 extending laterally from the distal ends of the U-sides 48; i.e., from the top of the “U.” Theouter upright member 44 has a cross-section that is likewise generally in the shape of a “U”, formed from a U-base 52 and twoside flanges 54, but the U-base 52 of theouter upright member 44 is dimensioned such that the entire width of theinner upright member 42, including the “U” portion as well as thewing 50, may be accommodated between theside flanges 54 of theouter upright member 44. The inner and outerupright members wings 50 of theinner upright member 42 and the U-base 52 of theouter upright member 44, to form one continuous closed shaped section which gives the structural strength to endure the severe front-to-back, side-to-side forces that a seismic rack must survive to pass seismic testing. In constructing therack 10, it is preferred that all components are positioned correctly and secured to prevent any movement during the welding process. - Each
frame upright 40 is attached at its lower end to a respective end of theframe bottom 20. In particular, thetabs 34 of thelower cross-member 22, as well as the edges along the ends of the lower cross-member are preferably skip welded to the U-base 46 of the innerupright members 42, thelateral gusset plates upright members 42, and the edges of thelateral gusset plates upright members 42. Interior corners between the top surface of thetop plate 28, the interior surfaces of thegusset plates inner upright member 42, one example of which is fully visible inFIG. 4 , are preferably fill welded. In constructing therack 10, it is preferred that all components are positioned correctly and secured to prevent any movement during welding process. - The vertical mounting rails 104, of which there are generally four, may be installed along the inner
upright members 42 to facilitate the mounting of electronic equipment and accessories thereto. Such mountingrails 104 may be of conventional construction and preferably each comprises an angle iron having a line of mountingapertures 106 penetrating one member thereof. The mountingapertures 106 are preferably disposed according to a standardized hole-spacing pattern. In this regard, it is well known that the vertical dimension of racks is frequently measured in standardized units. The most common unit of measurement is the “rack mounting unit” (“RMU”). According to accepted standards, an RMU is defined as 1.75 inches in height. Electrical components as well as accessories, which include horizontal raceways, patch panels, and the like, are also commonly measured in RMUs. For example, a 2 RMU component is one which is 3.50 inches or less in height. Thus, a rack which has 45 RMUs may accommodate components and accessories totaling 45 RMUs. Further, to conserve space, components and accessories are frequently installed only at vertical locations corresponding to a whole number of RMUs in order to avoid interfering with adjacent components and accessories. In view of the foregoing, which will be appreciated by the Ordinary Artisan, the mountingapertures 106 are arranged in a pattern that repeats every RMU spacing. Furthermore, the mountingrails 104 on eachframe upright 40 may be spaced front-to-back at a spacing that matches conventional spacing, thereby permitting conventional equipment accessories to be used without modification. - The vertical mounting rails 104 may preferably be attached to the inner
upright members 42 via any of several selectable series of mountingopenings 108, perhaps best seen inFIGS. 4 , 8 and 9. More preferably, four vertical series of mountingopenings 108 are provided, with a distance of 1.5 inches between the front-most series and the second series, 1.75 inches between the second series and the third series, and 1.5 inches between the third series and the rear-most series. If the mounting surface of each of the vertical mountingrails 104 is displaced 0.625 inches from the mounting openings used for its mounting, then the mounting surfaces of the vertical mountingrails 104 may be spaced 6 inches (0.625 inches+1.5 inches+1.75 inches+1.5 inches+0.625 inches), 4.5 inches (0.625 inches+1.5 inches+1.75 inches+0.625 inches), 3 inches (0.625 inches+1.75 inches+0.625 inches) or 2.75 inches (0.625 inches+1.5 inches+0.625 inches) apart, depending upon the specific series ofopenings 108 chosen for the installation location of the mounting rails 104. The innerupright members 42 may be provided with built-in nuts, visible for example inFIG. 7 , to facilitate attachment. -
FIG. 8 is an enlarged isometric view of an upper portion of therack 10 ofFIG. 1 ;FIG. 9 is an enlarged isometric view of an upper portion of therack 10 ofFIG. 2 ;FIG. 10 is a side cross-sectional view of an upper portion of therack 10 ofFIG. 3 , taken along line 10-10; andFIG. 11 is a front cross-sectional view of an upper portion of therack 10 ofFIG. 10 , taken along line 11-11. As shown therein, theframe top 60 includes anupper cross-member 62 and twolateral reinforcement plates upper cross-member 62 is generally U-shaped in cross-section with atop plate 68 and twoside plates lateral reinforcement plate tab 74 at each end, perhaps best shown inFIGS. 9 and 10 . Theframe top 60 is attached at its ends to the upper ends of the frame uprights 40. In particular, the edges of the mountingtabs 74 are preferably skip welded to the U-bases 46 of the innerupright members 42 and theside plates upper cross-member 62 are preferably additionally skip welded to the U-sides 48 andwings 50 of the innerupright members 42. In constructing therack 10, it is preferred that all components are positioned correctly and secured to prevent any movement during welding process. -
FIG. 12 is an enlarged top plan view of a side portion of therack 10 ofFIG. 1 . With particular reference toFIGS. 8 and 12 , further strength and rigidity is provided by a series of welded, interlocking tabs and slots along theupper cross-member 62, thelateral reinforcement plates inner upright member 42. More particularly, eachlateral reinforcement plate tabs 76 along its upper edge, perhaps best shown inFIG. 9 . Eachtab 76 is arranged to fit into acorresponding slot 78 penetrating theupper cross-member 62 along the intersection between thetop plate 68 and one of theside plates tab 56 also extends upward from the upper end of theinner upright member 42 and is arranged to fit into acorresponding slot 58, also penetrating theupper cross-member 62 along the intersection between thetop plate 68 and one of theside plates side plates upper cross-member 62 further include a plurality ofdoubler tabs tab slot lateral reinforcement plate respective side plate upper cross-member 62 and thetabs upper cross-member 62 and ground smooth. Furthermore, eachtab corresponding doubler tab rack 10, it is preferred that all components are positioned correctly and secured to prevent any movement during welding process. -
FIG. 13 is a front cross-sectional view of a lower portion of therack 10 ofFIG. 6 , taken along line 13-13. With particular reference toFIGS. 4 , 7 and 13, thebase assembly 80, which with the frame bottom 20 supports therack 10 on a floor surface (not shown), includes twoend gusset members 82 and a plurality ofcorner anchor plates 84. Eachend gusset member 82 includes twocorner gussets 86, each including afloor plate 88 and ariser plate 90, connected by abridge member 92. Aslot 94, perhaps best seen inFIG. 5 , penetrates thefloor plate 88 of eachcorner gusset 86, and acorresponding slot 96 penetrates eachcorner anchor plate 84. Eachanchor plate 84 is overlaid on top of arespective floor plate 88 such that theirslots FIG. 4 . Preferably, theanchor plates 84 are skip welded in place on thefloor plates 88 and further plug welded to thefloor plates 88, except that in at least some embodiments, no welding occurs between theanchor plates 84 and thegusset plates gusset plates - Each of the frame uprights 40 is attached at its lower end to a respective end of the
base assembly 80. In particular, theriser plate 90 of eachcorner gusset 86 is welded along their upper edge to thewings 50, but in at least some embodiments theriser plates 90 are not directly attached, by welding or any other any means, along their vertical edge to thewings 50 or the U-sides 48. The outer edge of thewings 50, the outer surface of theriser plates 90, and the outer edge of the U-bases 52 are all welded together along the four lines where these elements come into close proximity. The lower edge of the U-bases 52, the lower edge of thewings 50, and the bottom surface of thefloor plates 88 are all welded together along the four lines where these elements come into close proximity. In constructing therack 10, it is preferred that all components are positioned correctly and secured to prevent any movement during the welding process. -
FIG. 14 is a top cross-sectional view, similar to the view ofFIG. 7 , of therack 10 ofFIG. 3 , schematically illustrating the use ofconduits 12 to route cables through the floor directly in front of and behind therack 10. Unlike prior art racks, thespace 14 between thecorner gussets 86 both in front of and behind therack 10 of the present invention is sufficient to permit a substantial number of cables to be routed therebetween. For example, as illustrated, threecable conduits 12 having a diameter of 4 inches, as is conventional, may be placed side by side in each of thespaces 14 between thecorner gussets 86 both in front of and behind therack 10. Cables fromsuch conduits 12 may be routed through a raised floor beneath therack 10 and up into therack 10 itself. Unlike prior art racks, cables may thus be routed through a floor surface beneath therack 10 within the overall footprint of therack 10, which is quite advantageous in reducing the amount of floor space consumed in an installation. -
FIG. 15 is a top cross-sectional view, similar to the view ofFIG. 7 , of therack 10 ofFIG. 3 , schematically illustrating the placement of therack 10 on a raised floor. In particular,FIG. 15 illustrates a particular commercial embodiment of the rack of the present invention, of a class of racks known as “19 inch racks,” wherein the vertical mountingrails 104 are disposed to accept and support “19 inch” equipment and accessories, a width of 19 inches being very common in conventional commercial two-post racks. The rack is 10 shown placed on a set of fourfloor tiles 16 comprising a portion of a raised floor. Thefloor tiles 16 shown are likewise of conventional dimensions, i.e., 24 inches wide and 24 inches long. As will be appreciated, the “19 inch”rack 10 that is illustrated has external dimensions of slightly less than 24 inches (23.920 inches in at least one commercial embodiment) and thus fits easily within the boundaries of a single 24-inch-by-24inch floor tile 16. Although not illustrated, it will likewise be appreciated that in another particular commercial embodiment of the rack of the present invention, of a class of racks known as “19 inch racks,” wherein the vertical mountingrails 104 are disposed to accept and support “23 inch” equipment and accessories, a width of 23 inches being very common in conventional commercial two-post racks, and that the “23 inch” rack has external dimensions of slightly less than 28 inches (27.920 inches in at least one commercial embodiment). - The narrow width of
racks 10 constructed according to the designs set forth herein advantageously permits more racks to be installed in the same room space. Perhaps even more advantageously, the narrow width ofracks 10 constructed according to the designs set forth herein aids the installer when replacing conventional racks in an existing installation withracks 10 of the present invention, because areplacement rack 10 constructed according to the designs set forth herein may be able to fit in the same footprint of the conventional rack being replaced. This allows the installer to replace a single rack without having to shift or otherwise move an entire row of existing racks merely to accommodate thenew rack 10. - It will be further appreciated that a “19 inch” rack may be constructed having a footprint of 23.920 inches wide by 15.00 inches deep, and that a “23 inch” rack may be constructed having a footprint of 27.920 inches wide by 15.00 inches deep. The distance between the
floor plates 88 on both the front and rear of such a “19 inch” rack is preferably at least 12 inches, and more preferably at least 14 inches inches, thereby permitting three conduits or cable bundles at least 4 inches wide (or 4 inches in diameter) to be placed side by side between thefloor plates 88, and that the distance between thefloor plates 88 on both the front and rear of such a “23 inch” rack is preferably at least 16 inches, and more preferably at least 18 inches, thereby permitting four conduits or cable bundles at least 4 inches wide (or 4 inches in diameter) to be placed side by side between thefloor plates 88. In at least one preferred embodiment, the distance between thefloor plates 88 on both the front and rear of a “19 inch” rack is 14.10 inches, and the distance between thefloor plates 88 on both the front and rear of a “19 inch” rack is 18.10 inches. - The overall rigidity of the
