US20090275976A1 - Embolic filtering method and apparatus - Google Patents

Embolic filtering method and apparatus Download PDF

Info

Publication number
US20090275976A1
US20090275976A1 US12463296 US46329609A US2009275976A1 US 20090275976 A1 US20090275976 A1 US 20090275976A1 US 12463296 US12463296 US 12463296 US 46329609 A US46329609 A US 46329609A US 2009275976 A1 US2009275976 A1 US 2009275976A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
device
embolic
patent
blood
foramen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12463296
Inventor
Stephen J. Kleshinski
Scott M. Russell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SeptRx Inc
Original Assignee
Stout Medical Group LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12122Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2475Venous valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00579Barbed implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00597Implements comprising a membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00601Implements entirely comprised between the two sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00632Occluding a cavity, i.e. closing a blind opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • A61B2017/00783Valvuloplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • A61B2017/4233Operations on Fallopian tubes, e.g. sterilization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/018Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Abstract

The present invention relates generally to a device and method for preventing the undesired passage of emboli from a venous blood pool to an arterial blood pool. The invention relates especially to a device and method for treating certain cardiac defects, especially patent foramen ovales and other septal defects, through the use of an embolic filtering device capable of instantaneously deterring the passage of emboli from the moment of implantation. The device consists of a frame, and a braided mesh of sufficient dimensions to prevent passage of emboli through the mesh. The device is preferably composed of shape memory allow, such as nitinol, which conforms to the shape and dimension of the defect to be treated.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is divisional of U.S. patent application Ser. No. 11/184,069 filed Jul. 19, 2005 which is a continuation-in-part of U.S. patent application Ser. No. 10/847,909 filed May 19, 2004, now U.S. Pat. No. 7,122,043 issued Oct. 17, 2006, which is based on and claims priority to U.S. Provisional Patent Application No. 60/471,555 filed May 19, 2003, the entire disclosures of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The present invention relates generally to a device and method for preventing the undesired passage of emboli from a venous blood pool to an arterial blood pool. The invention relates especially to a device and method for treating certain cardiac defects, especially patent foramen ovales and other septal defects through the use of an embolic filtering device capable of instantaneously deterring the passage of emboli from the moment of implantation.
  • [0004]
    2. Description of Related Art
  • [0005]
    The fetal circulation is vastly different than the normal adult circulation. The blood circulating in a fetus is oxygenated by the placenta, not the developing lungs. Therefore, the fetal circulation directs only a small percentage of the circulating blood to the fetal lungs. Most of the circulating blood is shunted away from the lungs to the peripheral tissues through specialized vessels and foramens that are open (“patent” during fetal life. In most people these specialized structures quickly close after birth. Unfortunately, they sometimes fail to close and create hemodynamic problems that can be fatal if left untreated.
  • [0006]
    A diagram showing the blood circulation of a human fetus is illustrated in FIG. 1. The umbilical arteries branch off of the iliac arteries and deliver unoxygenated blood to the placenta. The fetal blood travels through the capillary bed in the placenta and transfers carbon dioxide to the maternal blood and takes oxygen and other nutrients from the maternal blood. The umbilical vein returns oxygenated blood to the fetus. Most of the oxygenated blood from the umbilical vein bypasses the developing liver and travels through a specialized vessel called the ductus venosus to die inferior vena cava and then into the right atrium. A good portion of the oxygenated blood from the inferior vena cava is directed across the right atrium and into the left atrium through a specialized curtain like opening in the heart called the foramen ovale. The blood from the left atrium then enters the left ventricle and then into the aorta where it travels to the head and other body tissues delivering the needed oxygen and nutrients.
  • [0007]
    The small amount of blood entering the right atrium that does not pass through the foramen ovale, most of which comes from the superior vena cava, flows into the right ventricle and then gets pumped into the pulmonary trunk and pulmonary arteries. Some of this blood is pumped into the developing lungs. However, the fetal lungs are collapsed which causes a high resistance to blood flow. Another specialized vessel, called the ductus arteriosus, is a vessel that connects the high pressure pulmonary artery to the lower pressure aorta. Therefore, most of the blood in the pulmonary artery flows into the lower pressure aorta through this specialized vessel.
  • [0008]
    Upon birth, the circulatory system goes through profound changes. The flow through the umbilical arteries and umbilical vein stops and consequently the flow through the musculature around the ductus venosus, constricts and the blood flow through the ductus venosus stops. The lungs fill with air and the resistance to blood flow into the lungs drastically decreases. The corresponding pressure in the right atrium, right ventricle, and pulmonary arteries also decrease. The decrease in pressure in the right atrium causes the curtain like opening of the foramen ovale to close, driving more blood into the right ventricle and then to the lungs for oxygenation. Over time, the foramen ovale is replaced with a membrane called the fossa ovalis. Similarly, the decrease in pressure in the pulmonary arteries reduced the pulmonary arterial pressure to the same as or slightly less than the pressure in the aorta, which stops or reverses the flow through the ductus arteriosus. Once the muscular tissue of the ductus arteriosus is perfused with well oxygenated blood, the muscle begins to constrict and close the ductus arteriosus. The ductus arteriosus normally closes within about one week of life.
  • [0009]
    Usually over time, the unique openings of the fetal circulation become obliterated and a solid mass of tissue forms where these opening once were. However, in some people the opening remain. A patent ductus venosus after birth is very rare and almost always fatal. A patent ductus arteriosus occurs in about 1 out of every 5000 births. The patent ductus arteriosus once diagnosed is either medically treated or surgically ligated to close the ductus. In about one of four people, the foramen ovale does not seal shut, instead it remains patent. Such defects usually measure 10 mm or more in diameter and occupy one third or more of the length of the atrial septum in echocardiographic four chamber sections. Since the pressure in the left atrium is about two to four mm Hg greater than the pressure in the right atrium, the curtain like opening usually remains shut. However, if the pressure in the right atrium increases, such as upon heavy lifting or while performing a Valsalva type maneuver, the curtain like fold of tissue opens and the blood flows from the right atrium to the left atrium.
  • [0010]
    Studies have shown that adults with strokes of unknown origin, i.e., cryptogenic strokes, have about twice the normal rate of patent foramen ovales than the normal population. Although there is a correlation between strokes and patent foramen ovales, it is currently unknown why this correlation exists. It is theorized that blood clots and plaque that have formed in the peripheral venous circulation (in the legs for example) break off and travel to the heart. Normally, the clots and plaque get delivered to the lungs where it is trapped and usually cause no harm to the patient. Patients with a patent foramen ovale, however, have a potential opening that the clots or plaque can pass through the venous circulation and into the arterial circulation and then into the brain or other tissues to cause a thromboembolic event like a stroke. The clots may pass to the arterial side when there is an increase in the pressure in the right atrium. Then the clots travel through the left side of the heart, to the aorta, and then to the brain via the carotid arteries where they cause a stroke and the associated neurological deficits.
  • [0011]
    A number of atrial septal defects (ASD) closure devices have been developed and investigated in an attempt to develop a nonsurgical, transvenous method of occlusion of ASD. These include the Sideris Buttoned device, the Angel Wing Das device, the atrial septum defect occlusion system (ASDOS) device, the Amplatz Septal Occluder, the CardioSEAL/StarFlex devices, and the Gore/Helix devices. Unfortunately, each of these devices have distinct disadvantages and limitations ranging from the size of the device delivery sheath, ease of implantation, feasibility, safety and effectiveness. The Sideris buttoned device is made of a polyurethane foam occluder with a Teflon coated wire skeleton, which is positioned within the left atrium, and a polyurethane foam rhomboid shaped counteroccluder with a Teflon coated wire skeleton, which is positioned in the right atrium. The major disadvantage with this device is the lack of a centering mechanism. For this reason, use of the devices at least two times the size of the stretched ASD is required. (Sievert H. Koppeler P. Rux S: Percutaneous closure of 176 interarterial defects in adults with different occlusion devices-6 years of experience [abstract], J. Am. Coll. Cardiol 1999, 33:51 9A.) Consequently, closure of defects may become difficult because the required size may be too large for the atrial septum to accommodate, or the device may impinge critical structures. There are also reports that the retrieval of the Sideris button device after incorrect deployment is difficult. (See, e.g., Rigby, Michael L., The Era of Transcatheter Closure of Atrial Septal Defects, Heart; 81:227-228 (1999)).
  • [0012]
    The “Angel Wings” device comprises two square frames made of superelastic Nitinol wire, each square frame having four legs that are interconnected by flexible islets at the corners. The wire frames are covered by polyester fibers. There is a conjoint suture ring of the right and atrial discs, which allow self centering on deployment. The device is delivered through an 11-13 F Mullins sheath. The major disadvantage of using this device is the attendant risk of aortic perforation cause by its sharp eyelet corners. In fact, the Angel Wings device was withdrawn from further clinical trials because of this problem. (Syamaxundar Rao, P., M. D., Summary and Comparison of Atrial Septal Defect Closure Devices, Current Interventional Cardiology Reports 2000, 2:367-376 (2000)). The device is also ill-suited for treating fenestrated defects.
  • [0013]
    The atrial septal defect occlusion system (ASDOS) prosthesis (Microvena Corp., White Bear Lake, Minn.) consists of two umbrellas made of Nitinol and a patch of porous polyurethane attached to the left and right atrial devices. The device is introduced transvenously over a long veno-arterial guidewire and through an 11 F venous transeptal sheath. While the device is retrievable in the event of malpositioning before release of the device, it requires a complex procedure to implant, and the components are known to have high incidences of thrombosis. It is also reported that frame fractures have been detected in 20% of the patients treated with this device.
  • [0014]
    The Amplatzer device is the subject of U.S. Pat. No. 5,944,738 to Amplatzer, et al. This device is a saucer-shaped device formed from a mesh of fine Nitinol wires with a central connecting cylinder having a diameter similar to that of the stretched diameter of the defect. Thrombosis following implantation of the device is induced by three polyester patches. The device is delivered through a 6-10 F Mullins sheath. The primary disadvantage with this device is that it is ill-suited for closing fenestrated defects. Moreover, the device is a thick, bulky profile which dramatically increases the chances that the device will interfere with the heart's operation. Another disadvantage is its known capacity for incomplete endothelialisation with thrombus formation.
  • [0015]
    The CardioSEAL® device (NMT Medical, Inc.) is the subject of U.S. Pat. No. 6,206,907 to Marino, et al. This occlusion device is comprised of a center section to which stranded wire elastic shape memory fixation devices are attached. The fixation devices hold the occlusion devices in place once it is inserted into an aperture. Attached to the fixation devices are polyvinyl foam sheets which occlude the aperture. While the CardioSEAL is deemed to be relative easy to use, it is reported that, of all the devices, the CardioSEAL device has the highest incidence of arm fractures, which has raised serious issues concerning its safety. Moreover, the CardioSEAL device, like the Amplatzer device is relatively large, and requiring at least a 10 F or 11 F delivery systems, and an undue amount of hardware within the heart. These characteristics increase the chance that the device will interfere with the heart's operation, lend to residual shunting and/or embolization. The size of the CardioSEAL device also renders it less suitable for small children.
  • [0016]
    The STARflex® device (NMT Medical, Inc.) is an updated version of the CardioSEAL device, which includes a self-centering mechanism consisting of four flexible springs which pass between the two fabric disks. While this added feature may reduce the instances of residual shunting, the aforementioned defects and disadvantages of the CardioSEAL are still a concern.
  • [0017]
    In view of these drawbacks and related-risks, the method of choice to close a patent foramen ovale is still open heart surgery and ligation of the foramen ovale to close it. Surgery, however, is obviously associated with the usually risks of general anesthesia, open heart procedures, infections, etc. Thus, there is a need for a safe, cost-effective, and easily implantable device and method for preventing the passage of emboli from an arterial blood pool and a venous blood pool which is not subject to the defects and disadvantages of known devices.
  • SUMMARY OF THE INVENTION
  • [0018]
    The present invention is a directed to an embolic filtering apparatus for treating septal defects, including patent foramen ovales. In one preferred embodiment particularly suited for treating patent foramen ovales, the embolic filtering device comprises an embolic filter, composed of metal, fiber, and/or polymer, for preventing the passage of emboli through the septal defect, and a frame which allows the device to be secured within and or adjacent to the lumen of the septal defect.
  • [0019]
    The embolic filter is made by, for example, (1) swaging one end of a piece of tubular mesh at a first end with a first fastener (2) pulling the free end of the mesh over the first fastened end so that it overlaps the first portion; (3) swaging a second, center section of the tubular section to form a 3-dimensional ball-like structure having a first diameter portion with a second fastener; (4) extending the remaining free end of the tubular mesh back over the 3 dimensional ball-like structure of the first and second portions of the tubular mesh; and (4) swaging the free end of the tubular mesh with a third fastener to form an exterior 3-dimensional ball-like structure having a second diameter portion, within which the 3-dimensional ball-like structure of first diameter portion is disposed.
  • [0020]
    The mesh is removably secured to at least one or more bases of the frame, and positioned between the arms thereof. In a preferred embodiment, the bases of the frame and the fasteners which secure the tubular mesh are collars, having central lumens. The aforementioned third-fastener is insertable into the lumen of at least one of the bases of the frame in order to secure the mesh to the frame. The lumens of the fasteners and bases are aligned along a common axis in order that the embolic filtering device can be loaded onto a guide wire.
  • [0021]
    In an exemplary embodiment, the frame, preferably composed of metal, fabric and/or a polymer, includes at least one base and at least two arms which extend therefrom, between which the mesh is at least partially disposed. The arms are positioned opposite one another and, in their resting state, are spaced apart from one another. When, as in a preferred embodiment, the device is composed of a shape memory metal, such as nitinol, the device can is be collapsed into a catheter tube by compressing the arms of the frame toward one another, causing the length of the device to increase, and the width to decrease. As the device is released from the catheter tube, it reverts to its functional, relaxed state. The embolic filtering device may also be composed of non-shape memory metals, such as elgiloy, cobalt chromium, and stainless steel, for example. Each arm includes at least one anchor positioned on the arms of the frames. The anchors can either be arcuate or linear in formation, depending on the shape of the patent foramen ovale to be treated, and are of sufficient rigidity to secure the device within the lumen of a septal defect.
  • [0022]
    To allow for non-invasive visualization of the device within a subject at least a portion of the frame or mesh is composed of or coated with a radiopaque material, such as tantalum. The device may also be treated with thrombin, collagen, hyluron, or a host growth factor to encourage and facilitate growth of tissue onto the device so as to further secure the device within the septal defect. The device can also be coated with an anticoagulant to deter formation of blood clots on the surface of the device.
  • [0023]
    In an exemplary embodiment, the mesh is composed of at least 96 strands of 0.002″ diameter wire braided such that the wires are situated at an angle of 35.degree relative to the longitudinal axis of the device. The interstices created by the braided wires are small enough such as to effectively filter emboli, thereby preventing emboli from passing through the patent foramen ovate, or other septal defect.
  • [0024]
    In another aspect of the invention, provided is a method of preventing the passage of emboli between a venous blood pool and an arterial blood pool by delivering the embolic filtering device to within, proximate to and/or adjacent to a passage between a venous blood pool and an arterial blood pool; and securing the device within, proximate to, and/or adjacent to said passage. The delivery of the device is preferably delivered by means of a catheter to within and/or adjacent to the passage between the venous blood pool and the arterial blood pool.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0025]
    FIG. 1 is a schematic diagram of the fetal circulation;
  • [0026]
    FIG. 2A illustrates a preferred embolic filtering device;
  • [0027]
    FIG. 2B illustrates another preferred embolic filtering device;
  • [0028]
    FIG. 2C illustrates a top view of the embolic filtering device illustrated in FIG. 2B;
  • [0029]
    FIG. 2D illustrates a preferred frame of the embolic filtering having two bases;
  • [0030]
    FIG. 3 illustrates another preferred embolic filtering device with a frame having one base;
  • [0031]
    FIG. 4 illustrates a preferred embolic filtering device and delivery mechanism;
  • [0032]
    FIG. 5A illustrates another preferred embolic filtering device;
  • [0033]
    FIGS. 5B and 5C illustrate a preferred embolic filtering device within a patent foramen ovale;
  • [0034]
    FIGS. 6A and 6B illustrate another preferred embolic filter device; and
  • [0035]
    FIGS. 7A and 7B illustrated another preferred embolic filter device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0036]
    The present invention is directed generally to methods and apparatus for preventing the passage of emboli between a venous blood pool and an arterial blood pools using devices for creating a barrier to the conducting of emboli at a passage between a venous blood pool and an arterial blood pool. The device is particularly suitable for treating cardiac defects, such as patent foramen ovale or other atrium septal defects. In a preferred embodiment, exemplified at FIG. 2A, provided is a embolic filtering device 10 comprising a frame 12 and an embolic filter 14 comprising a mesh of stranded fabric, wire, or polymer. FIG. 2D illustrates one embodiment of frame 12 without embolic filter 14 attached. In this embodiment, frame 12 consists of a first base 16 and a second base 18. Each end of arms 20 and 22 are connected to first base 16 and second base 18, such that the lumens of first base 16 and second base 18 are in line with longitudinal axis 25 of frame 12. Arms 20 and 22 are preferably formed of a shape memory metal, e.g., nitinol, and formed such that, in the resting state, they are spaced apart from one another.
  • [0037]
    Referring to FIG. 2A, extending laterally from each of arms 20 and 22 proximate to first base 16 are right anchors 24. Right anchors 24 can be of any shape or formation suitable for delivering embolic filtering device 10 to the desired location and securing it in place. In a preferred embodiment, right anchors 24 are preferably linear or arcuate, and extend outward from frame 12 and away from first base 16, in the direction of second base 18, at an acute angle relative to longitudinal axis 25. The desired length of right anchors 24 and the position from which they extend from arms 20 and 22 will depend primarily on the size of the passage or defect to be treated. In any event, the right anchors 24 are of sufficient length to securely engage tissue within and/or adjacent to the septal defect. For example, when treating a patent foramen ovale, right anchors 26 preferably engage tissue within and/or adjacent to the right-atrial opening of the patent foramen ovale. Extending arcuately and/or laterally from the portion of arms 20 and 22 proximate second base 18 are left anchors 26. Left anchors 26 can be of any shape or formation suitable for delivering embolic filtering device 10 to the desired location and securing it in place; however, it has been found that arcuate or coiled anchors are most suitable for effectively securing the device within the area of interest. As with right anchors 24, left anchors 26 are of sufficient length to securely engage tissue within and/or adjacent to the septal defect to be treated. For example, when treating a patent foramen ovale, left anchors 26 preferably engage tissue within and/or adjacent to the left-atrial opening patent foramen ovale. In a preferred embodiment, right anchor 24 and left anchor 26 are covered with tantalum coil 28, or other radiopaque material, to allow for visualization of the position and location of embolic filtering device 10 after implantation in a subject. First base 16 and second base 18 and, for that matter, any portion of device 10 can likewise be compromised of radiopaque materials to provide even more visual points of reference in the imagery of embolic filtering device 10.
  • [0038]
    In another embodiment illustrated in FIG. 3, provided is a frame 12 having first base 16, but without second base 18, and shortened arms 20 and 22. By eliminating second base 18, the amount of hardware implanted in the passage to be treated is minimized. Since, as discussed below, second base 18 resides closest to the left atrium of the heart when embolic filtering device 10 is used to treat a patent foramen ovale, eliminating second base 18 minimizes the amount of hardware adjacent to or within the left atrium, decreasing the chance the operation of the left atrium will be comprised, and reducing the surface area upon which blood clots can form.
  • [0039]
    Embolic filter 14 is removably coupled to frame 12, and is preferably comprised of plurality of braided wire strands having a predetermined relative orientation and interstitial space between the strands. Those skilled in the art will appreciate that the number and diameter of the wires used may be varied to achieve the desired density and stiffness of the fabric, and the known size of the emboli sought to be filtered. In a preferred embodiment, the wire mesh consists of at least 96 strands of 0.002″ diameter wire, situated at an angle of approximate 35° relative to the longitudinal axis 25. Suitable wire strand materials may be selected from a group consisting of a cobalt-based low thermal expansion alloy referred to in the field as “Elgiloy,” nickel-based high temperature high-strength “superalloys” (including nitinol), nickel-based treatable alloys, a number of different grades of stainless steel, and polymers, including polyester, nylon, polytetrafluoroethylene (PTFE), polyurethane, polyaryletheretherketone (PEEK), and polyglycolic acid (PGA), polylactide (PLA), polyepsilon-caprolactone, polyethylacrylate (PEA). Platinum and alloys of platinum can also be co-braided, co-knitted or co-woven into mesh 14 to assist in determining where mesh is positioned within the patent foramen ovale. In a preferred embodiment, the wire strands are made from a shape memory alloy, NiTi (known as nitinol) which is an approximately stoichiometric alloy of nickel and titanium and may also include minor amounts of other metals to achieve desired properties. The frame 12 of device 10, and its components, including base 16, base 18, right arms 20 and left arms 22, are also preferably manufactured from so-called shape memory alloys. Such alloys tend to have a temperature induced phase change which will cause the material to have a preferred configuration which can be fixed by heating the material above a certain transition temperature to induce a phase change in the material. When the alloy is cooled, the alloy will “remember” the shape it was in during the heat treatment and will tend to assume that configuration, unless constrained from doing so.
  • [0040]
    Handling requirements and variations of NiTi alloy compositions are known in the art. For example, U.S. Pat. No. 5,067,489 (Lind) and U.S. Pat. No. 4,991,602 (Amplatz et al.), the entire teachings of which are herein incorporated by reference, discuss the use of shape memory NiTi alloys in guide wires. Such NiTi alloys are preferred, at least in part, because they are commercially available and more is known about handling such alloys than other known shape memory alloys. NiTi alloys are also very elastic and are said to be “superelastic” or “pseudoelastic.” This elasticity allows device 10 to return to a preset configuration after deployment from a catheter or other delivery device. The relaxed configuration is generally defined by the shape of the fabric when it is deformed to generally conform to the molding surface of the mold in which it was created. The wire stands are manufactured by standard braiding processes and equipment.
  • [0041]
    Embolic filter 14 of the present invention is preferably in the shape of a three-dimensional ball or sphere, as exemplified in FIGS. 2A and 2C. Starting with a tubular piece of braided mesh or the like, the three-dimensional ball or sphere, as exemplified in FIG. 2A, is, for example, made by swaging a first end of the mesh with a first fastener 30, and pushing said first fastener 30 upwards into the lumen of the tubular mesh, to create interior lobes 29. A center portion of the mesh is then swaged with a second fastener 32, creating an interior embolic filter portion 34. The remaining mesh is then extended back over said first fastener 30 and interior embolic filter portion 34, and the second end of the braided tubular mesh is swaged with a third fastener 36. First fastener 30, second fastener 32, and interior embolic filter portion 34 are in effect situated within exterior embolic filter portion 38. Third fastener 36 is situated outside of said exterior embolic portion 38. In a preferred embodiment, fasteners 30, 32 and 36 are collars having a central lumen. The lumens of the collars are substantially aligned along a common longitudinal axis 24, and dimensioned to receive a guide wire 40. Embolic filter 14 is preferably secured to frame 12 by inserting third fastener 36 into the lumen of first base 16 of frame 12. To reduce the chance of third fastener 36 from disengaging from first base 16, third fastener 36 and first base 16 can be coupled together, either by a mechanical locking means such as that created by a press fit, a melted polymer interlock, or hot melt adhesive, or by plasma welding. Plasma welding is the preferred coupling method, as it allows first base 16 to be shorter, since no portal is required on the base. When coupled to frame 12, embolic filter 14 resides at least partially between arms 20 and 22, such that the lumens of fasteners 30, 32, and 36 are substantially aligned with the lumens of first base 16 and second base 18 (if employing a frame with second base 18), along longitudinal axis 25. A plug composed of collagen, fabric, an adhesive, polymer or foam, for example, may be disposed within the aforementioned sphere to further deter the passage of embolic through the mesh.
  • [0042]
    In another preferred embodiment, illustrated in FIG. 2A, provided is an embolic filter 14 which, instead of having a spherical shape as exemplified in FIGS. 2B and 3, has a first end comprising at least one lobe-like formation and a second end which tapers inward therefrom. To make this embodiment, a piece of tubular mesh of suitable length, for example, is swaged at a first end by a first fastener 30. This first fastened end is then pushed into the lumen of the tubular mesh to form lobes 29. The second end of the mesh is then swaged by a second fastener 32. This embodiment is attached to frame 12 by securing first fastener in the lumen of base 16, and securing second fastener 32 in the lumen of base 18. As discussed above, fasteners 30 and 32 are collars having central lumens. The lumens of the collars are substantially aligned along a common longitudinal axis, and dimensioned to receive a guide wire 40.
  • [0043]
    In another preferred embodiment, illustrated in FIG. 5A, provided is an embolic filtering device 10, similar to those embodiments described above, but having right anchors 24 which are specifically designed to engage the perimeter of the tissue defining the right-atrial opening 23 of the patent foramen ovate, as illustrated in FIG. 5B. Contrary to right anchors 24 discussed in the aforementioned figures, the ends of right anchors 24 of this embodiment reside against or adjacent to the outside of the tissue wall defining the patent foramen ovale. Right anchors 24 are, therefore, preferably of slightly longer dimension and at least slightly arcuate in shape to facilitate this methodology. The ends of right anchors 24 in this embodiment, include protective caps 27 at their distal ends. Caps 27 can be composed of rubber, plastic, or any other suitable material for covering the ends of anchors 24 and 26, and may also comprise radiopaque materials, for example, in order to allow post-implant visualization of the location and positioning of anchors 24 after implant.
  • [0044]
    It will be recognized by those of ordinary skill that the manner in mesh 14 can be manufactured in a variety of ways without departing from the scope of the invention. For example, it will be recognized that mesh 14 does not necessarily need to be spherical, or have both an interior and exterior embolic portion as discussed above. Mesh 14 can be of any shape and dimension suitable to deter the passage of embolic material between a venous blood pool and an arterial blood pool, and can include any number of layers, so long as the interstices between the strands forming mesh 14 are of sufficient area to filter emboli.
  • [0045]
    The design and dimensions of frame 12 can also be manufactured in a variety of ways without departing from the scope of the invention. FIGS. 6A and 6 b illustrate yet a further embodiment of the invention, wherein arms 20 and 22 are effectively decoupled from one another, such that the tissue distension function of embolic filtering device 10 is provided separately by each individual legs of the device. This allows embolic filtering device 10 to be more compact, and to better fill gaps and meet the contours of the patent foramen ovale. Particularly with respect to the embodiments shown in FIGS. 6A and 6B, should be recognized that the size of mesh 14 need not be large, but can cover only arms 20 and 22 and still be effective in treating patent foramen ovales.
  • [0046]
    Device 10 provides distinct advantages and improvements over known patent-foramen ovale-treatment devices. First, the elasticity and ball-like structure of mesh 14, enables device 10 to treat a patent foramen ovales, or other septal defects, of any shape and dimension with equal effectiveness. This is because mesh 14 is compressible along its entire length. Thus, it does not matter if the patent foramen ovale is fenestrated, as the elasticity of mesh 14 will allow it to conform to the substantially exact shape and dimension of the patent foramen ovale. Mesh 14 can also be annealed to have a 3-dimensional to help fill any gaps within the patent foramen ovale space. Thus, the post-implant leakage along the perimeter of known devices caused by their inability to accommodate irregular shaped defects is eliminated. Second, device 10 has substantially less surface compared to known devices, thereby reducing the risk of dangerous blood clot formation on the exterior of the device. Third, contrary to known devices which do not prevent passage of emboli through the defect until tissue growth onto the device occludes the defect, the interstices between the stands of braided mesh 14 of the present invention are small enough to effectively filter emboli as soon as device 10 is implanted. Thus, device 10 offers immediate protection against the passage of emboli at the moment of implant.
  • [0047]
    The embolic filtering device 10 is particular useful in preventing the passage of emboli between an venous blood pool and an arterial blood pool. For purposes of exemplary illustration, the method of the invention is herein exemplified through discussion of a method of treating a patent foramen ovale (PFO). However, it should be recognized that the invention can be used to prevent the passage of emboli between any septal defect and/or arterial venous blood pool and arterial blood pool. To deliver the embolic filtering device 10 of the patent foramen ovale, embolic filtering device 10 is loaded into a delivery system 41 comprising a catheter 42, exemplified in FIG. 4. In a preferred embodiment, the embolic filtering device 10 is loaded onto a guide wire 40 by inserting the guide wire through the lumens of first base 16, the lumens of fasteners 30, 32, and 36, if employing a frame 12 with second base 18, the lumen of second base 18. A pair of forceps 44, as exemplified in FIG. 4, or other grasping device, is used to grasp embolic filtering device 10. In a preferred embodiment, first base 16 has a recess 46 for receiving forceps 44, such that forceps 44 are positioned within recess 46 to more securely grasp embolic filtering device 10, and to deter embolic filtering device 10 from detaching from forceps 44. With embolic filtering device 10 secured by forceps 44 embolic filtering device 10 is pulled into catheter 42. As embolic filtering device 10 is pulled into catheter 42, the force of the catheter walls against first base 16 of frame 12 will force side walls 20 and 22, and left anchors 26 and right anchors 24 inward toward one another. Embolic filtering device 10 will gradually collapse as it is pulled into catheter 42.
  • [0048]
    Using catheter 42, embolic filtering device 10 is delivered to the patent foramen ovale, or other passage between a venous blood pool or arterial blood pool, to be treated. In particular, the distal end of catheter 42 is extended through the patent foramen ovale from the right atrial side to the left atrial side. With the distal end of catheter 42 positioned in the left atrium adjacent to the patent foramen ovale, forceps 44 are used to withdraw embolic filtering device 10 from catheter 42. As embolic filtering device 10 is withdrawn, embolic filtering device 10 will gradually expand from its collapsed position and into its memorized shape and/or in conformance to the shape and dimension of the patent foramen ovale being treated. With the distal end of catheter 42 positioned in the left atrium, adjacent to the patent foramen ovale, embolic filtering device 10 is withdrawn from catheter 42, while catheter 42 is slowly pulled back through the patent foramen ovale in the direction of the right atrium. Left anchors 26 are withdrawn first, and as catheter 42 is pulled back, left anchors 26 are caused to securely engage the walls defining the patent foramen ovale, preferably, the tissue defining the perimeter of the left-atrial opening 23 of the patent foramen ovale, as shown in FIG. 5C. As catheter 42 is pulled back further, the engagement of left anchors 26 onto the tissue defining the perimeter of the left-atrial opening 23 of arms 20 and 22 will prevent embolic filter device 10 from being pulled through the patent foramen ovale, and embolic filter 14 will emerge preferably within the patent foramen ovale, and will gradually expand apart from one another in returning to the shape memorized orientation. As arms 20 and 22 expand apart from one another, pressure will be exerted onto the tissue defining the lumen of the patent foramen ovale, thereby acting as a tissue distension device. The tissue defining the patent foramen ovale will naturally press inward against mesh 14, in effect squeezing the device within the patent foramen ovale. As catheter 42 is pulled back yet further, right anchors 24 will emerge and, as they expand to their memorized shape, will also forcibly engage, for example, the walls defining the patent foramen ovale, or the perimeter of the tissue defining right atrial opening 31 of the patent foramen ovale. If using the embolic filter device illustrated in FIG. 5A, for example, right anchors 24 will engage the tissue defining the outside perimeter defining the right-atrial opening 31 of the patent-foramen ovale, as illustrated in FIG. 5B. In its memorized shape, embolic filter 14 should be sized to engage the walls defining the patent foramen ovale with sufficient force to prevent emboli from passing between the exterior of the embolic filter 14 and die walls of defining the patent foramen ovale. Further, the force created from blood flowing from the right atrium to the left atrium against right anchors 24 facilitates the securing of right anchors 24, and helps prevent embolic filtering device 10 from becoming dislodged from its intended position.
  • [0049]
    It will be recognized by those of ordinary skill, that the device can further be secured in place by adhesives, sutures, hooks, barbs, or other such means. To enhance recovery subsequent to implanting embolic filtering device 10 frame 12 and/or mesh 14 can be coated with known drugs suitable for that purpose. Non-pharmacological methods can also be used to promote healing, including ultrasound, radiofrequency, radiation, mechanical vibration, or any other known non-pharmacological healing method.
  • [0050]
    Prior to disengaging embolic filtering device 10 from forceps 44 and removing catheter 42 from the subject, known radiological techniques can be employed to insure that embolic filtering device 10 is properly positioned and secured within the patent foramen ovale. If the position of embolic filtering device 10 needs to be altered, forceps 44, while still secured to embolic filtering device 10, can be used to reposition embolic filtering device 10; otherwise, forceps 44 are disengaged from embolic filtering device 10, and forceps 44, catheter 42, and guide wire 40 are withdrawn. Should embolic filter device 10 later become disengaged, disoriented, damaged or otherwise need to be removed, forceps 44 can be used to easily reposition or recover embolic filter device 10, as necessary. To facilitate the ease by which embolic filter device 10 is repositioned or recovered, base 16 is preferably coated with a suitable material to deter tissue from covering recess 46.
  • [0051]
    From the moment that embolic filtering device 10 is inserted, emboli are effectively filtered by embolic filtering device 10. Since blood travels from the direction of the right atrium to the left atrium, the portion of embolic filter 14 having a higher density of mesh, e.g., lobes 29 and/or interior embolic filter portion 34, are positioned on the right atria side to decrease the chances that emboli will penetrate into the left atrium. The design of embolic filtering device 10, however, is such that if emboli pass through the right side of embolic filter 14, there is still a significant chance that the portion of embolic filter 14 positioned on the left atrial side will prevent the emboli from passing into the left atrium.
  • [0052]
    Thus, unlike known devices for treating patent foramen ovale or atrial septal defects, for example, it is not necessary for thrombi to collect on the embolic filtering device 10 before the passage of emboli are effectively deterred. However, if total occlusion of the passage is desired, embolic filtering device 10 the embolic filter 14 can be treated with materials to promote thrombrosis, tissue in-growth, or adhesions. Embolic filter 14 can also be treated with anticoagulants to discourage blood clot formation on the device 10.
  • [0053]
    The primary function of frame 12 is to facilitate the delivery, positioning and securing of the embolic filter 14 within and/or adjacent to a passage between a venous blood pool and an arterial blood pool. It should be appreciated, however, that embolic filter 14 can be employed by itself, without frame 12, by securing embolic filter 14 by other means, e.g. sutures, hooks, etc., to deter the passage of emboli through a passage between a venous blood pool and an arterial blood pool. Further, embolic filter 14 can be of virtually any shape, spherical, round, oval or flat, so long as it retains its ability to filter emboli.
  • [0054]
    In another aspect of the invention, as exemplified in FIGS. 6A and 6B, provided is an embolic filter device 110 composed of a mesh 112 and a frame 114, to which mesh 112 is attached. Mesh 112 can be composed of any suitable material, including fabric, metal (e.g. shape memory metal or non-shape memory metal), or polymer, and can be of any shape (e.g., round, oval, or flat) or size suitable for the opening to be treated. Frame 114 can also be composed of any suitable material. For example, frame 114 can be composed of fabric, if rigidity is not required to support the opening to be treated. Alternatively, frame 114 can be composed of plastic, metal or the like, so as to act as a stent to give support to the orifice through which the passage of embolic is to be deterred. Depending on the particular use, mesh 112 and/or frame 114 can be absorbable or non-absorbable. To deter the passage of emboli from a passage between a venous blood pool and an arterial blood pool, embolic filtering device 110 is preferably used to block the passage between a venous blood pool and an arterial blood pool. Using the example of a patent foramen ovale, embolic filtering device 100 can be attached to tissue adjacent to the patent foramen ovale by for example, sutures, barbs, hooks, glue, or any other suitable attaching means 116 to, in effect, create a screen covering the right atrial and/or left atrial openings, and/or within the lumen of the patent foramen ovate. The attaching means 116 are preferably on frame 114, but can be placed at any suitable location on embolic filter device 110. Once in place, embolic filtering device 110 effectively deters the passage of emboli from the right atrium to the left atrium via the patent foramen ovate. Embolic filter device may be delivered either percutaneously, surgically, or via a catheter, depending on the area to be treated.
  • [0055]
    The invention has been described through a preferred embodiment. However, those of ordinary skill will recognize that various modifications can be made without departing from the scope of the invention as defined by the claims.

Claims (20)

  1. 1. A device positionable within a body opening, comprising:
    a frame, wherein the frame comprises at least two arms, and further wherein each of the at least two arms comprise at least one anchor extending laterally from the arms; and
    a mesh, wherein the mesh is coupled to the frame.
  2. 2. The device of claim 1, wherein the frame further comprises at least one base, wherein the at least two arms are coupled to the base.
  3. 3. The device of claim 2, comprising a first base and a second base, wherein the at least two arms connect the first base to the second base.
  4. 4. The device of claim 1, wherein the at least two arms are positioned opposite one another and biased apart from another.
  5. 5. The device of claim 1, wherein the length of the frame is elongated when the at least two arms are compressed perpendicularly to the longitudinal axis of the frame.
  6. 6. The device of claim 1, wherein the at least one anchor is arcuate.
  7. 7. The device of claim 1, wherein at least one anchor is linear.
  8. 8. The device of claim 1, wherein at least a portion of the frame is comprised of a radiopaque material.
  9. 9. The device of claim 1, wherein the device is collapsible into a catheter and capable of expanding to a relaxed state as the device is released from the catheter.
  10. 10. The device of claim 1, wherein the mesh comprises a foam.
  11. 11. A device positionable within a body opening, comprising:
    a frame comprising a first base, a first arm and a second arm, wherein the first and second arms are coupled to the first base, and wherein the first arm comprises a first anchor extending laterally away from the first base, and wherein the second arm comprises a second anchor extending laterally away from the first base, and wherein the first arm is positioned substantially opposite the second arm, and wherein the first arm and the second arm are resiliently flexible, wherein the first arm further comprises a third anchor, and wherein the second arm further comprises a fourth anchor, and wherein the first anchor and third anchor are configured to anchor the device to tissue between the first and third anchors, and wherein the second anchor and the fourth anchor are configured to anchor the device to tissue between the second and fourth anchors; and
    a mesh coupled to the frame.
  12. 12. The device of claim 11, wherein the frame is substantially planar, and wherein the mesh extends out of the plane of the frame.
  13. 13. The device of claim 11, further comprising a second base, wherein the first arm connects the first base to the second base.
  14. 14. The device of claim 11, wherein the first arm is biased away from the second arm.
  15. 15. The device of claim 11, wherein the mesh comprises a metal.
  16. 16. The device of claim 11, wherein the mesh is configured to act as a scaffold for new tissue growth.
  17. 17. The device of claim 11, wherein the mesh comprises a material configured to promote tissue growth.
  18. 18. The device of claim 11, wherein the first anchor and second anchor are arcuate.
  19. 19. The device of claim 11, wherein the first anchor and second anchor are linear.
  20. 20. The device of claim 11, wherein the device is collapsible into a catheter and capable of expanding to a relaxed state as the device is released from the catheter, and wherein the length of the frame is elongated when the first arm and the second arm are compressed perpendicularly to the longitudinal axis of the frame.
US12463296 2003-05-19 2009-05-08 Embolic filtering method and apparatus Abandoned US20090275976A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US47155503 true 2003-05-19 2003-05-19
US10847909 US7122043B2 (en) 2003-05-19 2004-05-19 Tissue distention device and related methods for therapeutic intervention
US11184069 US8758395B2 (en) 2003-05-19 2005-07-19 Embolic filtering method and apparatus
US12463296 US20090275976A1 (en) 2003-05-19 2009-05-08 Embolic filtering method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12463296 US20090275976A1 (en) 2003-05-19 2009-05-08 Embolic filtering method and apparatus

Publications (1)

Publication Number Publication Date
US20090275976A1 true true US20090275976A1 (en) 2009-11-05

Family

ID=33476857

Family Applications (4)

Application Number Title Priority Date Filing Date
US10847909 Expired - Fee Related US7122043B2 (en) 2003-05-19 2004-05-19 Tissue distention device and related methods for therapeutic intervention
US11184069 Active 2030-02-27 US8758395B2 (en) 2003-05-19 2005-07-19 Embolic filtering method and apparatus
US11323640 Active US7648532B2 (en) 2003-05-19 2006-01-03 Tissue distention device and related methods for therapeutic intervention
US12463296 Abandoned US20090275976A1 (en) 2003-05-19 2009-05-08 Embolic filtering method and apparatus

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10847909 Expired - Fee Related US7122043B2 (en) 2003-05-19 2004-05-19 Tissue distention device and related methods for therapeutic intervention
US11184069 Active 2030-02-27 US8758395B2 (en) 2003-05-19 2005-07-19 Embolic filtering method and apparatus
US11323640 Active US7648532B2 (en) 2003-05-19 2006-01-03 Tissue distention device and related methods for therapeutic intervention

Country Status (6)

Country Link
US (4) US7122043B2 (en)
EP (2) EP1648340B1 (en)
JP (2) JP4547381B2 (en)
CN (1) CN1852688A (en)
DE (1) DE602004025814D1 (en)
WO (1) WO2004103209A3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271337A1 (en) * 2007-04-16 2012-10-25 Hans-Reiner Figulla Occluder For Occluding an Atrial Appendage and Production Process Therefor
US8758395B2 (en) 2003-05-19 2014-06-24 Septrx, Inc. Embolic filtering method and apparatus
US9763666B2 (en) 2013-02-19 2017-09-19 Apt Medical Inc. Left atrial appendage plugging device and delivery system

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US20080114394A1 (en) 2001-04-24 2008-05-15 Houser Russell A Arteriotomy Closure Devices and Techniques
US8992567B1 (en) 2001-04-24 2015-03-31 Cardiovascular Technologies Inc. Compressible, deformable, or deflectable tissue closure devices and method of manufacture
WO2003047648A3 (en) 2001-12-05 2003-10-09 Sagax Inc Endovascular device for entrapment of particulate matter and method for use
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
CA2500512A1 (en) * 2002-10-21 2004-05-06 Mitralign Incorporated Method and apparatus for performing catheter-based annuloplasty using local plications
US8021359B2 (en) * 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US20080228266A1 (en) * 2007-03-13 2008-09-18 Mitralign, Inc. Plication assistance devices and methods
US7166127B2 (en) * 2003-12-23 2007-01-23 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US7993397B2 (en) * 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US7645285B2 (en) 2004-05-26 2010-01-12 Idx Medical, Ltd Apparatus and methods for occluding a hollow anatomical structure
WO2006034436A3 (en) 2004-09-21 2006-10-19 Stout Medical Group Lp Expandable support device and method of use
CA2581087C (en) * 2004-09-24 2013-11-19 Ingeneus Inc. Genomic assay
US8371307B2 (en) 2005-02-08 2013-02-12 Koninklijke Philips Electronics N.V. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US8096303B2 (en) 2005-02-08 2012-01-17 Koninklijke Philips Electronics N.V Airway implants and methods and devices for insertion and retrieval
DE602006013946D1 (en) 2005-02-08 2010-06-10 Koninkl Philips Electronics Nv System for percutaneous glossoplastik
US8221446B2 (en) * 2005-03-15 2012-07-17 Cook Medical Technologies Embolic protection device
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
WO2007009107A3 (en) 2005-07-14 2008-08-07 Scott E Greenhalgh Expandable support device and method of use
JP2009501570A (en) * 2005-07-14 2009-01-22 アイディエックス・メディカル・エルティーディー Apparatus and method for occluding a hollow anatomical structure
WO2007012046A3 (en) * 2005-07-19 2007-06-28 Scott E Greenhalgh Anatomical measurement tool
US7279664B2 (en) * 2005-07-26 2007-10-09 Boston Scientific Scimed, Inc. Resonator for medical device
US8187298B2 (en) 2005-08-04 2012-05-29 Cook Medical Technologies Llc Embolic protection device having inflatable frame
US8377092B2 (en) 2005-09-16 2013-02-19 Cook Medical Technologies Llc Embolic protection device
US8632562B2 (en) 2005-10-03 2014-01-21 Cook Medical Technologies Llc Embolic protection device
US8182508B2 (en) 2005-10-04 2012-05-22 Cook Medical Technologies Llc Embolic protection device
US8252017B2 (en) 2005-10-18 2012-08-28 Cook Medical Technologies Llc Invertible filter for embolic protection
WO2007047851A3 (en) 2005-10-19 2009-03-26 Pulsar Vascular Inc Methods and systems for endovascularly clipping and repairing lumen and tissue defects
US8545530B2 (en) 2005-10-19 2013-10-01 Pulsar Vascular, Inc. Implantable aneurysm closure systems and methods
US8152831B2 (en) 2005-11-17 2012-04-10 Cook Medical Technologies Llc Foam embolic protection device
JPWO2007080944A1 (en) * 2006-01-13 2009-06-11 東京エレクトロン株式会社 Film forming method and computer-readable recording medium of the porous membrane
US8062324B2 (en) * 2006-05-08 2011-11-22 S.M.T. Research And Development Ltd. Device and method for vascular filter
US20070270905A1 (en) * 2006-05-18 2007-11-22 Cook Incorporated Patent foramen ovale closure device and method
US8613698B2 (en) 2006-07-10 2013-12-24 Mcneil-Ppc, Inc. Resilient device
CN104257450B (en) 2006-07-10 2017-05-10 第次质量卫生公司 Resilient means
US20080009931A1 (en) * 2006-07-10 2008-01-10 Michelle Bartning Resilient device
US7717892B2 (en) * 2006-07-10 2010-05-18 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US20080009814A1 (en) * 2006-07-10 2008-01-10 Michelle Bartning Resilient device
US9138208B2 (en) 2006-08-09 2015-09-22 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
CA2659365A1 (en) * 2006-08-09 2008-02-21 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
US8864809B2 (en) * 2006-08-09 2014-10-21 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US8529597B2 (en) 2006-08-09 2013-09-10 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20080051830A1 (en) * 2006-08-24 2008-02-28 Boston Scientific Scimed, Inc. Occluding device and method
US20080161825A1 (en) * 2006-11-20 2008-07-03 Stout Medical Group, L.P. Anatomical measurement tool
DE602007009915D1 (en) * 2006-11-20 2010-12-02 Septrx Inc A device for preventing the unwanted flow of the Embolis from the veins to the arteries
US8187315B1 (en) 2006-12-08 2012-05-29 Cardica, Inc. Partial stent for treatment of a vascular aneurysm
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
EP2157937B1 (en) 2007-06-04 2017-03-22 Sequent Medical, Inc. Devices for treatment of vascular defects
US9017362B2 (en) * 2007-06-13 2015-04-28 Cook Medical Technologies Llc Occluding device
US20090002337A1 (en) * 2007-06-28 2009-01-01 Sense Pad Tech Co., Ltd Capacitive-type touch panel
KR101251893B1 (en) * 2007-08-23 2013-04-08 생-고벵 아브라시프 Optimized cmp conditioner design for next generation oxide/metal cmp
US8734483B2 (en) * 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US8795318B2 (en) * 2007-09-07 2014-08-05 Merit Medical Systems, Inc. Percutaneous retrievable vascular filter
US8062328B2 (en) * 2007-09-07 2011-11-22 Merit Medical Systems, Inc. Percutaneous permanent retrievable vascular filter
US9138307B2 (en) 2007-09-14 2015-09-22 Cook Medical Technologies Llc Expandable device for treatment of a stricture in a body vessel
US8419748B2 (en) 2007-09-14 2013-04-16 Cook Medical Technologies Llc Helical thrombus removal device
US9034007B2 (en) * 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US20090084386A1 (en) * 2007-10-01 2009-04-02 Mcclellan Annette M L Tubal ligation
US8308763B2 (en) 2007-10-05 2012-11-13 Coaptus Medical Corporation Systems and methods for transeptal cardiac procedures, including separable guidewires
US20090099591A1 (en) * 2007-10-15 2009-04-16 Boston Scientific Scimed, Inc. Coil Anchor Systems and Methods of Use
WO2009052432A3 (en) 2007-10-19 2009-07-30 Coherex Medical Inc Medical device for modification of left atrial appendange and related systems and methods
US8106892B2 (en) * 2007-10-29 2012-01-31 Sigmatel, Inc. Touch screen driver for resolving plural contemporaneous touches and methods for use therewith
US8961541B2 (en) 2007-12-03 2015-02-24 Cardio Vascular Technologies Inc. Vascular closure devices, systems, and methods of use
US20110004237A1 (en) * 2007-12-12 2011-01-06 Peter Schneider Minimal surface area contact device for holding plaque to blood vessel wall
US8128677B2 (en) 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US9603730B2 (en) 2007-12-12 2017-03-28 Intact Vascular, Inc. Endoluminal device and method
US7896911B2 (en) 2007-12-12 2011-03-01 Innovasc Llc Device and method for tacking plaque to blood vessel wall
US8287538B2 (en) 2008-01-14 2012-10-16 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
DE102008015781B4 (en) * 2008-03-26 2011-09-29 Malte Neuss Device for closing defects in the vascular system
CN106974691A (en) 2008-05-02 2017-07-25 斯昆特医疗公司 Filamentary devices for treatment of vascular defects
WO2009155319A1 (en) 2008-06-17 2009-12-23 Soteira, Inc. Devices and methods for fracture reduction
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US9232992B2 (en) * 2008-07-24 2016-01-12 Aga Medical Corporation Multi-layered medical device for treating a target site and associated method
US9351715B2 (en) * 2008-07-24 2016-05-31 St. Jude Medical, Cardiology Division, Inc. Multi-layered medical device for treating a target site and associated method
CN103976770B (en) 2008-09-05 2017-04-12 帕尔萨脉管公司 System and method for supporting or physiological opening or cavity occlusion
US8388644B2 (en) 2008-12-29 2013-03-05 Cook Medical Technologies Llc Embolic protection device and method of use
US8840641B2 (en) 2009-01-08 2014-09-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8029534B2 (en) 2009-03-16 2011-10-04 Cook Medical Technologies Llc Closure device with string retractable umbrella
WO2010118312A3 (en) 2009-04-09 2011-04-28 Cardiovascular Technologies, Inc. Tissue closure devices, device and systems for delivery, kits and methods therefor
US8715318B2 (en) * 2009-06-17 2014-05-06 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9649115B2 (en) 2009-06-17 2017-05-16 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
EP3300673A2 (en) 2009-09-04 2018-04-04 Pulsar Vascular, Inc. Systems for enclosing an anatomical opening
US8845682B2 (en) 2009-10-13 2014-09-30 E-Pacing, Inc. Vasculature closure devices and methods
EP2496299A4 (en) * 2009-11-05 2014-08-27 Sequent Medical Inc Multiple layer filamentary devices or treatment of vascular defects
US8715300B2 (en) * 2009-12-05 2014-05-06 Integrated Sensing Systems, Inc. Delivery system, method, and anchor for medical implant placement
EP2523720A4 (en) * 2010-01-11 2017-05-03 Assis Medical Ltd Device system and method for reshaping tissue openings
US20110178520A1 (en) 2010-01-15 2011-07-21 Kyle Taylor Rotary-rigid orthopaedic rod
CA2823873A1 (en) 2010-01-20 2011-07-28 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
JP2013521880A (en) 2010-03-08 2013-06-13 コンベンタス オーソピディックス, インコーポレイテッド Apparatus and method for securing a bone implant
WO2011130579A1 (en) 2010-04-14 2011-10-20 Abbott Cardiovascular Systems Inc. Intraluminal scaffold and method of making and using same
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
WO2012009152A1 (en) 2010-07-15 2012-01-19 Hugues Malandain A plastically deformable inter-osseous device
US9463036B2 (en) 2010-10-22 2016-10-11 Neuravi Limited Clot engagement and removal system
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
WO2012085916A3 (en) * 2010-12-23 2012-08-16 Smt Research And Development Ltd. Device and method for deflecting emboli in an aorta
US20120259399A1 (en) * 2011-01-14 2012-10-11 Abbott Laboratories Intraluminal scaffold system and use thereof
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US9301769B2 (en) 2011-03-09 2016-04-05 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US20120271341A1 (en) * 2011-04-25 2012-10-25 Hill Alexander J Method and Apparatus for Treating a Mitral Valve Prolapse and Providing Embolic Protection
US8740931B2 (en) 2011-08-05 2014-06-03 Merit Medical Systems, Inc. Vascular filter
US8734480B2 (en) 2011-08-05 2014-05-27 Merit Medical Systems, Inc. Vascular filter
EP2747682A4 (en) 2011-08-23 2015-01-21 Flexmedex Llc Tissue removal device and method
CN103974667B (en) 2011-10-05 2017-12-22 帕尔萨维斯库勒公司 Means for closing the opening of the anatomy, the system and method
JP6062448B2 (en) 2011-11-01 2017-01-18 コヒーレックス メディカル インコーポレイテッドCoherex Medical,Inc. SYSTEM AND METHOD medical devices and associated left atrial appendage modified
CA2986656A1 (en) 2012-01-25 2013-08-01 Intact Vascular, Inc. Endoluminal device and method
JP2013154089A (en) 2012-01-31 2013-08-15 Terumo Corp Aneurysm treatment device and aneurysm treatment method
WO2013119332A3 (en) 2012-02-09 2013-10-03 Stout Medical Group, L.P. Embolic device and methods of use
US9452039B2 (en) 2012-02-23 2016-09-27 Merit Medical Systems, Inc. Vascular filter
US9259229B2 (en) 2012-05-10 2016-02-16 Pulsar Vascular, Inc. Systems and methods for enclosing an anatomical opening, including coil-tipped aneurysm devices
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
JP2016513505A (en) 2013-03-14 2016-05-16 ニューラヴィ・リミテッド Clot retrieval device for removing an obstruction clot from a blood vessel
US8715315B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment systems
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
US9314324B2 (en) 2013-07-29 2016-04-19 Insera Therapeutics, Inc. Vascular treatment devices and methods
US9078658B2 (en) 2013-08-16 2015-07-14 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9955976B2 (en) 2013-08-16 2018-05-01 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
US9629635B2 (en) 2014-04-14 2017-04-25 Sequent Medical, Inc. Devices for therapeutic vascular procedures
WO2015160721A1 (en) * 2014-04-14 2015-10-22 Sequent Medical Inc. Devices for therapeutic vascular procedures
US9060777B1 (en) 2014-05-28 2015-06-23 Tw Medical Technologies, Llc Vaso-occlusive devices and methods of use
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
WO2017172021A1 (en) * 2016-03-30 2017-10-05 Spiration, Inc. D/B/A Olympus Respiratory America Airway valve with anchors

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168616A (en) *
US3656185A (en) * 1969-02-04 1972-04-18 Rhone Poulenc Sa Cardiac valvular support prosthesis
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4739759A (en) * 1985-02-26 1988-04-26 Concept, Inc. Microprocessor controlled electrosurgical generator
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US4991602A (en) * 1989-06-27 1991-02-12 Flexmedics Corporation Flexible guide wire with safety tip
US5104407A (en) * 1989-02-13 1992-04-14 Baxter International Inc. Selectively flexible annuloplasty ring
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5486193A (en) * 1992-01-22 1996-01-23 C. R. Bard, Inc. System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5507811A (en) * 1993-11-26 1996-04-16 Nissho Corporation Prosthetic device for atrial septal defect repair
US5593441A (en) * 1992-03-04 1997-01-14 C. R. Bard, Inc. Method for limiting the incidence of postoperative adhesions
US5601595A (en) * 1994-10-25 1997-02-11 Scimed Life Systems, Inc. Remobable thrombus filter
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5861003A (en) * 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US6024096A (en) * 1998-05-01 2000-02-15 Correstore Inc Anterior segment ventricular restoration apparatus and method
US6168616B1 (en) * 1997-06-02 2001-01-02 Global Vascular Concepts Manually expandable stent
US6171329B1 (en) * 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6174322B1 (en) * 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US6190218B1 (en) * 1999-09-27 2001-02-20 Outboard Marine Corporation Pump jet with redirected exhaust gas through stator vane for drag reduction
US6200336B1 (en) * 1998-06-02 2001-03-13 Cook Incorporated Multiple-sided intraluminal medical device
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6214029B1 (en) * 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6214020B1 (en) * 1992-05-20 2001-04-10 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prosthesis
US6221092B1 (en) * 1998-03-30 2001-04-24 Nissho Corporation Closure device for transcatheter operations and catheter assembly therefor
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US20020002401A1 (en) * 2000-06-26 2002-01-03 Mcguckin James F. Vascular device for valve leaflet apposition
US6344048B1 (en) * 1997-07-10 2002-02-05 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US6348063B1 (en) * 1999-03-11 2002-02-19 Mindguard Ltd. Implantable stroke treating device
US20020022860A1 (en) * 2000-08-18 2002-02-21 Borillo Thomas E. Expandable implant devices for filtering blood flow from atrial appendages
US20020026092A1 (en) * 1998-05-01 2002-02-28 Buckberg Gerald D. Ventricular restoration patch
US6355052B1 (en) * 1996-02-09 2002-03-12 Pfm Produkte Fur Die Medizin Aktiengesellschaft Device for closure of body defect openings
US20020035361A1 (en) * 1999-06-25 2002-03-21 Houser Russell A. Apparatus and methods for treating tissue
US6368339B1 (en) * 1994-07-08 2002-04-09 Aga Medical Corporation Method of forming medical devices: intra-vascular occlusion devices
US6368541B1 (en) * 1993-09-13 2002-04-09 C. R. Bard, Inc. Method of manufacturing a curved prosthetic mesh
US6368338B1 (en) * 1999-03-05 2002-04-09 Board Of Regents, The University Of Texas Occlusion method and apparatus
US6506204B2 (en) * 1996-01-24 2003-01-14 Aga Medical Corporation Method and apparatus for occluding aneurysms
US20030018377A1 (en) * 2001-05-24 2003-01-23 Berg Todd A. Methods and apparatus for regulating the flow of matter through body tubing
US20030028213A1 (en) * 2001-08-01 2003-02-06 Microvena Corporation Tissue opening occluder
US20030036755A1 (en) * 2001-08-15 2003-02-20 Integrated Vascular Systems, Inc. Apparatus and methods for reducing lung volume
US20030045893A1 (en) * 2001-09-06 2003-03-06 Integrated Vascular Systems, Inc. Clip apparatus for closing septal defects and methods of use
US20030045898A1 (en) * 2001-09-06 2003-03-06 Harrison William J. Embolic protection basket
US20030055455A1 (en) * 2001-09-20 2003-03-20 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
US6537286B2 (en) * 2001-01-19 2003-03-25 Sergio Acampora Device for fastening a cranial flap to the cranial vault
US6537300B2 (en) * 2001-05-30 2003-03-25 Scimed Life Systems, Inc. Implantable obstruction device for septal defects
US20030057156A1 (en) * 2001-03-08 2003-03-27 Dean Peterson Atrial filter implants
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6673089B1 (en) * 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
US20040006368A1 (en) * 1994-07-08 2004-01-08 Ev3 Inc. Method and device for filtering body fluid
US6689150B1 (en) * 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US20040034366A1 (en) * 1999-11-08 2004-02-19 Ev3 Sunnyvale, Inc., A California Corporation Device for containing embolic material in the LAA having a plurality of tissue retention structures
US6702835B2 (en) * 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20040049226A1 (en) * 1997-11-07 2004-03-11 Martin Keegan Embolic protection system
US20040049210A1 (en) * 1999-10-27 2004-03-11 Vantassel Robert A. Filter apparatus for ostium of left atrial appendage
US6712836B1 (en) * 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US6712804B2 (en) * 1999-09-20 2004-03-30 Ev3 Sunnyvale, Inc. Method of closing an opening in a wall of the heart
US20040073242A1 (en) * 2002-06-05 2004-04-15 Nmt Medical, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US6723133B1 (en) * 1998-09-11 2004-04-20 C. R. Bard, Inc. Performed curved prosthesis having a reduced incidence of developing wrinkles or folds
US20050021016A1 (en) * 2003-03-27 2005-01-27 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US20050034735A1 (en) * 2003-03-27 2005-02-17 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20050049681A1 (en) * 2003-05-19 2005-03-03 Secant Medical, Llc Tissue distention device and related methods for therapeutic intervention
US20050080406A1 (en) * 2003-03-27 2005-04-14 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US20050085843A1 (en) * 2003-10-21 2005-04-21 Nmt Medical, Inc. Quick release knot attachment system
US20050085848A1 (en) * 2003-09-12 2005-04-21 Johnson Steven W. Actuating constraining mechanism
US20050090858A1 (en) * 2001-01-25 2005-04-28 Ev3 Inc. Distal protection device with electrospun polymer fiber matrix
US20050090857A1 (en) * 1999-03-08 2005-04-28 Ev3 Inc. Minimally invasive medical device deployment and retrieval system
US6981981B2 (en) * 1994-01-26 2006-01-03 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US20060015138A1 (en) * 2004-07-19 2006-01-19 Michael Gertner Emboli diverting devices created by microfabricated means
US20060036284A1 (en) * 2002-05-06 2006-02-16 Velocimed, Llc PFO closure devices and related methods of use
US7001406B2 (en) * 2002-05-23 2006-02-21 Scimed Life Systems Inc. Cartridge embolic protection filter and methods of use
US20060052821A1 (en) * 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US20060058833A1 (en) * 2004-09-10 2006-03-16 Daniel Vancamp Diversion device to increase cerebral blood flow
US20060064039A1 (en) * 2004-09-22 2006-03-23 Scimed Life Systems, Inc. Lumen measurement devices and related methods
US20080039953A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20080039743A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Methods for determining characteristics of an internal tissue opening

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2306671B1 (en) 1975-04-11 1977-11-10 Rhone Poulenc Ind
US4306319A (en) 1980-06-16 1981-12-22 Robert L. Kaster Heart valve with non-circular body
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
CA1303298C (en) 1986-08-06 1992-06-16 Alain Carpentier Flexible cardiac valvular support prosthesis
FR2632864B2 (en) * 1987-12-31 1990-10-19 Biomat Sarl filtering system for anti-embolic elastic vena cava and all means for its implementation
US4921484A (en) 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US5067489A (en) * 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
US5342304A (en) * 1990-03-16 1994-08-30 Advanced Cardiovascular Systems, Inc. Inflation device for dilatation catheters
FR2660189B1 (en) 1990-03-28 1992-07-31 Lefebvre Jean Marie A device for implantation in a vessel with lateral lugs has opposing teeth.
CA2057018C (en) * 1990-04-02 1997-12-09 Kanji Inoue Device for nonoperatively occluding a defect
FR2663217B1 (en) * 1990-06-15 1992-10-16 Antheor Filter device intended for the prevention of embolisms.
CA2082090C (en) 1991-11-05 2004-04-27 Jack Fagan Improved occluder for repair of cardiac and vascular defects
US5626605A (en) * 1991-12-30 1997-05-06 Scimed Life Systems, Inc. Thrombosis filter
JP3393383B2 (en) 1992-01-21 2003-04-07 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Septal defect closure device
US5324304A (en) 1992-06-18 1994-06-28 William Cook Europe A/S Introduction catheter set for a collapsible self-expandable implant
US5356432B1 (en) 1993-02-05 1997-02-04 Bard Inc C R Implantable mesh prosthesis and method for repairing muscle or tissue wall defects
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
DE69433064T2 (en) * 1993-10-01 2004-06-17 Boston Scientific Corp., Natick Vena cava filter
DE69419877T2 (en) * 1993-11-04 1999-12-16 Bard Inc C R Fixed vascular prosthesis
US5846261A (en) 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US5433727A (en) 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5702421A (en) 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5634931A (en) * 1994-09-29 1997-06-03 Surgical Sense, Inc. Hernia mesh patches and methods of their use
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
KR100262837B1 (en) 1995-06-06 2000-09-01 스피겔 알렌 제이 Endovascular measuring apparatus, loading and deployment means
US5569273A (en) 1995-07-13 1996-10-29 C. R. Bard, Inc. Surgical mesh fabric
WO1997016135A1 (en) 1995-11-01 1997-05-09 St. Jude Medical, Inc. Bioresorbable annuloplasty prosthesis
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
EP0900051A1 (en) 1996-05-08 1999-03-10 Salviac Limited An occluder device
US5669933A (en) * 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US6482224B1 (en) 1996-08-22 2002-11-19 The Trustees Of Columbia University In The City Of New York Endovascular flexible stapling device
JPH11318910A (en) * 1997-11-25 1999-11-24 Boston Scient Corp Atraumatic anchoring and disengagement mechanism for permanent implanting device
FR2758078B1 (en) 1997-01-03 1999-07-16 Braun Celsa Sa Blood filter permeability IMPROVED
JP2001527437A (en) 1997-03-07 2001-12-25 グローバーマン、オレン System for percutaneous bone and spinal stabilization, fixation and repair
US6120539A (en) 1997-05-01 2000-09-19 C. R. Bard Inc. Prosthetic repair fabric
US6461370B1 (en) 1998-11-03 2002-10-08 C. R. Bard, Inc. Temporary vascular filter guide wire
US6443972B1 (en) 1997-11-19 2002-09-03 Cordis Europa N.V. Vascular filter
US6258120B1 (en) 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
JPH11309217A (en) * 1998-04-27 1999-11-09 Sumitomo Bakelite Co Ltd Luminal dilation indweller
US6007557A (en) * 1998-04-29 1999-12-28 Embol-X, Inc. Adjustable blood filtration system
US6221104B1 (en) 1998-05-01 2001-04-24 Cor Restore, Inc. Anterior and interior segment cardiac restoration apparatus and method
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
US6143024A (en) 1998-06-04 2000-11-07 Sulzer Carbomedics Inc. Annuloplasty ring having flexible anterior portion
US6241746B1 (en) 1998-06-29 2001-06-05 Cordis Corporation Vascular filter convertible to a stent and method
US6093199A (en) * 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6159240A (en) 1998-08-31 2000-12-12 Medtronic, Inc. Rigid annuloplasty device that becomes compliant after implantation
US6740122B1 (en) 1998-09-11 2004-05-25 C. R. Bard, Inc. Preformed curved prosthesis that is adapted to the external iliac vessels
US5919200A (en) 1998-10-09 1999-07-06 Hearten Medical, Inc. Balloon catheter for abrading a patent foramen ovale and method of using the balloon catheter
JP2004535249A (en) 1998-10-26 2004-11-25 エクスパンディング オーソペディクス インコーポレーテッド Expandable orthopedic equipment
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US6152144A (en) * 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US7128073B1 (en) * 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6238416B1 (en) 1998-11-13 2001-05-29 Eleftherios B. Sideris Transcatheter surgical patch
DE60028186T2 (en) 1999-01-27 2007-03-29 Disc-O-Tech Medical Technologies, Ltd. Expandable implant and to attach system
US6332892B1 (en) 1999-03-02 2001-12-25 Scimed Life Systems, Inc. Medical device with one or more helical coils
US20030225453A1 (en) * 1999-03-03 2003-12-04 Trivascular, Inc. Inflatable intraluminal graft
US20040167613A1 (en) * 1999-03-11 2004-08-26 Ofer Yodfat Implantable stroke prevention device
US6245012B1 (en) 1999-03-19 2001-06-12 Nmt Medical, Inc. Free standing filter
JP4067225B2 (en) * 1999-03-31 2008-03-26 テルモ株式会社 Vascular aneurysm formation vascular stent
US6309350B1 (en) 1999-05-03 2001-10-30 Tricardia, L.L.C. Pressure/temperature/monitor device for heart implantation
US6267776B1 (en) * 1999-05-03 2001-07-31 O'connell Paul T. Vena cava filter and method for treating pulmonary embolism
US6258124B1 (en) 1999-05-10 2001-07-10 C. R. Bard, Inc. Prosthetic repair fabric
US6656206B2 (en) 1999-05-13 2003-12-02 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6375668B1 (en) * 1999-06-02 2002-04-23 Hanson S. Gifford Devices and methods for treating vascular malformations
US6669687B1 (en) * 1999-06-25 2003-12-30 Vahid Saadat Apparatus and methods for treating tissue
US6416549B1 (en) 1999-07-19 2002-07-09 Sulzer Carbomedics Inc. Antithrombogenic annuloplasty ring having a biodegradable insert
US8257428B2 (en) 1999-08-09 2012-09-04 Cardiokinetix, Inc. System for improving cardiac function
US6273901B1 (en) * 1999-08-10 2001-08-14 Scimed Life Systems, Inc. Thrombosis filter having a surface treatment
US6251122B1 (en) 1999-09-02 2001-06-26 Scimed Life Systems, Inc. Intravascular filter retrieval device and method
EP1210014A1 (en) 1999-09-07 2002-06-05 Microvena Corporation Retrievable septal defect closure device
US20010041914A1 (en) 1999-11-22 2001-11-15 Frazier Andrew G.C. Tissue patch deployment catheter
US6325815B1 (en) 1999-09-21 2001-12-04 Microvena Corporation Temporary vascular filter
US6312447B1 (en) 1999-10-13 2001-11-06 The General Hospital Corporation Devices and methods for percutaneous mitral valve repair
US6166616A (en) * 1999-11-23 2000-12-26 Eaton Corporation Circuit breaker with trip bar reinforcing clip
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
DE10000137A1 (en) 2000-01-04 2001-07-12 Pfm Prod Fuer Die Med Ag Implantate for closing defect apertures in human or animal bodies, bearing structure of which can be reversed from secondary to primary form by elastic force
US7214237B2 (en) * 2001-03-12 2007-05-08 Don Michael T Anthony Vascular filter with improved strength and flexibility
US6468303B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
ES2618782T3 (en) * 2000-04-13 2017-06-22 Cube S.R.L. endoventricular device for the treatment and correction of cardiomyopathies
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6468290B1 (en) * 2000-06-05 2002-10-22 Scimed Life Systems, Inc. Two-planar vena cava filter with self-centering capabilities
US6482222B1 (en) 2000-07-11 2002-11-19 Rafael Medical Technologies Inc. Intravascular filter
US6610006B1 (en) 2000-07-25 2003-08-26 C. R. Bard, Inc. Implantable prosthesis
US6440152B1 (en) 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
JP2004515311A (en) 2000-10-25 2004-05-27 エスディージーアイ・ホールディングス・インコーポレーテッド Intervertebral body fusion device to extend vertically
WO2002035990A9 (en) 2000-10-31 2003-04-24 Prodesco Supported lattice for cell cultivation
US6645225B1 (en) 2000-11-01 2003-11-11 Alvan W. Atkinson Method and apparatus for plugging a patent foramen ovale formed in the heart
US6506205B2 (en) * 2001-02-20 2003-01-14 Mark Goldberg Blood clot filtering system
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
DE60238616D1 (en) 2001-06-11 2011-01-27 Ev3 Inc A method for training nitinol wire
WO2003000331A1 (en) * 2001-06-21 2003-01-03 Jomed Gmbh Methods and apparatus for crossing a heart valve
WO2003047648A3 (en) * 2001-12-05 2003-10-09 Sagax Inc Endovascular device for entrapment of particulate matter and method for use
US7318833B2 (en) * 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
EP1467661A4 (en) * 2001-12-19 2008-11-05 Nmt Medical Inc Septal occluder and associated methods
US6790213B2 (en) 2002-01-07 2004-09-14 C.R. Bard, Inc. Implantable prosthesis
EP1471835A4 (en) * 2002-01-14 2008-03-19 Nmt Medical Inc Patent foramen ovale (pfo) closure method and device
EP1469790B1 (en) * 2002-01-25 2016-10-19 Atritech, Inc. Atrial appendage blood filtration systems
JP2003238546A (en) * 2002-02-15 2003-08-27 Sumitomo Chem Co Ltd Method for recovering propylene oxide
US6638257B2 (en) 2002-03-01 2003-10-28 Aga Medical Corporation Intravascular flow restrictor
WO2003073961A1 (en) * 2002-03-05 2003-09-12 Salviac Limited System with embolic filter and retracting snare
EP1487357B1 (en) * 2002-03-15 2011-11-23 W.L. Gore & Associates, Inc. Coupling system useful in placement of implants
EP1487353A4 (en) * 2002-03-25 2008-04-16 Nmt Medical Inc Patent foramen ovale (pfo) closure clips
US20030187495A1 (en) 2002-04-01 2003-10-02 Cully Edward H. Endoluminal devices, embolic filters, methods of manufacture and use
US20030195553A1 (en) * 2002-04-12 2003-10-16 Scimed Life Systems, Inc. System and method for retaining vaso-occlusive devices within an aneurysm
US6736823B2 (en) 2002-05-10 2004-05-18 C.R. Bard, Inc. Prosthetic repair fabric
US6736854B2 (en) 2002-05-10 2004-05-18 C. R. Bard, Inc. Prosthetic repair fabric with erosion resistant edge
US20040098042A1 (en) 2002-06-03 2004-05-20 Devellian Carol A. Device with biological tissue scaffold for percutaneous closure of an intracardiac defect and methods thereof
US20050273118A1 (en) * 2002-07-11 2005-12-08 Andreas Hillenmeier Epilator
JP2004097807A (en) 2002-08-20 2004-04-02 Nipro Corp Thrombus capturing catheter
WO2004026147A3 (en) * 2002-09-23 2004-08-12 Nmt Medical Inc Septal puncture device
US7766820B2 (en) * 2002-10-25 2010-08-03 Nmt Medical, Inc. Expandable sheath tubing
EP1562653A1 (en) 2002-11-06 2005-08-17 NMT Medical, Inc. Medical devices utilizing modified shape memory alloy
EP1560525B1 (en) * 2002-11-07 2009-01-14 NMT Medical, Inc. Patent foramen ovale (pfo) closure with magnetic force
US9017373B2 (en) * 2002-12-09 2015-04-28 W.L. Gore & Associates, Inc. Septal closure devices
EP1596723A2 (en) * 2003-02-04 2005-11-23 ev3 Sunnyvale, Inc. Patent foramen ovale closure system
WO2004071343A3 (en) 2003-02-11 2004-09-30 Cook Inc Removable vena cava filter
US20040167566A1 (en) * 2003-02-24 2004-08-26 Scimed Life Systems, Inc. Apparatus for anchoring an intravascular device along a guidewire
US7618435B2 (en) * 2003-03-04 2009-11-17 Nmt Medical, Inc. Magnetic attachment systems
US20040176788A1 (en) * 2003-03-07 2004-09-09 Nmt Medical, Inc. Vacuum attachment system
WO2004087235A3 (en) 2003-03-27 2005-01-06 Cierra Inc Methods and apparatus for treatment of patent foramen ovale
US7186251B2 (en) * 2003-03-27 2007-03-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US20050203587A1 (en) * 2003-08-05 2005-09-15 Sachiko Liebergesell Promotion of oral hygiene and treatment of gingivitis, other periodontal problems and oral mal odor with alternating current wave forms and device therefor
US7666203B2 (en) * 2003-11-06 2010-02-23 Nmt Medical, Inc. Transseptal puncture apparatus
US8048103B2 (en) * 2003-11-06 2011-11-01 Boston Scientific Scimed, Inc. Flattened tip filter wire design
US20050273119A1 (en) 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US20050192626A1 (en) * 2004-01-30 2005-09-01 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
JP2007519498A (en) * 2004-01-30 2007-07-19 エヌエムティー メディカル, インコーポレイティッド Device for closing cardiac openings, systems, and methods
US7871419B2 (en) * 2004-03-03 2011-01-18 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US7473265B2 (en) 2004-03-15 2009-01-06 Boston Scientific Scimed, Inc. Filter media and methods of manufacture
US20050267524A1 (en) * 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US8361110B2 (en) * 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US7842053B2 (en) * 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
US8308760B2 (en) * 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
CA2563298A1 (en) 2004-05-07 2005-11-24 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US7842069B2 (en) 2004-05-07 2010-11-30 Nmt Medical, Inc. Inflatable occluder
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US7621952B2 (en) 2004-06-07 2009-11-24 Dfine, Inc. Implants and methods for treating bone
CA2581677C (en) 2004-09-24 2014-07-29 Nmt Medical, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US20060100706A1 (en) 2004-11-10 2006-05-11 Shadduck John H Stent systems and methods for spine treatment
WO2007012046A3 (en) 2005-07-19 2007-06-28 Scott E Greenhalgh Anatomical measurement tool
CA2609800A1 (en) 2005-07-19 2007-01-25 Stout Medical Group L.P. Embolic filtering method and apparatus
US20070270905A1 (en) 2006-05-18 2007-11-22 Cook Incorporated Patent foramen ovale closure device and method
DE602007009915D1 (en) 2006-11-20 2010-12-02 Septrx Inc A device for preventing the unwanted flow of the Embolis from the veins to the arteries
US20080161825A1 (en) 2006-11-20 2008-07-03 Stout Medical Group, L.P. Anatomical measurement tool

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168616A (en) *
US3656185A (en) * 1969-02-04 1972-04-18 Rhone Poulenc Sa Cardiac valvular support prosthesis
US3953566A (en) * 1970-05-21 1976-04-27 W. L. Gore & Associates, Inc. Process for producing porous products
US4187390A (en) * 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4739759A (en) * 1985-02-26 1988-04-26 Concept, Inc. Microprocessor controlled electrosurgical generator
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5104407B1 (en) * 1989-02-13 1999-09-21 Baxter Int Selectively flexible annuloplasty ring
US5104407A (en) * 1989-02-13 1992-04-14 Baxter International Inc. Selectively flexible annuloplasty ring
US4991602A (en) * 1989-06-27 1991-02-12 Flexmedics Corporation Flexible guide wire with safety tip
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5486193A (en) * 1992-01-22 1996-01-23 C. R. Bard, Inc. System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5593441A (en) * 1992-03-04 1997-01-14 C. R. Bard, Inc. Method for limiting the incidence of postoperative adhesions
US6214020B1 (en) * 1992-05-20 2001-04-10 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prosthesis
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US6368541B1 (en) * 1993-09-13 2002-04-09 C. R. Bard, Inc. Method of manufacturing a curved prosthetic mesh
US5507811A (en) * 1993-11-26 1996-04-16 Nissho Corporation Prosthetic device for atrial septal defect repair
US6981981B2 (en) * 1994-01-26 2006-01-03 Kyphon Inc. Inflatable device for use in surgical protocol relating to fixation of bone
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US20040006368A1 (en) * 1994-07-08 2004-01-08 Ev3 Inc. Method and device for filtering body fluid
US6712835B2 (en) * 1994-07-08 2004-03-30 Ev3 Inc. Method and device for filtering body fluid
US20050021076A1 (en) * 1994-07-08 2005-01-27 Ev3 Inc. Method and device for filtering body fluid
US6368339B1 (en) * 1994-07-08 2002-04-09 Aga Medical Corporation Method of forming medical devices: intra-vascular occlusion devices
US6682546B2 (en) * 1994-07-08 2004-01-27 Aga Medical Corporation Intravascular occlusion devices
US5601595A (en) * 1994-10-25 1997-02-11 Scimed Life Systems, Inc. Remobable thrombus filter
US6171329B1 (en) * 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US6506204B2 (en) * 1996-01-24 2003-01-14 Aga Medical Corporation Method and apparatus for occluding aneurysms
US6355052B1 (en) * 1996-02-09 2002-03-12 Pfm Produkte Fur Die Medizin Aktiengesellschaft Device for closure of body defect openings
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5861003A (en) * 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US6168616B1 (en) * 1997-06-02 2001-01-02 Global Vascular Concepts Manually expandable stent
US6344048B1 (en) * 1997-07-10 2002-02-05 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US6174322B1 (en) * 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US20040049226A1 (en) * 1997-11-07 2004-03-11 Martin Keegan Embolic protection system
US6221092B1 (en) * 1998-03-30 2001-04-24 Nissho Corporation Closure device for transcatheter operations and catheter assembly therefor
US6024096A (en) * 1998-05-01 2000-02-15 Correstore Inc Anterior segment ventricular restoration apparatus and method
US20020026092A1 (en) * 1998-05-01 2002-02-28 Buckberg Gerald D. Ventricular restoration patch
US6544167B2 (en) * 1998-05-01 2003-04-08 Correstore, Inc. Ventricular restoration patch
US6837247B2 (en) * 1998-05-01 2005-01-04 Correstore, Inc. Method of using ventricular restoration patch
US6200336B1 (en) * 1998-06-02 2001-03-13 Cook Incorporated Multiple-sided intraluminal medical device
US6723133B1 (en) * 1998-09-11 2004-04-20 C. R. Bard, Inc. Performed curved prosthesis having a reduced incidence of developing wrinkles or folds
US6368338B1 (en) * 1999-03-05 2002-04-09 Board Of Regents, The University Of Texas Occlusion method and apparatus
US20050090857A1 (en) * 1999-03-08 2005-04-28 Ev3 Inc. Minimally invasive medical device deployment and retrieval system
US6673089B1 (en) * 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
US6348063B1 (en) * 1999-03-11 2002-02-19 Mindguard Ltd. Implantable stroke treating device
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6712836B1 (en) * 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US20020035361A1 (en) * 1999-06-25 2002-03-21 Houser Russell A. Apparatus and methods for treating tissue
US6712804B2 (en) * 1999-09-20 2004-03-30 Ev3 Sunnyvale, Inc. Method of closing an opening in a wall of the heart
US6190218B1 (en) * 1999-09-27 2001-02-20 Outboard Marine Corporation Pump jet with redirected exhaust gas through stator vane for drag reduction
US20040049210A1 (en) * 1999-10-27 2004-03-11 Vantassel Robert A. Filter apparatus for ostium of left atrial appendage
US20050049573A1 (en) * 1999-10-27 2005-03-03 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6689150B1 (en) * 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US20040034366A1 (en) * 1999-11-08 2004-02-19 Ev3 Sunnyvale, Inc., A California Corporation Device for containing embolic material in the LAA having a plurality of tissue retention structures
US6994092B2 (en) * 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6214029B1 (en) * 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US20020002401A1 (en) * 2000-06-26 2002-01-03 Mcguckin James F. Vascular device for valve leaflet apposition
US20020022860A1 (en) * 2000-08-18 2002-02-21 Borillo Thomas E. Expandable implant devices for filtering blood flow from atrial appendages
US6537286B2 (en) * 2001-01-19 2003-03-25 Sergio Acampora Device for fastening a cranial flap to the cranial vault
US20050090858A1 (en) * 2001-01-25 2005-04-28 Ev3 Inc. Distal protection device with electrospun polymer fiber matrix
US20030057156A1 (en) * 2001-03-08 2003-03-27 Dean Peterson Atrial filter implants
US20030018377A1 (en) * 2001-05-24 2003-01-23 Berg Todd A. Methods and apparatus for regulating the flow of matter through body tubing
US6537300B2 (en) * 2001-05-30 2003-03-25 Scimed Life Systems, Inc. Implantable obstruction device for septal defects
US20030028213A1 (en) * 2001-08-01 2003-02-06 Microvena Corporation Tissue opening occluder
US20030036755A1 (en) * 2001-08-15 2003-02-20 Integrated Vascular Systems, Inc. Apparatus and methods for reducing lung volume
US20030045898A1 (en) * 2001-09-06 2003-03-06 Harrison William J. Embolic protection basket
US20060052821A1 (en) * 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US20030045893A1 (en) * 2001-09-06 2003-03-06 Integrated Vascular Systems, Inc. Clip apparatus for closing septal defects and methods of use
US6702835B2 (en) * 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20030055455A1 (en) * 2001-09-20 2003-03-20 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
US20060036284A1 (en) * 2002-05-06 2006-02-16 Velocimed, Llc PFO closure devices and related methods of use
US7001406B2 (en) * 2002-05-23 2006-02-21 Scimed Life Systems Inc. Cartridge embolic protection filter and methods of use
US20040073242A1 (en) * 2002-06-05 2004-04-15 Nmt Medical, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US20050021016A1 (en) * 2003-03-27 2005-01-27 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US20050080406A1 (en) * 2003-03-27 2005-04-14 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US20050034735A1 (en) * 2003-03-27 2005-02-17 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US20060027241A1 (en) * 2003-03-27 2006-02-09 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US20050049681A1 (en) * 2003-05-19 2005-03-03 Secant Medical, Llc Tissue distention device and related methods for therapeutic intervention
US20060009799A1 (en) * 2003-05-19 2006-01-12 Kleshinski Stephen J Embolic filtering method and apparatus
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20050085848A1 (en) * 2003-09-12 2005-04-21 Johnson Steven W. Actuating constraining mechanism
US20050085843A1 (en) * 2003-10-21 2005-04-21 Nmt Medical, Inc. Quick release knot attachment system
US20060015138A1 (en) * 2004-07-19 2006-01-19 Michael Gertner Emboli diverting devices created by microfabricated means
US20060058833A1 (en) * 2004-09-10 2006-03-16 Daniel Vancamp Diversion device to increase cerebral blood flow
US20060064039A1 (en) * 2004-09-22 2006-03-23 Scimed Life Systems, Inc. Lumen measurement devices and related methods
US20080039804A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US20080039953A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20080039743A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Methods for determining characteristics of an internal tissue opening
US20080039952A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US20080039922A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US20080039929A1 (en) * 2006-08-09 2008-02-14 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758395B2 (en) 2003-05-19 2014-06-24 Septrx, Inc. Embolic filtering method and apparatus
US20120271337A1 (en) * 2007-04-16 2012-10-25 Hans-Reiner Figulla Occluder For Occluding an Atrial Appendage and Production Process Therefor
US9161758B2 (en) * 2007-04-16 2015-10-20 Occlutech Holding Ag Occluder for occluding an atrial appendage and production process therefor
US20160015397A1 (en) * 2007-04-16 2016-01-21 Occlutech Holding Ag Occluder For Occluding An Atrial Appendage And Production Process Therefor
US9826980B2 (en) * 2007-04-16 2017-11-28 Occlutech Holding Ag Occluder for occluding an atrial appendage and production process therefor
US9763666B2 (en) 2013-02-19 2017-09-19 Apt Medical Inc. Left atrial appendage plugging device and delivery system

Also Published As

Publication number Publication date Type
WO2004103209A2 (en) 2004-12-02 application
EP1648340A4 (en) 2007-12-19 application
US7648532B2 (en) 2010-01-19 grant
US20060009799A1 (en) 2006-01-12 application
JP4940318B2 (en) 2012-05-30 grant
DE602004025814D1 (en) 2010-04-15 grant
US20050049681A1 (en) 2005-03-03 application
US20060178694A1 (en) 2006-08-10 application
WO2004103209A9 (en) 2005-01-13 application
EP2191790A3 (en) 2012-10-17 application
EP1648340B1 (en) 2010-03-03 grant
JP2007501093A (en) 2007-01-25 application
US8758395B2 (en) 2014-06-24 grant
EP1648340A2 (en) 2006-04-26 application
US7122043B2 (en) 2006-10-17 grant
JP4547381B2 (en) 2010-09-22 grant
JP2010119888A (en) 2010-06-03 application
EP2191790A2 (en) 2010-06-02 application
CN1852688A (en) 2006-10-25 application
WO2004103209A3 (en) 2005-12-29 application

Similar Documents

Publication Publication Date Title
US7152605B2 (en) Adjustable left atrial appendage implant deployment system
US5370657A (en) Recoverable thrombosis filter
US6506205B2 (en) Blood clot filtering system
US6468303B1 (en) Retrievable self expanding shunt
US20030057156A1 (en) Atrial filter implants
US5944738A (en) Percutaneous catheter directed constricting occlusion device
US20040215230A1 (en) Left atrial appendage occlusion device with active expansion
US20050251201A1 (en) Devices and methods for closing a patent foramen ovale using a countertraction element
US20090076541A1 (en) Occlusion device with centering arm
US5725552A (en) Percutaneous catheter directed intravascular occlusion devices
US20070118176A1 (en) Radiopaque bioabsorbable occluder
US20060265004A1 (en) Catch member for PFO occluder
US6206907B1 (en) Occlusion device with stranded wire support arms
US20060100659A1 (en) Shape memory thin film embolic protection device with frame
US20050131460A1 (en) Methods and apparatus for treatment of patent foramen ovale
US20030220667A1 (en) Method of containing embolic material in the left atrial appendage
US20070083230A1 (en) Left atrial appendage occlusion device
US8313505B2 (en) Device for occluding vascular defects
US20070162048A1 (en) Method and apparatus for retrieving an embolized implant
US20120271337A1 (en) Occluder For Occluding an Atrial Appendage and Production Process Therefor
US20120071918A1 (en) Heart Occlusion Devices
US6174322B1 (en) Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US20040220610A1 (en) Thin film composite lamination
US20050234509A1 (en) Center joints for PFO occluders
US20040267306A1 (en) Closure devices, related delivery methods, and related methods of use

Legal Events

Date Code Title Description
AS Assignment

Owner name: STOUT MEDICAL GROUP, L.P., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SECANT MEDICAL, LLC;REEL/FRAME:022661/0010

Effective date: 20060103

Owner name: SECANT MEDICAL, LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLESHINSKI, STEPHEN J.;RUSSELL, SCOTT M.;REEL/FRAME:022660/0988

Effective date: 20050912

AS Assignment

Owner name: SEPTRX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STOUT MEDICAL GROUP, L.P.;REEL/FRAME:023147/0602

Effective date: 20090730

AS Assignment

Owner name: SEPTRX, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR NAME AS SHOWN ON THE ASSIGNMENT PREVIOUSLY RECORDED ON REEL 023147 FRAME 0602;ASSIGNOR:STOUT MEDICAL GROUP, L.P.;REEL/FRAME:023581/0327

Effective date: 20090730

Owner name: SEPTRX, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR NAME AS SHOWN ON THE ASSIGNMENT PREVIOUSLY RECORDED ON REEL 023147 FRAME 0602. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNOR NAME AS STOUT MEDICAL GROUP, L.P., AND NOT STOUT MEDICAL, L.P.;ASSIGNOR:STOUT MEDICAL GROUP, L.P.;REEL/FRAME:023581/0327

Effective date: 20090730