US20090272429A1 - Stacked-layered thin film solar cell and manufacturing method thereof - Google Patents

Stacked-layered thin film solar cell and manufacturing method thereof Download PDF

Info

Publication number
US20090272429A1
US20090272429A1 US12/193,071 US19307108A US2009272429A1 US 20090272429 A1 US20090272429 A1 US 20090272429A1 US 19307108 A US19307108 A US 19307108A US 2009272429 A1 US2009272429 A1 US 2009272429A1
Authority
US
United States
Prior art keywords
separation groove
stacked
solar cell
thin film
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/193,071
Other versions
US8552287B2 (en
Inventor
Chun-Hsiung Lu
Chien-Chung Bi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NexPower Technology Corp
Original Assignee
NexPower Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NexPower Technology Corp filed Critical NexPower Technology Corp
Assigned to NEXPOWER TECHNOLOGY CORPORATION reassignment NEXPOWER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BI, CHIEN-CHUNG, LU, CHUN-HSIUNG
Publication of US20090272429A1 publication Critical patent/US20090272429A1/en
Application granted granted Critical
Publication of US8552287B2 publication Critical patent/US8552287B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a stacked-layered thin film solar cell and a manufacturing method thereof. More particularly, the present invention relates to a stacked-layered thin film solar cell and a manufacturing method thereof wherein a connection groove and a third separation groove are configured inside a projection zone of a second separation groove so to prevent short-circuit faults.
  • FIGS. 1A and 1B for a conventional stacked-layered thin film solar cell 1 , which comprises a substrate 14 , a first electrode layer 11 , a semi-conductor layer 13 , and a second electrode layer 12 in a series stacked structure.
  • the substrate 14 is firstly deposited with the first electrode layer 11 and then receives a laser scribing treatment so as to form a plurality of unit cells 112 and first grooves 111 .
  • the first electrode layer 11 is deposited thereon with the semi-conductor layer 13 , and the semi-conductor layer 13 is such laser scribed that each semi-conductor scribed groove 131 is distant from a said scribed groove of the first electrode layer 11 by about 100 microns.
  • the semi-conductor layer 13 is deposited thereon with a second electrode layer 12 , and the second electrode layer 12 as well as the semi-conductor layer 13 are such laser scribed that each resultant scribed groove 121 is distant from a said semi-conductor scribed groove 131 by about 100 microns.
  • U.S. Pat. No. 6,300,556 proposes a method involving forming an isolation groove 15 by scribing the solar cell near a periphery thereof for partially removing the first electrode layer, the semi-conductor layer and the second electrode layer, and then mechanically removing the first electrode layer, the semi-conductor layer and the second electrode layer or films of the three layers outside the isolation groove 15 near a periphery of the substrate.
  • 6,271,053 involves depositing the layers, dividing the deposited layers into serially connected solar cells, removing the second electrode layer and semi-conductor layer at peripheries of the unit cells so as to reveal the semi-conductor layer, and then thermally processing the revealed semi-conductor layer to oxidize its surface and thereby increase its resistance.
  • US Patent Publication 2006/0,266,409 reveals the first electrode layer by removing the second electrode layer and the semi-conductor layer with a first laser before using a second laser to remove portions of the second electrode layer, the semi-conductor layer and the first electrode layer that have not been removed by the first laser.
  • the first laser of a certain wavelength is used to remove the second electrode layer and the semi-conductor layer so as to form scribed grooves, and to repeatedly scribe the scribed isolation grooves to widen the same in order to enhance accurateness of a cutting process later performed on the first electrode layer.
  • the second laser of another wavelength is employed to cut the first electrode layer. Since the isolation grooves are formed by two types of laser beams of different wavelengths, the manufacturing procedures are complicated and therefore equipment costs as well as manufacturing cycle are enlarged.
  • part of the second electrode layer may be not fully removed and, in its melt state, remains on the first electrode layer, leading to short-circuit faults.
  • part of the second electrode layer may be not fully removed and, in its melt state, remains on the first electrode layer, leading to short-circuit faults.
  • thermal treatment is implemented at the late stage of the manufacturing procedures to oxidize the semi-conductor layer and thereby increase its resistance for averting the short-circuit problem, equipment costs and manufacturing cycle can be accordingly increased.
  • an interlayer is usually arranged between a material of a higher energy level and another material of a lower energy level so that when light passes through the stacked-layered thin film solar cell, a portion of the light having short wavelengths that can be absorbed by the material of the higher energy level is reflected to extend a light path while a portion of the light having long wavelengths that can not be absorbed by the material of the higher energy level is led to the material of the lower energy level so as to improve light transmission.
  • U.S. Pat. No. 6,632,993 further provides cutting grooves 161 scribed on the interlayer 16 for eliminating electric leakage when a current passes through the interlayer 16 , as shown in FIG. 1C .
  • U.S. Pat. No. 6,870,088 also suggests a similar approach but further provides scribed grooves 181 on a photoelectric conversion layer between cutting grooves 171 , as shown in FIG. 1D , so as to eliminate the above-mentioned problems.
  • all of the above-mentioned conventional approaches were aimed to prevent short-circuit faults of the connection grooves and the interlayer but fail to address solutions to short-circuit faults of the scribe grooves that divide the entire solar cell into unit cells.
  • the present invention provides a stacked-layered thin film solar cell and a manufacturing method thereof.
  • the stacked-layered thin film solar cell has a plurality of independent unit cells each comprising a substrate, a first electrode layer, a first photoconductive layer, an interlayer, a second photoconductive layer, and a second electrode layer in a series stacked structure, wherein at least one first separation groove is formed within the first electrode layer.
  • At least one second separation groove is formed on the interlayer and at least one connection groove passes through the first photoconductive layer and the second photoconductive layer while at least one third separation groove (outer scribe groove) extending downward is formed at a periphery of each of the unit cells so that the connection groove and the third separation groove are concurrently located inside the second separation groove.
  • a primary objective of the present invention is to provide a stacked-layered thin film solar cell, wherein a connection groove and a scribe groove of a unit cell are concurrently located inside a projection zone of a scribe groove within an interlayer so as to prevent short-circuit faults of the scribe grooves in the unit cell and thereby optimize an isolation effect of the overall solar cell.
  • a secondary objective of the present invention is to provide a manufacturing method of a stacked-layered thin film solar cell, wherein in the solar cell a connection groove and a scribe groove of a unit cell are concurrently located inside a projection zone of a scribe groove within an interlayer so as to prevent short-circuit faults of the scribe grooves in the unit cell and thereby optimize an isolation effect of the overall solar cell.
  • FIGS. 1A and 1D are schematic drawings showing a conventional stacked-layered thin film solar cell
  • FIG. 2 is a cross-sectional view of a stacked-layered thin film solar cell of the present invention.
  • FIG. 3 is a schematic drawing illustrating a manufacturing method of the stacked-layered thin film solar cell of the present invention.
  • a stacked-layered thin film solar cell 2 is composed of a plurality of independent unit cells 20 .
  • Each of the unit cells 20 comprises a substrate 21 , a first electrode layer 22 a, a first photoconductive layer 23 a, an interlayer 24 , a second photoconductive layer 23 b, and a second electrode layer 22 b in a series stacked structure.
  • a first separation groove 25 is formed on the first electrode layer 22 a
  • a second separation groove 26 is formed on the interlayer 24
  • a connection groove 27 passes through the first photoconductive layer 23 a and the second photoconductive layer 23 b.
  • a third separation groove 28 is formed between each two adjacent said independent unit cells 20 .
  • the first separation groove 25 extends downward to partially remove the first electrode layer 22 a while the third separation groove 28 extends downward from the second electrode layer 22 b to partially remove the first photoconductive layer 23 a.
  • the unit cells 20 may be electrically connected in series connection, in parallel connection or in series-parallel connection.
  • the substrate 21 is made of a transparent material.
  • the first electrode layer 22 a may have a single-layer structure or a multi-layer structure and may be made of a TCO (Transparent Conductive Oxide), wherein the TCO may be any one of SnO2, ITO, ZnO, AZO, GZO and IZO.
  • the second electrode layer 22 b may have a single-layer structure or a multi-layer structure.
  • the metal material may be any one of Ag, Al, Cr, Ti, Ni, Au and an alloy of any of the above metals.
  • the metal may be any one of Ag, Al, Cr, Ti, Ni, Au and an alloy of any of the above metals and the TCO may be any one of SnO 2 , ITO, ZnO, AZO, GZO or IZO.
  • the photoconductive layers 23 a, 23 b may be structures of any one of single-crystal Si, multi-crystal Si, non-crystal Si, micro-crystal Si, Ge, SiGe and SiC.
  • the interlayer 24 may be made of any one of ITO, ZnO, AZO, GZO and IZO.
  • the first electrode layer 22 a may be formed on the substrate 21 by a sputtering process, an APCVD (Atmospheric Pressure Chemical Vapor Deposition) process, or an LPCVD (Low Pressure Chemical Vapor Deposition) process.
  • the photoconductive layers 23 a, 23 b are formed on the first electrode layer 22 a by a deposition process.
  • the interlayer 24 is formed on the first photoconductive layer 23 a by a deposition process.
  • the second electrode layer 22 b may be formed on the second photoconductive layer 23 b by a sputtering process or a PVD (Physical Vapor Deposition) process.
  • the first separation groove 25 is formed by a laser scribing process or a mechanical scribing process and has a width ranging from 15 microns to 120 microns.
  • the second separation groove 26 is formed by a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process and has a width ranging from 80 microns to 300 microns.
  • the connection groove 27 is formed by a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process and has a width ranging from 15 microns to 120 microns.
  • the third separation groove 28 is formed by a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process and has a width ranging from 15 microns to 120 microns. Moreover, the connection groove 27 and the third separation groove 28 are separated from each other by a distance ranging from 50 microns to 270 microns.
  • FIG. 3 for a second embodiment of the present invention providing a manufacturing method of a stacked-layered thin film solar cell so as to prevent short-circuit faults of the scribe grooves in the unit cell and thereby optimize an isolation effect of the overall solar cell.
  • the disclosed manufacturing method comprises steps of:
  • connection groove extending downward from the second photoconductive layer to a border between the first photoconductive layer and the first electrode layer, wherein the connection groove is formed by using a scribing process to remove the second photoconductive layer and the first photoconductive layer along a depth direction thereof while the connection groove is located inside a projection zone of the second separation groove;
  • the substrate 21 , the first electrode layer 22 a, the first photoconductive layer 23 a, the interlayer 24 , the second photoconductive layer 23 b, and the second electrode layer 22 b, the first separation groove 25 , the second separation groove 26 , the connection groove 27 and the third separation groove 28 share the same structural and features and forming methods of their resemblances described in the first embodiment.
  • the scribing process may be a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process.

Abstract

A stacked-layered thin film solar cell has a plurality of independent unit cells comprising a substrate, a first electrode layer, a first photoconductive layer, an interlayer, a second photoconductive layer, and a second electrode layer in a series stacked structure, wherein at least one first separation groove is formed within the first electrode layer and the stacked-layered thin film solar cell is characterized in: at least one second separation groove formed on the interlayer, at least one connection groove passing through the first photoconductive layer and the second photoconductive layer, and at least one third separation groove extending downward at a periphery of each of the unit cells so that the connection grooves and the third separation groove are concurrently located inside a projection zone of the second separation groove.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to a stacked-layered thin film solar cell and a manufacturing method thereof. More particularly, the present invention relates to a stacked-layered thin film solar cell and a manufacturing method thereof wherein a connection groove and a third separation groove are configured inside a projection zone of a second separation groove so to prevent short-circuit faults.
  • 2. Description of Related Art
  • Please refer to FIGS. 1A and 1B for a conventional stacked-layered thin film solar cell 1, which comprises a substrate 14, a first electrode layer 11, a semi-conductor layer 13, and a second electrode layer 12 in a series stacked structure. In a manufacturing process of such stacked-layered thin film solar cell 1, the substrate 14 is firstly deposited with the first electrode layer 11 and then receives a laser scribing treatment so as to form a plurality of unit cells 112 and first grooves 111. Then the first electrode layer 11 is deposited thereon with the semi-conductor layer 13, and the semi-conductor layer 13 is such laser scribed that each semi-conductor scribed groove 131 is distant from a said scribed groove of the first electrode layer 11 by about 100 microns. Afterward, the semi-conductor layer 13 is deposited thereon with a second electrode layer 12, and the second electrode layer 12 as well as the semi-conductor layer 13 are such laser scribed that each resultant scribed groove 121 is distant from a said semi-conductor scribed groove 131 by about 100 microns. By the foregoing deposited layers and laser scribing processes performed on each said layer, the stacked-layered thin film solar cell 1 composed of the unit cells 112 in serial is so established.
  • In a following packaging process, for eliminating problems about short-circuit faults and electric leakage, U.S. Pat. No. 6,300,556 proposes a method involving forming an isolation groove 15 by scribing the solar cell near a periphery thereof for partially removing the first electrode layer, the semi-conductor layer and the second electrode layer, and then mechanically removing the first electrode layer, the semi-conductor layer and the second electrode layer or films of the three layers outside the isolation groove 15 near a periphery of the substrate. Besides, the disclosure of U.S. Pat. No. 6,271,053 involves depositing the layers, dividing the deposited layers into serially connected solar cells, removing the second electrode layer and semi-conductor layer at peripheries of the unit cells so as to reveal the semi-conductor layer, and then thermally processing the revealed semi-conductor layer to oxidize its surface and thereby increase its resistance. Otherwise, US Patent Publication 2006/0,266,409 reveals the first electrode layer by removing the second electrode layer and the semi-conductor layer with a first laser before using a second laser to remove portions of the second electrode layer, the semi-conductor layer and the first electrode layer that have not been removed by the first laser.
  • In the above technology, for forming the isolation grooves, due to diverseness of the films, the first laser of a certain wavelength is used to remove the second electrode layer and the semi-conductor layer so as to form scribed grooves, and to repeatedly scribe the scribed isolation grooves to widen the same in order to enhance accurateness of a cutting process later performed on the first electrode layer. Afterward, the second laser of another wavelength is employed to cut the first electrode layer. Since the isolation grooves are formed by two types of laser beams of different wavelengths, the manufacturing procedures are complicated and therefore equipment costs as well as manufacturing cycle are enlarged. Furthermore, after the cutting process is performed, due to possible unevenness of the laser beams, part of the second electrode layer may be not fully removed and, in its melt state, remains on the first electrode layer, leading to short-circuit faults. Though using a single type of laser in length to process the three layers facilitates simplifying the manufacturing procedures, it is notable that the resultant thermal effect is greater and thus the induced short-circuit problem is more significant. Moreover, when thermal treatment is implemented at the late stage of the manufacturing procedures to oxidize the semi-conductor layer and thereby increase its resistance for averting the short-circuit problem, equipment costs and manufacturing cycle can be accordingly increased.
  • On the other hand, due to recombination of electrons and holes and loss of light, photoelectric conversion efficiency in a stacked-layered thin film solar cell is limited. Thus, an interlayer is usually arranged between a material of a higher energy level and another material of a lower energy level so that when light passes through the stacked-layered thin film solar cell, a portion of the light having short wavelengths that can be absorbed by the material of the higher energy level is reflected to extend a light path while a portion of the light having long wavelengths that can not be absorbed by the material of the higher energy level is led to the material of the lower energy level so as to improve light transmission. For example, U.S. Pat. No. 5,021,100 proposes a dielectric selective reflection film in a stacked-layered thin film solar cell. Since the interlayer, for connecting materials of different energy levels, possesses electric conductivity, electric leakage and short-circuit faults can easily happen during an edge isolating process of the interlayer. Therefore, U.S. Pat. No. 6,632,993 further provides cutting grooves 161 scribed on the interlayer 16 for eliminating electric leakage when a current passes through the interlayer 16, as shown in FIG. 1C. U.S. Pat. No. 6,870,088 also suggests a similar approach but further provides scribed grooves 181 on a photoelectric conversion layer between cutting grooves 171, as shown in FIG. 1D, so as to eliminate the above-mentioned problems. However, all of the above-mentioned conventional approaches were aimed to prevent short-circuit faults of the connection grooves and the interlayer but fail to address solutions to short-circuit faults of the scribe grooves that divide the entire solar cell into unit cells.
  • SUMMARY OF THE INVENTION
  • In view of the defects of the conventional devices, the present invention provides a stacked-layered thin film solar cell and a manufacturing method thereof. The stacked-layered thin film solar cell has a plurality of independent unit cells each comprising a substrate, a first electrode layer, a first photoconductive layer, an interlayer, a second photoconductive layer, and a second electrode layer in a series stacked structure, wherein at least one first separation groove is formed within the first electrode layer. It is characterized in that at least one second separation groove (inner scribe groove) is formed on the interlayer and at least one connection groove passes through the first photoconductive layer and the second photoconductive layer while at least one third separation groove (outer scribe groove) extending downward is formed at a periphery of each of the unit cells so that the connection groove and the third separation groove are concurrently located inside the second separation groove.
  • Hence, a primary objective of the present invention is to provide a stacked-layered thin film solar cell, wherein a connection groove and a scribe groove of a unit cell are concurrently located inside a projection zone of a scribe groove within an interlayer so as to prevent short-circuit faults of the scribe grooves in the unit cell and thereby optimize an isolation effect of the overall solar cell.
  • A secondary objective of the present invention is to provide a manufacturing method of a stacked-layered thin film solar cell, wherein in the solar cell a connection groove and a scribe groove of a unit cell are concurrently located inside a projection zone of a scribe groove within an interlayer so as to prevent short-circuit faults of the scribe grooves in the unit cell and thereby optimize an isolation effect of the overall solar cell.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
  • FIGS. 1A and 1D are schematic drawings showing a conventional stacked-layered thin film solar cell;
  • FIG. 2 is a cross-sectional view of a stacked-layered thin film solar cell of the present invention; and
  • FIG. 3 is a schematic drawing illustrating a manufacturing method of the stacked-layered thin film solar cell of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • While the present invention discloses a stacked-layered thin film solar cell and a manufacturing method thereof, those skilled in the art will recognize and appreciate that the principle of solar photoelectric conversion implemented therein is well known and need not be discussed at any length herein. Meantime, the accompanying drawings for being read in conjunction with the following descriptions are aim to express features of the present invention and need not to be made in scale.
  • Please refer to FIG. 2 for a first preferred embodiment of the present invention. Therein, a stacked-layered thin film solar cell 2 is composed of a plurality of independent unit cells 20. Each of the unit cells 20 comprises a substrate 21, a first electrode layer 22 a, a first photoconductive layer 23 a, an interlayer 24, a second photoconductive layer 23 b, and a second electrode layer 22 b in a series stacked structure. A first separation groove 25 is formed on the first electrode layer 22 a, and a second separation groove 26 is formed on the interlayer 24, while a connection groove 27 passes through the first photoconductive layer 23 a and the second photoconductive layer 23 b. In addition, a third separation groove 28 is formed between each two adjacent said independent unit cells 20. The first separation groove 25 extends downward to partially remove the first electrode layer 22 a while the third separation groove 28 extends downward from the second electrode layer 22 b to partially remove the first photoconductive layer 23 a. Thereby, since the connection groove 27 and the third separation groove 28 are concurrently located inside a projection zone of the second separation groove 26, short-circuit faults of the third separation grooves 28 between the unit cells 20 can be prevented and an isolation effect of the overall solar cell 2 can be optimized.
  • In the aforementioned embodiment, the unit cells 20 may be electrically connected in series connection, in parallel connection or in series-parallel connection. The substrate 21 is made of a transparent material. The first electrode layer 22 a may have a single-layer structure or a multi-layer structure and may be made of a TCO (Transparent Conductive Oxide), wherein the TCO may be any one of SnO2, ITO, ZnO, AZO, GZO and IZO. The second electrode layer 22 b may have a single-layer structure or a multi-layer structure. When the second electrode layer 22 b is purely made of a metal material, the metal material may be any one of Ag, Al, Cr, Ti, Ni, Au and an alloy of any of the above metals. When the second electrode layer 22 b is made of a metal and a TCO, the metal may be any one of Ag, Al, Cr, Ti, Ni, Au and an alloy of any of the above metals and the TCO may be any one of SnO2, ITO, ZnO, AZO, GZO or IZO. The photoconductive layers 23 a, 23 b may be structures of any one of single-crystal Si, multi-crystal Si, non-crystal Si, micro-crystal Si, Ge, SiGe and SiC. The interlayer 24 may be made of any one of ITO, ZnO, AZO, GZO and IZO.
  • In the aforementioned embodiment, the first electrode layer 22 a may be formed on the substrate 21 by a sputtering process, an APCVD (Atmospheric Pressure Chemical Vapor Deposition) process, or an LPCVD (Low Pressure Chemical Vapor Deposition) process. The photoconductive layers 23 a, 23 b are formed on the first electrode layer 22 a by a deposition process. The interlayer 24 is formed on the first photoconductive layer 23 a by a deposition process. The second electrode layer 22 b may be formed on the second photoconductive layer 23 b by a sputtering process or a PVD (Physical Vapor Deposition) process. Besides, the first separation groove 25 is formed by a laser scribing process or a mechanical scribing process and has a width ranging from 15 microns to 120 microns. The second separation groove 26 is formed by a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process and has a width ranging from 80 microns to 300 microns. The connection groove 27 is formed by a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process and has a width ranging from 15 microns to 120 microns. The third separation groove 28 is formed by a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process and has a width ranging from 15 microns to 120 microns. Moreover, the connection groove 27 and the third separation groove 28 are separated from each other by a distance ranging from 50 microns to 270 microns.
  • Please refer to FIG. 3 for a second embodiment of the present invention providing a manufacturing method of a stacked-layered thin film solar cell so as to prevent short-circuit faults of the scribe grooves in the unit cell and thereby optimize an isolation effect of the overall solar cell. The disclosed manufacturing method comprises steps of:
  • (1) Providing a substrate and forming a first electrode layer on the substrate;
  • (2) Forming a first separation groove extending downward on the first electrode layer, wherein the first separation groove is formed by using a scribing process to partially remove the first electrode layer along a depth direction thereof;
  • (3) Forming a first photoconductive layer on the first electrode layer and forming an interlayer on the first photoconductive layer;
  • (4) Forming a second separation groove extending downward on the interlayer, wherein the second separation groove is formed by using a scribing process to remove the interlayer along a depth direction thereof while the first separation groove and the second separation groove are mutually parallel and deviant;
  • (5) Forming a second photoconductive layer on the interlayer;
  • (6) Forming a connection groove extending downward from the second photoconductive layer to a border between the first photoconductive layer and the first electrode layer, wherein the connection groove is formed by using a scribing process to remove the second photoconductive layer and the first photoconductive layer along a depth direction thereof while the connection groove is located inside a projection zone of the second separation groove;
  • (7) Forming a second electrode layer on the second photoconductive layer; and
  • (8) Forming a third separation groove extending downward from the second electrode layer to a part of the first photoconductive layer, wherein the third separation groove is formed by using a scribing process to remove the second electrode layer, the second photoconductive layer and the part of the first photoconductive layer along a depth direction thereof while the third separation groove and the connection groove are concurrently located inside the projection zone of the second separation groove and are mutually adjacent, parallel and deviant.
  • In the above embodiment, the substrate 21, the first electrode layer 22 a, the first photoconductive layer 23 a, the interlayer 24, the second photoconductive layer 23 b, and the second electrode layer 22 b, the first separation groove 25, the second separation groove 26, the connection groove 27 and the third separation groove 28 share the same structural and features and forming methods of their resemblances described in the first embodiment. Therein, the scribing process may be a laser scribing process, a mechanical scribing process, a wet etching process or a dry etching process.
  • Although the particular embodiments of the invention have been described in detail for purposes of illustration, it will be understood by one of ordinary skill in the art that numerous variations will be possible to the disclosed embodiments without going outside the scope of the invention as disclosed in the claims.

Claims (20)

1. A stacked-layered thin film solar cell, constructed of a plurality of individual unit cells each comprising a substrate, a first electrode layer, a first photoconductive layer, an interlayer, a second photoconductive layer, and a second electrode layer in a series stacked structure, wherein at least one first separation groove is formed within the first electrode layer, and the stacked-layered thin film solar cell is characterized in:
at least one second separation groove formed on the interlayer, at least one connection groove passing through the first photoconductive layer and the second photoconductive layer, and at least one third separation groove extending downward at a periphery of each of the unit cells so that the connection groove and the third separation groove are concurrently located inside the second separation groove.
2. The stacked-layered thin film solar cell as claimed in claim 1, wherein the third separation groove further extends downward to remove a part of the first photoconductive layer, and the first separation groove further extends downward to remove a part of the first electrode layer.
3. The stacked-layered thin film solar cell as claimed in claim 1, wherein each of the unit cells has the first separation groove of a width ranging from 15 microns to 120 microns, the second separation groove of a width ranging from 80 microns to 300 microns, the third separation groove of a width ranging from 15 microns to 120 microns, and the connection groove of a width ranging from 15 microns to 120 microns.
4. The stacked-layered thin film solar cell as claimed in claim 1, wherein the connection groove and the third separation groove are separated from each other by a distance ranging from 50 microns to 270 microns.
5. The stacked-layered thin film solar cell as claimed in claim 1, wherein the connection groove, the first separation groove, the second separation groove, or the third separation groove is formed by a laser scribing process or a mechanical scribing process.
6. The stacked-layered thin film solar cell as claimed in claim 1, wherein the connection groove, the second separation groove, or the third separation groove is formed by a process selected from a group consisting of a wet etching process and a dry etching process.
7. The stacked-layered thin film solar cell as claimed in claim 1, wherein the substrate is made of a transparent material.
8. The stacked-layered thin film solar cell as claimed in claim 1, wherein the first electrode layer is made of a TCO (Transparent Conductive Oxide) of a material selected from a group consisting of SnO2, ITO, ZnO, AZO, GZO and IZO.
9. The stacked-layered thin film solar cell as claimed in claim 1, wherein the second electrode layer is a metal layer made of a material selected from a group consisting of Ag, Al, Cr, Ti, Ni and Au.
10. The stacked-layered thin film solar cell as claimed in claim 13, wherein the second electrode layer is composed of a metal layer and a TCO (Transparent Conductive Oxide), in which the TCO is made of a material selected from a group consisting of SnO2, ITO, ZnO, AZO, GZO and IZO.
11. The stacked-layered thin film solar cell as claimed in claim 1, wherein the first electrode layer is formed on the substrate by a process selected from a group consisting of a sputtering process, an APCVD (Atmospheric Pressure Chemical Vapor Deposition) process and an LPCVD (Low Pressure Chemical Vapor Deposition) process.
12. The stacked-layered thin film solar cell as claimed in claim 1, wherein the first electrode layer has a single-layer structure or a multi-layer structure while the second electrode layer has a single-layer structure or a multi-layer structure.
13. The stacked-layered thin film solar cell as claimed in claim 1, wherein the photoconductive layers are formed on the first electrode layer by a deposition process.
14. The stacked-layered thin film solar cell as claimed in claim 1, wherein the photoconductive layers are made of a martial selected from a group consisting of single-crystal Si, multi-crystal Si, non-crystal Si, micro-crystal Si, Ge, SiGe and SiC.
15. The stacked-layered thin film solar cell as claimed in claim 1, wherein the interlayer is made of a martial selected from a group consisting of ITO, ZnO, AZO, GZO and IZO.
16. The stacked-layered thin film solar cell as claimed in claim 1, the interlayer is formed on the first photoconductive layer by a deposition process and the second electrode layer is formed on the second photoconductive layer by a process selected from a group consisting of a sputtering process, and a PVD (Physical Vapor Deposition) process.
17. The stacked-layered thin film solar cell as claimed in claim 1, wherein the unit cells are electrically connected in series connection, in parallel connection or in series-parallel connection.
18. A manufacturing method of a stacked-layered thin film solar cell that is constructed of a plurality of unit cells, comprising:
providing a substrate and forming a first electrode layer on the substrate;
forming at least one first separation groove extending downward within the first electrode layer,
forming a first photoconductive layer on the first electrode layer and forming an interlayer on the first photoconductive layer;
forming at least one second separation groove within the interlayer, wherein the first separation groove and the second separation groove are mutually deviant;
forming a second photoconductive layer on the interlayer;
forming at least one connection groove within the second photoconductive layer downward extending to a border located between the first photoconductive layer and the first electrode layer, wherein the connection groove is located inside the second separation groove;
forming a second electrode layer on the second photoconductive layer; and
forming at least one third separation groove within the second electrode layer extending downward to a part of the first photoconductive layer, wherein the third separation groove is located inside the second separation groove and adjacent to the connection groove.
19. The manufacturing method as claimed in claim 18, wherein the first separation groove, the second separation groove, the third separation groove and the connection groove are formed by a laser scribing process, a mechanical scribing process, a dry etching process or a wet etching process.
20. The manufacturing method as claimed in claim 18, wherein the first photoconductive layer, the interlayer and the second photoconductive layer are formed by a deposition process.
US12/193,071 2008-04-30 2008-08-18 Stacked-layered thin film solar cell and manufacturing method thereof Expired - Fee Related US8552287B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW097115847A TWI378565B (en) 2008-04-30 2008-04-30 Stacked-layered thin film solar cell and manufacturing method thereof
TW97115847A 2008-04-30
TW097115847 2008-04-30

Publications (2)

Publication Number Publication Date
US20090272429A1 true US20090272429A1 (en) 2009-11-05
US8552287B2 US8552287B2 (en) 2013-10-08

Family

ID=41256316

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/193,071 Expired - Fee Related US8552287B2 (en) 2008-04-30 2008-08-18 Stacked-layered thin film solar cell and manufacturing method thereof

Country Status (2)

Country Link
US (1) US8552287B2 (en)
TW (1) TWI378565B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126894A1 (en) * 2008-11-05 2011-06-02 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion device fabrication method and photoelectric conversion device
US20110226748A1 (en) * 2009-04-13 2011-09-22 Mitsubishi Heavy Industries, Ltd. Method for manufacturing photoelectric-conversion-device, device for photoelectric-conversion-device manufacturing device, and photoelectric conversion device
US20110318863A1 (en) * 2010-06-25 2011-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaic device manufacture
US20120125397A1 (en) * 2009-09-29 2012-05-24 Kyocera Corporation Solar cell element and solar cell module
US20130312816A1 (en) * 2012-05-22 2013-11-28 La-Sun JEON Tandem type integrated photovoltaic module and manufacturing method thereof
CN114335214A (en) * 2021-12-30 2022-04-12 天津三安光电有限公司 Flexible solar cell and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2014040B1 (en) * 2014-12-23 2016-10-12 Stichting Energieonderzoek Centrum Nederland Method of making a curent collecting grid for solar cells.
TWI808860B (en) * 2022-08-05 2023-07-11 位速科技股份有限公司 Thin film photovoltaic structure and method of making the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021100A (en) * 1989-03-10 1991-06-04 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell
US6271053B1 (en) * 1999-03-25 2001-08-07 Kaneka Corporation Method of manufacturing a thin film solar battery module
US6300556B1 (en) * 1998-11-12 2001-10-09 Kaneka Corporation Solar cell module
US20020066478A1 (en) * 2000-10-05 2002-06-06 Kaneka Corporation Photovoltaic module and method of manufacturing the same
US20030172967A1 (en) * 2002-03-15 2003-09-18 Shinsuke Tachibana Solar battery cell and manufacturing method thereof
US20060266409A1 (en) * 2005-05-27 2006-11-30 Sharp Kabushiki Kaisha Method of fabricating a thin-film solar cell, and thin-film solar cell
US20090165851A1 (en) * 2007-12-27 2009-07-02 Sanyo Electric Co., Ltd. Solar cell module and method for manufacturing solar cell module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021100A (en) * 1989-03-10 1991-06-04 Mitsubishi Denki Kabushiki Kaisha Tandem solar cell
US6300556B1 (en) * 1998-11-12 2001-10-09 Kaneka Corporation Solar cell module
US6271053B1 (en) * 1999-03-25 2001-08-07 Kaneka Corporation Method of manufacturing a thin film solar battery module
US20020066478A1 (en) * 2000-10-05 2002-06-06 Kaneka Corporation Photovoltaic module and method of manufacturing the same
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
US20030172967A1 (en) * 2002-03-15 2003-09-18 Shinsuke Tachibana Solar battery cell and manufacturing method thereof
US6870088B2 (en) * 2002-03-15 2005-03-22 Sharp Kabushiki Kaisha Solar battery cell and manufacturing method thereof
US20060266409A1 (en) * 2005-05-27 2006-11-30 Sharp Kabushiki Kaisha Method of fabricating a thin-film solar cell, and thin-film solar cell
US20090165851A1 (en) * 2007-12-27 2009-07-02 Sanyo Electric Co., Ltd. Solar cell module and method for manufacturing solar cell module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126894A1 (en) * 2008-11-05 2011-06-02 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion device fabrication method and photoelectric conversion device
US8835253B2 (en) 2008-11-05 2014-09-16 Mitsubishi Heavy Industries, Ltd. Photoelectric conversion device fabrication method and photoelectric conversion device
US20110226748A1 (en) * 2009-04-13 2011-09-22 Mitsubishi Heavy Industries, Ltd. Method for manufacturing photoelectric-conversion-device, device for photoelectric-conversion-device manufacturing device, and photoelectric conversion device
US8692153B2 (en) * 2009-04-13 2014-04-08 Mitsubishi Heavy Industries, Ltd. Method for manufacturing photoelectric-conversion-device, device for photoelectric-conversion-device manufacturing device, and photoelectric conversion device
US20120125397A1 (en) * 2009-09-29 2012-05-24 Kyocera Corporation Solar cell element and solar cell module
US8912431B2 (en) * 2009-09-29 2014-12-16 Kyocera Corporation Solar cell element and solar cell module
US20110318863A1 (en) * 2010-06-25 2011-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaic device manufacture
US8563351B2 (en) * 2010-06-25 2013-10-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing photovoltaic device
US20140014176A1 (en) * 2010-06-25 2014-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing photovoltaic device
US9202947B2 (en) * 2010-06-25 2015-12-01 Taiwan Semiconductor Manufacturing Co., Ltd. Photovoltaic device
US20130312816A1 (en) * 2012-05-22 2013-11-28 La-Sun JEON Tandem type integrated photovoltaic module and manufacturing method thereof
CN114335214A (en) * 2021-12-30 2022-04-12 天津三安光电有限公司 Flexible solar cell and preparation method thereof

Also Published As

Publication number Publication date
US8552287B2 (en) 2013-10-08
TWI378565B (en) 2012-12-01
TW200945601A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
US20090229653A1 (en) Stacked-layered thin film solar cell and manufacturing method thereof
US8552287B2 (en) Stacked-layered thin film solar cell and manufacturing method thereof
US7750233B2 (en) Thin film solar cell and manufacturing method thereof
TWI405340B (en) Thin film solar cell and manufacturing method thereof
CN101375410B (en) Solar cell and manufacturing method thereof
KR101688401B1 (en) Method and module structure for manufacturing thin film solar
US20090151783A1 (en) Translucent solar cell and manufacturing method thereof
US20110041889A1 (en) Integrated tandem-type thin film solar cell module and method for manufacturing the same
WO2007086521A1 (en) Solar cell and its manufacturing method
US9741884B2 (en) Solar cell and method of fabricating the same
US8729383B2 (en) Stacked-layered thin film solar cell and manufacturing method thereof
JP2007324633A (en) Integrated tandem-type thin film solar cell module and its manufacturing method
US8445310B2 (en) Thin film solar cell and manufacturing method thereof
TW201340364A (en) Method for producing integrated solar cell
JP4127994B2 (en) Photovoltaic device manufacturing method
KR101244355B1 (en) Method for manufacturing solar cell and apparatus for manufacturing solar cell
CN102576760A (en) Photovoltaic device and manufacturing method thereof
JP4782855B2 (en) Compound-based thin-film solar cell and method for producing the same
WO2013121839A1 (en) Thin film solar cell and method for manufacturing same
KR101786099B1 (en) Tandem solar cell and manufacturing method of the same
US9373729B2 (en) Solar cell and method of manufacturing the same
JP2012049234A (en) Thin film solar battery and method for manufacturing the same
JP2001217435A (en) Thin film solar cell and its manufacturing method
JP5539081B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
KR20130070461A (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEXPOWER TECHNOLOGY CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LU, CHUN-HSIUNG;BI, CHIEN-CHUNG;REEL/FRAME:021400/0781

Effective date: 20080814

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20211008