rack 10 is significantly enhanced through the use of gussets and other reinforcing layers to transfer forces from one structural element to another, but manufacturability is enhanced and material lists are reduced through use in most or all places of only a single reinforcing layer to accomplish such transference. Examples include theupper cross-member 62 reinforced with thereinforcement plates upper cross-member 62 andinner upright member 42 via thereinforcement plates lower cross-member 22 reinforced with thelateral gusset plates lower cross-member 22 and theinner upright member 42 via thelateral gusset plates tabs 34, theinner upright member 42 reinforced with the outerupright members 44 and the transference of forces between the frame uprights 40 and thegusset members 82, and thegusset floor plates 88 reinforced with thecorner anchor plates 84 and the transference of forces between the frame uprights 40 and the floor via thegusset risers 90 and thegusset floor plates 88. -
FIG. 16 is a top isometric view of therack 10 ofFIG. 1 , illustrating various additional features and components that may be used with therack 10. In one additional feature or component example, therack 10 may be anchored to the floor beneath therack 10 using appropriate floor anchors (not shown), which in at least some embodiments are seismically-rated floor anchors. Such anchors conventionally use awasher 102 or similar structure, shown added on top of theanchor plate 84 andfloor plate 88 of eachcorner gusset 86 inFIG. 16 . Such awasher structure 102 may prevent damage to the anchor andfloor plates slots - In another additional feature or component example, a generally-conventional two-
plug power outlet 110 may be attached to the bottom of therack 10 to provide a power source for electronic equipment, accessories, and the like (not shown) mounted or supported in or on therack 10. Mountingapertures 112, visible inFIG. 4 and penetrating both eachlateral gusset plate respective side plate lower cross-member 22, may be used to attach theoutlet 110 to theframe bottom 20. - In another additional feature or component example, a
ground terminal block 114, sometimes referred to as a “ground lug,” may be mounted onstuds 116 at the top or bottom of therack 10. - In another additional feature or component example, a
power strip 118 may be mounted in achannel 120 created between any of the U-sides 48 of the innerupright members 42, the innerupright member wing 50 adjacent to it and the corresponding outer uprightmember side flange 54 adjacent to it. Thepower strip 118 may be of any desired length (height) in order to provide industrystandard power outlets 122 at convenient locations accessible to electronic equipment (not shown) mounted in therack 10. Thepower strip 118 may be mounted in thechannel 120 for quick and easy removal through use of conventional bolts or the like on the back thereof, arranged to be inserted through, and supported by,keyhole openings 124 penetrating thewings 50 of the innerupright members 42 and the U-base 52 of the outerupright members 44,such openings 124 being arranged at appropriate locations along the length thereof. Thepower strip 118 itself may be powered by plugging its power cord into one of the outlets in the two plug-power outlet 110 provided at the bottom of therack 10. - Seismically hardening a two-post electronic equipment rack, such as the
rack 10 described and illustrated herein, may be particularly useful when power outlets, such as the two plug-power outlet 110 andpower strip 118 shown inFIG. 16 , are mounted directly thereon, because of the importance of maintaining safe electrical connections during the occurrence of a seismic event. By maintaining the structural integrity of the rack, the physical relationship between equipment and accessories and the outlets into which they are plugged may likewise be preserved. Such integrity may be preserved by using the seismically hardened twopost rack 10 in accordance with one or more preferred embodiments of the present invention. - In another additional feature or component example, one or more cable guides 126 may be mounted on the
side flanges 54 of the outerupright members 44 of therack 10. Eachcable guide 126 includes a linearprojection support bracket 128 and a plurality of T-shapedprojections 130 forwardly extending therefrom. Theprojection support bracket 128 has a plurality of evenly-spaced resilient plug mounts (not illustrated), extending rearward from the back thereof, that are adapted to mate withrectangular apertures 132 in theside flanges 54 of the outerupright members 44. Thecable guide 126 may be mounted on aside flange 54 by aligning the plug mounts with therectangular apertures 132 in theside flanges 54 and then inserting them through theapertures 132 such that one or more resilient features on the plug mounts are deflected and then spring back into place as the plug mounts become fully seated in therectangular apertures 132. Bosses are preferably disposed on the plug mounts to maintain the plug mounts, and thus the cable guides 126, in place. - Each T-shaped
projection 130 includes a reinforced base, a shaft and a crosspiece. Each pair of adjacent T-shapedprojections 130 defines a cable ring formed by the respective bases, shafts and crosspieces of theprojections 130 and the body of theprojection support bracket 128. An opening into each cable ring is provided by a gap between the ends of the crosspieces of each pair ofadjacent projections 130. This gap permits cables to be inserted into the ring by passing them sideways through the gap. - The
respective projections 130 are evenly spaced along the length of thecable guide 126 at a standardized spacing. In the embodiment shown and described, the spacing between therespective projections 130 is equal to a single standard rack mounting unit (“RMU”), but it should be obvious that other standard spacings could be used such as spacings measured in alternative units or spacings which are multiples of the RMU. By using such a standard spacing, it is ensured that a cable ring is disposed at, and dedicated to, each RMU along the height of arack 10. Benefits of this, and further applicable details of the T-shaped projections, cable rings, and the like, are described in, or made apparent by, the aforementioned U.S. Pat. No. 7,119,282 to Krietzman, et al. - Because the
cable guide 126 is formed separately from theside flanges 54 and subsequently attached thereto, rather than being formed integrally therewith, thecable guide 126 may be formed from a different material than theside flanges 54. Thus, although theside flanges 54 may preferably be formed from metal, the cable guides 126 may be injection-molded from plastic in order to create rounded or beveled edges along the edges of the T-shapedprojections 130. The rounded edges of the cable rings do not chafe cables inserted therein like the sharp metal edges of prior art raceways would, while the rounded edges and corners of the edges of the ends of the crosspieces enable cables being installed in the cable rings to be smoothly guided through the gaps. In addition, by forming the shafts of theprojections 130 from plastic rather than from sheet metal, the width of the shafts may be reduced while still providing the requisite strength and resiliency, thus allowing the cable rings to be widened considerably relative to the width of the shafts. As a result, each cable ring includes a C-shaped opening having concave top and bottom portions and a narrow entry gap relative to the width and height of the ring, thus maximizing the utility of the cable ring in receiving while still retaining a large number of cables. It will be appreciated, however, that other types of cable guides may likewise be utilized without departing from the scope of one or more aspects of the present invention. - In another additional feature or component example, a cable raceway, runway, trough, or other raceway devices may be mounted to the top of the
rack 10. As is well known to the Ordinary Artisan, cables may be routed horizontally through such raceway devices to and from other raceway devices mounted on other racks or cabinets, suspended from the ceiling, or the like. In many implementations, cables may further be routed from such raceway devices downward toward electronic equipment and routing accessories mounted in the rack, including the cable guides 126 described previously. Onesuch raceway assembly 134 is illustrated inFIG. 16 and may be mounted to theupper cross-member 62 via mountingapertures 136 such as those illustrated inFIG. 16 . Such araceway assembly 134 may be centered front-to-back on therack 10 or may be offset a desired distance forward or backward relative to therack 10. Such adjustability may be facilitated by providing multiple rows of mountingapertures 136, one of which is centered front-to-back, at least one of which is arranged forward of the centered row, and at least one of which is arranged rearward of the centered row. Modular raceways, relevant details of which may be described in the aforementioned U.S. Pat. No. 6,394,398 may be utilized to route cables from the top of onerack 10 to another rack. - Seismically hardening a two-post electronic equipment rack, such as the
rack 10 described and illustrated herein, may be particularly useful when used in conjunction with cable raceway devices, such as theraceway assembly 134 shown inFIG. 16 , because the collapse of a rack on which such raceway devices are supported may likewise cause the collapse of large portions of adjacent cable support structures because of the sudden shift in weight of cables mounted thereon. Such a collapse may likewise affect adjacent racks and cabinets, thereby exacerbating the sudden and irregular forces already placed on them more directly by a seismic event. Such a collapse may be prevented by using the seismically hardened twopost rack 10 in accordance with one or more preferred embodiments of the present invention. -
FIG. 17 is a top cross-sectional view, similar to the view ofFIG. 7 , of tworacks 10 like that ofFIG. 3 , schematically illustrating the creation of a virtualvertical cable manager 138 between the tworacks 10, andFIG. 18 is a top cross-sectional view, similar to the view ofFIG. 7 , of tworacks 10 like that ofFIG. 3 , schematically illustrating the creation of another virtualvertical cable manager 238 between the tworacks 10. In particular, a virtualvertical cable manager upright members 44 on twodifferent racks 10 and thecable management projections 130 mounted thereon. These elements create a virtual verticalcable management channel - The space created, i.e., the virtual vertical
cable management channel rack 10 constructed according the designs described and illustrated herein, floor anchors must, in at least some localities, be at least 9.5 inches apart, thereby creating considerable space betweenadjacent racks 10. - It will be appreciated that in some embodiments, virtual vertical cable managers may likewise be created between two-post mounting racks that are not seismically hardened without departing from the scope of the present invention.
- The use of virtual
vertical cable managers FIG. 17 ) and a double-sided virtual vertical cable manager 238 (as shown inFIG. 18 ) merely by adding (or removing)projections 130 or the like. Furthermore, unlike conventional vertical cable managers, there is no need for a structural support panel or cross-members within the virtualvertical cable manager - Based on the foregoing information, it is readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those specifically described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing descriptions thereof, without departing from the substance or scope of the present invention.
- Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for the purpose of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended to be construed to limit the present invention or otherwise exclude any such other embodiments, adaptations, variations, modifications or equivalent arrangements; the present invention being limited only by the claims appended hereto and the equivalents thereof. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Claims (21)
1. A seismically hardened two post mounting rack comprising:
(a) a frame bottom;
(b) a frame top; and
(c) a pair of frame uprights interconnected between the frame bottom and the frame top, wherein each frame upright has a closed cross-sectional shape.
2. The seismically hardened two-post mounting rack of claim 1 , wherein each frame upright includes a box beam.
3. The seismically hardened two-post mounting rack of claim 1 , wherein the closed cross-sectional shape is fabricated by welding together an inner channel member and an outer channel member.
4. The seismically hardened two-post mounting rack of claim 3 , wherein each of the inner and outer channel members is generally Unshaped in cross section.
5. The seismically hardened two-post mounting rack of claim 4 , wherein the inner and outer channel members jointly define the closed cross-sectional shape.
6. The seismically hardened two-post mounting rack of claim 4 , wherein the inner channel member has wings extending outwardly at either side of the U shape of the inner channel member at an angle that is generally perpendicular to opposing sides of the U shape.
7. The seismically hardened two-post mounting rack of claim 6 , wherein the wings are welded to the interior base of the U shape of the outer channel member to define the closed cross-sectional shape.
8. The seismically hardened two-post mounting rack of claim 1 , further comprising a base assembly for supporting the frame bottom on a surface.
9. The seismically hardened two-post mounting rack of claim 1 , further comprising a power outlet attached to the frame bottom.
10. The seismically hardened two-post mounting rack of claim 1 , further comprising a power strip attached to a frame upright.
11. The seismically hardened two-post mounting rack of claim 1 , further comprising one or more cable guides attached to a frame upright.
12. The seismically hardened two-post mounting rack of claim 1 , further comprising a cable raceway attached to the frame top.
13. A seismically hardened two-post mounting rack comprising:
(a) a frame bottom;
(b) a frame top;
(c) a pair of frame uprights interconnected between the frame bottom and the frame top, wherein each frame upright includes a flange with apertures adapted to provide a mounting location for cable management projections.
14. The seismically hardened two-post mounting rack of claim 13 , wherein the flange is disposed at a distance forward from the main portion of the frame upright.
15. The seismically hardened two-post mounting rack of claim 13 , further comprising a base assembly for supporting the frame bottom on a surface.
16. The seismically hardened two-post mounting rack of claim 13 , further comprising a power outlet attached to the frame bottom.
17. The seismically hardened two-post mounting rack of claim 13 , further comprising a power strip attached to a frame upright.
18. The seismically hardened two-post mounting rack of claim 13 , further comprising one or more cable guides attached to a frame upright.
19. The seismically hardened two-post mounting rack of claim 13 , further comprising a cable raceway attached to the frame top.
20.-38. (canceled)
39. A mounting rack system comprising:
(a) a first two-post mounting rack;
(b) a second two-post mounting rack, disposed laterally adjacent to, but spaced apart from, the first two-post mounting rack; and
(c) a virtual vertical cable manager, created by and between the first and second adjacent two-post mounting racks.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/468,865 US20090283488A1 (en) | 2008-05-19 | 2009-05-19 | Seismically hardened two-post electronic equipment rack |
US13/403,404 US8424691B2 (en) | 2008-05-19 | 2012-02-23 | Seismically hardened two-post electronic equipment rack |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5445708P | 2008-05-19 | 2008-05-19 | |
US5973808P | 2008-06-06 | 2008-06-06 | |
US12/468,865 US20090283488A1 (en) | 2008-05-19 | 2009-05-19 | Seismically hardened two-post electronic equipment rack |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/403,404 Continuation US8424691B2 (en) | 2008-05-19 | 2012-02-23 | Seismically hardened two-post electronic equipment rack |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090283488A1 true US20090283488A1 (en) | 2009-11-19 |
Family
ID=41315146
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/468,865 Abandoned US20090283488A1 (en) | 2008-05-19 | 2009-05-19 | Seismically hardened two-post electronic equipment rack |
US13/403,404 Active US8424691B2 (en) | 2008-05-19 | 2012-02-23 | Seismically hardened two-post electronic equipment rack |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/403,404 Active US8424691B2 (en) | 2008-05-19 | 2012-02-23 | Seismically hardened two-post electronic equipment rack |
Country Status (2)
Country | Link |
---|---|
US (2) | US20090283488A1 (en) |
WO (1) | WO2009143193A2 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080062655A1 (en) * | 2006-09-08 | 2008-03-13 | Leviton Manufacturing Co., Inc. | Equipment rack panel system and method |
US20080181353A1 (en) * | 2007-01-31 | 2008-07-31 | Masako Ogata | Sensor Device, and Portable Communication Terminal and Electronic Device Using the Sensor Device |
USD629289S1 (en) | 2010-06-29 | 2010-12-21 | Chatsworth Products, Inc. | Cable guide projection with boss |
US7893356B2 (en) | 2008-01-07 | 2011-02-22 | Chatsworth Products, Inc. | Cable management accessories |
USD637065S1 (en) | 2010-01-16 | 2011-05-03 | Chatsworth Products, Inc. | Cable guide projection |
USD637066S1 (en) | 2010-06-29 | 2011-05-03 | Chatsworth Products, Inc. | Cable guide projection |
USD640528S1 (en) | 2010-06-29 | 2011-06-28 | Chatsworth Products, Inc. | Cable guide projection with boss |
US7974105B2 (en) | 2008-01-07 | 2011-07-05 | Chatsworth Products, Inc. | Apparatus and method for organizing cables in a cabinet |
USD651570S1 (en) | 2010-01-16 | 2012-01-03 | Chatsworth Products, Inc. | Raceway for cable management |
USD653623S1 (en) | 2010-01-16 | 2012-02-07 | Chatsworth Products, Inc. | Raceway for cable management |
EP2429272A2 (en) | 2010-09-10 | 2012-03-14 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
EP2429271A2 (en) | 2010-09-10 | 2012-03-14 | Chatsworth Products, Inc. | Rail seal for electronic equipment enclosure |
US8263867B2 (en) | 2008-01-07 | 2012-09-11 | Chatsworth Products, Inc. | Cable management accessories |
CN102711408A (en) * | 2012-05-23 | 2012-10-03 | 广州南天电脑系统有限公司 | Multifunctional rack |
EP2525636A3 (en) * | 2011-05-16 | 2013-01-23 | Middle Atlantic Products Inc. | Rack assembly |
US8424691B2 (en) | 2008-05-19 | 2013-04-23 | Chatsworth Products, Inc. | Seismically hardened two-post electronic equipment rack |
US8558113B2 (en) | 2010-01-17 | 2013-10-15 | Chatsworth Products, Inc. | Vertical cable manager |
US20140016903A1 (en) * | 2012-07-11 | 2014-01-16 | Tyco Electronics Corporation | Telecommunications Cabinet Modularization |
US8710369B2 (en) | 2010-01-17 | 2014-04-29 | Chatsworth Products, Inc. | Horizontal cable manager |
US8787023B2 (en) | 2010-09-10 | 2014-07-22 | Chatsworth Products, Inc. | Rail mounting clamp for electronic equipment enclosure |
US8901438B2 (en) | 2010-09-10 | 2014-12-02 | Chatsworth Products, Inc. | Electronic equipment cabinet structure |
US20160209614A1 (en) * | 2015-01-15 | 2016-07-21 | Commscope, Inc. Of North Carolina | Module and assembly for fiber optic interconnections |
CN106102408A (en) * | 2016-07-06 | 2016-11-09 | 深圳市艾特网能技术有限公司 | The support section bar of a kind of rack and rack |
US9572286B2 (en) | 2013-01-11 | 2017-02-14 | Chatsworth Products, Inc. | Modular thermal isolation barrier for data processing equipment structure |
US10271452B2 (en) | 2016-07-26 | 2019-04-23 | Chatsworth Products, Inc. | Features for cable managers and other electronic equipment structures |
CN112351620A (en) * | 2020-11-12 | 2021-02-09 | 吴江市中盛机械有限公司 | Ultralow temperature refrigerator electric cabinet with plug wire misplug prevention function |
US11622458B1 (en) | 2020-12-15 | 2023-04-04 | Chatsworth Products, Inc. | Brush port assembly and method for installing same |
US20230128822A1 (en) * | 2021-10-22 | 2023-04-27 | Dell Products L.P. | Seismically fortified electronic equipment racks |
US11678458B1 (en) | 2020-12-15 | 2023-06-13 | Chatsworth Products, Inc. | Slidable mounting hardware for electronic equipment enclosure and method for installing same |
US11818862B1 (en) | 2020-12-15 | 2023-11-14 | Chatsworth Products, Inc. | Frame structure for electronic equipment enclosure |
US11920392B1 (en) | 2021-02-02 | 2024-03-05 | Chatsworth Products, Inc. | Electrical bonding door hinges |
US12048108B1 (en) | 2020-12-15 | 2024-07-23 | Chatsworth Products, Inc. | Caster attachment system using mating features |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101915344B (en) * | 2010-07-13 | 2013-05-22 | 乐克斯瑞(北京)数字技术有限公司 | Assembled digital home terminal with design of independent functional components |
TW201317739A (en) * | 2011-10-17 | 2013-05-01 | Hon Hai Prec Ind Co Ltd | Container data center |
WO2013059937A1 (en) * | 2011-10-28 | 2013-05-02 | Les Industries Cendrex Inc. | Access doors |
US9854702B2 (en) * | 2014-01-15 | 2017-12-26 | Siemens Aktiengesellschaft | Compressed-air rack for an electric locomotive |
US9445534B2 (en) | 2014-06-09 | 2016-09-13 | Dell Products, L.P. | Compute device casing that doubles as packaging and shipping container for the compute device |
US10173874B2 (en) | 2014-07-16 | 2019-01-08 | Dell Products, L.P. | Integrated rack lifting apparatus |
FR3076177B1 (en) * | 2017-12-22 | 2021-03-26 | Bull Sas | ELECTRONIC BOARD INTERCONNECTION SYSTEM AND COMPUTER COMPUTING CABINET INCLUDING SUCH A SYSTEM |
EP4214560A1 (en) | 2020-09-17 | 2023-07-26 | Panduit Corp. | Optical distribution and splice frame including enclosures |
US20220381051A1 (en) * | 2021-05-25 | 2022-12-01 | Vertiv Corporation | Outdoor seismic equipment enclosures |
US20230103800A1 (en) * | 2021-09-27 | 2023-04-06 | Frank Immel | Seismic remediation devices, systems, and methods |
Citations (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2424217A (en) * | 1941-03-12 | 1947-07-22 | Lyon Metal Products Inc | Sheet metal storage cabinet |
US2740944A (en) * | 1950-10-17 | 1956-04-03 | Telephone Mfg Co Ltd | Mounting arrangements for electrical apparatus |
US3034844A (en) * | 1958-01-21 | 1962-05-15 | Amco Eng | Enclosure |
US3247312A (en) * | 1963-12-26 | 1966-04-19 | Borg Warner | Shielding enclosure for electrical equipment |
US3403220A (en) * | 1965-10-25 | 1968-09-24 | Riedel Anton | Cable guiding channel |
US3404931A (en) * | 1967-03-20 | 1968-10-08 | Fall | Cabinet structure |
US3563627A (en) * | 1968-12-03 | 1971-02-16 | Digital Equipment Corp | Cabinet construction |
US3602373A (en) * | 1968-08-30 | 1971-08-31 | Palmer Shile Co | Method and means for constructing and changing length of storage rack beams |
US3859767A (en) * | 1973-10-31 | 1975-01-14 | Jahabow Of Utah Inc | Corner structure improvement and method |
US3919603A (en) * | 1973-02-21 | 1975-11-11 | Westinghouse Electric Corp | Switchboard framework corner tie |
US3966285A (en) * | 1974-07-17 | 1976-06-29 | Porch Don E | Collapsible shipping container |
US4045104A (en) * | 1975-08-20 | 1977-08-30 | Peterson Clinton B | Cabinet structure and method of construction |
US4470102A (en) * | 1982-09-24 | 1984-09-04 | Porta Systems Corp. | Wall mounted distribution frame for telephone subscriber locations |
US4497411A (en) * | 1982-04-19 | 1985-02-05 | Northern Telecom Limited | Distributing frame for telecommunications systems |
US4553674A (en) * | 1981-01-30 | 1985-11-19 | Hitachi, Ltd. | Casing construction for electronic equipment |
US4592602A (en) * | 1983-06-28 | 1986-06-03 | Contraves Ag | Modular mounting rack system of vertical-type construction |
US4641754A (en) * | 1986-01-16 | 1987-02-10 | Homaco, Inc. | Quick connect frame |
US4675900A (en) * | 1986-01-09 | 1987-06-23 | Homaco, Inc. | Wire terminal panel for building cable system |
US4899892A (en) * | 1988-03-08 | 1990-02-13 | Northern Telecom Limited | Earthquake-resistant electronic equipment frame |
US4964020A (en) * | 1989-09-27 | 1990-10-16 | At&T Bell Laboratories | Equipment rack |
US4988008A (en) * | 1989-06-19 | 1991-01-29 | Siemens Aktiengesellschaft | Supporting framework for a control cabinet |
US4997240A (en) * | 1989-03-28 | 1991-03-05 | Siemens Aktiengesellschaft | Modular housing system for electronic equipment |
US5004107A (en) * | 1989-05-05 | 1991-04-02 | Hendry Mechanical Works | Earthquake braced racks |
US5066161A (en) * | 1989-05-08 | 1991-11-19 | Pinney Richard C | Framework for cabinet structure |
US5141185A (en) * | 1990-07-20 | 1992-08-25 | Erico International Corporation | Wiring clip |
US5165770A (en) * | 1991-03-29 | 1992-11-24 | Richard Hahn | Electronic equipment modular cabinet system |
US5228762A (en) * | 1990-05-18 | 1993-07-20 | Transrack | Metal cabinet frame |
US5233129A (en) * | 1992-10-15 | 1993-08-03 | At&T Bell Laboratories | Seismic network bay frame |
US5250752A (en) * | 1992-11-23 | 1993-10-05 | Gamlet Incorporated | Knockdown EMI/RFI shielded electronic rack enclosure |
US5284254A (en) * | 1992-06-24 | 1994-02-08 | B-Line Systems, Inc. | Rack for electrical equipment |
US5326934A (en) * | 1991-07-08 | 1994-07-05 | Communication Integrators Inc. | Multi-commodity connectivity system |
US5333950A (en) * | 1991-12-05 | 1994-08-02 | Rittal-Werk Rudolf Loh Gmbh & Co. Kg | Control cabinet with rack and mounting plate |
US5372262A (en) * | 1991-06-28 | 1994-12-13 | Digital Equipment Corporation | Frame assembly for rack-mountable equipment |
US5380083A (en) * | 1991-11-27 | 1995-01-10 | Federal-Hoffman, Inc. | Multifaceted modular enclosure frame with integral sub-panel guide system |
US5383723A (en) * | 1993-04-19 | 1995-01-24 | Northern Telecom Limited | Earthquake resistant electronic equipment frame |
US5386959A (en) * | 1988-12-14 | 1995-02-07 | Erico International Corporation | Box support |
US5441337A (en) * | 1993-10-06 | 1995-08-15 | Schroff Gmbh | Component cabinet |
US5536079A (en) * | 1991-05-22 | 1996-07-16 | Asea Brown Boveri Ltd. | Cabinet |
US5540339A (en) * | 1994-06-13 | 1996-07-30 | Homaco, Inc. | Telecommunications wall rack |
US5542549A (en) * | 1994-11-22 | 1996-08-06 | The Siemon Company | Cross connect frame for communication connector blocks and other devices |
US5566836A (en) * | 1995-06-01 | 1996-10-22 | Homaco, Inc. | Telecommunication relay rack |
US5586012A (en) * | 1993-10-04 | 1996-12-17 | Homaco, Inc. | Vertical organizer comprised of two sections joined together by a splice and secured between two relay racks |
US5593046A (en) * | 1994-05-09 | 1997-01-14 | Nikko Kogyo Kabushiki Kaisha | Collapsible housing frame |
US5640482A (en) * | 1995-08-31 | 1997-06-17 | The Whitaker Corporation | Fiber optic cable management rack |
US5639150A (en) * | 1995-09-22 | 1997-06-17 | Amco Engineering Co. | Electronic component enclosure and method |
US5683001A (en) * | 1993-12-03 | 1997-11-04 | Nec Corporation | Rack for mounting electronic apparatuses |
US5695263A (en) * | 1993-02-25 | 1997-12-09 | Knurr-Mechanik Fur Die Elektronik Aktiengesellschaft | Cabinet |
US5713651A (en) * | 1996-02-27 | 1998-02-03 | Mcquay International | Modular frame assembly for an equipment cabinet |
US5749476A (en) * | 1993-10-23 | 1998-05-12 | Rittal-Werk Rudolf Loh Gmbh & Co. Kg | Rack for a switching cabinet |
US5769519A (en) * | 1995-03-07 | 1998-06-23 | Rittal-Werk Rudolf Loh Gmbh & Co. Kg | Switchgear cabinet with framework and base |
US5788087A (en) * | 1996-03-18 | 1998-08-04 | Ortronics, Inc. | Hinged wire management panel assembly |
US5788348A (en) * | 1994-03-15 | 1998-08-04 | Interbold | Automated teller machine with enhanced service access |
US5791498A (en) * | 1997-01-21 | 1998-08-11 | Dell U.S.A., L.P. | Rack mount mechanism having an angled bar-nut |
US5806687A (en) * | 1997-02-27 | 1998-09-15 | Chatsworth Prod Inc | Swinging gate rack |
USD433615S (en) * | 2000-02-17 | 2000-11-14 | Miro Industries, Inc. | Base for a pipe supporting device |
US6185092B1 (en) * | 1999-09-03 | 2001-02-06 | Compaq Computer Corporation | Computer system with in-line switchbox mounting |
US6238029B1 (en) * | 2000-04-11 | 2001-05-29 | Ads, The Power Resource, Inc. | Universal electronics cabinet |
US6282854B1 (en) * | 1998-06-05 | 2001-09-04 | Trendway Corporation | Frame-based workplace system |
US6386120B1 (en) * | 1998-06-30 | 2002-05-14 | Emc Corporation | Electrical cabinet having a pivoting platform |
US20030072551A1 (en) * | 2001-10-12 | 2003-04-17 | Douglas Joel B. | Rotating vertical fiber tray and methods |
US6601349B1 (en) * | 2001-11-02 | 2003-08-05 | David A. Corden | Free-standing panel wall system |
US6613981B1 (en) * | 2001-10-17 | 2003-09-02 | Chatsworth Products, Inc. | Pivotable cable ring wire management system |
US6702125B2 (en) * | 2001-03-09 | 2004-03-09 | Rittal Gmbh & Co. Kg | Support frame having adjustable vertical supports |
US6814244B1 (en) * | 2001-10-17 | 2004-11-09 | Chatsworth Products, Inc. | Ramped latch closure system |
US20040226900A1 (en) * | 2003-03-07 | 2004-11-18 | Canty Mark E. | Rack-mountable cable manager |
US20050247650A1 (en) * | 2004-05-07 | 2005-11-10 | Vogel Mark A | Vertical cable manager |
US7229050B2 (en) * | 2002-11-27 | 2007-06-12 | Hewlett-Packard Development Company, L.P. | Raceway system |
US20080130262A1 (en) * | 2005-01-21 | 2008-06-05 | Cooper Technologies Company | Cable management system |
US20080151524A1 (en) * | 2006-12-20 | 2008-06-26 | Panduit Corp. | Horizontal Cable Manager |
US20080209827A1 (en) * | 2007-01-16 | 2008-09-04 | Webb Scott T | Temporary movable/removable compression partition wall system |
US7437048B2 (en) * | 2005-08-18 | 2008-10-14 | Tellabs Operations, Inc. | Equipment bay cable management system |
US7448168B2 (en) * | 1996-12-24 | 2008-11-11 | Steelcase Inc. | Knock-down portable partition system |
US20090061755A1 (en) * | 2007-08-28 | 2009-03-05 | Panduit Corp. | Intake Duct |
US20090090538A1 (en) * | 2007-09-06 | 2009-04-09 | Trent Jones | Vertical Cable Manager |
US20090090533A1 (en) * | 2007-09-06 | 2009-04-09 | Trent Jones | Horizontal Cable Manager |
US20090224110A1 (en) * | 2008-01-07 | 2009-09-10 | Chatsworth Products, Inc. | Repositionable shelf-mounted handle spool assembly for cable routing |
US20090227197A1 (en) * | 2008-02-14 | 2009-09-10 | Chatsworth Products, Inc. | Air directing device |
US20090236117A1 (en) * | 2008-01-07 | 2009-09-24 | Chatsworth Products, Inc. | Cable management accessories |
US20090273915A1 (en) * | 2008-01-07 | 2009-11-05 | Dean Jr David Lee | Apparatus and method for organizing cables in a cabinet |
US7687716B2 (en) * | 2007-06-07 | 2010-03-30 | Tyco Electronics Corporation | Adjustable cable support bracket for an electrical component |
US7697285B2 (en) * | 2007-05-17 | 2010-04-13 | Chatsworth Products, Inc. | Electronic equipment enclosure with exhaust air duct and adjustable filler panel assemblies |
US20100193754A1 (en) * | 2008-01-07 | 2010-08-05 | Chatsworth Products, Inc. | Cable management accessories |
US20100200707A1 (en) * | 2008-01-07 | 2010-08-12 | Chatsworth Products, Inc. | Cable management accessories |
US7874433B2 (en) * | 2005-04-28 | 2011-01-25 | Ortronics, Inc. | Seismically sound rack system |
Family Cites Families (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3265419A (en) | 1963-12-30 | 1966-08-09 | Honeywell Inc | Cabinet structure |
US4148453A (en) | 1977-12-08 | 1979-04-10 | Brantly Robert T | Projector stacking stand |
DE3344598C1 (en) * | 1983-12-09 | 1984-09-13 | Loh Kg Rittal Werk | Frame for a control cabinet |
USRE34393E (en) | 1989-11-13 | 1993-09-28 | Gichner Systems Group, Inc. | Enclosure for housing electronic components |
GB9214106D0 (en) | 1992-07-03 | 1992-08-12 | Bicc Plc | Racks for electronic equipment |
US5323916A (en) | 1992-12-23 | 1994-06-28 | Newton Instrument Company, Inc. | Unequal flange-type telephone equipment rack adapted for universal application |
IT230672Y1 (en) | 1993-10-26 | 1999-06-09 | Cms Costr Meccan Sestesi Srl | CABINET STRUCTURE, FOR ELECTRIC OR ELECTRONIC EQUIPMENT, WITH VARIABLE DIMENSIONS |
USD360189S (en) | 1994-03-09 | 1995-07-11 | Ortronics Inc. | Communication equipment and wire management rack |
DE4439628C2 (en) | 1994-11-05 | 1998-11-26 | Loh Kg Rittal Werk | Frame made of frame legs and depth struts |
DE4439544C2 (en) | 1994-11-05 | 1997-08-28 | Loh Kg Rittal Werk | Frame for a control cabinet |
US5979672A (en) | 1996-04-10 | 1999-11-09 | Telcordia Technologies, Inc. | Earthquake resistant enclosure for electronic equipment |
DE19615759C2 (en) | 1996-04-20 | 2001-02-22 | Loh Kg Rittal Werk | Control cabinet with base and frame |
WO1998003048A1 (en) | 1996-07-12 | 1998-01-22 | Northern Telecom Limited | Equipment rack |
DE19647814C2 (en) | 1996-11-19 | 1999-06-02 | Loh Kg Rittal Werk | switch cabinet |
US5848500A (en) | 1997-01-07 | 1998-12-15 | Eastman Kodak Company | Light-tight enclosure and joint connectors for enclosure framework |
US5902961A (en) | 1997-01-28 | 1999-05-11 | The Siemon Company | Cable manager |
US5819956A (en) * | 1997-02-25 | 1998-10-13 | Sigma-Aldrich Company | Rack for electrical equipment |
DE19711980C2 (en) | 1997-03-12 | 2001-11-08 | Krone Gmbh | Stationary housing with plastic wall elements |
FR2761206B1 (en) | 1997-03-21 | 1999-05-14 | Schneider Electric Sa | METAL CHASSIS WITH HYPERSTATIC ASSEMBLY CORNER, PARTICULARLY FOR AN ELECTRICAL CABINET FRAMEWORK |
US5901033A (en) | 1997-05-13 | 1999-05-04 | Reltec Corporation | Multisided communication distribution cabinet |
US5983590A (en) | 1997-05-29 | 1999-11-16 | The Crown Division | Earthquake resistant equipment rack |
US6006925A (en) | 1997-06-03 | 1999-12-28 | Hendry Mechanical Works | Equipment rack system |
USD440210S1 (en) | 1997-08-07 | 2001-04-10 | Ortronics, Inc. | Cable management rack |
US6021047A (en) | 1997-10-24 | 2000-02-01 | Dell U.S.A., L,P. | Computer and a rack mount system and method for a computer |
US5934485A (en) | 1997-12-24 | 1999-08-10 | Northern Telecom Limited | Telecommunications rack |
US6036290A (en) | 1998-03-13 | 2000-03-14 | Hoffman Enclosures, Inc. | Seismic subframe for electrical enclosure |
WO1999048179A1 (en) | 1998-03-18 | 1999-09-23 | Rittal-Werk Rudolf Loh Gmbh & Co. Kg | Frame for a switch cabinet |
US6527351B1 (en) | 1998-06-23 | 2003-03-04 | Hendry Mechanical Works | Equipment mounting racks and cabinets |
US6561602B1 (en) | 1998-06-23 | 2003-05-13 | Hendry Mechanical Works | Equipment mounting racks and cabinets |
US6213577B1 (en) | 1998-07-23 | 2001-04-10 | The Foxboro Company | Equipment storage apparatus |
DE19853611C1 (en) | 1998-11-20 | 2000-04-06 | Skeppner Hans | Electrical equipment cabinet has attachment strip with a row of holes between sealing edges or surfaces, enabling covering elements to be attached without penetrating wall of frame profile |
US6240687B1 (en) | 1998-11-24 | 2001-06-05 | The Marvel Group, Inc. | Frame construction for modular office furniture |
US6201919B1 (en) * | 1998-12-16 | 2001-03-13 | Adc Telecommunications, Inc | Fiber distribution frame |
GB2345240B (en) | 1998-12-30 | 2002-09-18 | Vero Electronics Ltd | An electrical cabinet and a frame therefor |
US6468112B1 (en) | 1999-01-11 | 2002-10-22 | Adc Telecommunications, Inc. | Vertical cable management system with ribcage structure |
US6223909B1 (en) | 1999-02-12 | 2001-05-01 | Adc Telecommunications, Inc. | Cable management rack for telecommunications equipment |
US6102214A (en) * | 1999-02-12 | 2000-08-15 | Adc Telecommunications, Inc. | Cable management rack for telecommunications equipment |
US6760531B1 (en) * | 1999-03-01 | 2004-07-06 | Adc Telecommunications, Inc. | Optical fiber distribution frame with outside plant enclosure |
US6065612A (en) | 1999-04-23 | 2000-05-23 | Sigma Aldrich Co. | Relay rack with two-way opening door frame |
US6543626B1 (en) * | 1999-05-21 | 2003-04-08 | Adc Telecommunications, Inc. | Cable management rack for telecommunication cross-connect systems |
GB9915040D0 (en) | 1999-06-28 | 1999-08-25 | Willsher & Quick Ltd | Frame structure for an enclosure for electrical equipment |
EP1196973A1 (en) * | 1999-06-28 | 2002-04-17 | Cooper B-Line Limited | Cable guiding |
US6123203A (en) | 1999-07-13 | 2000-09-26 | Dell Usa L.P. | System and method for mounting a computer system component within a housing |
US6179133B1 (en) | 1999-08-30 | 2001-01-30 | Newton Instrument Company, Inc. | Seismic rack with extension subassembly |
FR2798520B1 (en) | 1999-09-15 | 2003-10-17 | Schneider Electric Ind Sa | CHASSIS HAVING A METAL FRAMEWORK WITH A PROGRESSIVE TIGHTENING CORNER, ESPECIALLY FOR AN ELECTRICAL CABINET |
US6223908B1 (en) | 1999-09-15 | 2001-05-01 | Homaco, Inc. | Adjustable communications equipment dual relay rack |
US6202860B1 (en) | 1999-10-07 | 2001-03-20 | W. H. Stewart Co. | Electronic equipment enclosure |
US6245998B1 (en) | 1999-10-27 | 2001-06-12 | Avaya Technology Corp. | Cable management assembly for equipment racks |
US7504581B2 (en) | 2006-03-13 | 2009-03-17 | Panduit Corp. | Network cabinet |
US6349837B1 (en) * | 1999-11-10 | 2002-02-26 | Marconi Communications, Inc. | Stiffened relay rack |
US6347714B1 (en) * | 1999-12-17 | 2002-02-19 | Hubbell Incorporated | Vertical cable management system |
US6365834B1 (en) * | 2000-01-10 | 2002-04-02 | Ortronics, Inc. | Cable management rack with vertical wire guides |
USD438177S1 (en) | 2000-01-20 | 2001-02-27 | Joseph W. Rogers | Cable management rack |
US6301837B1 (en) | 2000-03-13 | 2001-10-16 | Kewaunee Scientific Corp. | Rack assembly for supporting electronic units |
US6425648B1 (en) | 2000-04-12 | 2002-07-30 | International Business Machines Corporation | Modular and flexible server frame enclosure |
US6425488B1 (en) | 2000-04-12 | 2002-07-30 | International Business Machines Corporation | Integrated flexible frame tie down retention system for raised and non-raised floor applications |
US6584267B1 (en) | 2000-06-02 | 2003-06-24 | Panduit Corp. | Cable management system |
US6338413B1 (en) | 2000-06-02 | 2002-01-15 | Newton Instrument Company, Inc. | Mass customization telecommunications equipment rack |
US6614978B1 (en) | 2000-06-02 | 2003-09-02 | Panduit Corp. | Slack cable management system |
US6541705B1 (en) | 2000-07-28 | 2003-04-01 | Panduit Corp. | Cable management rack |
TW498778U (en) | 2000-08-03 | 2002-08-11 | Paokai Electronic Entpr Co Ltd | Structure of frame for game machine |
US6279756B1 (en) | 2000-09-05 | 2001-08-28 | Newton Instrument Company, Inc. | Telecommunications equipment rack having improved structural strength |
US6489565B1 (en) * | 2000-09-15 | 2002-12-03 | Chatsworth Products, Inc. | Vertical cable management rack |
AU2001296345A1 (en) | 2000-09-27 | 2002-04-08 | Ortronics, Inc. | Adjustable equipment rack |
US6321917B1 (en) | 2000-11-14 | 2001-11-27 | Adc Telecommunications, Inc. | Cable management rack for telecommunications equipment |
US6422399B1 (en) | 2000-11-21 | 2002-07-23 | Dell Products L.P. | Rack system and method having tool-less releasable arm assembly |
AU2002230537A1 (en) | 2000-11-30 | 2002-06-11 | L & P Property Management Company | Earthquake resistant equipment rack |
US20040183409A1 (en) | 2001-01-23 | 2004-09-23 | Cooper Technologies Company | Electrical equipment enclosure |
US6598270B2 (en) | 2001-01-30 | 2003-07-29 | Ortronics, Inc. | Equipment mounting strap |
US20020100738A1 (en) | 2001-02-01 | 2002-08-01 | Walter Jonathan Trent | Telecommunications equipment rack having hemmed upright supports for improved structural stiffness |
US20020100737A1 (en) | 2001-02-01 | 2002-08-01 | Walter Jonathan Trent | Telecommunications equipment rack having hemmed upright supports for improved structural stiffness |
US6478166B2 (en) | 2001-02-27 | 2002-11-12 | Chun Long Metal Co., Ltd. | Flexible storage rack |
US6708830B2 (en) | 2001-04-27 | 2004-03-23 | Adc Telecommunications, Inc. | Vertical cable management ring with pivotable section |
US6629614B2 (en) | 2001-05-01 | 2003-10-07 | Nortel Networks Limited | Mounting for telecommunications equipment |
US6481582B1 (en) | 2001-06-04 | 2002-11-19 | Cooper Technologies Company | Rack |
US6785459B2 (en) * | 2001-06-26 | 2004-08-31 | Adc Telecommunications, Inc. | Cable management brackets and cabinet |
US6866541B2 (en) | 2001-07-26 | 2005-03-15 | Panduit Corp. | Angled patch panel with cable support bar for network cable racks |
US6554142B2 (en) | 2001-07-27 | 2003-04-29 | Dell Products L.P. | Variable mount rack system arm assembly |
US6655533B2 (en) | 2001-09-28 | 2003-12-02 | Hoffman Enclosures, Inc. | Adjustable four-column rack |
FR2832225B1 (en) * | 2001-11-13 | 2004-08-27 | Nexans | HIGH DENSITY OPTICAL DISTRIBUTOR AND METHOD FOR THE GARAGE OF SUCH A DISTRIBUTOR |
US6889853B2 (en) | 2001-12-20 | 2005-05-10 | Sanmina Enclosure Systems Division | Earthquake-resistant equipment rack |
ITMI20020473A1 (en) | 2002-03-06 | 2003-09-08 | Abb Service Srl | UPRIGHT STRUCTURE FOR ELECTRICAL DISTRIBUTION CABINETS |
US20030214205A1 (en) | 2002-03-28 | 2003-11-20 | Brendan Wyatt | Rack frame structure and method of assembling same |
US6974036B2 (en) * | 2002-04-01 | 2005-12-13 | Viasystems Group, Inc. | Corner post and manufacturing process for making same |
US7014051B2 (en) | 2002-05-20 | 2006-03-21 | Sun Microsystems, Inc. | Apparatus and method for mounting a component in a rack |
US20040069725A1 (en) | 2002-07-10 | 2004-04-15 | Adducci Samuel J. | Seismically resistant network equipment rack |
US6769551B2 (en) * | 2002-07-26 | 2004-08-03 | Dell Products L.P. | System and method for utilizing non-dedicated rack space |
US6605777B1 (en) | 2002-07-29 | 2003-08-12 | Amco Engineering Co. | Earthquake-resistant electronic equipment frame |
US7083051B2 (en) | 2002-11-15 | 2006-08-01 | Adc Telecommunications, Inc. | Cable management assembly, system and method |
FR2847495B1 (en) | 2002-11-27 | 2005-02-18 | Icm Group | METHOD OF MANUFACTURING A FASTENING PLATE, FLAN CUT FOR IMPLEMENTING SUCH A METHOD, PLATINUM OBTAINED THEREBY AND BASE PLATE FASTENING PLATE AND TUBULAR BODY OF A SINGLE PIECE |
US6788535B2 (en) | 2002-12-12 | 2004-09-07 | 3M Innovative Properties Company | Outdoor electronic equipment cabinet |
JP4212939B2 (en) | 2003-03-25 | 2009-01-21 | 富士通株式会社 | Equipment frame |
US6946605B2 (en) | 2003-12-01 | 2005-09-20 | Ortronics, Inc. | Cable management system |
US6968647B2 (en) | 2003-12-01 | 2005-11-29 | Levesque Stewart A | Rack-mounted door assembly with alternative pivoting axes |
US6920274B2 (en) | 2003-12-23 | 2005-07-19 | Adc Telecommunications, Inc. | High density optical fiber distribution frame with modules |
WO2005093921A2 (en) | 2004-03-22 | 2005-10-06 | Panduit Corp. | Vertical cable manager |
US20060043031A1 (en) * | 2004-08-26 | 2006-03-02 | Cooper Technologies Company | Electronic equipment rack |
US7019213B1 (en) * | 2004-09-13 | 2006-03-28 | Leviton Manufacturing Co., Inc. | Cable management system |
US7417188B2 (en) | 2004-09-13 | 2008-08-26 | Leviton Manufacturing Co., Inc. | Cable management system |
US7219809B2 (en) * | 2005-03-24 | 2007-05-22 | Middle Atlantic Products, Inc. | Relay rack |
US20070144981A1 (en) | 2005-12-27 | 2007-06-28 | Telect, Inc. | Variable Rack Mounting Members |
US7259326B2 (en) | 2005-12-27 | 2007-08-21 | Telect Inc. | Variable structural rack members |
US7946433B2 (en) | 2005-12-27 | 2011-05-24 | Telect Inc. | Interlocking upright rack members |
US7425678B2 (en) | 2006-03-13 | 2008-09-16 | Panduit Corp. | Network cabinet |
US20070210680A1 (en) * | 2006-03-13 | 2007-09-13 | Panduit Corp. | Network cabinet |
US7718891B2 (en) * | 2006-03-13 | 2010-05-18 | Panduit Corp. | Network cabinet |
US7498512B2 (en) | 2006-03-13 | 2009-03-03 | Panduit Corp. | Network cabinet |
US7795532B2 (en) | 2006-03-13 | 2010-09-14 | Panduit Corp. | Network Cabinet |
US7427713B2 (en) | 2006-03-13 | 2008-09-23 | Panduit Corp. | Network cabinet |
US7773850B2 (en) * | 2006-03-13 | 2010-08-10 | Panduit Corp. | Cable slack manager |
US7595985B2 (en) | 2006-06-19 | 2009-09-29 | Panduit Corp. | Network cabinet with thermal air flow management |
US20080035810A1 (en) | 2006-08-12 | 2008-02-14 | Chatsworth Products, Inc. | Offset brackets for expanding electronic equipment cabinets |
US9038973B2 (en) * | 2007-07-12 | 2015-05-26 | Panduit Corp. | Accessory bracket |
CN102177633A (en) | 2008-01-07 | 2011-09-07 | 查特沃斯产品公司 | Cable management accessories |
US20090283488A1 (en) | 2008-05-19 | 2009-11-19 | Chatsworth Products, Inc. | Seismically hardened two-post electronic equipment rack |
US8714368B2 (en) * | 2009-09-09 | 2014-05-06 | Adc Telecommunications, Inc. | Pass-through trough |
EP2429272A2 (en) | 2010-09-10 | 2012-03-14 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
US20120062091A1 (en) | 2010-09-10 | 2012-03-15 | Donowho D Brian | Vertical mounting rail with cable management features |
US8901438B2 (en) | 2010-09-10 | 2014-12-02 | Chatsworth Products, Inc. | Electronic equipment cabinet structure |
EP2429271A2 (en) | 2010-09-10 | 2012-03-14 | Chatsworth Products, Inc. | Rail seal for electronic equipment enclosure |
US8787023B2 (en) | 2010-09-10 | 2014-07-22 | Chatsworth Products, Inc. | Rail mounting clamp for electronic equipment enclosure |
US9313927B2 (en) | 2010-11-08 | 2016-04-12 | Chatsworth Products, Inc. | Header panel assembly for preventing air circulation above electronic equipment enclosure |
-
2009
- 2009-05-19 US US12/468,865 patent/US20090283488A1/en not_active Abandoned
- 2009-05-19 WO PCT/US2009/044577 patent/WO2009143193A2/en active Application Filing
-
2012
- 2012-02-23 US US13/403,404 patent/US8424691B2/en active Active
Patent Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2424217A (en) * | 1941-03-12 | 1947-07-22 | Lyon Metal Products Inc | Sheet metal storage cabinet |
US2740944A (en) * | 1950-10-17 | 1956-04-03 | Telephone Mfg Co Ltd | Mounting arrangements for electrical apparatus |
US3034844A (en) * | 1958-01-21 | 1962-05-15 | Amco Eng | Enclosure |
US3247312A (en) * | 1963-12-26 | 1966-04-19 | Borg Warner | Shielding enclosure for electrical equipment |
US3403220A (en) * | 1965-10-25 | 1968-09-24 | Riedel Anton | Cable guiding channel |
US3404931A (en) * | 1967-03-20 | 1968-10-08 | Fall | Cabinet structure |
US3602373A (en) * | 1968-08-30 | 1971-08-31 | Palmer Shile Co | Method and means for constructing and changing length of storage rack beams |
US3563627A (en) * | 1968-12-03 | 1971-02-16 | Digital Equipment Corp | Cabinet construction |
US3919603A (en) * | 1973-02-21 | 1975-11-11 | Westinghouse Electric Corp | Switchboard framework corner tie |
US3859767A (en) * | 1973-10-31 | 1975-01-14 | Jahabow Of Utah Inc | Corner structure improvement and method |
US3966285A (en) * | 1974-07-17 | 1976-06-29 | Porch Don E | Collapsible shipping container |
US4045104A (en) * | 1975-08-20 | 1977-08-30 | Peterson Clinton B | Cabinet structure and method of construction |
US4553674A (en) * | 1981-01-30 | 1985-11-19 | Hitachi, Ltd. | Casing construction for electronic equipment |
US4497411A (en) * | 1982-04-19 | 1985-02-05 | Northern Telecom Limited | Distributing frame for telecommunications systems |
US4470102A (en) * | 1982-09-24 | 1984-09-04 | Porta Systems Corp. | Wall mounted distribution frame for telephone subscriber locations |
US4592602A (en) * | 1983-06-28 | 1986-06-03 | Contraves Ag | Modular mounting rack system of vertical-type construction |
US4675900A (en) * | 1986-01-09 | 1987-06-23 | Homaco, Inc. | Wire terminal panel for building cable system |
US4641754A (en) * | 1986-01-16 | 1987-02-10 | Homaco, Inc. | Quick connect frame |
US4899892A (en) * | 1988-03-08 | 1990-02-13 | Northern Telecom Limited | Earthquake-resistant electronic equipment frame |
US5386959A (en) * | 1988-12-14 | 1995-02-07 | Erico International Corporation | Box support |
US4997240A (en) * | 1989-03-28 | 1991-03-05 | Siemens Aktiengesellschaft | Modular housing system for electronic equipment |
US5004107A (en) * | 1989-05-05 | 1991-04-02 | Hendry Mechanical Works | Earthquake braced racks |
US5066161A (en) * | 1989-05-08 | 1991-11-19 | Pinney Richard C | Framework for cabinet structure |
US4988008A (en) * | 1989-06-19 | 1991-01-29 | Siemens Aktiengesellschaft | Supporting framework for a control cabinet |
US4964020A (en) * | 1989-09-27 | 1990-10-16 | At&T Bell Laboratories | Equipment rack |
US5228762A (en) * | 1990-05-18 | 1993-07-20 | Transrack | Metal cabinet frame |
US5141185A (en) * | 1990-07-20 | 1992-08-25 | Erico International Corporation | Wiring clip |
US5165770A (en) * | 1991-03-29 | 1992-11-24 | Richard Hahn | Electronic equipment modular cabinet system |
US5536079A (en) * | 1991-05-22 | 1996-07-16 | Asea Brown Boveri Ltd. | Cabinet |
US5372262A (en) * | 1991-06-28 | 1994-12-13 | Digital Equipment Corporation | Frame assembly for rack-mountable equipment |
US5326934A (en) * | 1991-07-08 | 1994-07-05 | Communication Integrators Inc. | Multi-commodity connectivity system |
US5380083A (en) * | 1991-11-27 | 1995-01-10 | Federal-Hoffman, Inc. | Multifaceted modular enclosure frame with integral sub-panel guide system |
US5333950A (en) * | 1991-12-05 | 1994-08-02 | Rittal-Werk Rudolf Loh Gmbh & Co. Kg | Control cabinet with rack and mounting plate |
US5284254A (en) * | 1992-06-24 | 1994-02-08 | B-Line Systems, Inc. | Rack for electrical equipment |
US5233129A (en) * | 1992-10-15 | 1993-08-03 | At&T Bell Laboratories | Seismic network bay frame |
US5250752A (en) * | 1992-11-23 | 1993-10-05 | Gamlet Incorporated | Knockdown EMI/RFI shielded electronic rack enclosure |
US5695263A (en) * | 1993-02-25 | 1997-12-09 | Knurr-Mechanik Fur Die Elektronik Aktiengesellschaft | Cabinet |
US5383723A (en) * | 1993-04-19 | 1995-01-24 | Northern Telecom Limited | Earthquake resistant electronic equipment frame |
US5586012A (en) * | 1993-10-04 | 1996-12-17 | Homaco, Inc. | Vertical organizer comprised of two sections joined together by a splice and secured between two relay racks |
US5441337A (en) * | 1993-10-06 | 1995-08-15 | Schroff Gmbh | Component cabinet |
US5749476A (en) * | 1993-10-23 | 1998-05-12 | Rittal-Werk Rudolf Loh Gmbh & Co. Kg | Rack for a switching cabinet |
US5683001A (en) * | 1993-12-03 | 1997-11-04 | Nec Corporation | Rack for mounting electronic apparatuses |
US5788348A (en) * | 1994-03-15 | 1998-08-04 | Interbold | Automated teller machine with enhanced service access |
US5593046A (en) * | 1994-05-09 | 1997-01-14 | Nikko Kogyo Kabushiki Kaisha | Collapsible housing frame |
US5540339A (en) * | 1994-06-13 | 1996-07-30 | Homaco, Inc. | Telecommunications wall rack |
US5542549A (en) * | 1994-11-22 | 1996-08-06 | The Siemon Company | Cross connect frame for communication connector blocks and other devices |
US5769519A (en) * | 1995-03-07 | 1998-06-23 | Rittal-Werk Rudolf Loh Gmbh & Co. Kg | Switchgear cabinet with framework and base |
US5566836A (en) * | 1995-06-01 | 1996-10-22 | Homaco, Inc. | Telecommunication relay rack |
US5640482A (en) * | 1995-08-31 | 1997-06-17 | The Whitaker Corporation | Fiber optic cable management rack |
US5806945A (en) * | 1995-09-22 | 1998-09-15 | Amco Engineering Co. | Modular enclosure and method |
US5639150A (en) * | 1995-09-22 | 1997-06-17 | Amco Engineering Co. | Electronic component enclosure and method |
US5713651A (en) * | 1996-02-27 | 1998-02-03 | Mcquay International | Modular frame assembly for an equipment cabinet |
US5788087A (en) * | 1996-03-18 | 1998-08-04 | Ortronics, Inc. | Hinged wire management panel assembly |
US7448168B2 (en) * | 1996-12-24 | 2008-11-11 | Steelcase Inc. | Knock-down portable partition system |
US5791498A (en) * | 1997-01-21 | 1998-08-11 | Dell U.S.A., L.P. | Rack mount mechanism having an angled bar-nut |
US5806687A (en) * | 1997-02-27 | 1998-09-15 | Chatsworth Prod Inc | Swinging gate rack |
US6282854B1 (en) * | 1998-06-05 | 2001-09-04 | Trendway Corporation | Frame-based workplace system |
US6386120B1 (en) * | 1998-06-30 | 2002-05-14 | Emc Corporation | Electrical cabinet having a pivoting platform |
US6185092B1 (en) * | 1999-09-03 | 2001-02-06 | Compaq Computer Corporation | Computer system with in-line switchbox mounting |
USD433615S (en) * | 2000-02-17 | 2000-11-14 | Miro Industries, Inc. | Base for a pipe supporting device |
US6238029B1 (en) * | 2000-04-11 | 2001-05-29 | Ads, The Power Resource, Inc. | Universal electronics cabinet |
US6702125B2 (en) * | 2001-03-09 | 2004-03-09 | Rittal Gmbh & Co. Kg | Support frame having adjustable vertical supports |
US20030072551A1 (en) * | 2001-10-12 | 2003-04-17 | Douglas Joel B. | Rotating vertical fiber tray and methods |
US6613981B1 (en) * | 2001-10-17 | 2003-09-02 | Chatsworth Products, Inc. | Pivotable cable ring wire management system |
US6814244B1 (en) * | 2001-10-17 | 2004-11-09 | Chatsworth Products, Inc. | Ramped latch closure system |
US6601349B1 (en) * | 2001-11-02 | 2003-08-05 | David A. Corden | Free-standing panel wall system |
US7229050B2 (en) * | 2002-11-27 | 2007-06-12 | Hewlett-Packard Development Company, L.P. | Raceway system |
US20040226900A1 (en) * | 2003-03-07 | 2004-11-18 | Canty Mark E. | Rack-mountable cable manager |
US20050247650A1 (en) * | 2004-05-07 | 2005-11-10 | Vogel Mark A | Vertical cable manager |
US7762405B2 (en) * | 2004-05-07 | 2010-07-27 | Panduit Corp. | Vertical cable manager |
US20080130262A1 (en) * | 2005-01-21 | 2008-06-05 | Cooper Technologies Company | Cable management system |
US7778513B2 (en) * | 2005-01-21 | 2010-08-17 | Cooper Technologies Company | Cable manager with adjustable cable guides |
US7874433B2 (en) * | 2005-04-28 | 2011-01-25 | Ortronics, Inc. | Seismically sound rack system |
US7437048B2 (en) * | 2005-08-18 | 2008-10-14 | Tellabs Operations, Inc. | Equipment bay cable management system |
US20080151524A1 (en) * | 2006-12-20 | 2008-06-26 | Panduit Corp. | Horizontal Cable Manager |
US20080209827A1 (en) * | 2007-01-16 | 2008-09-04 | Webb Scott T | Temporary movable/removable compression partition wall system |
US7697285B2 (en) * | 2007-05-17 | 2010-04-13 | Chatsworth Products, Inc. | Electronic equipment enclosure with exhaust air duct and adjustable filler panel assemblies |
US20110148261A1 (en) * | 2007-05-17 | 2011-06-23 | Donowho D Brian | Exhaust air duct with adjustable filler panel assemblies |
US7839635B2 (en) * | 2007-05-17 | 2010-11-23 | Chatsworth Products, Inc. | Exhaust air duct with adjustable filler panel assemblies |
US7746637B2 (en) * | 2007-05-17 | 2010-06-29 | Chatsworth Products, Inc. | Electronic equipment enclosure with exhaust air duct and adjustable filler panel assemblies |
US7687716B2 (en) * | 2007-06-07 | 2010-03-30 | Tyco Electronics Corporation | Adjustable cable support bracket for an electrical component |
US20090061755A1 (en) * | 2007-08-28 | 2009-03-05 | Panduit Corp. | Intake Duct |
US20090090538A1 (en) * | 2007-09-06 | 2009-04-09 | Trent Jones | Vertical Cable Manager |
US20090090533A1 (en) * | 2007-09-06 | 2009-04-09 | Trent Jones | Horizontal Cable Manager |
US20090224110A1 (en) * | 2008-01-07 | 2009-09-10 | Chatsworth Products, Inc. | Repositionable shelf-mounted handle spool assembly for cable routing |
US20100200707A1 (en) * | 2008-01-07 | 2010-08-12 | Chatsworth Products, Inc. | Cable management accessories |
US20100193754A1 (en) * | 2008-01-07 | 2010-08-05 | Chatsworth Products, Inc. | Cable management accessories |
US20090273915A1 (en) * | 2008-01-07 | 2009-11-05 | Dean Jr David Lee | Apparatus and method for organizing cables in a cabinet |
US20090236117A1 (en) * | 2008-01-07 | 2009-09-24 | Chatsworth Products, Inc. | Cable management accessories |
US7974105B2 (en) * | 2008-01-07 | 2011-07-05 | Chatsworth Products, Inc. | Apparatus and method for organizing cables in a cabinet |
US8003890B2 (en) * | 2008-01-07 | 2011-08-23 | Chatsworth Products, Inc. | Repositionable shelf-mounted handle spool assembly for cable routing |
US20110211329A1 (en) * | 2008-01-07 | 2011-09-01 | Chatsworth Products, Inc. | Apparatus and method for organizing cables in a cabinet |
US20110211328A1 (en) * | 2008-01-07 | 2011-09-01 | Chatsworth Products, Inc. | Apparatus and method for organizing cables in a cabinet |
US20090227197A1 (en) * | 2008-02-14 | 2009-09-10 | Chatsworth Products, Inc. | Air directing device |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8038015B2 (en) * | 2006-09-08 | 2011-10-18 | Leviton Manufacturing Co., Ltd. | Equipment rack panel system and method |
US20100314339A1 (en) * | 2006-09-08 | 2010-12-16 | Leviton Manufacturing Co., Inc. | Equipment rack panel system and method |
US20080062655A1 (en) * | 2006-09-08 | 2008-03-13 | Leviton Manufacturing Co., Inc. | Equipment rack panel system and method |
US8061534B2 (en) | 2006-09-08 | 2011-11-22 | Leviton Manufacturing Co., Inc. | Equipment rack panel system and method |
US20080181353A1 (en) * | 2007-01-31 | 2008-07-31 | Masako Ogata | Sensor Device, and Portable Communication Terminal and Electronic Device Using the Sensor Device |
US7974105B2 (en) | 2008-01-07 | 2011-07-05 | Chatsworth Products, Inc. | Apparatus and method for organizing cables in a cabinet |
US8437147B2 (en) | 2008-01-07 | 2013-05-07 | Chatsworth Products, Inc. | Kit for organizing cables in a cabinet |
US8273989B2 (en) | 2008-01-07 | 2012-09-25 | Chatsworth Products, Inc. | Cable management accessories |
US7999183B2 (en) | 2008-01-07 | 2011-08-16 | Chatsworth Products, Inc. | Cable management accessories |
US7893356B2 (en) | 2008-01-07 | 2011-02-22 | Chatsworth Products, Inc. | Cable management accessories |
US8411465B2 (en) | 2008-01-07 | 2013-04-02 | Chatsworth Products, Inc. | Method for organizing cables in a cabinet to reduce impeded airflow |
US8330043B2 (en) | 2008-01-07 | 2012-12-11 | Chatsworth Products, Inc. | Cable management accessories |
US8138419B2 (en) | 2008-01-07 | 2012-03-20 | Chatsworth Products, Inc. | Cable management accessories |
US8263867B2 (en) | 2008-01-07 | 2012-09-11 | Chatsworth Products, Inc. | Cable management accessories |
US8424691B2 (en) | 2008-05-19 | 2013-04-23 | Chatsworth Products, Inc. | Seismically hardened two-post electronic equipment rack |
USD637065S1 (en) | 2010-01-16 | 2011-05-03 | Chatsworth Products, Inc. | Cable guide projection |
USD651570S1 (en) | 2010-01-16 | 2012-01-03 | Chatsworth Products, Inc. | Raceway for cable management |
USD653623S1 (en) | 2010-01-16 | 2012-02-07 | Chatsworth Products, Inc. | Raceway for cable management |
US9814150B2 (en) | 2010-01-17 | 2017-11-07 | Chatsworth Products, Inc. | Mounting fixture system |
US9899812B2 (en) | 2010-01-17 | 2018-02-20 | Chatsworth Products, Inc. | Vertical cable manager |
US10320163B2 (en) | 2010-01-17 | 2019-06-11 | Chatsworth Products, Inc. | Vertical cable manager |
US9054506B2 (en) | 2010-01-17 | 2015-06-09 | Chatsworth Products, Inc. | Vertical cable manager |
US11133656B2 (en) | 2010-01-17 | 2021-09-28 | Chatsworth Products, Inc. | Vertical cable manager |
US8558113B2 (en) | 2010-01-17 | 2013-10-15 | Chatsworth Products, Inc. | Vertical cable manager |
US8710369B2 (en) | 2010-01-17 | 2014-04-29 | Chatsworth Products, Inc. | Horizontal cable manager |
US9577414B2 (en) | 2010-01-17 | 2017-02-21 | Chatsworth Products, Inc. | Vertical cable manager |
US9350146B2 (en) | 2010-01-17 | 2016-05-24 | Chatsworth Products, Inc. | Vertical cable manager |
US9270097B2 (en) | 2010-01-17 | 2016-02-23 | Chatsworth Products, Inc. | Horizontal cable manager |
USD640528S1 (en) | 2010-06-29 | 2011-06-28 | Chatsworth Products, Inc. | Cable guide projection with boss |
USD637066S1 (en) | 2010-06-29 | 2011-05-03 | Chatsworth Products, Inc. | Cable guide projection |
USD629289S1 (en) | 2010-06-29 | 2010-12-21 | Chatsworth Products, Inc. | Cable guide projection with boss |
US9814159B2 (en) | 2010-09-10 | 2017-11-07 | Chatsworth Products, Inc. | Rail seal for electronic equipment enclosure |
US11039543B2 (en) | 2010-09-10 | 2021-06-15 | Chatsworth Products, Inc. | Vertical mounting rail with cable management features |
US9055677B2 (en) | 2010-09-10 | 2015-06-09 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
US12108553B2 (en) | 2010-09-10 | 2024-10-01 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
US8901438B2 (en) | 2010-09-10 | 2014-12-02 | Chatsworth Products, Inc. | Electronic equipment cabinet structure |
US11792948B2 (en) | 2010-09-10 | 2023-10-17 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
US9408326B2 (en) | 2010-09-10 | 2016-08-02 | Chatsworth Products, Inc. | Electronic equipment cabinet structure |
US11464123B2 (en) | 2010-09-10 | 2022-10-04 | Chatsworth Products, Inc. | Method of adapting an electronic equipment enclosure for cable management |
EP2429272A2 (en) | 2010-09-10 | 2012-03-14 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
US8787023B2 (en) | 2010-09-10 | 2014-07-22 | Chatsworth Products, Inc. | Rail mounting clamp for electronic equipment enclosure |
US9642270B2 (en) | 2010-09-10 | 2017-05-02 | Chatsworth Products, Inc. | Rail seal for electronic equipment enclosure |
EP2429271A2 (en) | 2010-09-10 | 2012-03-14 | Chatsworth Products, Inc. | Rail seal for electronic equipment enclosure |
US9781852B2 (en) | 2010-09-10 | 2017-10-03 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
US10653025B2 (en) | 2010-09-10 | 2020-05-12 | Chatsworth Products, Inc. | Cable pass-through panel for electronic equipment enclosure |
US10237994B2 (en) | 2010-09-10 | 2019-03-19 | Chatsworth Products, Inc. | Vertical mounting rail with cable management features |
US10178784B2 (en) | 2010-09-10 | 2019-01-08 | Chatsworth Products, Inc. | Rail seal for electronic equipment enclosure |
US10588227B2 (en) | 2010-09-10 | 2020-03-10 | Chatsworth Products, Inc. | Vertical mounting rail with cable management features |
US9980400B2 (en) | 2010-09-10 | 2018-05-22 | Chatsworth Products, Inc. | Rail seal for electronic equipment enclosure |
EP2525636A3 (en) * | 2011-05-16 | 2013-01-23 | Middle Atlantic Products Inc. | Rack assembly |
US9155383B2 (en) | 2011-05-16 | 2015-10-13 | Middle Atlantic Products, Inc. | Rack assembly |
CN102711408A (en) * | 2012-05-23 | 2012-10-03 | 广州南天电脑系统有限公司 | Multifunctional rack |
US20140016903A1 (en) * | 2012-07-11 | 2014-01-16 | Tyco Electronics Corporation | Telecommunications Cabinet Modularization |
US9310577B2 (en) * | 2012-07-11 | 2016-04-12 | Adc Telecommunications, Inc. | Telecommunications cabinet modularization |
US9759884B2 (en) | 2012-07-11 | 2017-09-12 | Commscope Technologies Llc | Telecommunications cabinet modularization |
US10375861B2 (en) | 2013-01-11 | 2019-08-06 | Chatsworth Products, Inc. | Modular thermal isolation barrier for data processing equipment structure |
US10595442B2 (en) | 2013-01-11 | 2020-03-17 | Chatsworth Products, Inc. | Data processing equipment structure |
US9795060B2 (en) | 2013-01-11 | 2017-10-17 | Chatsworth Products, Inc. | Modular thermal isolation barrier for data processing equipment structure |
US12063758B2 (en) | 2013-01-11 | 2024-08-13 | Chatsworth Products, Inc. | Modular thermal isolation barrier for data processing equipment structure |
US9572286B2 (en) | 2013-01-11 | 2017-02-14 | Chatsworth Products, Inc. | Modular thermal isolation barrier for data processing equipment structure |
US11647610B2 (en) | 2013-01-11 | 2023-05-09 | Chatsworth Products, Inc. | Modular thermal isolation barrier for data processing equipment structure |
US9885845B2 (en) * | 2015-01-15 | 2018-02-06 | Commscope, Inc. Of North Carolina | Module and assembly for fiber optic interconnections |
US10613285B2 (en) | 2015-01-15 | 2020-04-07 | Commscope, Inc. Of North Carolina | Module and assembly for fiber optic interconnections |
US20160209614A1 (en) * | 2015-01-15 | 2016-07-21 | Commscope, Inc. Of North Carolina | Module and assembly for fiber optic interconnections |
CN106102408A (en) * | 2016-07-06 | 2016-11-09 | 深圳市艾特网能技术有限公司 | The support section bar of a kind of rack and rack |
US11815197B2 (en) | 2016-07-26 | 2023-11-14 | Chatsworth Products, Inc. | Features for cable managers and other electronic equipment structures |
US11071227B2 (en) | 2016-07-26 | 2021-07-20 | Chatsworth Products, Inc. | Accessory rod assembly for a cable manager |
US11493151B2 (en) | 2016-07-26 | 2022-11-08 | Chatsworth Products, Inc. | Features for cable managers and other electronic equipment structures |
US10477720B2 (en) | 2016-07-26 | 2019-11-12 | Chatsworth Products, Inc. | Features for cable managers and other electronic equipment structures |
US11619328B2 (en) | 2016-07-26 | 2023-04-04 | Chatsworth Products, Inc. | Method of adapting electronic equipment structure for cable management |
US11268636B2 (en) | 2016-07-26 | 2022-03-08 | Chatsworth Products, Inc. | Features for cable managers and other electronic equipment structures |
US11644126B2 (en) | 2016-07-26 | 2023-05-09 | Chatsworth Products, Inc. | Method of installing half-spool accessory in a cable manager |
US11162615B2 (en) | 2016-07-26 | 2021-11-02 | Chatsworth Products, Inc. | Features for cable managers and other electronic equipment structures |
US11644125B2 (en) | 2016-07-26 | 2023-05-09 | Chatsworth Products, Inc. | Method of installing cable finger accessory in a cable manager |
US10271452B2 (en) | 2016-07-26 | 2019-04-23 | Chatsworth Products, Inc. | Features for cable managers and other electronic equipment structures |
CN112351620A (en) * | 2020-11-12 | 2021-02-09 | 吴江市中盛机械有限公司 | Ultralow temperature refrigerator electric cabinet with plug wire misplug prevention function |
US11818861B1 (en) | 2020-12-15 | 2023-11-14 | Chatsworth Products, Inc. | Frame structure for electronic equipment enclosure |
US11678456B1 (en) | 2020-12-15 | 2023-06-13 | Chatsworth Products, Inc. | Slidable mounting hardware for electronic equipment enclosure and method for installing same |
US11818862B1 (en) | 2020-12-15 | 2023-11-14 | Chatsworth Products, Inc. | Frame structure for electronic equipment enclosure |
US11818860B1 (en) | 2020-12-15 | 2023-11-14 | Chatsworth Products, Inc. | Frame structure for electronic equipment enclosure |
US11678458B1 (en) | 2020-12-15 | 2023-06-13 | Chatsworth Products, Inc. | Slidable mounting hardware for electronic equipment enclosure and method for installing same |
US11903156B1 (en) | 2020-12-15 | 2024-02-13 | Chatsworth Products, Inc. | Brush port assembly and method for installing same |
US12048108B1 (en) | 2020-12-15 | 2024-07-23 | Chatsworth Products, Inc. | Caster attachment system using mating features |
US11627677B1 (en) | 2020-12-15 | 2023-04-11 | Chatsworth Products, Inc. | Brush port assembly and method for installing same |
US12089363B1 (en) | 2020-12-15 | 2024-09-10 | Chatsworth Products, Inc. | Slidable mounting hardware for electronic equipment enclosure |
US11622458B1 (en) | 2020-12-15 | 2023-04-04 | Chatsworth Products, Inc. | Brush port assembly and method for installing same |
US11920392B1 (en) | 2021-02-02 | 2024-03-05 | Chatsworth Products, Inc. | Electrical bonding door hinges |
US20230128822A1 (en) * | 2021-10-22 | 2023-04-27 | Dell Products L.P. | Seismically fortified electronic equipment racks |
US12058834B2 (en) * | 2021-10-22 | 2024-08-06 | Dell Products L.P. | Seismically fortified electronic equipment racks |
Also Published As
Publication number | Publication date |
---|---|
US8424691B2 (en) | 2013-04-23 |
WO2009143193A3 (en) | 2010-03-04 |
WO2009143193A2 (en) | 2009-11-26 |
US20120145655A1 (en) | 2012-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8424691B2 (en) | Seismically hardened two-post electronic equipment rack | |
US10588227B2 (en) | Vertical mounting rail with cable management features | |
US20120062091A1 (en) | Vertical mounting rail with cable management features | |
US10320163B2 (en) | Vertical cable manager | |
US10345546B2 (en) | Optical fiber distribution system with staggered cable guides | |
CN102598890B (en) | Systems and methods of managing cables | |
US7999183B2 (en) | Cable management accessories | |
EP2550803B1 (en) | Video screen mounting system | |
US6365830B1 (en) | Overhead cabling system for a telecommunications switching center | |
CA2495652A1 (en) | High density fiber distribution frame | |
US8833711B2 (en) | Two post rack with floor mounting brackets | |
US6279756B1 (en) | Telecommunications equipment rack having improved structural strength | |
US20110173906A1 (en) | Floor gland | |
US6429376B1 (en) | Add-on trough for cable management rack | |
WO2012063089A1 (en) | Temporary walling panels | |
US8290331B2 (en) | Spacer box and interbay cable management panel | |
US4145853A (en) | Cable trough system | |
CN210883770U (en) | Logistics warehouse separation structure | |
CN217480952U (en) | Horizontal connection structure of wire and steel pipe tower | |
IE20010529A1 (en) | A desk system | |
CN211456571U (en) | Combined three-dimensional cable bracket | |
US20240305076A1 (en) | Overhead Rack Support | |
WO1998047339A1 (en) | Joint and a stackable module for electronic equipment | |
CA2582715A1 (en) | A storage compartment for medical equipment | |
CA2131227A1 (en) | Storage rack with readily accessible wire track beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHATSWORTH PRODUCTS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCMILLAN, WILLIAM, III;SY, BEN JOHN;REEL/FRAME:023437/0178;SIGNING DATES FROM 20090723 TO 20090727 |
|
AS | Assignment |
Owner name: CHATSWORTH PRODUCTS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PAE, ANDREW UNGHO;REEL/FRAME:028328/0596 Effective date: 20120424 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |