US20090263723A9 - Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems - Google Patents

Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems Download PDF

Info

Publication number
US20090263723A9
US20090263723A9 US11/576,940 US57694005A US2009263723A9 US 20090263723 A9 US20090263723 A9 US 20090263723A9 US 57694005 A US57694005 A US 57694005A US 2009263723 A9 US2009263723 A9 US 2009263723A9
Authority
US
United States
Prior art keywords
polymer
ternary mixture
mixture
ternary
preparation process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/576,940
Other languages
English (en)
Other versions
US20090029263A1 (en
Inventor
Karim Zaghig
Patrick Charest
Abdelbast Guerfi
Martin Dontigny
Michel Peticlerc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Assigned to HYDRO-QUEBEC reassignment HYDRO-QUEBEC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PETICLERC, MICHEL, CHAREST, PATRICK, ZAGHIG, KARIM, DONTIGNY, MARTIN, GUERFI, ABDELBAST
Publication of US20090029263A1 publication Critical patent/US20090029263A1/en
Publication of US20090263723A9 publication Critical patent/US20090263723A9/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2268Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds, and by reactions not involving this type of bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention concerns an electrolyte obtained from an aprotic polymer-molten salt-solvent ternary mixture, hereafter referred to as PSS, and/or from the corresponding quaternary mixture, hereafter referred to as PSSS, additionally incorporating an ion-conducting salt, as well as the preparation processes of such electrolytes, particularly those implementing mixing steps.
  • PSS aprotic polymer-molten salt-solvent ternary mixture
  • PSSS corresponding quaternary mixture
  • Another object of the present invention consists in a preparation process of electrochemical membranes from a ternary mixture and/or from a quaternary mixture of the invention, as well as in the electrochemical membranes thereby obtained.
  • Another object of the present invention resides in the preparation of electrochemical systems comprising at least one electrolyte according to the invention and in the electrochemical systems thereby obtained.
  • Another object of the present invention consists in a preparation process of an electrochromic device, and more particularly in an electrochromic window including a PSS-type and/or PSSS-type electrolyte according to the invention, as well as the electrochromic devices thereby obtained.
  • the electrolyte of the invention When in its transparent, homogenous and liquid form, the electrolyte of the invention is preferably used in electrochromic and catalytic applications.
  • electrolytes and membranes of the invention their use as a separator and as an ion conductor in electrochromic type cells and, more particularly, in electrochromic windows is notably mentioned.
  • Electrochromic windows thus obtained are notably of particular interest owing to their energy efficiency in a wide operating temperature range, the using comfort provided by their light control, and their architectural aesthetics.
  • Molten salt-based electrolytes are notably described in the publication Room temperature molten salts as lithium battery electrolyte, Armand et al., published in Electrochimica Acta 49 (2004)4583-4588.
  • the electrolytes described in this document are intended for use in lithium batteries and contain neither polymer nor solvent and there is no mention of transparency.
  • Multibranch polyether polymer-based electrolytes are described in the Dai-Ichi-Kogyo Seiyyaku Co. European Patent Application EP-A-1,249,461, these electrolytes contain no molten salt and are not transparent.
  • Electrolytes obtained from 3-branch polymers are described in the Hydro-Québec patent U.S. Pat. No. 6,280,882, published on Aug. 28, 2001. They are transparent but contain no molten salt.
  • Electrolytes obtained from 4-branch polymers are described in the Hydro Quebec international application WO 03/063287.
  • the polymers mentioned present acrylate (preferably methacrylate) and alkoxy (preferably alkoxy with 1 to 8 carbon atoms, even more preferably methoxy or ethoxy), or even vinyl hybrid end groups.
  • These polymers are transformed into polymer matrix, possibly in the presence of an organic solvent, by cross-linking.
  • the electrolytes thus obtained possibly contain a lithium salt, do not contain any molten salt but are transparent.
  • the U.S. patent application Ser. No. 0050103706 describes a sensor comprising an ionic polymer membrane having at least a first ion connected ionically to a second ion and an ionic liquid positioned in the membrane.
  • the membrane used is a Naflon®-type film, and so there is no polymer element as such and the applications considered are different.
  • compositions characterized in that they contain, according to a homogenous mixture, one or several polymers, acting as a matrix, one or several conducting salts one or several molten salts.
  • the polymer mentioned is used as a support matrix to form a separator.
  • FIG. 1 illustrates the vapour pressure of the liquid electrolyte 1.5M LiBF4 in the mixture (EC+GBL), compared to the two molten salts evaluated separately, between 25 and 40° C. The curves emphasize the safety aspect of the PPS film.
  • FIGS. 2 to 5 illustrate the different methods of fabricating PSS from a ternary mixture of polymer, molten salts and solvent (plasticizer) added to the lithium salt to have an ionic conductivity of which the polymer and/or the molten salt and/or the solvent (plasticizer) is/are salted.
  • FIG. 6 illustrates the technique of PSS coating from a mixture prepared according to one of the methods illustrated in FIGS. 2 to 5 , by using a coater with the Doctor BladeTM technique, the PSS is coated on a PP-type support.
  • FIG. 7 illustrates the technique of coating the PSS from a mixture prepared according one of the methods illustrated in FIGS. 2 to 5 , by using a coater with the Doctor BladeTM technique combined with an electron-beam machine for cross-linking (in this case it is not necessary to have an initiator), the PSS is coated on a PP-type support.
  • FIG. 8 illustrates the technique of coating the PSS from a mixture prepared according to one of the methods illustrated in FIGS. 2 to 5 and using a coater with the Doctor BladeTM technique combined with a UV lamp for cross-linking (in this case, a photo-initiator is added to the mixture), the PSS is coated on a PP-type support.
  • FIG. 9 illustrates the technique of coating the PSS from a mixture prepared according to one of the methods illustrated in FIGS. 2 to 5 , by using a coater with the Doctor BladeTM technique combined with an IR lamp for cross-linking (in this case a thermo-initiator is added to the mixture), the PSS is coated on a PP-type support.
  • FIG. 10 illustrates the in situ formation of PSS either by thermal heating or by infrared or UV radiation or their combinations.
  • FIG. 11 illustrates the structure of an electrochromic window according to the invention constituted by a substrate made of glass or plastic ( 1 ), a transparent oxide film ( 2 ), a PSS film ( 3 ), a counter electrode ( 4 ) and a sealant ( 6 ).
  • FIG. 12 illustrates the charge-discharge curve Li 4 Ti 5 O 12 , in the presence of a film or a PSS membrane.
  • an aprotic polymer is defined as a polymer or as a mixture of polymers capable of contributing to the dissociation of salts.
  • aprotic polymer refers to any polymer or polymer mixture having:
  • aprotic polymers refer to those which, when placed in a generator as a separator and/or as a binder in the cathode, allow the system to deliver a current when a voltage is applied.
  • Li/separator PA/Composite cathode LiV 2 O 5 —PA-carbon
  • This system shows a voltage when fully charged of 3.3 volts and can deliver current peaks of 7 mA/cm 2 at 60° C.
  • PVDF non-aprotic polymer
  • AP is the abbreviation for aprotic polymer.
  • the polymer or mixture of polymers, present in the ternary or quaternary mixture, is preferably selected from the family of 3-branch (preferably those described in the Hydro-Québec patent U.S. Pat. No. 6,280,882)), 4-branch (preferably those described in Hydro-Québec patent application WO. 03/063287) polyether polymers, of GE-type vinyl polymers, preferably those described in the DKS patent application EP-A-1.249.461 and of mixtures of at least two of the latter; the documents cited in this paragraph are incorporated by reference in the present application.
  • three-branch polymers have the form of a 3-branch comb.
  • the 3 slightly parallel branches of these polymers are preferably fixed to the center and to the two extremities of a small size backbone, preferably comprising 3 atoms, preferably 3 carbon atoms, in the chain.
  • each of these atoms is attached to a branch.
  • Such polymers have the form of a 4-branch comb.
  • the 4 more or less parallel branches of these polymers are fixed respectively between the two extremities (preferably fixed symmetrically on the chain) and to the two extremities of a small size chain, preferably constituted by a chain comprising 4 atoms which are preferably 4 carbon atoms.
  • each atom is linked to a branch.
  • Such polymers preferably have hybrid end groups, even more preferably acrylate (preferably methacrylate) and alkoxy (preferably alkoxy with 1 to 8 carbon atoms, even more preferably methoxy or ethoxy), or even vinyl hybrid end groups, at least one branch of said four-branch polymer (and preferably at least two branches) being likely to produce cross-linking.
  • hybrid end groups even more preferably acrylate (preferably methacrylate) and alkoxy (preferably alkoxy with 1 to 8 carbon atoms, even more preferably methoxy or ethoxy), or even vinyl hybrid end groups, at least one branch of said four-branch polymer (and preferably at least two branches) being likely to produce cross-linking.
  • the four-branch polymer is one of those defined in columns 1 and 2 of American patent U.S. Pat. No. 6,190,804. This document is incorporated by reference in the present application.
  • This polymer is preferably a star polymer of the polyether type with at least four branches having end groups containing the following functions: acrylate or methacrylate and alkoxy, allyloxy and/or vinyloxy, at least one, and preferably two of these functions of which are active to allow cross-linking.
  • the stability voltage of an electrolytic composition according to the invention containing this polymer is definitely over 4 volts.
  • the 4-branch polymer is a tetrafunctional polymer, preferably high molecular weight, responding to the formula:
  • R 1 and R 2 each represent a hydrogen atom or an inferior alkyl (preferably 1 to 7 carbon atoms);
  • R 3 represents a hydrogen atom or a methyl group;
  • m and n each represent a whole number over or equal to 0; in each high molecular chain, m+n>35; and each one of group R 1 , R 2 , R 3 and each one of parameters m and n may be identical or different in the 4 high molecular chains.
  • those having a mean molecular weight comprised between 1,000 and 1,000,000, even more preferably those having a mean molecular weight comprised between 5,000 and 100,000 are particularly interesting.
  • star-type polyethers having at least four branches with a hybrid end group (acrylate or methacrylate and alkoxy, allyloxy, vinyloxy) are retained. Its stability voltage is clearly over 4 volts.
  • DKS Patent application EP-A-1,249,461 describes the method used to prepare this preferred family of polyether polymer compounds. They are obtained by reacting ethylene oxide and propanol-1-epoxy-2,3 with the starting material, or by reacting propanol-1-epoxy-2,3 with ethylene glycol as the starting material to produce a polymer compound. This step is followed by the introduction of polymerizable and/or non-polymerizable functional groups at each end of a skeleton and the side chains in the resulting polymer compound.
  • active hydrogen residues for the compound having one or several active hydrogen residues include the group of hydroxyls, preferably having 1 to 5 active hydrogen residues.
  • Specific examples of compounds having one or several active hydrogen residues include triethyleneglycol monomethylether, ethyleneglycol, glycerine, diglycerine, pentaerythritol and their derivatives.
  • alkoxide also include CH 3 ONa, t-BuOK and their derivatives.
  • the polyether polymer compounds of the invention have the structure unit represented by formula (1) as well as the structure unit represented by formula (2) and/or the structure unit represented by formula (3).
  • the number of structure units represented by formula (1) in one molecule is from 1 to 22,800, more preferably from 5 to 11,400, and even more preferably from 10 to 5,700.
  • the number of structure units of formula (2) or (3) (but when both are included, it is the total number) is from 1 to 13,600, more preferably from 5 to 6,800, and even more preferably from 10 to 3,400 as well as in one molecule.
  • Examples of polymerizable functional groups introduced at each molecular extremity include (meth)acrylate residues, allyl groups and vinyl groups, and examples of non-polymerizable functional groups include alkyl groups or functional groups comprising boron atoms.
  • alkyl groups having 1 to 6 carbon atoms are preferable, those having 1 to 4 carbon atoms are more preferable, and methyl groups are especially preferable.
  • Examples of functional groups comprising boron atoms include those represented by the following formulas (4) or (5).
  • R 11 , and R 12 in formula (4) and R 21 , R 22 , R 23 in formula (5) may be identical or different, and each represents hydrogen, halogen, alkyl, alkoxy, aryl, alkenyl, alkynyl, aralkyl, cycloalkyl, cyano, hydroxyl, formyl, aryloxy, alkylthio, arylthio acyloxy, sulfonyloxy, amino, alkylamino, arylamino, carbonamido, oxysulfonylamino, sulphonamide, oxycarbonylamino, ureide, acyl, oxycarbonyl, carbamoyl, sulfonyl, sulfinyl, oxysulfonyl, sulfamoyl, carboxylate, sulfonate, phosphonate, heterocyclic, —B(R a ) (R b ), —
  • (R a ), (R b ) and (R c ) each represent hydrogen, halogen, alkyl, alkoxy, aryl, alkenyl, alkynyl, aralkyl, cycloalkyl, cyano, hydroxyl, formyl, aryloxy, alkylthio, arylthio, acyloxy, sulfonyloxy, amino, alkylamino, arylamino, carbonamido, oxysulfonylamino, sulphonamide, oxycarbonylamino, ureide, acyl, oxycarbonyl, carbamoyl, sulfonyl, sulfinyl, oxysulfonyl, sulfamoyl, carboxylate, sulfonate, phosphonate, heterocyclic or derivatives thereof.
  • R 11 , and R 12 in formula (4) and R 21 , R 22 , R 23 in formula (5) may bind together to form a ring, and the ring may have substituents. Each group may also be substituted by substitutable groups.
  • X + in formula (5) represents an alkali metal ion, and is preferably a lithium ion.
  • the extremities of molecular chains in the polyether polymer may be all polymerizable functional groups, non-polymerizable functional groups, or may include both.
  • the mean molecular weight (Mw) of this type of polyether polymer compound is not especially limited, but is usually from about 500 to 2 million, and preferably from about 1,000 to 1.5 million.
  • the polymers in these preferred families are preferably selected amongst polymers that are cross-linkable by Ultra-Violet, Infrared, thermal treatment and/or electron beam (EBeam).
  • These polymers are preferably selected transparent.
  • polymers that may be preferably used for the preparation of the ternary mixture of the invention, those that are liquid at room temperature are most particularly mentioned. They represent a particular interest owing to the fact that they do not require a coating solvent.
  • aprotic polymer when polymer mixtures are used in the ternary and/or quaternary mixtures of the invention, at least 20% by weight of aprotic polymer is preferably required in the mixture.
  • molten salts may be divided into two groups.
  • the first group is constituted by compounds like alkaline halides binded mainly by ionic forces and, the second group includes compounds essentially comprising covalent bonds.
  • Molten salts are specific solvents, considered as ionized solvents, in which it is possible to easily dissolve inorganic compounds and to work at high temperatures. They are often ionic salts such as LiCl-KCl, NaCl-KCl and LiNO 3 —KNO 3 . This definition is extracted from session 2003, linger comment—filière PC—Institut National Polytechnique dedoch.
  • molten salts refer to salts that are in liquid form at a temperature comprised between ⁇ 30 and 350° C., preferably between ⁇ 20 and 60° C. Actually, at temperatures over 350° C., polymers present in the mixtures of the invention would be carbonized.
  • the molten salts of interest in the framework of the present invention are those constituted by at least two salts selected from the group constituted by imidazolium, imidinium, pyridinium, ammonium, pyrolium, sulfonium, phosphonium salts, as well as by the mixtures of at least two of the latter.
  • molten salts are present in the polymer-molten salts-solvent (PSS) ternary mixtures of the invention. These mixtures as well as the corresponding quaternary mixtures obtained by adding an ion-conducting salt, are in homogenous and liquid form at room temperature.
  • PSS polymer-molten salts-solvent
  • solvent refers to any solvent having the capacity to:
  • organic solvent or a mixture of organic solvents and, more preferably, those selected from the group constituted by methanol, dimethylformamide, tetrahydrofuran, ethanol, propanol, N-methyl pyrollidone, and the cyclic solvents: cyclic carbonate, cyclic ester alkyl and ethers like propylene carbonate, diethyl carbonate, dimethylcarbonate, ethylene carbonate and gamma butyrolactone, and the mixtures of at least two of the latter.
  • ion-conducting salt and as a complement to the definition given for aprotic polymer, refers to a salt that ensures ionic conductivity by releasing electrons that transit from the anode to the cathode.
  • the ion-conducting salt will be selected from the group constituted by LiN (SO 2 CF 3 ) 2 : LiTFSl, LiN(SO 2 C 2 F 5 ) 2 : BETl, LiC(SO 2 CF 3 ) 3 , LiBF 4 , LiPF 6 , LiClO 4 , LiSO 3 CF 3 , LiAsF 6 , LiBOB, LiDCTA, and Lil.
  • electron-conducting polymer refers to a polymer that acts as an active material represented by an electrode in an electrochemical system in which it ensures the electronic conduction.
  • electrochemical membrane refers to a film obtained by application on the substrate to be coated of a layer of a viscous liquid comprising a ternary and/or quaternary mixture according to the invention.
  • the film forms at the surface of the substrate and adheres to it.
  • the first object of the first object of the present invention is an aprotic polymer-molten salt-solvent (PSS) ternary mixture.
  • the ternary mixtures of the invention are homogenous and liquid at room temperature.
  • the aprotic polymer is selected from the group constituted by aprotic polymers and by the mixtures of at least two of the latter, and by the mixtures of polymers comprising at least 20% by weight of an aprotic polymer.
  • the polymers present in the mixtures of the invention have a mean molecular weight (MW) comprising between 1,000 and 1,000,000, even more preferably comprising between 5,000 and 100,000.
  • These mixtures preferably present a transparency over 80%, wherein said transparency being measured using a UV-IR type near IR Variant brand device, a 2 mm thick mineral glass plate as reference of 100% transparency and a sample to measure constituted:
  • the aprotic polymer is of the cross-linkable type.
  • the cross-linkable polymer presents a percentage of cross-linkable bonds over 80%.
  • the cross-linkable polymers presenting a percentage of cross-linkable bonds comprised between 5 and 50%, even more preferably with a percentage of cross-linkable bonds comprised between 10 and 30%, will be retained.
  • the cross-linkable polymer is selected from the group constituted by 3-branch and 4-branch polyether polymers, GE-type vinyl polymers (EO-GD, that is ethylene oxide-2,3 epoxy 1 propanol) and mixtures of at least two of these polymers.
  • EO-GD GE-type vinyl polymers
  • Another variant of the invention is constituted by the ternary mixtures in which the polymer is non-cross-linkable.
  • Such polymers are preferably selected from the group constituted by the polymers of the type polyvinylidenefluoride (PVDF) and poly(methylmethacrylate) PMMA and by the mixtures of at least two of the latter.
  • PVDF polyvinylidenefluoride
  • PMMA poly(methylmethacrylate)
  • protic polymer is constituted by a mixture of at least one cross-linkable polymer and at least one non-cross-linkable polymer. Even more preferably, such a mixture comprises at least one PMMA.
  • the aprotic polymer is constituted by a mixture of at least one cross-linkable polymer and at least one non-cross-linkable polymer; preferably for electrochemical systems, the ratio of cross-linkable polymer to non-cross-linkable polymer is about 50:50, while in the case of electrochromic windows, this ratio is about 80:20.
  • the molten salt present in the ternary mixture is selected amongst those melted at a temperature comprised between ⁇ 40 and 350° C. Even more preferably, this molten salt is selected amongst those melted at a temperature comprised between ⁇ 20 and 60° C.
  • At least two salts selected from the group constituted by imidazolium, imidinium, pyridinium, ammonium, pyrolium, sulfonium and phosphonium salts and by the mixtures of at least two of the latter will be selected to constitute the molten salt.
  • molten salts in the group constituted by the soluble hydrophobic salts described hereinabove will be selected to minimize absorption of water-molecules which may induce bubbles into the systems.
  • the solvent present in the ternary mixture is selected from the group constituted by organic solvents preferably selected from the group constituted by the solvents of the type EC, PC, DMC, DEC, EMC, GBL, VC, VB, by inorganic solvents like KOH, NaOH and by the mixtures of at least two of the latter.
  • the solvent retained will be a mixture of an organic solvent and a mineral solvent.
  • the solvent retained is of the organic type and presents a boiling point over 125° C. in standard temperature and pressure conditions.
  • ternary mixtures those characterized by a viscosity varying from 1 to 5,000 cP, more preferably those presenting a viscosity of 5 to 500 cP.
  • the viscosity of the ternary mixtures of the invention is measured at 25° C. using the Cambridge applied system viscometer, referenced in the publication Room temperature molten salts as lithium battery electrolyte, Armand et al. in Electrochimica Acta 49 (2004) pages 4583-4588
  • the ternary mixtures of the invention find many applications, notably in electrochromic windows owing to their preferable characteristics of conductivity, safety, transparency and low-temperature operation.
  • the second object of the present invention is constituted by a quaternary mixture comprising a ternary mixture as defined in the first object of the present invention and an ion-conducting salt.
  • the ion-conducting salt is preferably selected from the group of alkaline-earth salts, preferably in the group constituted by lithium salts, preferably those selected from the group constituted by the lithium salts of the type LiTFSl, LiFl, LiBOB, LiTFSl, LiDCTA, LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , Lil and mixtures of at least two of the latter.
  • the quaternary mixtures of the invention are characterized by a concentration of conducting salt varying from 0.01 to 3M (M: molar). Even more preferably, this concentration of conducting salt varies from 0.5 M to 2.5 M.
  • the quaternary mixture contains by weight:
  • the quaternary mixture is characterized by a viscosity varying, preferably from 1 to 5,000 cP, even more preferably from 5 to 500 cP.
  • the polymer is cross-linkable by at least one of the following methods: UV, IR, thermal and Ebeam.
  • the ternary mixtures of the invention find their application as polymeric separators in electrochemical systems, they notably present advantages such as conductivity, safety, low-temperature operation and transparency in the case where the systems are electrochromic windows.
  • Quaternary mixtures are ternary mixtures in which one or several ion-conducting salts have been added in order to increase the ionic conduction of the mixture for applications requiring very rapid responses (supercapacitor, power batteries, ultra rapid response electrochromic windows.
  • the third object of the present invention is constituted by a preparation process of a ternary mixture according to the first object hereinbefore defined, or of a quaternary mixture according to the second object hereinbefore defined, preferably by mixture, in an indifferent order, of the components of said ternary or quaternary mixture.
  • One of the advantages of the mixtures of the present invention resides in their capacity to be prepared in one single mixture and to result in one single homogenous phase.
  • this mixture is prepared at room temperature and at a controlled pressure (argon, nitrogen, helium).
  • the mixture is preferably prepared on a roll mixer.
  • the fourth object of the present invention resides in a preparation process of a membrane from a ternary mixture according to the first object and/or from a quaternary mixture according to the second object, and/or from a ternary or quaternary mixture as prepared by the implementation of one of the processes described in the third object of the invention.
  • this process of the invention is used for the preparation of an electrochemical membrane of non-salted polymer (that is, containing no ion-conducting salts such as alkaline-earth salts or lithium salts described in the definition of the quaternary mixtures) is soaked in a SS (solvent-molten salt) salted mixture, that is containing at least one conducting salt such as an alkaline earth or lithium salt, preferably one of the lithium salts specifically described in the second object of the invention, after abutment on one of the electrodes.
  • SS solvent-molten salt
  • the non-salted polymer membrane is soaked in a non-salted SS mixture, after abutment on one of the electrodes.
  • the salted polymer membrane is soaked in a salted SS mixture, after abutment on one of the electrodes.
  • the salted polymer membrane is soaked in a non-salted SS mixture, after abutment on one of the electrodes.
  • the ion-conducting salt is dissolved in the molten salt. Even more preferably, the ion-conducting salt is dissolved in the solvent.
  • the salted or non-salted polymer membrane is abutted on one of the electrodes and adheres to it.
  • a fifth object of the present invention resides in the preparation of an electrochemical system comprising at least two electrodes and at least one electrolyte constituted from a PSS (Polymer-molten Salt-Solvent) mixture and/or from a PSSS (Polymer-molten Salt-Solvent-ion-conducting salt) mixture according to the invention.
  • PSS Polymer-molten Salt-Solvent
  • PSSS Polymer-molten Salt-Solvent-ion-conducting salt
  • the electrochemical system, prepared comprise at least one anode, at least one cathode and at least one PSS and/or PSS electrolyte.
  • the process is used for the preparation of an electrochemical system, preferably of an electrochemical system as represented in FIG. 10 and which represents an electrochromic window.
  • this process is used for the preparation of an electrochemical system comprising at least one intercalation electrode and at least one double layer electrode.
  • a preparation process of a battery-type generator the anode of which is selected from the group constituted by the electrodes of the type lithium, lithium alloy, carbon, graphite, metal oxide and the cathode of LiFePO 4 , LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiMn 1/3 Co 1/3 Ni 1/3 O 2 , and the mixtures of at least two of the latter are cited.
  • a sixth object of the present invention consists in electrochemical systems obtained by the implementation of one of the processes according to the fifth object of the invention.
  • a seventh object of the present application is constituted by a preparation process of an electrochemical device, preferably of an electrochromic device such as an electrochromic window.
  • the electrochromic systems considered in the framework of the present invention are notably those constituted by:
  • the preparation of these electrochemical systems is carried out by the implementation of the following steps:
  • Such a process is particularly well adapted for the preparation of electrochromic windows.
  • a ternary or quaternary mixture is coated on one of the electrodes and after abutment on the other electrode.
  • the preparation process of an electrochromic device (preferably of a window) of the invention is applied in the case where the cathode is based on a metal oxide selected from the group constituted by WO 3 , MoO 3 , V 2 O 5 , LioTi 5 O 12 , electron-conducting polymer, and mixtures of at least two of the latter.
  • the anode is based on a metal oxide selected from the group constituted by: IrOx, LiVOx, NiOx, NiOxHy (where x is comprised between 00.1 and 0.2), Ta 2 O 5 , Sb 2 O 5 , electron-conducting polymer (that can replace oxides like polyaniline also known as PANI) and the mixtures of at least two of the latter.
  • a metal oxide selected from the group constituted by: IrOx, LiVOx, NiOx, NiOxHy (where x is comprised between 00.1 and 0.2), Ta 2 O 5 , Sb 2 O 5 , electron-conducting polymer (that can replace oxides like polyaniline also known as PANI) and the mixtures of at least two of the latter.
  • the PSS mixture is introduced in the device in the space separating the two electrodes, this space preferably varies between 5 and 500 microns, and even more preferably, this distance varies from 10 to 50 microns.
  • said device is heated to temperatures varying from 25 to 100° C., preferably at 80° C. for 1 hour, in order to allow the cross-linking of the polymer present in the ternary or quaternary mixture.
  • said device contains a polymer membrane positioned between the two electrodes, and the SS mixture is introduced in the sealed electrochemical device.
  • a preparation process of a battery-type generator the anode of which is selected from the group constituted by the electrodes of the type lithium, lithium alloy, carbon, graphite, metal oxide and the cathode of LiFePO 4 , LiCoO 2 , LiMn 2 O 4 , LiNiO 2 and the mixtures of at least two of the latter are cited.
  • Such devices have revealed in particular a high yield at a low temperature.
  • An eighth object of the present invention is constituted by the electrochemical devices and by the electrochromic devices obtained by the implementation of one of the processes defined in the seventh object of the present invention.
  • Such electrochromic devices are characterized by a transparency over 80° C. in the bleached state and from 1-3% in the colored state and a good cyclability at room temperature.
  • a ninth object of the present application is constituted by the use of a ternary and/or quaternary mixture object of the invention or as obtained by one of the processes of the invention in one of the following applications: electrolyte for electrochemical system, preferably for electrochromic window and for electrochemical generator.
  • FIG. 1 shows the vapour pressure of the liquid electrolyte 1.5 M LiTFSl in EC+GBL compared to that of each of the two molten salts, between 25 and 40° C.
  • the liquid and the molten salts have a low vapour pressure, on the other hand at temperatures over 40° C., the liquid electrolyte has very high vapour pressures, which limits its application in the electrochromic field.
  • molten salts have a low and almost constant vapour pressure depending on the temperature, which makes this type of molten salts safe for electrochromic windows.
  • the third constituent is a solvent which plays a role as a plasticizer and which is preferably found in solid form at room temperature, like ethylene carbonate (EC), or liquid form like propylene carbonate (PC), vinyl carbonate (VC), dimethylcarbonate (DMC), diethylcarbonate (DEC), Ethylmethylcarbonate (EMC) or the mixtures of at least two of the latter.
  • EC ethylene carbonate
  • PC propylene carbonate
  • VC vinyl carbonate
  • DMC dimethylcarbonate
  • DEC diethylcarbonate
  • EMC Ethylmethylcarbonate
  • the boiling point must preferably be over 125° C.
  • the presence of these solvents in the mixture plays a double role.
  • the first role is to increase the ionic conductivity of the PSS
  • the second role is the optimization of the viscosity of the PSS mixture to facilitate coating on an electrode support in order to obtain a homogenous film.
  • the ternary and quaternary mixtures of the invention preferably present transparency over 80%, said transparency is measured using a UV-IR type near IR Variant brand device, a 2 mm thick mineral glass plate as reference of 100% transparency and a sample to measure constituted:
  • electrochromic window refers to an electrochemical system that changes colour reversibly by the application of a low voltage.
  • the fabrication of PSS-type electrolytes particularly adapted for the production of electrochromic windows may notably be carried out by the implementation of one of the methods clarified hereafter, coating is indifferently carried out by the implementation of one of the methods described in Coatings Technology Handbook, D. Gabas, pages 19 to 180. This document is incorporated by reference to the present application.
  • Coating of the 4-branch polymer is carried out, with or without a lithium salt, using a coating device, working under controlled atmosphere, and modified for coating the salted membrane ( FIG. 6 ).
  • the membrane is coated on a PP (polypropylene) support, the thickness of the membrane is comprised between 15 and 20 microns.
  • cross-linking is carried out in line by UV radiation as represented in FIG. 8 , by Infrared as represented in FIG. 9 or by EBeam as represented in FIG. 7 .
  • Cross-linking by Ultra-Violet is preferably carried out by the addition of a photo initiator-type or thermo initiator-type cross-linking agent under energy input preferably for about 5 seconds.
  • Thermal or infrared cross-linking is also carried out by the addition of a cross-linking agent.
  • the dry membrane is soaked in a solution of molten salt and solvent (SS).
  • SS molten salt and solvent
  • the PSS electrolyte transferred by tethering to the PP support is then preferably deposited on one of the electrodes of any electrochemical device whatsoever such as an electrochromic window.
  • the PP becomes easily detached from the PSS.
  • the mixture hereby obtained is coated on a PP support after cross-linking (UV or IR, or thermal or Ebeam).
  • the PSS electrolyte is transferred and linked to an electrode of the electrochromic device.
  • FIG. 11 shows the scheme of an electrochromic device according to the invention.
  • the PSS electrolyte is fixed on one of the electrodes, either (Li 4 Ti 5 O 12 ) or on the carbon-based electrode.
  • This type of electrochromic technology functions in the same manner as a hybrid super capacitor described in the Hydro Quebec patent EP-A-1,339,642, this document is incorporated by reference.
  • the electrochemical reactions implemented during operation are the following:
  • the dry membrane is abutted on one of the electrodes. After assembly, the device is sealed, an opening is left in the electrochromic cell in order to introduce the SS mixture.
  • the orifice is then sealed with a glue without vapour pressure such as Torr Seal.
  • a situated orifice is left open in order to introduce the PSS mixture and the cross-linking agent.
  • the distance of the void between the electrodes varies between 15 and 50 microns, after the introduction of the mixture through the opening, sealing the gap is very rapid using a sealant like Tor Seal.
  • the device is heated to 80° C. or exposed to the rays of an IR lamp for one hour.
  • the electrolyte formed therein is transparent.
  • the SPP mixture is coated by the doctor Blade method or extrusion and abutted on the electrode and after deposited on the counter electrode.
  • the PSS is overcoated on the counter electrode and after abutted on the working electrode.
  • the device is sealed.
  • This film is soaked for 5 minutes in a stainless steel recipient containing a solution of 20 grams of SS:molten salt (propylmethylimidazol+1M LiTFSl.) and solvent (VC:vinyl carbonate).
  • SS:molten salt propylmethylimidazol+1M LiTFSl.
  • solvent VC:vinyl carbonate
  • the ratio of molten salt—solvent is 90:10 by weight.
  • the PP detaches naturally from the polymer membrane, a PSS1 membrane is formed.
  • This membrane is conductive to LiTFSl salt and its transparency measured according to the above defined method is over 80%.
  • a 25 micron polymer film of cross-linked polymer is obtained.
  • the polymer film is vacuum dried at 80° C. for 24 hours, then soaked for 5 minutes in a stainless steel recipient containing a solution of 20 grams of SS:molten salt (propylmethylimidazol+1M LiTFSl) and the solvent (GBL:gamma-buterolactol).
  • PSS2 membrane is formed. This membrane is conductive to LiTFSl salt and transparent in nature.
  • a 25 micron polymer film of cross-linked polymer is obtained, this polymer film is vacuum dried at 80° C. for 24 hours, then soaked for 5 minutes in a stainless steel recipient containing a solution of 20 grams of SS:molten salt (propylmethylimidazol+1M LiTFSl) and the solvent (EC+GBL:ethylene carbonate+gamma-buterolactone).
  • the ratio of molten salt-solvent is 90:10 by weight.
  • PSS3 membrane is formed. This membrane is conductive to LiTFSl salt and transparent in nature. Its transparency is also over 80%.
  • the polymer film is vacuum dried at 80° C. for 24 hours, then soaked for 5 minutes in a stainless steel recipient in a solution of a mixture of 20 grams of SS: molten salt (hexylmethyllimidazolium) and the solvent (PC:propylene carbonate).
  • SS molten salt
  • PC propylene carbonate
  • the ratio of molten salt—solvent is 90:10 by weight.
  • PSS4 membrane is formed. This membrane is conductive to LiTFSl salt and highly transparent, that is measured over 80%.
  • the PSS1 prepared in example 1 is abutted on a 18 mm-diameter lithium disk.
  • FIG. 12 shows the two successive charge-discharge cycles, the capacity of Li 4 T is O 12 is 140 mAH/g, the reversibility of the cathode shows that the PSS1 membrane is electrochemically active owing to the lithium salt.
  • the PSS2 prepared in example 2 is abutted on a 18 mm-diameter lithium disk.
  • a 16 mm-diameter Li 4 Ti 5 O 12 type cathode is abutted on the PSS2, a Mac battery is used to charge and discharge the button cell at a current of C/24 (in 24 hours).
  • the capacity of Li 4 Ti 5 O 12 is 143 mAh/g, the reversibility of the cathode shows that the PSS1 membrane is electrochemically active owing to the lithium salt.
  • the PSS3 prepared in example 3 is abutted on a 18 mm-diameter lithium disk.
  • a 16 mm-diameter Li 4 Ti 5 O 12 type cathode is abutted on the PSS3, a Mac battery is used to charge and discharge the button cell at a current of C/24 (in 24 hours).
  • the capacity of Li 4 Ti 5 O 12 is 135 mAh/g, the reversibility of the cathode shows that the PSS3 membrane is electrochemically active owing to the lithium salt.
  • the PSS4 prepared in example 4 is abutted on a 18 mm-diameter lithium disk.
  • a 16 mm-diameter Li 4 Ti 5 O 12 type cathode is abutted on the PSS4, a Mac battery is used to charge and discharge the button cell at a current of C/24 (in 24 hours).
  • the capacity of Li 4 Ti 5 O 12 is 141 mAh/g, the reversibility of the cathode shows that the PSS3 membrane is electrochemically active owing to the lithium salt.
  • the button cell After sealing the button cell, it is introduced in an oven, the temperature of which is maintained at 80° C., for one hour, the button cell is removed from the chamber at 80° C. and is introduced in an incubator at 24° C.
  • a Mac battery is used to charge and discharge, at 25° C., the button cell has a current of C/24 (in 24 hours).
  • the capacity of Li 4 Ti 5 O 12 is 132 mAh/g, the reversibility of the cathode shows that the PSS1 membrane is electrochemically active owing to the lithium salt.
  • the electrochromic windows of the invention prove to have excellent properties and notably in coloring/bleaching, stability and safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)
US11/576,940 2004-10-12 2005-10-11 Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems Abandoned US20090263723A9 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA002482003A CA2482003A1 (fr) 2004-10-12 2004-10-12 Melange ternaire polymere - sel fondu - solvant, procede de fabrication et utilisation dans les systemes electrochimiques
CA2,482,003 2004-10-12
PCT/CA2005/001553 WO2006039795A1 (fr) 2004-10-12 2005-10-11 Melange ternaire polymere aprotique - sel fondu -solvant, procede de fabrication et utilisation dans les systemes electrochimiques

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2005/001553 A-371-Of-International WO2006039795A1 (fr) 2004-10-12 2005-10-11 Melange ternaire polymere aprotique - sel fondu -solvant, procede de fabrication et utilisation dans les systemes electrochimiques

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/652,900 Continuation US10954351B2 (en) 2004-10-12 2017-07-18 Aprotic polymer-molten salt-solvent ternary composition, method for the preparation and use thereof in electrochemical systems

Publications (2)

Publication Number Publication Date
US20090029263A1 US20090029263A1 (en) 2009-01-29
US20090263723A9 true US20090263723A9 (en) 2009-10-22

Family

ID=36148005

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/576,940 Abandoned US20090263723A9 (en) 2004-10-12 2005-10-11 Aprotic polymer/molten salt ternary mixture solvent, method for the production and use thereof in electrochemical systems
US15/652,900 Active US10954351B2 (en) 2004-10-12 2017-07-18 Aprotic polymer-molten salt-solvent ternary composition, method for the preparation and use thereof in electrochemical systems

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/652,900 Active US10954351B2 (en) 2004-10-12 2017-07-18 Aprotic polymer-molten salt-solvent ternary composition, method for the preparation and use thereof in electrochemical systems

Country Status (7)

Country Link
US (2) US20090263723A9 (ja)
EP (1) EP1802707B1 (ja)
JP (1) JP4870084B2 (ja)
CN (1) CN101084276B (ja)
CA (1) CA2482003A1 (ja)
ES (1) ES2605357T3 (ja)
WO (1) WO2006039795A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328845A1 (en) * 2009-06-25 2010-12-30 Nokia Corporation Nano-structured flexible electrodes, and energy storage devices using the same
US11978851B2 (en) 2019-03-05 2024-05-07 Sk On Co., Ltd. Coated separator for energy storage device
US12062771B2 (en) 2019-03-08 2024-08-13 Sk On Co., Ltd. Coated electrode for energy storage device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925181B1 (fr) * 2007-12-12 2010-09-10 Hydro Quebec Lentille optique electrochrome
JP2010108912A (ja) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd 非水電解質二次電池、その電池に用いられる正極活物質、及び、その正極活物質の製造方法
EP2202826B1 (en) * 2008-12-23 2013-06-05 SMR Patents S.à.r.l. Polymer Electrolytes and Devices containing them
JP5573513B2 (ja) * 2010-09-03 2014-08-20 セイコーエプソン株式会社 リチウム電池電極及びリチウム電池
CA2724307A1 (fr) 2010-12-01 2012-06-01 Hydro-Quebec Batterie lithium-air
JP5773038B2 (ja) * 2014-07-01 2015-09-02 セイコーエプソン株式会社 リチウム電池
US10597518B2 (en) * 2016-04-15 2020-03-24 Furcifer Inc. Solid polymer electrolyte for electrochromic devices
US10392301B2 (en) 2016-04-15 2019-08-27 Furcifer Inc. Integration of electrochromic films on a substrate
FR3059671B1 (fr) * 2016-12-01 2020-10-30 Arkema France Composition polymere electriquement conductrice et transparente a base de poly(3,4-ethylenedioxythiophene) et de polyelectrolyte
JP2023522761A (ja) * 2020-04-27 2023-05-31 ハイドロ-ケベック 固体電気化学セル、その調製方法およびその使用
US11955639B2 (en) * 2021-05-04 2024-04-09 GM Global Technology Operations LLC Composite interlayer for lithium metal based solid state batteries and the method of making the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484670A (en) * 1992-06-22 1996-01-16 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For Arizona State University Lithium ion conducting ionic electrolytes
US5643490A (en) * 1993-10-21 1997-07-01 Sony Corporation Polymer solid electrolyte composition
US5683832A (en) * 1994-12-21 1997-11-04 Asulab S.A. Hydrophobic liquid salts, the preparation thereof and their appliction in electrochemistry
US6190804B1 (en) * 1997-12-09 2001-02-20 Dai-Ichi Kogyo Seiyaku Co., Ltd. Solid battery
US6245847B1 (en) * 1996-09-13 2001-06-12 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Electrolyte
US6280882B1 (en) * 1997-01-17 2001-08-28 Hydro-Quebec Electrolytic composition with polymer base for electrochemical generator
US6344293B1 (en) * 2000-04-18 2002-02-05 Moltech Corporation Lithium electrochemical cells with enhanced cycle life
US20020110739A1 (en) * 2000-05-26 2002-08-15 Mcewen Alan B. Non-flammable electrolytes
US20030031858A1 (en) * 2001-08-01 2003-02-13 Bernd Bronstert Primer layers for EC windows
US20040021928A1 (en) * 2002-06-21 2004-02-05 Warner Benjamin P. Electrolytes for electrooptic devices comprising ionic liquids
US20050069780A1 (en) * 2001-11-29 2005-03-31 Ube Industries, Ltd Polyelectrolyte compositions
US20050103706A1 (en) * 2003-08-21 2005-05-19 Matthew Bennett Ionic solvents used in ionic polymer transducers, sensors and actuators

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143681A (ja) * 1984-08-08 1986-03-03 Toshiba Corp エレクトロクロミツク表示体
JPS6232169A (ja) * 1985-08-02 1987-02-12 Nippon Sheet Glass Co Ltd 有機固体電解質およびその製造方法
GB8928748D0 (en) * 1989-12-20 1990-02-28 Ici Plc Solid state electrochromic devices
US5506073A (en) * 1992-06-22 1996-04-09 Arizona State University (Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University) Lithium ion conducting electrolytes
JPH06119087A (ja) 1992-10-09 1994-04-28 Nec Corp 電源オフ方式
EP0699349B1 (fr) * 1994-03-21 2007-10-10 Centre National De La Recherche Scientifique (Cnrs) Materiau a conduction ionique presentant de bonnes proprietes anti-corrosion
JPH11251194A (ja) * 1998-02-27 1999-09-17 Meidensha Corp 薄型ゲル電解質の作製方法及び電気二重層キャパシタ
FR2803951B1 (fr) * 2000-01-14 2002-04-26 Centre Nat Rech Scient Compositions d'electrolytes, procede de fabrication et applications electrochimiques
US20020019028A1 (en) 2000-06-13 2002-02-14 Kabir Chaturvedi Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof
JP2002082360A (ja) * 2000-09-11 2002-03-22 Fuji Photo Film Co Ltd 光書き込み型記録材料
US6512587B1 (en) * 2000-10-27 2003-01-28 Eastman Kodak Company Measurement method and apparatus of an external digital camera imager assembly
CA2327370A1 (fr) 2000-12-05 2002-06-05 Hydro-Quebec Nouvelle methode de fabrication de li4ti5o12 pur a partir du compose ternaire tix-liy-carbone: effet du carbone sur la synthese et la conductivite de l'electrode
JP5021867B2 (ja) * 2001-04-09 2012-09-12 第一工業製薬株式会社 ポリエーテル系高分子化合物、これを用いてなるイオン伝導性高分子組成物及び電気化学デバイス
US6432864B1 (en) 2001-04-11 2002-08-13 Air Products And Chemicals, Inc. Acid-blocked amine catalysts for the production of polyurethanes
CA2471395C (fr) * 2002-01-16 2011-05-10 Hydro-Quebec Electrolyte polymere a haute stabilite, son utilisation dans les systemes electrochimiques
CA2367290A1 (fr) * 2002-01-16 2003-07-16 Hydro Quebec Electrolyte polymere a haute stabilite > 4 volts comme electrolyte pour supercondensateur hybride et generateur electrochimique
CA2411695A1 (fr) * 2002-11-13 2004-05-13 Hydro-Quebec Electrode recouverte d'un film obtenu a partir d'une solution aqueuse comportant un liant soluble dans l'eau, son procede de fabrication et ses utilisations
JP2004170613A (ja) * 2002-11-19 2004-06-17 Fuji Photo Film Co Ltd 光学素子およびカメラユニット
CA2418257A1 (fr) * 2003-01-30 2004-07-30 Hydro-Quebec Composition electrolytique et electrolyte, generateurs les contenant et operant sans formation de dendrite lors du cyclage

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484670A (en) * 1992-06-22 1996-01-16 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For Arizona State University Lithium ion conducting ionic electrolytes
US5643490A (en) * 1993-10-21 1997-07-01 Sony Corporation Polymer solid electrolyte composition
US5683832A (en) * 1994-12-21 1997-11-04 Asulab S.A. Hydrophobic liquid salts, the preparation thereof and their appliction in electrochemistry
US6245847B1 (en) * 1996-09-13 2001-06-12 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Electrolyte
US6280882B1 (en) * 1997-01-17 2001-08-28 Hydro-Quebec Electrolytic composition with polymer base for electrochemical generator
US6190804B1 (en) * 1997-12-09 2001-02-20 Dai-Ichi Kogyo Seiyaku Co., Ltd. Solid battery
US6344293B1 (en) * 2000-04-18 2002-02-05 Moltech Corporation Lithium electrochemical cells with enhanced cycle life
US20020110739A1 (en) * 2000-05-26 2002-08-15 Mcewen Alan B. Non-flammable electrolytes
US20030031858A1 (en) * 2001-08-01 2003-02-13 Bernd Bronstert Primer layers for EC windows
US20050069780A1 (en) * 2001-11-29 2005-03-31 Ube Industries, Ltd Polyelectrolyte compositions
US20040021928A1 (en) * 2002-06-21 2004-02-05 Warner Benjamin P. Electrolytes for electrooptic devices comprising ionic liquids
US6853472B2 (en) * 2002-06-21 2005-02-08 The Regents Of The University Of California Electrolytes for electrooptic devices comprising ionic liquids
US20050103706A1 (en) * 2003-08-21 2005-05-19 Matthew Bennett Ionic solvents used in ionic polymer transducers, sensors and actuators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328845A1 (en) * 2009-06-25 2010-12-30 Nokia Corporation Nano-structured flexible electrodes, and energy storage devices using the same
US9786444B2 (en) * 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
US11978851B2 (en) 2019-03-05 2024-05-07 Sk On Co., Ltd. Coated separator for energy storage device
US12062771B2 (en) 2019-03-08 2024-08-13 Sk On Co., Ltd. Coated electrode for energy storage device

Also Published As

Publication number Publication date
JP2008516287A (ja) 2008-05-15
JP4870084B2 (ja) 2012-02-08
CA2482003A1 (fr) 2006-04-12
EP1802707A1 (fr) 2007-07-04
WO2006039795A1 (fr) 2006-04-20
US10954351B2 (en) 2021-03-23
US20180155513A1 (en) 2018-06-07
CN101084276A (zh) 2007-12-05
CN101084276B (zh) 2012-07-04
ES2605357T3 (es) 2017-03-14
EP1802707A4 (fr) 2013-08-21
EP1802707B1 (fr) 2016-09-07
US20090029263A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US10954351B2 (en) Aprotic polymer-molten salt-solvent ternary composition, method for the preparation and use thereof in electrochemical systems
US5962170A (en) Electrochemical cell
US7279251B1 (en) Lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
EP3140876B1 (en) Composite electrodes
CN110581303B (zh) 固态电化学组件、固态电化学装置及其制备方法
KR102592147B1 (ko) 복합분리막, 그 제조방법 및 이를 포함하는 리튬이차전지
US20090026662A1 (en) Hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
US20050234177A1 (en) Highly-stable polymeric electrolyte and use thereof in electrochemical systems
Kim et al. Effect of imidazolium cation on cycle life characteristics of secondary lithium–sulfur cells using liquid electrolytes
WO1998026468A1 (en) Polymer electrolytes containing lithiated zeolite
KR20180032037A (ko) 이차 전지용 복합 고체 전해질 및 이의 제조방법
KR20160118958A (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
CN114292484B (zh) 一种互穿网络结构层和原位制备的方法及其应用
US20200266478A1 (en) Composite polymer electrolyte (cpe) membranes for secondary solid state li-metal cells and process for the production thereof
CN112055909A (zh) 用于制造包括聚合物固体电解质的全固态电池的方法和由该方法获得的全固态电池
KR20010060192A (ko) 리튬 배터리에 사용하기 위한 중합체 전해질 멤브레인
EP2752933A1 (en) Battery electrolyte and method for producing same, and battery comprising electrolyte
EP3301749B1 (en) Method for producing secondary battery
Abraham et al. Room temperature polymer electrolytes and batteries based on them
Rong et al. UV-cured semi-interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries
US5707760A (en) Additives for inhibiting decomposition of lithium salts and electrolytes containing said additives
US5698338A (en) Solid secondary lithium cell based on Lix Niy Co1-y VO4< or=x< or=1.1 and 0<y<1 cathode material
WO1997019477A1 (en) CATHODE-ACTIVE MATERIAL BLENDS OF LixMn2O4 AND Liy-α-MnO¿2?
CN105789702A (zh) 单离子聚合物电解质,其制备方法及锂离子二次电池
US5474860A (en) Solid polymer electrolytes

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYDRO-QUEBEC, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAGHIG, KARIM;CHAREST, PATRICK;GUERFI, ABDELBAST;AND OTHERS;REEL/FRAME:020814/0023;SIGNING DATES FROM 20070516 TO 20070523

Owner name: HYDRO-QUEBEC, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZAGHIG, KARIM;CHAREST, PATRICK;GUERFI, ABDELBAST;AND OTHERS;SIGNING DATES FROM 20070516 TO 20070523;REEL/FRAME:020814/0023

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION