Connect public, paid and private patent data with Google Patents Public Datasets

Plural layer woven electronic textile, article and method

Download PDF

Info

Publication number
US20090253325A1
US20090253325A1 US12429496 US42949609A US2009253325A1 US 20090253325 A1 US20090253325 A1 US 20090253325A1 US 12429496 US12429496 US 12429496 US 42949609 A US42949609 A US 42949609A US 2009253325 A1 US2009253325 A1 US 2009253325A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
yarn
conductive
functional
electrically
warp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12429496
Inventor
David Stuart Brookstein
Muthu Govindaraj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philadelphia University (PhilaU)
Original Assignee
Philadelphia University (PhilaU)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/006With additional leno yarn
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/038Textiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/008Wires
    • H01H2203/0085Layered switches integrated into garment, clothes or textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0278Polymeric fibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0281Conductive fibers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2475Coating or impregnation is electrical insulation-providing, -improving, or -increasing, or conductivity-reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • Y10T442/3203Multi-planar warp layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3179Woven fabric is characterized by a particular or differential weave other than fabric in which the strand denier or warp/weft pick count is specified
    • Y10T442/3195Three-dimensional weave [e.g., x-y-z planes, multi-planar warps and/or wefts, etc.]
    • Y10T442/3211Multi-planar weft layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3472Woven fabric including an additional woven fabric layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3976Including strand which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous composition, water solubility, heat shrinkability, etc.]

Abstract

A woven article having plural weave layers comprises a plurality of electrically insulating and/or electrically conductive yarn in the warp and a plurality of electrically insulating and/or electrically conductive yarn in the weft interwoven with the yarn in the warp. An electrical function is provided by one or more circuit carriers disposed in cavities in the plural layer woven article and/or one or more functional yarn in the warp and/or the weft, wherein the circuit carrier and/or functional yarn include an electrical contact for connecting to the electrically conductive yarn in the warp and/or weft.

Description

  • [0001]
    This application is a division of U.S. application Ser. No. 11/552,232, filed 24 Oct. 2006, which is a divisional of U.S. Pat. No. 7,144,830, issued 5 Dec. 2006, the entire disclosure of which is incorporated herein by reference, which claims the benefit of U.S. Provisional Application No. 60/379,723, filed 10 May 2002, and of U.S. Provisional Application No. 60/419,159, filed 17 Oct. 2002.
  • [0002]
    The present invention relates to a woven article and method, and, in particular, to a plural layer woven textile and/or article having an electronic circuit woven therein, and a method therefor.
  • [0003]
    In many fields of endeavor, from military to sport to apparel, a desire exists for electronic circuits to be incorporated into fabric and into articles that may be made of fabric. In some instances, such as electric blankets and electrically conductive fabric, electrically resistive and/or electrically conductive are been woven into fabric with insulating yarn to provide the desired resistance heating and/or conductivity characteristics. In these relatively simple arrangements, the characteristics of the resistive heating yarn determines the heating characteristics of the woven electric blanket and the conductivity of the electrically conductive yarn substantially determines the conductivity characteristic of the fabric. In other words, the number and size of electrically conductive yarn determine the conductivity of the fabric.
  • [0004]
    Apart from the aforementioned relatively simple arrangements, where electrical functionality of greater complexity has been desired, electrical circuits have been added to fabric after the fabric is woven. Among the approaches are the lamination of electrical circuit substrates to a fabric, e.g., as described in U.S. Patent Publication No. US 2002/0076948 of B. Farrell et al entitled “Method of Manufacturing a Fabric Article to Include Electronic Circuitry and an Electrically Active Textile Article,” and the embroidering and/or appliqué of electrical conductors and circuits onto a fabric, e.g., as described in U.S. Pat. No. 6,210,771 to E. R. Post et al entitled “Electrically Active Textiles and Articles Made Therefrom” and in an article by E. R. Post et al entitled “E-Broidery: Design and Fabrication of Textile-Based Computing” published in the IBM Systems Journal, Volume 39, Numbers 3 & 4, pages 840-860, 2000. In addition, an arrangement attaching electrical components to woven fabric including conductive yarn, such as by connecting the components to the conductive yarn by soldering and/or by electrically conductive adhesive, is described in U.S. Pat. No. 6,381,482 to Jayaraman et al entitled “Fabric or Garment With Integrated Flexible Information Infrastructure.”
  • [0005]
    In the aforementioned arrangements, the electrical electronic function is added after the fabric has been woven, e.g., by embroidery or by appliqué or by mechanical attachment, thereby adding additional steps and additional complexity to the manufacturing process. In addition, the particular arrangement thereof appears to be suited to one specific application or usage with corresponding specific manufacturing, and does not appear to lend itself to an efficient, relatively general manufacturing wherein the function and operation of the resulting fabric need not be specified or determined until after the fabric is woven, i.e. manufactured.
  • [0006]
    Accordingly, there is a need for a woven textile and article having an electronic circuit function woven therein.
  • [0007]
    To this end, the multilayer woven article of the present invention comprises warp yarn and weft yarn interwoven in a multilayer weave having plural layers defining at least one cavity therebetween, at least one electrically conductive yarn disposed in the warp and/or in the weft and having a portion thereof in one of the plural layers defining the at least one cavity, and a circuit carrier disposed in the cavity and having at least one exposed electrical contact in electrical connection with the at least one electrically conductive yarn, the circuit carrier including at least one electronic device for performing a function.
  • [0008]
    According to another aspect of the invention, a multilayer woven article comprises a plurality of electrically insulating yarn and electrically conductive yarn defining plural layers in the warp, a plurality of electrically insulating yarn and electrically conductive yarn in the weft interwoven in a multilayer weave with the plurality of electrically insulating yarn and electrically conductive yarn in plural layers in the warp, wherein an electrically conductive yarn in the warp crossing an electrically conductive yarn in the weft makes electrical connection therewith at the crossing thereof, and at least one electrically conductive yarn in the warp and/or in the weft woven into at least first and second ones of the plural layers for crossing at least one electrically conductive yarn in the other of the warp and/or weft without making electrical contact therewith.
  • BRIEF DESCRIPTION OF THE DRAWING
  • [0009]
    The detailed description of the preferred embodiments of the present invention will be more easily and better understood when read in conjunction with the FIGURES of the Drawing which include:
  • [0010]
    FIG. 1A is a plan view schematic diagram of an example woven fabric including an example embodiment of an electronic circuit therein;
  • [0011]
    FIG. 1B is an isometric schematic view of a portion of an example multilayer woven fabric including an example embodiment of an electronic circuit therein;
  • [0012]
    FIG. 2 is a plan view schematic diagram of a yarn including an example electronic circuit function, as for the woven fabric of FIGS. 1A and 1B;
  • [0013]
    FIGS. 3A through 3D are plan view schematic diagrams of example embodiments of yarns including an example electronic circuit function suitable for a woven fabric as illustrated in FIGS. 1A and 1B;
  • [0014]
    FIGS. 4A, 4B and 4C are plan view schematic diagrams of an example embodiment of a circuit carrier including an example electronic circuit function suitable for a woven fabric as illustrated in FIGS. 1A and 1B, and FIG. 4D is an isometric view thereof when folded;
  • [0015]
    FIG. 5 is a partial cross-sectional schematic diagram illustrating an example circuit carrier disposed in a cavity of a multilayer woven fabric;
  • [0016]
    FIGS. 6A and 6B are schematic diagrams illustrating example loom arrangements suitable for making example embodiments of fabric described herein;
  • [0017]
    FIG. 7 is a schematic diagram of an example carrier insertion arrangement and an example roller arrangement suitable for weaving and finishing fabric woven in accordance with FIGS. 6A-6B;
  • [0018]
    FIG. 8 is a schematic diagram of an example yarn including an example electronic circuit function suitable for use with the example loom arrangements of FIGS. 6A-6B; and
  • [0019]
    FIG. 9 is a schematic diagram of an example woven textile illustrating an ordinary weave and a complex weave useful in connection with the arrangements of FIGS. 1A to 3B.
  • [0020]
    In the Drawing, where an element or feature is shown in more than one drawing figure, the same alphanumeric designation may be used to designate such element or feature in each figure, and where a closely related or modified element is shown in a figure, the same alphanumerical designation primed may be used to designate the modified element or feature. It is noted that, according to common practice, the various features of the drawing are not to scale, and the dimensions of the various features are arbitrarily expanded or reduced for clarity.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • [0021]
    Woven textiles generally comprise two sets of relatively straight yarn, the warp and the weft, which cross and interweave to form a fabric. Typically, the warp and weft yarn cross at approximately a right angle as woven, but may cross at any angle. Also typically, fabric is woven to have a given width, but may have any desired length. The warp yarn runs in the length direction of the fabric, which is generally the longer dimension thereof, and the weft yarn runs in the crosswise or width direction thereof, which is generally the shorter dimension. With a modern computer controlled loom, the weaving process is performed automatically and may be responsive to weaving instructions described in computer instructions and/or derived from a computer aided design program. More complex weaves, such as a Leno weave in which a pair of warp yarn are intertwined in a series of figure eights with filling yarn, may employ more than two sets of yarn and/or other than a plain weave in the warp and/or weft, are readily made by such modern looms.
  • [0022]
    A textile and/or fabric may be woven in a single-layer weave and/or in a plural-layer weave. It is noted that textiles and/or fabrics having two or more layers, i.e. plural layers, are commonly and generally referred to as multilayer weaves. Certain weaves may be referred to specifically, e.g., a two-layer woven fabric may be referred to as a double weave. Double and other multilayer weaving is conventional and is described in many publications, e.g., D. Chandler, Learning to Weave, Interweave Press, 1995, Lesson 10, “Double Weave.”
  • [0023]
    In a plural layer (multilayer) weave, warp yarn are designated as being in one of two or more layers and the weft yarn is interwoven with warp yarn in any one or more layers, so as to weave fabrics having other than a single-layer sheet-like construction. One or more layers, tubes, pockets, cavities, or other complex woven structures may be provided utilizing multilayer weaving, e.g., by providing one or more regions wherein two overlying layers of weave are not interwoven in the region(s) and the one or more regions are interspersed among and surrounded by regions wherein the multiple layers are interwoven. Any and all of such regions wherein plural layers are not interwoven may be referred to as “pockets” for simplicity, or generically and formally as “cavities.”
  • [0024]
    The yarn, which is typically long, flexible and relatively thin, is selected to provide the desired strength, wear, laundering, durability and other requirements of the end use to which the fabric is intended to be put. Where ones of the warp and/or weft yarn are electrically conductive, the woven fabric may function in a manner akin to an electrical circuit board, i.e. the electrically conductive yarn provide electrical connections between various locations of the woven fabric, and/or to locations external to the fabric, and/or with electrical and/or electronic components embodied in the fabric, as may be desired.
  • [0025]
    The embodiments of woven textile and/or fabric herein generally include a carrier including an electronic circuit for performing all or part of an electronic function. Examples of such carriers include circuit carriers, also referred to as carriers, modules or “circuit tablets” in some cases, and “functional yarn.”
  • [0026]
    A circuit carrier is a relatively compact part including one or more electronic parts and/or devices and interconnections therebetween, and that also has one or more exposed contacts at which electrical connection to conductive yarn in a textile or fabric may be made. One or more circuit carriers may be placed into cavities formed in a woven textile or fabric, e.g., as by weaving a pocket, tube, or other cavity by plural layer or multilayer weaving. The arrangements herein include circuit carriers in a woven textile or fabric that has one or more electrically conductive yarn in the warp and/or the weft.
  • [0027]
    Another example of a circuit carrier is referred to herein as a “functional yarn” which may be in the warp and/or the weft, but is typically in the weft. Functional yarn includes an elongated electrical and/or electronic substrate on which are disposed one or more electrical conductors and a plurality of electrical and/or electronic devices that connect to one or more of the electrical conductors. In other words, a functional yarn is any electrical and/or electronic substrate that includes electrical conductors and electrical and/or electronic devices that perform an electrical and/or electronic function, wherein the substrate may be utilized as a yarn and woven.
  • [0028]
    FIG. 1A is a plan view schematic diagram of an example woven fabric 100 including an example embodiment of an electronic circuit, and FIG. 2 is a plan view schematic diagram of a yarn 150 including an example electronic circuit function, as for the woven fabric of FIGS. 1A and 1B. Fabric 100 is a plain weave fabric including insulating yarn 110 and electrically conductive yarn 120 in the warp and insulating yarn 130 and functional yarn 150 in the weft. Fabric 100 may also include electrically conductive yarn in the weft. Insulating yarn 110 are disposed between adjacent electrically conductive yarn 120 in the warp to provide an insulating separator therebetween and insulating yarn 130 are disposed between adjacent functional yarn 150 (and/or electrically conductive yarn, if any) in the warp to provide an insulating separator therebetween.
  • [0029]
    FIG. 1B is an isometric schematic view of a portion of an example multilayer woven fabric 100′ including an example embodiment of an electronic circuit. Example fabric 100′ is a multilayer weave fabric, specifically a three-layer weave, including, e.g., insulating yarn 110 and electrically conductive yarn 120 in the warp of each of layers 101 and 103, and including, e.g., insulating yarn 130, electrically conductive yarn 140 and functional yarn 150 in the weft. Example layer 102 includes insulating yarn 110, 130 in the warp and weft so as to provide an insulating separation between the conductive yarn 120, 140 disposed in layers 101 and 103. Layer 102 may include electrically conductive yarn 120 and/or functional yarn 150 in the warp, but electrically conductive warp yarn 120 and/or functional yarn 150 may be included only where not proximate conductive warp yarn 120 in either or both of layers 101 and/or 103 so as to avoid short circuits. Example fabric 100′ may include functional yarn 150 in the warp and/or in the weft. Insulating yarn 110 are disposed between adjacent electrically conductive yarn 120 in the warp to provide an insulating separator therebetween and insulating yarn 130 are disposed between adjacent functional yarn 150 and/or electrically conductive yarn 140 in the warp to provide an insulating separator therebetween.
  • [0030]
    Ones of the weft yarn, e.g., ones of weft yarn 130, 140, 150, are interwoven with ones of warp yarn 110, 120 (and with ones of warp functional yarn 150, if any) in warp layers 101, 102, 103, to weave a multilayer fabric. In the fabric portion illustrated, one warp yarn 140 a is interwoven with layers 101, 102 and 103 and another warp yarn 140 b is interwoven with layers 102 and 103. The combination of multilayer interwoven electrically conductive yarn 120 and/or functional yarn 150 in the warp and electrically conductive yarn 140 and/or functional yarn 150 in the weft provide a multilayer structure having electrical conductors and/or functions on one or more layers, thereby to provide an electrical structure somewhat analogous to the structure of a multilayer laminated electronic printed circuit board.
  • [0031]
    It is noted that while known electrically conductive yarn is completely uninsulated, partially insulated electrically conductive yarn could be employed in the textiles, fabrics and/or articles described herein, wherein the uninsulated portions thereof are woven to be in locations whereat electrically connection is to be made thereto, e.g., at crossings of other electrically conductive yarn and/or of functional yarn to which electrical connection is to be made. As used herein, the terms electrically conductive yarn and uninsulated electrically conductive yarn are used interchangeably to refer to electrically conductive yarn that is completely or partially uninsulated.
  • [0032]
    Interweaving of plural adjacent weft yarn, typically insulating yarn 130 and electrically conductive yarn 140 between two or more warp layers 101, 102, 103, can be woven to form pockets, tubes or recesses, e.g., as suggested by cavities 106 a, 106 b, into which circuit carriers may be placed. Preferably, cavities 106 are woven to be closed pockets and the circuit carriers are inserted into the pockets during the weaving process and are enclosed therein as the pockets are woven, as described below. Typically, adjacent layers are interlocked by weft yarn 130, 140, however, they can be woven as separate layers, as they are to form a cavity or pocket as described. An external or surface layer wholly of insulating yarn may be woven as an outer layer so as to provide insulation of the conductive yarn 120, 140 and functional yarn 150 included in the inner (enclosed or internal) layers.
  • [0033]
    Functional yarn 150 of FIG. 2 includes plural electrical conductors 154, 156, 158 and an electronic device 160 on an insulating electrical or electronic substrate 152. In the specific example of FIGS. 1 and 2, electronic device 160 is a light emitting diode (LED) 160 that emits light in response to electrical signals applied thereto. Substrate 152 is an elongate strip of flexible insulating material, e.g., a polyimide or polyester or other material suitable for use as an electrical substrate. Conductors 154-158 are formed on substrate by any suitable means, such as by etching a conductive metal layer, e.g., copper layer, attached to substrate 152 using known methods for making flexible electrical printed circuits and the like. As illustrated, conductor 154 extends substantially the length of substrate 152 to provide a common connection to all of the LEDs 160 thereon, and an electrical signal for activating LEDs 160 is applied thereto. Conductor 158 provides an electrical contact 158 to which an electrical signal for activating LED 160 is applied, and each contact 158 is connected to a corresponding LED 160 by a conductor 156.
  • [0034]
    Electrical connection between electrically conductive yarn 120 in the warp and functional yarn 150 and/or electrically conductive yarn in the weft is satisfactorily made by the physical contact therebetween in a plain weave having a typical tightness and/or density of yarn, without any mechanical attaching thereof. Optionally, the electrical connection provided by physical contact, e.g., frictional contact, may be supplemented, e.g., by a mechanical attaching such as a spot of electrically conductive adhesive or solder, at each connection 158. For proper electrical contact, functional yarn 150 is registered so that contacts 158 thereon each underlie a conductive yarn 120 where they cross. To this end, functional yarn 150 may include one or more registration marks or indicia 180 at one end thereof so that the loom may sense the position thereof in the weaving process to provide proper registration.
  • [0035]
    Optionally, conductor 154 and/or contacts 158 may be coated with an insulating coating, except at locations where an electrical connection is to be made thereto. Also optionally, conductor 154 and/or contacts 158 may have a spot of electrically conductive adhesive applied at locations where an electrical connection is to be made thereto, e.g., at the terminal locations for LEDs 160 and/or at intersections with conductive yarn 120. LEDs 160 may be connected to substrate 152 by any suitable means, e.g., by soldering or electrically conductive adhesive.
  • [0036]
    Each LED 160 is illuminated by applying a suitable electrical signal between common conductor 154 and the contact 158 associated with the LED. In fabric 100, each conducting yarn 120 intersects functional yarn 150 to overlie one of the contacts 158 thereof. Thus, each LED 160 has one terminal that is connected via contact 158 to a conductive yarn 120 that is accessible at an edge of fabric 100 and has a terminal connected to conductor 154 that is accessible at another edge of fabric 100, and so each LED 160 may be activated by applying an electrical signal to the appropriate ones of conductive yarn 120 and conductors 154. LEDs 160 of fabric 100 are in aggregate an addressable passive-matrix display having row conductors 120 and column conductors 154 by which any one or more of LEDs 160 may be addressed. Alternatively and optionally, a current-limiting resistor R could be provided for each LED 160 or for groups of LEDs 160, of functional yarn 150.
  • [0037]
    Fabric 100 as described is a woven passive-matrix display wherein any pattern of the LEDs 160 may be illuminated by applying appropriate electrical signals between selected ones of conductors 120 and 154. However, with additional conductors and/or electronic devices on functional yarn 150, an active-matrix display and/or a non-matrix display and/or a display having individually addressable pixels (LEDs) may be provided, as described below. Thus, LEDs 160 or any other electronic devices 160 may be energized and/or operated in a programmed pattern and/or sequence, e.g., to provide an alphanumeric or other character display, or a pixilated display, or to provide a sensor array fabric that sequentially senses different agents and/or processes the sensed data.
  • [0038]
    It is noted that in an actual application, e.g., a textile or textile article, fabric 100 would likely be much larger and would contain many more yarn of one or more types in both warp and weft, and functional yarn 150 would likely be much longer and contain many more LEDs 160. Thus, FIGS. 1 and 2, as well as other FIGURES herein, may be considered as illustrating a portion of a fabric or a portion of a functional yarn.
  • [0039]
    Suitable insulating yarn includes, for example, but are not limited to, yarn and/or thread and/or fiber of cotton, wool, silk, linen, flax, silk organza, synthetics, plastic, polyester, and the like, whether fiber, thread, monofilament, multi-stranded, spun, twisted or otherwise constructed, as may or may not be conventional.
  • [0040]
    Suitable electrically conductive yarn includes, for example, but is not limited to, copper, steel, stainless steel, nickel, silver, gold and/or other metal threads, whether single filament or plural stranded, twisted or braided or a wire or a flat strip, combinations of conductive metal and insulating threads and/or strands, electrically conductive plastics, and the like. One suitable electrically conductive yarn is Aracon® yarn which comprises one or more strands or threads of a metal-coated Kevlar® polymer and is commercially available from E.I. duPont de Nemours and Company of Wilmington, Del. Aracon® yarn can have an electrical conductivity approaching that of copper, e.g., about 10−3 Ohm/cm. Other suitable conductive yarn include metal-wrapped yarns and metal-plated yarn, and the like.
  • [0041]
    FIGS. 3A through 3D are plan view schematic diagrams of example embodiments of yarns 150 a, 150 b, 150 c, including an example electronic circuit function suitable for a woven fabric as illustrated in FIGS. 1A and 1B.
  • [0042]
    FIG. 3A is a plan view schematic diagram of a yarn 150 a including another example electronic circuit function, as for the woven fabric of FIGS. 1A and 1B. Functional yarn 150 a includes plural electrical conductors 154, 155, 156 and an electronic device 160 on an insulating electrical or electronic substrate 152. In this specific example, electronic device 160 is a sensor, such as a temperature sensor. Substrate 152 is an elongate strip of insulating material, e.g., a polyimide or polyester or other material suitable for use as an electrical substrate.
  • [0043]
    Functional yarn 150 a is viewed from the “back” as if substrate 152 is transparent so that conductors 154, 155, 156 on the front surface thereof, and sensors 160 attached thereto, are visible. Conductors 154-156 are formed on substrate 152 by any suitable means, such as by etching a conductive metal layer, e.g., copper layer, attached to substrate 152 using known methods for making electrical printed circuits and the like. As illustrated, each of conductors 154, 155 and 156 extend substantially the length of substrate 152 to provide three common connections to all of the sensors 160 thereon. Conductor 154 provides a common or ground connection, conductor 156 provides via contacts 166 a connection for electrical power for each sensor 160. Conductor 155 provides a conductor and contact 165 for applying an electrical signal for activating and/or reading sensor 160 and for receiving an electrical signal comprising data or information read from sensor 160.
  • [0044]
    Electrical connection between electrically conductive yarn 120 in the warp and conductors 154, 155, 156 of functional yarn 150 a and/or electrically conductive yarn in the weft is satisfactorily made by the physical contact therebetween in a plain weave having a typical tightness and/or density of yarn, and may be supplemented, e.g., by a spot of electrically conductive adhesive at each connection 158. For proper electrical contact, functional yarn 150 a is registered so that contacts 158 g, 158 d, 158 p thereon each underlie a respective conductive yarn 120 where they cross. To this end, functional yarn 150 a may include one or more registration marks or indicia 180 at one end thereof so that the loom may sense the position thereof in the weaving process to provide proper registration.
  • [0045]
    Optionally, conductors 154, 155 and/or 156 may be coated with an insulating coating, except at locations 158 g, 158 d, 158 p to define contacts 158 g, 158 d, 158 p where an electrical connection is to be made thereto. Also optionally, contacts 158 g, 158 d, 158 p may have a spot of electrically conductive adhesive applied for making an electrical connection is to be made thereto., e.g., at intersections with conductive yarn 120. Sensors 160 may be connected to substrate 152 by any suitable means, e.g., by soldering or electrically conductive adhesive.
  • [0046]
    Electronic device 160 is preferably an addressable sensor which has a unique identification or address and which, when signaled by a data signal including such identification and/or address via its data terminal 165, performs a particular function. The function performed may be as simple as sensing a presently existing condition, such as temperature, or recording a given condition over a time period, whether for a given period or until again signaled, or may be more complex, such as providing processed data relating to a sensed condition. Each sensor 160 is powered by electrical power applied between ones of conducting yarn 120 connected to conductors 154 and 156 of functional yarn 150 a and is activated by applying a suitable electrical addressing signal between common conductor 154 and data conductor 155, i.e. between two conducting yarn 120. One example of a suitable addressable sensor is type DS18B20X temperature sensor and/or thermostat flip-chip integrated circuit and the like available from Dallas Semiconductor—Maxim Integrated Products, Inc. located in Sunnyvale, Calif.
  • [0047]
    In a fabric 100, each conducting yarn 120 intersects functional yarn 150 a to overlie one of the contacts 158 thereof. Thus, each sensor 160 has terminals that are connected via contacts 158 g, 158 d, 158 p to a conductive yarn 120 that is accessible at an edge of fabric 100, so that all of sensors 160 on all of functional yarn 150 a of fabric 100 are accessible from a single edge of fabric 100. In addition, where conductive yarn 120 are in the warp and functional yarn 150 a are in the weft, fabric 100 may be woven to any desired length and be connected at one edge in the same format, e.g., at a single interface that may be standardized. Alternatively, fabric 100 may be cut into any desired length and each length may be connected via the standardized interface. Also alternatively, conductors 154, 155, 156 may be continuous over substantially the length of functional yarn 150 a in which case only three conductive yarn 120 may be necessary to address addressable sensors 160, or conductors 154, 155, 156 may be discontinuous over the length of functional yarn 150 a in which case more than three conductive yarn 120 may be necessary to address sensors 160.
  • [0048]
    Thus, sensors 160 of fabric 100 are in aggregate an addressable sensor matrix display having conductors 120 available at a single edge by which any one or more of sensors 160 may be addressed. It is noted that in an actual application, e.g., a textile or textile article, fabric 100 would likely be much larger and contain many more yarn of all types in both warp and weft, and functional yarn 150 would likely be much longer and contain many more sensors 160. Thus, FIGS. 1A and 1B, as well as other FIGURES herein, may be considered as illustrating a portion of a fabric or a portion of a functional yarn.
  • [0049]
    Circuit carriers, connectors and/or batteries and/or other components needed to connect with and/or operate fabric 100 may be attached to or incorporated into fabric 100, e.g., in cavities 106 woven therein and/or at an edge or edges thereof and/or at another convenient location. Examples of such components include, for example, decoders and/or drivers for LEDs, and/or for one or more rows and/or columns of LEDs, however, such components are preferably disposed on functional yarn 150.
  • [0050]
    Alternatively and optionally, electronic devices 160 may be of the sort that derive their operating power from the data and/or signals on the data conductor 155. Alternatively, electronic devices 160 may be powered via power conductor 156 by superimposing the data and/or signals on the power signal. One example of a sensor device 160 suitable for such arrangement is the type DS18B20X temperature sensor available from Dallas Semiconductor—Maxim Integrated Products, Inc. Thus, a functional yarn 150 a may be, for example, a two-conductor equivalent of the three-conductor functional yarn 150 a of FIG. 3A. Other addressing arrangements, e.g., those requiring more than three conductors, such as the I2C scheme which requires a clock signal conductor, may also be employed.
  • [0051]
    FIG. 3B is an example embodiment of a functional yarn 150 b which includes additional electronic devices 170 on functional yarn 150, as may be employed to provide a woven non-matrix display having individually addressable pixels (LEDs) 160. Extending substantially the length of substrate 152 is conductor 154 connecting to all of the devices 160 at terminal 164 thereof and to electronic devices 170 at terminal 174 thereof, e.g., for providing a ground connection. Extending substantially the length of substrate 152 is conductor 158 connecting to all of electronic devices 170 at terminal 178 thereof, e.g., for providing a power connection. Also extending substantially the length of substrate 152 is conductor 155 connecting to all of electronic devices 170 at terminal 175 thereof, e.g., for providing a data signal thereto for addressing electronic devices 170 for selectively applying electrical power from conductor 158 to terminal 168 of LED 160 via output terminal 176 and conductor 156. As above, functional yarn 150 b may include one or more registration indicia 180.
  • [0052]
    Electrical power is thus applied to all of electronic devices 170 via power conductor 158 and is selectively applied to ones of electronic devices 160 via the ones of electronic devices 170 that are addressed by the addressing signals, e.g., serial addressing signals, provided via data conductor 155. Electronic device 170 is preferably an addressable switch which has a unique identification or address and which, when signaled by a data signal including such identification and/or address via its data terminal 175, performs a particular function. The function performed may be as simple as making or breaking a connection between two of its terminals 176 and 178, whether for a given period or until again signaled, or may be more complex, such as providing a width-modulated or time modulated or a frequency signal at or between one or more of its terminals.
  • [0053]
    In a functional yarn 150 b for a simple non-scanned, non-matrix array of light-emitting pixels, the state of each pixel may be set by addressing the appropriate switch and setting its state, e.g., either “on” or “off,” to set the state of the pixel to either “on” or “off.” One example of a suitable addressable switch is type DS2406 available from Dallas Semiconductor—Maxim Integrated Products, Inc. located in Sunnyvale, Calif. Alternatively, addressable switch 170 has plural controllable outputs for controlling plural electronic devices 160. In one embodiment, addressable switch 170 has seven outputs, as would be convenient for addressing a seven-segment LED display for displaying the numbers 0-9.
  • [0054]
    Such functional yarn 150 b and a woven fabric display including same, employs serial addressing and is suitable for displaying still images and/or text or character messages. A fabric display may also be utilized for displaying moving images, e.g., video-rate displays, if sufficient addressing bandwidth or parallel addressing is available. Because an LED is emissive, it can produce a display that is not only easily seen in the dark, but may also be seen in daylight.
  • [0055]
    FIGS. 3C and 3D are an example embodiment of a functional yarn 150 c which includes power and ground conductors 154, 156, various resistors R, and electronic devices 160 on functional yarn substrate 152, as may be employed to provide a woven non-matrix display having a pattern of electronic devices 160, e.g., LEDs 160, thereon. In particular, functional yarn 150 c has a yarn substrate 152 that may be utilized with various different ones of devices 160 and resistors R attached thereto, e.g., in various serial and/or parallel circuits, as may be advantageous for making a unique and/or a specialized functional yarn. A portion of yarn substrate 152 is shown in FIG. 3D without electronic devices 160 and resistors R mounted thereon.
  • [0056]
    Spaced apart at a pitch 2P along the opposing edges of substrate 152 are conductor patterns 158 and 159 having respective contacts 158 a, 158 d and 159 a and 159 d to which electronic devices 160 and resistors R may be connected. Spaced apart at a pitch P along the opposing edges of substrate 152 are pairs of contacts 158 a, 159 a of patterns 158, 159 to which electronic devices 160 may be attached. Alternating adjacent pairs of contacts 158 a are connected to each other by a conductor 158 b which includes a contact 158 d extending away from the edge of substrate 152, and alternating adjacent pairs of contacts 159 a are connected to each other by a conductor 159 b which includes contact 159 d extending away from the edge of substrate 152. Conductors 158 b, 159 b are typically disposed alternatingly with respect to the pairs of contacts 158 a and 159 a so that plural devices 160 may be connected in series, if desired, and so that contacts 158 d and 159 d alternate at a pitch 2P.
  • [0057]
    Extending substantially the length of substrate 152 of functional yarn 150 c in a central region thereof is conductor 154 providing a plurality of contacts 154 d at which a connection, e.g., to ground, may be made via conductor 154. Also extending substantially the length of substrate 152 in the central region thereof is conductor 156 providing a plurality of contacts 156 d at which a connection, e.g., to a source of power, may be made via conductor 156. Contacts 154 d and contacts 156 d are typically spaced apart at a pitch 2P and are disposed so as to be proximate respective ones of contacts 158 d and 159 d so that electronic devices 170, such as resistors R, may be mounted therebetween. Near one or both ends of functional yarn 150 c are contacts 154 c and 156 c for respectively connecting conductors 154 and 156 to external circuits, such as to sources of power and ground potential. Conductors 154, 156, 158, 159 and the contacts thereof are typically an etched copper pattern on an insulating substrate 152, and may be covered by an insulating coating other than at the various contacts thereof.
  • [0058]
    In the example embodiment illustrated in FIG. 3C, the five electronic devices 160 (e.g., LEDs) at the left of the figure are connected in series via ones of conductor patterns 158, 159 and the series connected devices 160 are connected to conductors 154 and 156 via two resistors R which are of ohmic value selected for a desired value of current flow through devices 160 with a specified value of potential applied between conductors 154, 156. Because there are two resistors R in series with the series connected devices 160, the necessary resistance value may be divided between the two resistors R in any desired proportion. Typically, one resistor R is of low ohmic value (e.g., 1 ohm) to serve as a jumper between one pair of connections 154 d, 158 d or 156 d, 159 d, and the other resistor R is a higher ohmic value (e.g., 100 ohms) connected between another pair of connections 154 d, 158 d or 156 d, 159 d, to determine the level of current flow through devices 160.
  • [0059]
    In an example embodiment of a functional yarn 150 c, substrate 152 has a length of about 40 cm and a width of about 4 mm and is of a polyimide material. Series connections of between one and five LEDs 160 are provided, with contacts 158 a, 159 a each being about 1 mm by 2 mm in area and repeating at a pitch of about 9.5 mm. Contacts 154 d, 156 d, 158 d and 159 d are each about 0.5 mm by 0.5 mm, and are separated by a gap of about 0.6 mm. LEDs 160 operate at a current of about 20 milliamperes with about 12 volts is applied between conductors 154 and 156. For five LEDs 160 connected in series, a 1-ohm resistor R and a 100-ohm resistor R are utilized, whereas for a lesser number of LEDs 160 in series a higher value resistor R is utilized. Where two series circuits of LEDs 160 draw current through the same resistor R, the value of that resistor R is reduced proportionately so that about 20 milliamperes flows in each of the two series circuits of LEDs 160. A number of functional yarn 150 c each having a different predetermined pattern of LEDs 160 mounted thereto were woven into the weft of an about 1.35 m by 0.37 m (about 53 inch by 14.5 inch) banner sign wherein the LEDs 160 when illuminated formed characters and/or symbols spelling out a message, e.g., “Wonders Never Cease.” Conductive yarn of braided copper was woven into the warp thereof to make frictional electrical connection to contacts 154 a, 156 a of each functional yarn 150 c for applying the 12 volt operating potential and ground potential thereto. Insulating yarn provides a desired spacing of the conductive yarn and the functional yarn 150 c in the warp and weft of the woven sign.
  • [0060]
    LEDs 160 are caused to illuminate by applying suitable potential between the terminals thereof, thereby to illuminate one or more LEDs 160 of a functional yarn 150 individually, as a group and/or as a strip, and brightness may be selected by suitably selecting the potential applied and/or the current that flows. Suitable LEDs for functional yarn include those available from Nichia Corporation of Japan, and from other sources, which may include LEDs producing “white” as well as other colors of light, such as red, green, blue, amber and/or a combination thereof, as well as LEDs that are switchable between two or more colors.
  • [0061]
    Examples of electrical and/or electronic devices and/or components that may be included on a functional yarn include, for example, but are not limited to, sensors of temperature, chemicals, force, pressure, sound, an electric field, a magnetic field, light, acceleration and/or any other condition, sources of light, force, heat, electromagnetic radiation and/or sound, infra red and/or wireless transmitters and/or receivers, imagers, CCD imagers, thermoelectric sensors, coolers, heaters and/or generators, liquid crystal elements, electro-luminescent elements, organic light-emitting elements, OLEDS, electrophoretic materials, LEDs, piezo-electric elements and/or transducers, microphones, loudspeakers, acoustic transducers, resistors, processors, digital signal processors, microprocessors, micro-controllers, CPUs, analog-to-digital converters, digital-to-analog converters, a data-producing device, a data-utilizing device, a processing device, a switch, a human-interface device, a human-input device, a blinker and/or flasher, a battery, a fuel cell, a solar cell, a photovoltaic device, a power source, and so forth. Any one or more or all of such devices may be activated by simply applying electrical power thereto, whether via one or more conductors, and/or may be actively addressable in response to an addressing signal applied thereto.
  • [0062]
    Typically, one or more conductors on a functional yarn serve to conduct electrical power and/or ground potential to electronic devices thereon, and one or more other conductors may serve to conduct data to or from such devices. Sources of electrical power connected to various conducting yarn and/or functional yarn include one or more batteries, solar cells, photovoltaic devices and/or other power sources, either external to the fabric and/or attached to the fabric and/or to a functional yarn.
  • [0063]
    One or more data and/or signal conductors may communicate data and/or signals to and/or from one or more external sources and/or electronic devices on functional yarn, and/or may communicate data and/or signals between electronic devices on functional yarn. All electronic devices on a functional yarn need not be of the same or like kind. For example, a combination of sensors and processors may be included on one or more functional yarn, whereby data is may be collected, sensed, distributed and/or processed within a functional yarn and/or plural functional yarn of a woven fabric. Thus, electronic devices on a functional yarn may be networked together and/or may be networked with other electronic devices on another functional yarn or external to the fabric.
  • [0064]
    Typically, functional yarn is slit or cut from a sheet of a polyimide or polyester or other polymer material and is about 0.2 to 0.5 mm in width and about 0.01 to 0.25 mm thick, but the material may be wider or narrower and/or thicker or thinner. Other suitable sizes for the functional yarn may be in the range 0.3 to 3 mm in width and about 75 to 125 μm thick. For example, an about 1 mm wide and about 0.1 mm thick functional yarn has been found satisfactory for weaving 0.1-0.4 meter wide fabric. On an automatic loom, e.g., such functional yarn can be inserted into the weft by a standard rapier loom. If the functional yarn is to be woven in the weft of a fabric, then it is as long as the width of the fabric, and if the functional yarn is to be woven in the warp of a fabric, then it is as long as the length of the fabric or longer. Although functional yarn may be similar to a conventional slit-film yarn in that it is slit from a sheet of material, it differs substantially in that conventional slit-film yarn does not include any electrical and/or electronic device and/or functionality as described herein.
  • [0065]
    It is noted that the functional yarn may be fabricated as a sheet or panel of electrical substrate having electrical conductors formed thereon or applied thereto, and having electrical and/or electronic devices attached and/or applied thereon, which sheet or panel is then cut or slit or otherwise separated into individual functional yarn. For example, a sheet of polyimide, polyester or other plastic suitable for use as an electrical substrate, has a layer of conductive material thereon that is patterned, e.g., as by photo-etching, to form the electrical conductors for power, ground, data and the like as desired. Alternatively, the conductor pattern could be printed with an electrically conductive ink or epoxy or adhesive. Typically, electronic devices are attached as flip-chip and/or surface mount devices. If electronic devices are to be connected using solder or conductive adhesive, then balls of solder or conductive adhesive may be deposited on the conductors in the positions where the terminals of the electronic devices are to connect. The electronic devices are then placed on the substrate and connected via their terminals to the substrate. A coating, e.g., an epoxy or “glop-drop” or “glob-drop” coating, or an insulating film, may be applied thereover to additionally secure the electronic devices to the substrate and/or to smooth any edges or projections that might snag or otherwise interfere with the weaving process. An underfill encapsulation may also be employed. The sheet substrate is then slit or otherwise cut into strips, or is cut in a serpentine pattern, wherein each strip is a length of one or more functional yarn having electrical conductors and electronic devices thereon. Typically, the length of each strip is the length of one functional yarn, but may be a multiple thereof.
  • [0066]
    Functional yarn may also be fabricated as a strip or roll of electrical substrate having electrical conductors formed thereon or applied thereto, and having electrical and/or electronic devices attached and/or applied thereon to provide a functional yarn, which strip or roll may include plural functional yarn and is then slit to separate individual lengths of functional yarn or may include a single width of functional yarn and so need not be cut or slit or otherwise separated into individual functional yarn. Electrical conductors are formed on the strip and electronic devices connected thereon in like manner to that described above. Each strip or roll of functional yarn contains many lengths of functional yarn and is cut to the length of one functional yarn as fed to the loom for weaving. The functional yarn may be coated as above.
  • [0067]
    FIGS. 4A, 4B and 4C are plan view schematic diagrams of an example embodiment of a circuit carrier 300 including an example electronic circuit function suitable for a woven fabric as illustrated in FIGS. 1A and 1B, and FIG. 4D is an isometric view thereof when folded. FIGS. 4A and 4B illustrate opposite sides of a generally rectangular substrate 310, e.g., a short strip of flexible printed circuit, that is folded at or near fold lines 312 into a “U”-shape so that the opposite ends of substrate 310 are substantially parallel, thereby to form carrier 300. Substrate 310 may be folded relatively sharply at or near fold lines 312 or may be folded to have a radius formed of the portion of substrate 310 between fold lines 312, as desired.
  • [0068]
    On one side (broad surface) of substrate 310 (FIG. 4A) near opposite ends thereof are respective carrier contacts WAC, WEC for contacting electrically conductive yarn 120, 140 in the warp and weft of a textile and/or fabric 100′ into which carrier 300 is placed. While as little as one contact may be provided, typically plural contacts WAC and WEC are provided. Preferably, warp contacts WAC are substantially parallel rectangular contacts having a longer dimension in the direction along the length of the electrically conductive warp yarn 120. Parallel warp carrier contacts WAC are spaced apart a distance about the same as the distance between adjacent electrically conductive warp yarn 120 having one or more insulating warp yarn 110 therebetween. Also preferably, and similarly, weft contacts WEC are substantially parallel rectangular contacts having a longer dimension orthogonal to that of warp contacts WAC, i.e. weft contacts WEC are longer in the direction along the length of the electrically conductive weft yarn 140. Parallel weft carrier contacts WEC are spaced apart a distance about the same as the distance between adjacent electrically conductive warp yarn 140 having one or more insulating warp yarn 130 therebetween.
  • [0069]
    On the other side (broad surface) of substrate 310 (FIG. 4B) are mounted one or more electronic devices 160 for performing all or part of an electronic function. Electronic devices 160 may include integrated circuits, semiconductors, transistors diodes, sensors, active components, passive components and the like, as necessary and desirable for performing the desired electronic function, and may include any or all of the devices and functions described in relation to devices 160 and/or 170 herein. Typically, ones of electronic devices 160 are of different sizes and shapes, may be a surface mounted or flip chip type, e.g., using solder or electrically conductive adhesive, and usually, but not necessarily, comprise devices performing more complex functions, such as microprocessors, encoders and decoders, addressable drivers and/or switches, and the like. Typically, devices 160 are interconnected by metal conductors formed in a pattern on substrate 310 in any suitable manner, including as for a conventional printed circuit board. Connections through substrate 310 to contacts WAC, WEC may be made by conductive vias and/or by plated through holes and/or by any other suitable manner.
  • [0070]
    Substrate 310 with electronic device(s) 160 thereon is folded so that contacts WAC, WEC are exposed and devices 160 are enclosed, and preferably is filled and/or sealed with an encapsulant 320 to encapsulate electronic devices 160 and to maintain the surfaces of substrate 310 containing contacts WAC and WEC in substantially parallel relationship in carrier 300, as illustrated in FIG. 4D. Optionally, contacts WAC, WEC may be coated with an electrically conductive adhesive that is set during the weaving process, e.g., described below.
  • [0071]
    Typically, substrate 310 may be formed of a thin sheet of polyimide material with copper printed wiring conductors thereon, or of any of the materials described in relation to any other substrate. Typically, a number of substrates are fabricated on a sheet of substrate material, the electrical contact and conductor patterns are formed thereon, electronic devices 160 are mounted, and then individual or rows of substrates 310 are cut from the sheet thereof. Substrates 310 or rows of substrates 310 are then folded and encapsulated with encapsulant 320. Suitable encapsulants include Hysol brand encapsulants available from Henkel Loctite Corporation located in Industry City, Calif. Typical examples of carrier 300 may range in size from about 0.5.times.0.5.times.0.1 cm to about 2.5.times.2.5.times.1 cm, but may be larger or smaller, as may be necessary and/or desirable. Carriers 300 may be utilized, e.g., where an electronic device 160 is too large to conveniently be mounted to functional yarn 150.
  • [0072]
    Carriers 300 are placed into cavities in a multilayer fabric as the fabric is being woven, and the thread count precision and dimensions of the pocket are predetermined so that carrier 310 is a generally snug fit in the pocket, so that conductive yarn 120, 140 in the warp and in the weft align with sufficient precision so as to contact warp and weft contacts WAC and WEC, respectively. With proper yarn tension and weave density, the physical contact between conductive yarn 120, 140 and contacts WAC, WEC is sufficient to provide reliable electrical connection therebetween. If desired, electrically conductive adhesive or solder paste may be applied to the contacts WAC, WEC of carrier 300 for making a mechanical connection as well as an electrical connection therewith.
  • [0073]
    FIG. 4C illustrates an optional variation of substrate 310 of carrier 300 wherein one or more irregularities and/or indentations are provided along any one or more edges of substrate 310. Such irregularities and/or indentations are provided for guiding conductive yarn 120, 140 into alignment with contacts WAC, WEC. Examples of suitable irregularities include “V”-shaped notches 316 and/or curved or circular indentations 318. In each example, irregularities 316, 318 are generally aligned with the long axis of rectangular contacts WAC, WEC in like manner to the desired alignment of conductive yarn 120, 140 therewith.
  • [0074]
    FIG. 5 is a partial cross-sectional schematic diagram illustrating an example circuit carrier 300 disposed in a cavity 106 of a multilayer woven fabric 100. Carrier 300 is snugly enclosed in cavity 106 with electrically conductive warp yarn 120 (cross-sectioned with diagonal lines) in physical and electrical contact with warp carrier contacts WAC in the warp direction and with electrically conductive weft yarn 140 in physical and electrical contact with weft carrier contacts WEC in the weft direction. Insulated warp yarn 110 and weft yarn 130 are interwoven therewith to define cavity 106. While the illustrated cross-section is cut along the weft direction, a cross-section if cut along the warp direction would appear similar, although the designations of warp and weft yarn would be interchanged.
  • [0075]
    It is noted that the tension of the yarn tends to enclose carrier 300 snugly and in proper position within cavity 106 so that reliable electrical connection between electrically conductive warp yarn 120 and carrier warp contacts WAC, and between electrically conductive weft yarn 140 and carrier weft contacts WEC, is provided solely as a result of the physical contact therebetween, without the need for a solder or an electrically conductive adhesive connection, although such connections may be employed.
  • [0076]
    FIGS. 6A and 6B are schematic diagrams illustrating example loom arrangements suitable for making the example embodiments described herein. Rapier loom 200 weaves warp yarn 210 and weft yarn 220 into a fabric or textile 100. Alternate first ones 210 a of the warp yarn 210 are raised and second ones 210 b of the warp yarn 210 intermediate therewith are lowered whilst weft yarn 220 drawn from weft supply 222 is pulled between the raised and lowered warp yarn 210 a, 210 b, respectively, by rapier 230. Comb or reed 214 maintains the spacing and position of warp yarn 210 in the opening or shed formed by separated warp yarn 210 a, 210 b being raised and lowered alternately during weaving. Typically, rapier 230 is a flexible rapier 230 and is pulled back and forth between rapier capstan wheels 240 for pulling weft yarn 220 from weft supply 222 and through the space between raised and lowered warp yarn 210 a, 210 b. Then, the raised first warp yarn 210 a are lowered and the lowered second warp yarn 210 b are raised and another weft yarn 220 from weft supply 222 is pulled therebetween by rapier 230. Next, the raised second warp yarn 210 b are lowered and the lowered first warp yarn 210 a are raised and another weft yarn 220 from weft supply 222 is pulled therebetween by rapier 230, and the weaving sequence repeats interweaving warp and weft yarn 210, 220 for weaving fabric/textile 210.
  • [0077]
    For multilayer weaving, warp yarn 210 in each layer or in part of a layer is raised and lowered in accordance with the desired weave pattern as weft yarn 220 is woven therethrough, as is known for conventional fabrics in the art of weaving. The raising and lowering of warp yarn 210 and the weaving of weft yarn 220 produces cavities 106 in the woven fabric wherein two layers are separately woven in a region defining the cavity 106 and are interwoven in the region surrounding the cavity, thereby to form a closed cavity or pocket 106. As a cavity 106 is woven, a circuit carrier 300 is inserted into each partially woven cavity 106 before cavity 106 is woven to closure to surround the carrier 300. Modern, automated computer-controlled looms can rapidly and reliably raise and lower a few or many warp yarn very rapidly and in complicated patterns, as may be desired for weaving cavities 106 in desired positions in a fabric.
  • [0078]
    Warp yarn 210 may include insulating yarn, electrically conductive yarn and/or functional yarn, in any desired sequence. Typically, one or more insulating yarn are woven between electrically conductive yarn and/or functional yarn to provide physical spacing and electrical insulation between adjacent ones thereof.
  • [0079]
    Where weft supply 222 provides weft yarn 220 of different colors or of different types, such as insulating yarn, electrically conducting yarn and/or functional yarn, selector 224 selects the appropriate weft yarn 220 at the appropriate times for providing the sequence of weft yarn desired for fabric 100. Where weft yarn 220 is electrically conducting, for example, selector 224 selects an insulating yarn 220 for the weft threads woven prior to and following the insulating yarn, so that adjacent conductive yarn are not contiguous, but are separated by an insulating yarn and so are insulated one from the other. In some cases, however, it may be desired that plural conductive yarn be contiguous, e.g., in parallel for increasing current carrying capacity and/or increasing the reliability of the contact with conductive warp yarn and/or functional warp yarn at the crossings thereof.
  • [0080]
    Where, for example, it is desired to produce a fabric or textile 100 wherein different functional yarn are woven into the weft, either in a single layer or in a multilayer weave, weft supply 222 provides functional weft yarn 220 of different colors or of different types, selector 224 selects the appropriate functional weft yarn 220 at the appropriate times for providing the sequence of weft yarn desired. One example of a fabric employing different functional yarn is a multicolor display fabric, as for a two-color, three-color, or full-color display. In such case, weft supply 222 selects the functional weft yarn having the appropriate color light emitters thereon. For example, functional yarn having LEDs producing red light, functional yarn having LEDs producing green light, and functional yarn having LEDs producing blue light may be woven into fabric 100 in a red-green-blue sequence for providing a display fabric having the capability to produce color images when the red, green and blue light emitting elements are activated at suitable times and at suitable illumination intensities.
  • [0081]
    FIG. 6B is a schematic diagram illustrating an example capstan 240 and roller 242 arrangements suitable for utilization with the example loom 200 of FIG. 6A. Capstan wheel rotates clockwise and counterclockwise, i.e. bidirectionally, for feeding any weft yarn in weaving by loom 100. Rollers 242 are spring loaded or otherwise biased so as to press against capstan wheel 240 so as to maintain the weft yarn in frictional contact therewith so that it can be inserted into the weft of the fabric/textile being woven by loom 100. In particular, functional weft yarn 150 is so woven by capstan wheel 240 into the weft of a fabric. So that functional yarn 150 may be properly positioned with respect to the weft direction of fabric 100, sensor 250 is positioned proximate capstan wheel 240 in a location where one or more registration indicia 180 of functional yarn 150 may be detected. Sensor 250 may be an optical detector for detecting one or more optical (e.g., reflective) indicia on functional yarn 150 and/or may be an electrical detector such as a continuity detector for detecting one or more electrically conductive (e.g., metal contact) indicia 180 of functional yarn 150 and/or may be a mechanical detector for detecting one or more mechanical features of functional yarn 150.
  • [0082]
    Alternatively, an arm attached to loom 100 may be utilized pull the yarn out of the shed to counter the rapier pulling the yarn into the shed, thereby to properly position functional yarn 150 and register elements thereof. Also alternatively, where the rapier is designed to draw the weft yarn into the shed a predetermined distance with suitable tolerance, registration mark(s) 180 may be utilized to position functional yarn 150 in predetermined manner for subsequently being drawn into the loom by the predetermined rapier distance.
  • [0083]
    FIG. 7 is a schematic diagram of an example carrier insertion arrangement 260 and an example roller arrangement 270 suitable for weaving and finishing multilayer weave fabric woven in accordance with FIGS. 6A-6B. Carrier insertion is provided, for example, by carrier insertion rod 260 which moves laterally (as indicated by the double-ended arrow) into and out of the shed (reed or comb 214 not shown) for inserting circuit carriers 300 into cavities 106 in fabric 100. When the weave has progressed to the point where one or more cavities 106 are partially woven, the weaving of weft yarn by the rapier ceases for a short time wherein carrier insertion rod is inserted into the shed and dispenses circuit carriers 300 in predetermined orientation into the partially woven cavities 106. When the carriers have been inserted into the partially woven cavities 106, insertion rod 260 is withdrawn and weaving of weft yarn resumes to complete the weaving of cavities 106 enclosing carriers 106.
  • [0084]
    Carrier insertion rod 260 may dispense one carrier at a time, e.g., as in a pick-and-place operation, or may dispense plural carriers 300 at a time, e.g., as in a contemporaneous pick-and-place operation. Alternatively, insertion rod 260 may include a carrier feed arrangement wherein carriers 300 are fed along insertion rod 260 and are dispensed from one or more locations thereon. Any of the foregoing may be employed where all of carriers 300 are of like type and/or where carriers 300 are of different types.
  • [0085]
    Optional roller 270 includes a pair of heated rollers 270 a, 270 b between which woven fabric 100 passes as it is woven on loom 200. Where circuit carriers 300 include, e.g., thermoplastic and/or thermosetting electrically conductive adhesive on contacts WAC, WEC for making connection thereto, heated rollers 270 a, 270 b apply suitable heat and pressure for melting a thermoplastic adhesive and/or for melting and/or curing a thermosetting adhesive. Heated rollers 260 may similarly be employed where such thermoplastic adhesive and/or thermosetting adhesive is included on contacts of functional yarn 150.
  • [0086]
    FIG. 8 is a schematic diagram of an example yarn 150 including an example electronic circuit function suitable for use with the example loom arrangements 200 of FIGS. 6A-6B. Functional yarn 150 includes a flexible substrate 152 suitable for carrying electrical and/or electronic circuits thereon. For example, substrate 152 carries a plurality of electrical circuit components 160 attached thereto and connecting to conducting circuit traces 154, 156. External connection to conductors 154, 156 of functional yarn 150 is made via one or more contacts 158, an illustrated example of which is located at or near one or both ends of substrate 152. Secure and/or permanent connection thereto may be made, for example, by an electrically conductive adhesive 159, such as a thermoplastic or thermosetting adhesive, which is typically filled with electrically conductive particles, which is set or cured under heated compliant pressure pads or rollers. Functional yarn 150 also typically includes one or more registration marks or indicia 180 located at or near one end of yarn 150 for registering functional yarn 150, e.g., with respect to the warp yarn when functional yarn 150 is utilized in the weft. Such registration of functional yarn 150 is, for example, for positioning contacts 158 in locations in fabric 100 wherein they will make electrical connection with conductive yarn in the warp thereof and/or for positioning electronic devices 160 with respect to each other and fabric 100. To this end, registration indicia 180 is in known predetermined position along the length of substrate 152 of functional yarn 150 with respect to contacts 158 and/or electronic components/devices 160 thereof. Mark(s)/indicia 180 may be of any desired shape and may be optically reflective when intended for use with an optical detector and/or may be electrically conductive when intended for use with an electrical continuity or conductivity detector. Registration mark(s) 180 may also be utilized for properly aligning functional yarn on the loom where functional yarn is utilized in the warp of the fabric.
  • [0087]
    FIG. 9 is a schematic diagram of an example woven textile 100 illustrating an ordinary weave and a complex weave which may be utilized in connection with any of the single layer and/or multilayer weaves herein. Example fabric 100 includes insulating yarn 110 and electrically conductive yarn 120 in the warp and insulating yarn 130 and conductive yarn 140 in the weft. Ordinarily, electrical connection between electrically conductive yarn 120 in the warp and electrically conductive yarn 140 in the weft is satisfactorily made by the physical contact therebetween in a plain weave having a typical tightness and/or density of yarn, as are connections between conductive yarn 120 and/or 140 and a functional yarn. Fabric so made have been observed to exhibit stable connection, e.g., as in bright, stable light from LEDs, under the application of shearing forces to the fabric, bending the fabric, and otherwise distorting and/or conforming the fabric shape.
  • [0088]
    For looser weaves and/or where highly reliable electrical contact is important, a more complex weave may be employed. For example, a Leno weave having plural conductive yarn 120 a and 120 b intertwined as they are woven to provide an electrically conductive yarn 120′ may be utilized. Because the two conductive yarn 120 a, 120 b wrap around conductive yarn 140 (and/or a functional yarn) at locations where they cross, providing a tight weave and a connection of higher reliability thereat. While intertwined conductive yarn 120′ is illustrated by way of example as being in the warp in the case of a Leno weave, twisted conductive yarn may be utilized in the warp and/or the weft and twisted yarn may be utilized with insulating and/or conductive yarn in other weaves.
  • [0089]
    While the electrically conductive yarn and the functional yarn are generally orthogonal and cross in a woven fabric or textile, the conductive and functional yarn need not be orthogonal, and conductive yarn and functional yarn may run in the same weave direction in a fabric or textile. Further, while either or both electrically conductive yarn and functional yarn may be woven in either or both the warp and/or the weft, it is generally preferred that electrically conductive yarn be woven in the warp and functional yarn be woven in the weft, for example, to permit different functional yarn to be utilized in a fabric/textile. For example, by utilizing a first type of functional yarn containing sensors and/or light sources and a second type of functional yarn containing processors in the same fabric, a “smart” fabric may be woven that both senses data and processes the data sensed and/or that generates addressing for illuminating light sources and illuminates the addressed light sources.
  • [0090]
    Woven textiles including electronic function as described herein are suitable for many different applications and/or articles having utility for consumer, private, public, professional, commercial, government, military and other entities. Among such are, for example, programmable alpha-numeric signage as for traffic warning, advertising, window signs, banners, portable signs, garments and articles of clothing (e.g., for people and/or animals), safety-wear bibs, vests and other safety garments, footwear, articles and/or garments for a baby and/or an infant, personal flotation devices, life saving apparatus, blankets, medical devices, light blankets, warming blankets, sensing blankets, apparatus and/or equipment for sport, sports wear, uniforms, toys, entertainment devices, truck and other vehicle signage, construction and/or work area signs, directional signs, lighting, emergency lighting, lighting panels, decorative lights, accent lights, reading lights, lighting for a tent, tarp, canvas and/or umbrella, display lighting, sensor fabrics, environmental and/or chemical and/or biological agent sensor arrays, camouflage, a parachute, a uniform (e.g., for government, military, sport and/or medical personnel), light sensing arrays, imaging arrays, and any other article including a woven fabric.
  • [0091]
    In each application, because the article is a woven fabric article it has the give and drape characteristics of fabric, and so can be hung, draped, folded, rolled or otherwise placed in a non-planar condition. Thus, even very large articles can be folded, rolled up or otherwise stored in a small space. For example, a 2 by 3 meter sign could easily be folded and/or rolled up and placed in the trunk or other storage compartment of a vehicle such as a police, fire, ambulance or other emergency vehicle and/or the storage space of a truck or automobile. In addition, a lightweight pop-up support frame, similar to the support frames employed with a camping tent, may be employed with a textile article as described herein. When unfolded, woven fabric articles may be draped or otherwise placed to conform to a desired surface and/or shape.
  • [0092]
    The yarn utilized in weaving the fabric may be made wider consistent with the size of the woven sign and the resolution and/or pixel or display element size desired and/or the capability of the loom (either an automated or a manual loom) to weave wide yarn. For example, standard modern looms can weave yarn up to about 10 mm wide. A large display and/or sign, such as a banner scoreboard, may be 10 meter long and 1 meter wide, and may, e.g., be woven of yarn and functional yarn strips having a width of about 2-3 cm. Because the message presented by such large signs and banners is easily changed, one sign or banner can be reused many times for many different purposes, the cost is lower than if a different printed sign is utilized for each event, and external illumination is not needed for use during darkness. Signs and banners may be rolled, e.g., on a window-shade-type roller for convenient and quick set up and removal, or may simply be folded.
  • [0093]
    While the present invention has been described in terms of the foregoing exemplary embodiments, variations within the scope and spirit of the present invention as defined by the claims following will be apparent to those skilled in the art. For example, while it is preferred that cavities in a multilayer woven fabric be closed, i.e. completely surround a circuit carrier disposed therein, a closed cavity is not mandatory. Open pockets may be employed in which case circuit carriers therein may be easily removed and inserted after the fabric is woven, thereby facilitating the reconfiguration or modification of the function of an electronic textile, or for purposes of the repair, maintenance, upgrading and/or updating thereof.
  • [0094]
    Electrical connection to contacts and/or conductors of functional yarn may be made directly to the functional yarn at an edge of the fabric or may be made via crossing conductive yarn to which connections are made at an edge of the fabric, or a combination of connection arrangements may be utilized.
  • [0095]
    In addition, functional yarn could include an electrically conductive substrate on which are placed electronic devices and contacts therefor, wherein an insulating layer and/or a pattern of insulating areas are disposed on the conductive substrate to provide insulation for such contacts. Further, placement and registration of functional yarn in a fabric may be to align the electronic devices thereon, or registration of the functional yarn may be to place such devices in a pattern other than an aligned pattern, as might be desirable for an electronically functional fabric utilized for camouflage.
  • [0096]
    While sufficient electrical connection between conductive yarn and/or functional yarn is typically made at locations where such yarn cross in a fabric, other conductive adhesive such as ultraviolet-cured adhesive may optionally be employed to improve such connection.
  • [0097]
    As stated herein, examples of a fabric, textile and/or article having a particular yarn in one of the warp and weft is intended to describe the fabric, textile and/or article with such yarn in the warp, in the weft, or in the warp and in the weft. Any weave may be employed, including but not limited to, plain or tabby, twill, overshot, laid-in, leno, gauze, loop, double, multilayer, combinations thereof, and any other weave.
  • [0098]
    The terms electrical device, electronic device, electrical component and electronic component are used interchangeably herein, and any one is intended to include any or all of the others. The same is true as to the terms conductor, contact and terminal, e.g., in the context of a functional yarn and/or electronic device, and the terms “electrical” and “electronic.” Similarly, “optical” devices include, for example, devices that detect and/or produce electromagnetic radiation, and/or that otherwise operate, in the visible, infrared, ultra-violet, x-ray and/or other regions of the electromagnetic spectrum, including a narrow band thereof such as would define a “color.”

Claims (49)

1. A woven article for supporting a load, comprising:
a. a plurality of vertically stacked layers, each having a warp and a weft;
b. at least one of said warps having at least one electrically conductive yarn running though at least a part of the warp;
c. at least one of said wefts having at least one electrically conductive yarn running though at least a part of the weft;
d. the electrically conductive yarns in the warp and the weft being sufficiently close at one position as to form an electric circuit by connection of the yarns to an electrical device at the position.
2. The article of claim 1 in which the electrically conductive yarns are electrically insulated.
3. The article of claim 1 in which the warp and the weft of each layer are vertically aligned.
4. The article of claim 1 in which at least one of the warp and one of the weft of the layers are vertically misaligned.
5. The article of claim 2 wherein the warp and the weft are each comprised substantially of electrically insulative yarns.
6. The article of claim 4 in which a plurality of the electrically conductive yarns and other yarns which together constitute the warp are interwoven with a plurality of the electrically conductive yarns and other yarns which together constitute the weft to define the plurality of vertically stacked layers of the article.
7. The article of claim 1 further comprising at least two electrically conductive insulated yarns running through at least some of the stacked layers to connect with an electrically conductive device supported by the article.
8. The article of claim 7 wherein the two electrically conductive insulated yarns run upwardly through at least some of the stacked layers.
9. The article of claim 1 wherein the warp having at least one electrically conductive yarn running though at least a part of the warp and the weft having at least one electrically conductive yarn running though at least a part of the weft are in the uppermost of the stacked layers.
10. The article of claim 1 wherein the warp having at least one electrically conductive yarn running though at least a part of the warp and the wefts having at least one electrically conductive yarn running though at least a part of the weft are in a layer that is immediately beneath and contiguous with the uppermost of the stacked layers.
11. The article of claim 1 wherein the electrically conductive yarns in the warp and the weft are in the uppermost layer and are sufficiently close at one position as to form an electric circuit by connection of the yarns to a circuit carrier at the position.
12. The article of claim 1 wherein the electrically conductive yarns in the warp and the weft are in the uppermost layer and are sufficiently close at one position as to form an electric circuit by connection of the yarns to a functional yarn at the position.
13. A woven support article, comprising:
a. a plurality of vertically stacked layers, each having a warp and a weft;
b. electrically conductive yarns in the warp and the weft of at least one of the layers being sufficiently close to form an electric circuit by connection of the yarns to an electrical device.
14. The article of claim 13 wherein the there are at least two electrically conductive insulated yarns running through at least two of the stacked layers to connect with an electrically conductive device supported by the article.
15. A woven fabric support article, comprising
a. a plurality of vertically stacked layers, each having a warp and a weft;
b. at least one of said warps and wefts having electrically conductive yarns running along at least a part thereof with the electrically conductive yarns being sufficiently close as to form an electric circuit by connection of the yarns to an electrical device.
16. The article of claim 15 wherein the warp and/or weft having electrically conductive yarn running therealong are in the uppermost of the stacked layers.
17. The article of claim 15 wherein the warp and/or weft having electrically conductive yarn running therealong are in a layer that is immediately beneath and contiguous with the uppermost of the stacked layers.
18. A method for weaving a fabric or textile article having a plurality of vertically stacked layers capable of supporting a load, each layer having a warp and a weft, comprising:
a. providing a first group of yarns including at least one electrically conductive yarn in a plurality of warps;
b. providing a second group of yarns including at least one electrically conductive yarn, in a plurality of wefts;
c. weaving the first group of yarns in the warps with the second group of yarns in the wefts to create the plurality of vertically stacked layers of the article, with the electrically conductive yarns in the warp and the weft being sufficiently close as to form an electric circuit by connection of a warp and a weft electrically conductive yarn to an electrical device.
19. The method of claim 18 wherein weaving the first group of yarns in the warps with the second group of yarns in the wefts includes controlling tightness of the weave to inherently impart strength to the article.
20. The method of claim 18 wherein weaving the first group of yarns in the warps with the second group of yarns in the wefts includes controlling tightness of the weave to inherently impart stiffness and resistance to lateral bending to the article.
21. The method of claim 18 wherein weaving the first group of yarns in the warp with the second group of yarns in the weft to create the plurality of vertically stacked layers of the article is performed by including the electrically conductive yarns in the warp and the weft that are woven to create the top layer of the article.
22. The method of claim 18 wherein weaving the first group of yarns in the warp with the second group of yarns in the weft to create the plurality of vertically stacked layers of the article is performed by including the electrically conductive yarns in the warp and the weft that are woven to create a layer under the top layer.
23. The method of claim 22 wherein the layer woven from the warp and weft having the electrically conductive yarns is immediately under the top layer and contiguous therewith.
24. The method of claim 18 further comprising raising and lowering of the warp yarn of a layer while weaving the weft yarn of the layer therethrough to produce a cavity in at least one layer of the article.
25. The method of claim 24 wherein a layer adjacent to the layer(s) having the cavity therein is woven separately from the cavity layer(s) in the region defining the cavity but is interwoven with the cavity layer(s) in the region around the cavity.
26. The method of claim 25 wherein the layer adjacent to the layer(s) having the cavity is interwoven with a cavity layer in the region surrounding the cavity.
27. The method of claim 25 wherein the layer(s) having the cavity therein is/are above the adjacent layer.
28. The method of claim 25 wherein the layer(s) having the cavity therein is/are below the adjacent layer.
29. The method of claim 24 wherein a layer having the cavity therein is the top layer of the article.
30. The method of claim 18 wherein weaving is performed so that a circuit carrier is present in the top layer of the article.
31. The method of claim 18 wherein weaving is performed so that a functional yarn forms a part of the warp or weft of the top layer of the article.
32. A woven article for supporting a load, comprising:
a. a plurality of vertically stacked layers, each having a warp and a weft;
b. at least one of the layers having at least one electrically conductive yarn running though at least a part of the warp, the weft, or both;
33. The article of claim 32 in which the electrically conductive yarns are electrically insulated.
34. The article of claim 32 in which the warp and the weft of each layer are aligned.
35. The article of claim 32 in which at least one of the warp and/or weft of the layers is vertically misaligned.
36. The article of claim 32 wherein the warp and the weft are each electrically insulative.
37. The article of claim 32 in which a plurality of yarns constituting the warp are interwoven with a plurality of yarns which together and with at least one electronically conductive yarn constitute the weft to define the plurality of vertically stacked layers of the article.
38. The article of claim 32 further comprising at least two electrically conductive insulated members running through at least some of the stacked layers to connect with whatever is supported by the article.
39. The article of claim 38 wherein the electrically conductive members run upwardly through at least some of the stacked layers.
40. The article of claim 32 wherein the layer having at least one electrically conductive members running though at least a part of the warp, the weft or both is the uppermost of the stacked layers.
41. The article of claim 32 wherein the layer having at least one electrically conductive member running though at least a part of the warp, the weft or both is a layer that is immediately beneath and contiguous with the uppermost of the stacked layers.
42. The article of claim 40 wherein the electrically conductive member in the uppermost layer, sufficiently close to a load supporting surface of the article to form an electric circuit by connection of the member to a circuit carrier proximate the load supporting surface.
43. The article of claim 32 wherein there are at least two electrically conductive members run through at least one of the top two of the stacked layers to connect with an electrically conductive device supported by the article.
44. A woven fabric support article, comprising:
a. a plurality of vertically stacked layers, each having a warp and a weft;
b. at least one of said warps and wefts in the uppermost layers having electrically conductive members running along at least a part thereof with the electrically conductive members being sufficiently close to an upper surface of the highest layer to form an electric circuit by connection to a member supported by the article.
45. A method for weaving a fabric or textile article having a plurality of vertically stacked layers capable of supporting a load, each layer having a warp and a weft, comprising:
a. providing a first group of yarns including at least one electrically conductive member in a plurality of warps;
b. providing a second group of yarns including at least one electrically conductive member, in a plurality of wefts;
c. weaving at least some of the first group of yarns in at least some of the warps with at least some of the second group of yarns in at least some of the wefts to create the plurality of vertically stacked layers defining the article, with the electrically conductive members in the warps and the wefts being sufficiently close as to form an electric circuit by connection of a warp and a weft electrically conductive members to an electrically conductive device.
46. The method of claim 45 further comprising raising and lowering of the warp yarn of a layer while weaving the weft yarn of the layer therethrough to produce a cavity in at least one layer of the article.
47. The method of claim 46 wherein a layer adjacent to the layer(s) having the cavity therein is woven separately from the cavity layer(s) in the region defining the cavity but is interwoven with the cavity layer(s) in the region around the cavity.
48. The method of claim 47 wherein the layer adjacent to the layer(s) having the cavity is interwoven with a cavity-deeming layer in the region surrounding the cavity.
49. The method of claim 48 wherein weaving is performed so that a functional yarn forms a part of the warp or weft of the top layer.
US12429496 2002-05-10 2009-04-24 Plural layer woven electronic textile, article and method Abandoned US20090253325A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US37972302 true 2002-05-10 2002-05-10
US41915902 true 2002-10-17 2002-10-17
US10431763 US7144830B2 (en) 2002-05-10 2003-05-08 Plural layer woven electronic textile, article and method
US11552232 US20070049147A1 (en) 2002-05-10 2006-10-24 Plural layer woven electronic textile, article and method
US12429496 US20090253325A1 (en) 2002-05-10 2009-04-24 Plural layer woven electronic textile, article and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12429496 US20090253325A1 (en) 2002-05-10 2009-04-24 Plural layer woven electronic textile, article and method
US13153609 US20120118427A1 (en) 2002-05-10 2011-06-06 Electronic textile, article and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11552232 Division US20070049147A1 (en) 2002-05-10 2006-10-24 Plural layer woven electronic textile, article and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13153609 Continuation US20120118427A1 (en) 2002-05-10 2011-06-06 Electronic textile, article and method

Publications (1)

Publication Number Publication Date
US20090253325A1 true true US20090253325A1 (en) 2009-10-08

Family

ID=29407814

Family Applications (4)

Application Number Title Priority Date Filing Date
US10431763 Active 2024-04-26 US7144830B2 (en) 2002-05-10 2003-05-08 Plural layer woven electronic textile, article and method
US11552232 Abandoned US20070049147A1 (en) 2002-05-10 2006-10-24 Plural layer woven electronic textile, article and method
US12429496 Abandoned US20090253325A1 (en) 2002-05-10 2009-04-24 Plural layer woven electronic textile, article and method
US13153609 Abandoned US20120118427A1 (en) 2002-05-10 2011-06-06 Electronic textile, article and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10431763 Active 2024-04-26 US7144830B2 (en) 2002-05-10 2003-05-08 Plural layer woven electronic textile, article and method
US11552232 Abandoned US20070049147A1 (en) 2002-05-10 2006-10-24 Plural layer woven electronic textile, article and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13153609 Abandoned US20120118427A1 (en) 2002-05-10 2011-06-06 Electronic textile, article and method

Country Status (6)

Country Link
US (4) US7144830B2 (en)
JP (1) JP2005525481A (en)
KR (1) KR20050046656A (en)
CN (1) CN1650057A (en)
EP (1) EP1507906A4 (en)
WO (1) WO2003095729A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111932A1 (en) * 2009-06-19 2011-05-12 Von Hoffmann Kaitlin Methods and apparatus for muscle specific resistance training
WO2011116144A1 (en) * 2010-03-17 2011-09-22 Villarreal Jesse Jr Solid-core panel incorporating decorative and/or functional material
US20140338721A1 (en) * 2011-09-13 2014-11-20 Donald G. Parent Photovoltaic textiles
WO2015027228A1 (en) * 2013-08-22 2015-02-26 Parent Donald G Photovoltaic textiles
US9327156B2 (en) 2009-06-19 2016-05-03 Tau Orthopedics, Llc Bidirectional, neutral bias toning garment
US9375603B2 (en) 2009-06-19 2016-06-28 Tau Orthopedics, Llc Garment for elevating physiological load under motion
US20160249478A1 (en) * 2015-02-20 2016-08-25 Microduino Inc. Electrical modules and modular electronic building systems
US9433814B2 (en) 2009-06-19 2016-09-06 Tau Orthopedics, Llc Toning garment with integrated damper
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9656117B2 (en) 2009-06-19 2017-05-23 Tau Orthopedics, Llc Wearable resistance garment with power measurement

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60102003D1 (en) 2000-04-03 2004-03-18 Brunel University Uxbridge Conductive pressure-sensitive material
CA2463981C (en) * 2001-10-19 2011-11-29 Josuke Nakata Light-emitting or light-receiving semiconductor module, and method for manufacturing the same
US7144830B2 (en) * 2002-05-10 2006-12-05 Sarnoff Corporation Plural layer woven electronic textile, article and method
US7105858B2 (en) * 2002-08-26 2006-09-12 Onscreen Technologies Electronic assembly/system with reduced cost, mass, and volume and increased efficiency and power density
JP4697379B2 (en) * 2003-07-07 2011-06-08 ソニー株式会社 The fuel cell power generation system and fuel cell system
WO2005011415A1 (en) * 2003-08-01 2005-02-10 Santa Fe Science And Technology, Inc. Multifunctional conducting polymer structures
CN1771608A (en) * 2003-10-24 2006-05-10 京半导体股份有限公司 Light receiving or light emitting modular sheet and process for producing the same
US20050146076A1 (en) * 2003-11-19 2005-07-07 Bogdanovich Alexander 3-D fabrics and fabric preforms for composites having integrated systems, devices, and/or networks
US20050209936A1 (en) * 2004-02-17 2005-09-22 Guy Stephen L Textile finishing temperature monitoring systems and method
GB0404419D0 (en) * 2004-02-27 2004-03-31 Intelligent Textiles Ltd Electrical components and circuits constructed as textiles
JP4282533B2 (en) * 2004-04-19 2009-06-24 株式会社東芝 Display device
US9210806B2 (en) 2004-06-02 2015-12-08 Joel S. Douglas Bondable conductive ink
US7025596B2 (en) * 2004-06-14 2006-04-11 Motorola, Inc. Method and apparatus for solder-less attachment of an electronic device to a textile circuit
ES2406986T3 (en) * 2004-09-14 2013-06-11 Textilma Ag Textile strip with an aerial wire integrated an RF transponder
US7238075B2 (en) * 2004-11-01 2007-07-03 Brodsky Mark A Personal water activity apparatus with variable light display for protection against sharks and other water-borne predators
US7531203B2 (en) * 2005-01-06 2009-05-12 The Hong Kong Polytechnic University Method for the production of conductive flexible textile arrays
US7963583B2 (en) * 2005-01-31 2011-06-21 Edscha Cabrio-Dachsysteme Gmbh Top for a convertible vehicle
WO2006108125A3 (en) 2005-04-04 2006-12-28 David Louis Brittingham Electrothermal deicing apparatus and a dual function heater conductor for use therein
US7544627B2 (en) * 2005-05-12 2009-06-09 The Hong Kong Polytechnic University Pressure sensing fabric
US20110128686A1 (en) * 2005-05-26 2011-06-02 Kinaptic, LLC Thin film energy fabric with energy transmission/reception layer
US20110128726A1 (en) * 2005-05-26 2011-06-02 Kinaptic, LLC Thin film energy fabric with light generation layer
US20080109941A1 (en) * 2005-05-26 2008-05-15 Energy Integration Technologies, Inc. Thin film energy fabric integration, control and method of making
US20110130813A1 (en) * 2005-05-26 2011-06-02 Kinaptic, LLC Thin film energy fabric for self-regulating heated wound dressings
US7494945B2 (en) * 2005-05-26 2009-02-24 Energy Integration Technologies, Inc. Thin film energy fabric
US20110127248A1 (en) * 2005-05-26 2011-06-02 Kinaptic,LLC Thin film energy fabric for self-regulating heat generation layer
WO2006129273A3 (en) 2005-05-31 2007-03-15 Koninkl Philips Electronics Nv A textile or fabric for touch sensitive displays
WO2006129272A3 (en) * 2005-05-31 2007-02-08 Koninkl Philips Electronics Nv A fully textile electrode lay-out allowing passive and active matrix addressing
US20100193768A1 (en) * 2005-06-20 2010-08-05 Illuminex Corporation Semiconducting nanowire arrays for photovoltaic applications
US7633450B2 (en) 2005-11-18 2009-12-15 Goodrich Corporation Radar altering structure using specular patterns of conductive material
DE102005055842A1 (en) * 2005-11-23 2007-05-24 Alpha-Fit Gmbh Pressure sensor for incorporation in clinical test socks or stockings incorporates pressure-sensitive threads or ribbons
JP4682028B2 (en) * 2005-11-28 2011-05-11 Hoya株式会社 Process for producing a conductive layer, conductive layer, and the signal transmission substrate
US20070132664A1 (en) * 2005-12-08 2007-06-14 Stuart Weissman Surface-mounted contour-fitting electronic visual display system for use on vehicles and other objects
DE102006017540A1 (en) * 2006-04-13 2007-10-18 Drägerwerk AG Textile system including a plurality of electronic function elements
FR2899999B1 (en) * 2006-04-13 2008-06-27 Commissariat Energie Atomique Thermoelectric structure and use of the thermoelectric structure to form a textile structure
GB2437997B (en) * 2006-04-27 2011-07-27 Eleksen Ltd Manually operable position sensor
JP2007311990A (en) * 2006-05-17 2007-11-29 Pentax Corp Communication device
DE602007011062D1 (en) * 2006-06-02 2011-01-20 Philips Intellectual Property Biofeedback system and display device
US7982379B2 (en) * 2006-06-08 2011-07-19 Koninklijke Philips Electronics N.V. Flexible display device
WO2008007237A3 (en) 2006-06-08 2008-06-05 Koninkl Philips Electronics Nv Submount for electronic components
DE102006027213A1 (en) * 2006-06-12 2007-12-13 Future-Shape Gmbh Textile layer arrangement textile layer array and method of manufacturing a textile layer assembly
US8022307B2 (en) * 2006-07-10 2011-09-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabric circuits and method of manufacturing fabric circuits
FR2905518B1 (en) * 2006-08-29 2008-12-26 Commissariat Energie Atomique Microelectronic chip has lateral faces provided with grooves and method for making
US8525402B2 (en) 2006-09-11 2013-09-03 3M Innovative Properties Company Illumination devices and methods for making the same
CN202733594U (en) * 2012-08-13 2013-02-13 惠州元晖光电股份有限公司 Integrally-formed LED (light-emitting diode) light carrier bundle
US8581393B2 (en) 2006-09-21 2013-11-12 3M Innovative Properties Company Thermally conductive LED assembly
WO2008038198A3 (en) * 2006-09-25 2008-06-26 Bernardus Hendrikus W Hendriks Temperature control of patients during surgery
WO2008044202A3 (en) * 2006-10-10 2008-07-03 Koninkl Philips Electronics Nv Textile for connection of electronic devices
US8395317B2 (en) * 2006-10-10 2013-03-12 Koninklijke Philips Electronics N.V. Textile for connection of electronic devices
US8162857B2 (en) 2006-10-11 2012-04-24 Koninklijke Philips Electronics N.V. Limb movement monitoring system
US8127440B2 (en) 2006-10-16 2012-03-06 Douglas Joel S Method of making bondable flexible printed circuit
GB2443658B (en) * 2006-11-08 2011-09-14 Eleksen Ltd Manually operable sensor
GB0623146D0 (en) * 2006-11-21 2006-12-27 Univ Bolton The Temperature detector
WO2008064370A3 (en) * 2006-11-24 2008-09-18 Waters Colin Fashion illumination system
US7762887B1 (en) 2006-12-04 2010-07-27 G&G Technologies LLC Systems and methods for electronically managing games
RU2009122346A (en) * 2006-12-20 2011-01-27 Колон Глотек, Инк. (Kr) The heating fabric and the method of its manufacture
EP1939324A1 (en) * 2006-12-29 2008-07-02 TNO Institute of Industrial Technology Conductive fibrous web and method for making the same
KR100834974B1 (en) * 2007-01-29 2008-06-03 한국생산기술연구원 Process for producing digital yarns using hybrid metal for high speed communication and digital yarns produced by said process
KR20090108636A (en) * 2007-02-08 2009-10-15 스미토모 베이클리트 컴퍼니 리미티드 Laminated body, circuit board including laminated body, semiconductor package and method for manufacturing laminated body
CN101240475B (en) 2007-02-08 2012-07-25 深圳市冠旭电子有限公司 Electronic textile
DE102007008316A1 (en) * 2007-02-16 2008-08-21 ASTRA Gesellschaft für Asset Management mbH & Co. KG Fabric having a circuit module and an antenna
KR20090127179A (en) * 2007-03-29 2009-12-09 코닌클리케 필립스 일렉트로닉스 엔.브이. Cut-to-measure display device and method for control thereof
FI20070313A0 (en) * 2007-04-23 2007-04-23 Neule Apu Oy The lighting arrangement in connection with a textile structure
FR2916081B1 (en) * 2007-05-07 2009-09-25 Fed Mogul Systems Prot Group S Electromagnetic protection sheath textile.
US9642316B2 (en) * 2007-05-14 2017-05-09 Philips Lighting Holding B.V. Shading device
US8060175B2 (en) 2007-06-15 2011-11-15 General Electric Company System and apparatus for collecting physiological signals from a plurality of electrodes
WO2008152574A1 (en) * 2007-06-15 2008-12-18 Koninklijke Philips Electronics N.V. Fabric display with diffuser
US7996056B2 (en) * 2007-06-15 2011-08-09 The General Electric Company Method and apparatus for acquiring physiological data
US8021020B2 (en) 2007-07-16 2011-09-20 Cambridge International Inc. Lighted architectural mesh
CN101854852A (en) * 2007-07-26 2010-10-06 皇家飞利浦电子股份有限公司 Electrode for acquiring physiological signals of a recipient
EP2020831A1 (en) * 2007-07-31 2009-02-04 Sefar AG Method for manufacturing an electronic textile and textile substrate
US20090050204A1 (en) * 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US8360904B2 (en) 2007-08-17 2013-01-29 Adidas International Marketing Bv Sports electronic training system with sport ball, and applications thereof
US8702430B2 (en) 2007-08-17 2014-04-22 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US8221290B2 (en) 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
US20090069702A1 (en) * 2007-09-10 2009-03-12 See Kee How Method and apparatus for a heart rate indicator fabric
US8656622B2 (en) 2007-10-11 2014-02-25 Ashbury International Group, Inc. Tactical firearm systems and methods of manufacturing same
KR100938684B1 (en) * 2007-10-16 2010-01-25 코오롱글로텍주식회사 Electronic fabric and preparing thereof
CN101827967A (en) * 2007-10-16 2010-09-08 皇家飞利浦电子股份有限公司 Multi-layer woven fabric display
WO2009053872A1 (en) * 2007-10-26 2009-04-30 Koninklijke Philips Electronics N.V. Robust connections in a multi-layer woven fabric
WO2009087913A8 (en) * 2008-01-11 2010-11-18 東レ株式会社 Fabric, and clothes using the same
KR100972006B1 (en) * 2008-02-26 2010-07-22 한국생산기술연구원 Textile digital band and fabriticating method thereof
KR100982533B1 (en) * 2008-02-26 2010-09-16 한국생산기술연구원 Digital garment using digital band and fabricating method thereof
JP2011512935A (en) * 2008-02-28 2011-04-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Intelligent electronic blanket
US8341762B2 (en) * 2008-03-21 2013-01-01 Alfiero Balzano Safety vest assembly including a high reliability communication system
GB0806216D0 (en) * 2008-04-04 2008-05-14 Rec Solar As Interconnector
CN102017814A (en) * 2008-04-29 2011-04-13 皇家飞利浦电子股份有限公司 Electronic textile
US20090282908A1 (en) * 2008-05-09 2009-11-19 Thermogear, Inc. Electrifiable fabric
EP2131406A1 (en) * 2008-06-02 2009-12-09 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A method for manufacturing a thermoelectric generator, a wearable thermoelectric generator and a garment comprising the same
US7886515B2 (en) * 2008-07-02 2011-02-15 AG Technologies, Inc. Process for manufacturing yarn made from a blend of fibers of cotton, nylon and silver
US7882688B2 (en) * 2008-07-02 2011-02-08 AG Technologies, Inc. Process for manufacturing yarn made from a blend of polyester fibers and silver fibers
US7784108B2 (en) * 2008-07-15 2010-08-31 Bebe Au Lait Llc Bib
US20100017735A1 (en) * 2008-07-15 2010-01-21 Unisys Corporation Decentralized hardware partitioning within a multiprocessing computing system
WO2010026511A1 (en) * 2008-09-04 2010-03-11 Koninklijke Philips Electronics N.V. Electronic textile with power distributing structure
KR20110056420A (en) * 2008-09-19 2011-05-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electronic textile and method for determining a functional area of an electronic textile
US9758907B2 (en) * 2008-09-22 2017-09-12 Intel Corporation Method and apparatus for attaching chip to a textile
US20110269358A1 (en) * 2008-10-28 2011-11-03 Gdh Co., Ltd. Luminous fabric
WO2010058360A1 (en) * 2008-11-21 2010-05-27 Koninklijke Philips Electronics N.V. Textile electronic arrangement
US8402683B2 (en) * 2009-01-16 2013-03-26 Prototype Productions Incorporated Ventures Two, Llc Rifle accessory rail, communication, and power transfer system-battery pack
US8141288B2 (en) * 2009-01-16 2012-03-27 Prototype Productions, Inc. Rugged low light reflectivity electrical contact
US8448368B2 (en) * 2009-01-16 2013-05-28 Prototype Productions Incorporated Ventures Two, Llc Rifle accessory rail, communication, and power transfer system—rail contacts
US8443539B2 (en) * 2009-01-16 2013-05-21 Prototype Productions Incorporated Ventures Two, Llc Rail contacts for accessories mounted on the powered rail of a weapon
US8397418B2 (en) * 2009-01-16 2013-03-19 Prototype Productions Incorporated Ventures Two, Llc System for providing electrical power to accessories mounted on the powered
US8146282B2 (en) * 2009-01-16 2012-04-03 Prototype Productions, Inc. System for providing electrical power to accessories mounted on the powered rail of a weapon
US20100218410A1 (en) * 2009-01-16 2010-09-02 Prototype Productions, Inc. Accessory mount for rifle accessory rail, communication, and power transfer system - accessory attachment
US8516731B2 (en) * 2009-01-16 2013-08-27 Prototype Productions Incorporated Ventures Two, Llc Communication and control of accessories mounted on the powered rail of a weapon
CA2740705C (en) * 2009-02-09 2013-01-15 United Luminous International (Holdings) Limited Light emitting diode light arrays on mesh platforms
US8282232B2 (en) * 2009-04-08 2012-10-09 Fu-biau Hsu Illuminating textile article
JP5444817B2 (en) * 2009-04-24 2014-03-19 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
WO2010142071A1 (en) * 2009-06-08 2010-12-16 Tex-Ray Industrial Co., Ltd. Fabric connector for sensing object proximity
WO2011022100A3 (en) * 2009-07-13 2011-05-26 Arizona Board Of Regents, For And On Behalf Of Arizona State University Flexible circuits and electronic textiles
US9075170B2 (en) * 2009-09-16 2015-07-07 Koninklijke Philips N. V. Optical element
JP2013506285A (en) * 2009-09-24 2013-02-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic textile comprising a local energy supply devices
CN102034467B (en) * 2009-09-25 2013-01-30 北京富纳特创新科技有限公司 Sound production device
JP5339149B2 (en) * 2009-09-28 2013-11-13 独立行政法人産業技術総合研究所 Fibrous substrates and functional flexible sheet
US20110073353A1 (en) * 2009-09-29 2011-03-31 Tex-Ray Industrial Co., Ltd. Conductive fabric and method for forming the same
WO2011041423A3 (en) * 2009-09-30 2011-06-23 Miral Kotb Self-contained, wearable light controller with wireless communication interface
JP5668966B2 (en) * 2009-10-15 2015-02-12 株式会社槌屋 Touch sensor device using conductive fabrics and conductive fabric
KR101243837B1 (en) 2009-10-23 2013-03-20 한국전자통신연구원 structure connecting multi-layer line and manufacturing method at the same
CN102065363B (en) * 2009-11-16 2013-11-13 北京富纳特创新科技有限公司 Sound production device
FI8802U1 (en) 2009-12-31 2010-07-28 Unistar Opto Corp based on light-emitting diodes illuminated device Putketon
US9823043B2 (en) * 2010-01-15 2017-11-21 Colt Canada Ip Holding Partnership Rail for inductively powering firearm accessories
FR2955972B1 (en) * 2010-02-03 2012-03-09 Commissariat Energie Atomique method of assembling at least one chip with a tissue including a device chip
RU2555621C2 (en) 2010-03-09 2015-07-10 Конинклейке Филипс Электроникс Н.В. Light-emitting electronic fabric with light-diffusing element
CN103097804A (en) * 2010-03-16 2013-05-08 皇家飞利浦电子股份有限公司 Light-emitting textile-based architectural element
JP6143670B2 (en) * 2010-04-16 2017-06-07 フィリップス ライティング ホールディング ビー ヴィ Method for textile products and manufacturing with lighting function
JP4598885B1 (en) * 2010-05-14 2010-12-15 イヅハラ産業株式会社 Ruffled fabric
US20120002970A1 (en) * 2010-07-01 2012-01-05 Analysis First LLC Identification and communication systems using optical fibers
US8448672B2 (en) * 2010-07-21 2013-05-28 Taiwan Textile Research Institute Weaving machine
US9009955B2 (en) * 2010-08-03 2015-04-21 Infoscitex Corporation Method of making an electronically active textile article
CN102383247B (en) * 2010-09-03 2013-09-04 财团法人纺织产业综合研究所 Tatting weaving machine
US9148949B2 (en) 2010-09-21 2015-09-29 Koninklijke Philips N.V. Electronic textile and method of manufacturing an electronic textile
US8646397B2 (en) 2010-12-17 2014-02-11 Midcon Cables Co., Inc. Method and apparatus for producing machine stitched flat wiring harness
EP2508337A1 (en) * 2011-03-31 2012-10-10 Tex-Ray Industrial Co., Ltd. Conductive fabric and method for forming the same
CN103974829B (en) * 2011-04-18 2016-12-14 阿迪达斯股份公司 A method and apparatus for continuous packaging elongated member and the elongated member of the package obtained
WO2012145865A1 (en) * 2011-04-29 2012-11-01 Yang Chang-Ming Method for electronizing cloth and its product
KR101555211B1 (en) * 2011-10-05 2015-09-25 한국전자통신연구원 Fabric type circuit Board and Method of Manufacture using the same
CN103165989A (en) * 2011-12-16 2013-06-19 金鼎联合科技纤维股份有限公司 Stitching electrical connection structure
CN103315692B (en) * 2012-03-20 2015-10-07 中原工学院 Washing towels for cleaning dishes
JP5838881B2 (en) * 2012-03-27 2016-01-06 富士通株式会社 Mounting method and mounting apparatus of the light emitting member
JP5862414B2 (en) * 2012-03-29 2016-02-16 日産自動車株式会社 Cloth-like heater
JP5870822B2 (en) * 2012-04-04 2016-03-01 日産自動車株式会社 Cloth-like heater
US9380815B2 (en) 2012-07-03 2016-07-05 Maria Carolina Toro-Gerstein Privacy cover
CN103545441B (en) * 2012-07-12 2016-06-15 中国科学院理化技术研究所 Trap heat and its manufacturing method
US8945328B2 (en) 2012-09-11 2015-02-03 L.I.F.E. Corporation S.A. Methods of making garments having stretchable and conductive ink
WO2014041032A1 (en) 2012-09-11 2014-03-20 L.I.F.E. Corporation S.A. Wearable communication platform
US9817440B2 (en) 2012-09-11 2017-11-14 L.I.F.E. Corporation S.A. Garments having stretchable and conductive ink
US20140170920A1 (en) * 2012-12-14 2014-06-19 Sasikanth Manipatruni Electrically functional fabric for flexible electronics
DE102013101310A1 (en) * 2013-02-11 2014-08-14 Penn Textile Solutions Gmbh Elastic textile shade with photovoltaic elements and a corresponding multiple glazing
US9702069B2 (en) * 2013-03-15 2017-07-11 A&P Technology, Inc. Three dimensional braid
EP2784198A1 (en) * 2013-03-25 2014-10-01 Rigas Tehniska universitate Flexible light-emitting textile display with floats for covering electronic devices
WO2015020996A1 (en) * 2013-08-07 2015-02-12 Pulido Gabriel Jr Lighting system
US9119264B2 (en) 2013-05-24 2015-08-25 Gabriel Pulido, JR. Lighting system
US8948839B1 (en) 2013-08-06 2015-02-03 L.I.F.E. Corporation S.A. Compression garments having stretchable and conductive ink
JP2016533155A (en) * 2013-08-16 2016-10-20 深▲せん▼市智▲たん▼有機農牧能源綜合利用有限公司Shenzhen Zhitan Organic Farming Energy Comprehensive Utilization Co., Ltd. I photoelectric conversion mesh cloth and day
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9730593B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
WO2015048323A3 (en) * 2013-09-25 2015-05-21 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
FR3016171B1 (en) * 2014-01-03 2016-02-05 City Zen Sciences Instrumented garment comprising a textile woven fabric
US20150361597A1 (en) * 2014-06-17 2015-12-17 Natalie A. Candrian Methods for producing and merchandising a custom fit pant and custom fit pants
US20170247820A1 (en) * 2014-09-24 2017-08-31 Apple Inc. Three-Dimensional Fabric With Embedded Input-Output Devices
WO2016053626A1 (en) * 2014-09-30 2016-04-07 Arimtax Technologies Llc Fabric with embedded electrical components
FR3028532B1 (en) * 2014-11-17 2016-12-09 Inst Francais Textile & Habillement Tape emitting diode for making a light fabric, manufacturing process of such a tape and Brightcloth comprising such a tape
DE102015204784A1 (en) * 2015-03-17 2016-09-22 Robert Bosch Gmbh Lighting unit for use in a semi-finished
DE102015204785A1 (en) * 2015-03-17 2016-10-13 Robert Bosch Gmbh Lighting unit with an electronic unit
CN104886995A (en) * 2015-06-17 2015-09-09 邵辉 Low-pressure constant temperature warmth retention sterilizing quilt cover
GB201513612D0 (en) * 2015-07-31 2015-09-16 Brighter Futures Partnerships Ltd Printed system yarns
WO2017030851A3 (en) * 2015-08-20 2017-04-20 Oletquin Management Llc Fabric with embedded electrical components
WO2017042207A1 (en) * 2015-09-07 2017-03-16 Beaulieu International Group Nv Agro- and geotextiles
JP2017070003A (en) * 2015-09-28 2017-04-06 株式会社リコー Power generation element, light emitting element, belt-like luminous body, and rescue display device
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
DE102015120528A1 (en) * 2015-11-26 2017-06-01 RapidScale Holding GmbH A device for detecting at least one physical quantity and display device
GB201522351D0 (en) * 2015-12-18 2016-02-03 Intelligent Textiles Ltd Conductive fabric,method of manufacturing a conductive fabric and apparatus therefor
FR3048198A1 (en) * 2016-02-29 2017-09-01 Nicolas Malaquin Process for manufacturing a thermo-formable composite panel comprising a core layer whose two faces are covered with a textile - panel and associated parts
DE102016106074A1 (en) * 2016-04-04 2017-10-05 Pilz Gmbh & Co. Kg Fabric having a plurality of fabric layers
CN105897149A (en) * 2016-04-27 2016-08-24 天津工业大学 Novel flexible cell box for solar cell
KR101677929B1 (en) * 2016-06-20 2016-11-21 주식회사 동아티오엘 Camouflaging fabrics by jacquard loom and its weaving method

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479565A (en) * 1967-09-06 1969-11-18 Southern Weaving Co Woven circuit device
US3631298A (en) * 1969-10-24 1971-12-28 Bunker Ramo Woven interconnection structure
US3994047A (en) * 1975-04-11 1976-11-30 International Paper Company Apparatus for the twin-wire air laying of fibrous pads
US4158103A (en) * 1976-04-19 1979-06-12 Danilin Jurij Ivanovic Electric woven switching matrix
US4312913A (en) * 1980-05-12 1982-01-26 Textile Products Incorporated Heat conductive fabric
US4460803A (en) * 1983-02-15 1984-07-17 Woven Electronics Corporation Unitary woven jacket and electrical transmission cable and method of making same
US4559411A (en) * 1983-02-15 1985-12-17 Piper Douglas E Unitary woven jacket and electrical transmission cable and method for production
US4639545A (en) * 1984-02-07 1987-01-27 Raychem Limited Recoverable article for screening
US4654748A (en) * 1985-11-04 1987-03-31 Coats & Clark, Inc. Conductive wrist band
US4668545A (en) * 1984-09-14 1987-05-26 Raychem Corp. Articles comprising shaped woven fabrics
US4700054A (en) * 1983-11-17 1987-10-13 Raychem Corporation Electrical devices comprising fabrics
US4746769A (en) * 1983-02-15 1988-05-24 Woven Electronics Corporation Multilayer woven high density electrical transmission cable and method
US5045706A (en) * 1989-10-30 1991-09-03 Pioneer Electronic Corporation Fluorescent screen
US5102727A (en) * 1991-06-17 1992-04-07 Milliken Research Corporation Electrically conductive textile fabric having conductivity gradient
US5358758A (en) * 1989-12-06 1994-10-25 Albany International Corp. Structural member
US5422462A (en) * 1993-04-12 1995-06-06 Matsushita Electric Industrial Co., Ltd. Electric heating sheet
US5501133A (en) * 1990-03-29 1996-03-26 Albany International Corp. Apparatus for making a braid structure
US5697969A (en) * 1991-03-25 1997-12-16 Meadox Medicals, Inc. Vascular prosthesis and method of implanting
US5767824A (en) * 1991-12-31 1998-06-16 Sarcos Group High-density, three-dimensional, intercoupled circuit structure
US5802607A (en) * 1995-10-20 1998-09-08 Triplette; Walter W. Fencing jackets made from electrically conductive threads
US5927060A (en) * 1997-10-20 1999-07-27 N.V. Bekaert S.A. Electrically conductive yarn
US5962967A (en) * 1998-03-19 1999-10-05 Kiryuschev; Irina Electroluminescent device and method of manufacturing same
US6032450A (en) * 1996-07-01 2000-03-07 Spoerry & Co. Ag Method for producing an electrically conductive yarn, the electrically conductive yarn and use of the electrically conductive yarn
US6045575A (en) * 1997-09-10 2000-04-04 Amt, Inc. Therapeutic method and internally illuminated garment for the management of disorders treatable by phototherapy
US6072619A (en) * 1999-03-22 2000-06-06 Visson Ip, Llc Electro-optical light modulating device
US6145551A (en) * 1997-09-22 2000-11-14 Georgia Tech Research Corp. Full-fashioned weaving process for production of a woven garment with intelligence capability
US6153124A (en) * 2000-03-23 2000-11-28 Hung; Chu-An Electrically-conductive fabric
US6210771B1 (en) * 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
US20010036785A1 (en) * 2000-03-29 2001-11-01 Seiren Co., Ltd. Electrically conductive fabric
US6315009B1 (en) * 1998-05-13 2001-11-13 Georgia Tech Research Corp. Full-fashioned garment with sleeves having intelligence capability
US6326947B1 (en) * 1999-03-02 2001-12-04 Microsoft Corporation Tactile character input in computer-based devices
US6370019B1 (en) * 1998-02-17 2002-04-09 Sarnoff Corporation Sealing of large area display structures
US6381482B1 (en) * 1998-05-13 2002-04-30 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure
US20020074937A1 (en) * 2000-12-18 2002-06-20 Felix Guberman Flexible material for electrooptic displays
US20020076948A1 (en) * 2000-10-16 2002-06-20 Brian Farrell Method of manufacturing a fabric article to include electronic circuitry and an electrically active textile article
US6432850B1 (en) * 1998-03-31 2002-08-13 Seiren Co., Ltd. Fabrics and rust proof clothes excellent in conductivity and antistatic property
US20020167483A1 (en) * 2001-05-10 2002-11-14 Metcalf Darrell J. Apparel with contiguous video-imaging surface and apparatus for controlling and formatting video imagery on such surfaces
US6608438B2 (en) * 2001-11-09 2003-08-19 Visson Ip Llc 3-D flexible display structure
US7144830B2 (en) * 2002-05-10 2006-12-05 Sarnoff Corporation Plural layer woven electronic textile, article and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB852157A (en) * 1956-04-17 1960-10-26 French & Sons Thomas Improvements in or relating to woven tape-like resistance heater elements
FR1504818A (en) * 1966-10-24 1967-12-08 channel Fabrics for blankets
GB1413024A (en) * 1973-08-18 1975-11-05 French Sons Electrical Ltd Tho Woven electrical heating tapes
US4658103A (en) * 1986-02-07 1987-04-14 Mac Patrick McAbee Distributor for multi-cylinder engine
US5399418A (en) * 1991-12-21 1995-03-21 Erno Raumfahrttechnik Gmbh Multi-ply textile fabric especially for protection suits and the like
DE9308632U1 (en) * 1993-06-09 1994-11-10 Friedrich Graf Soehne Gmbh & C Anti-theft system for products made from nähfähigen tracks
US6970731B1 (en) 1998-09-21 2005-11-29 Georgia Tech Research Corp. Fabric-based sensor for monitoring vital signs
CN1130682C (en) 1997-10-08 2003-12-10 周嵘 Plane display
US6897855B1 (en) 1998-02-17 2005-05-24 Sarnoff Corporation Tiled electronic display structure
US6259838B1 (en) * 1998-10-16 2001-07-10 Sarnoff Corporation Linearly-addressed light-emitting fiber, and flat panel display employing same
US7845022B1 (en) * 2002-02-14 2010-12-07 Nike, Inc. Deposition of electronic circuits on fibers and other materials

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479565A (en) * 1967-09-06 1969-11-18 Southern Weaving Co Woven circuit device
US3631298A (en) * 1969-10-24 1971-12-28 Bunker Ramo Woven interconnection structure
US3994047A (en) * 1975-04-11 1976-11-30 International Paper Company Apparatus for the twin-wire air laying of fibrous pads
US4158103A (en) * 1976-04-19 1979-06-12 Danilin Jurij Ivanovic Electric woven switching matrix
US4312913A (en) * 1980-05-12 1982-01-26 Textile Products Incorporated Heat conductive fabric
US4559411A (en) * 1983-02-15 1985-12-17 Piper Douglas E Unitary woven jacket and electrical transmission cable and method for production
US4460803A (en) * 1983-02-15 1984-07-17 Woven Electronics Corporation Unitary woven jacket and electrical transmission cable and method of making same
US4746769A (en) * 1983-02-15 1988-05-24 Woven Electronics Corporation Multilayer woven high density electrical transmission cable and method
US4700054A (en) * 1983-11-17 1987-10-13 Raychem Corporation Electrical devices comprising fabrics
US4639545A (en) * 1984-02-07 1987-01-27 Raychem Limited Recoverable article for screening
US4668545A (en) * 1984-09-14 1987-05-26 Raychem Corp. Articles comprising shaped woven fabrics
US4654748A (en) * 1985-11-04 1987-03-31 Coats & Clark, Inc. Conductive wrist band
US5045706A (en) * 1989-10-30 1991-09-03 Pioneer Electronic Corporation Fluorescent screen
US5358758A (en) * 1989-12-06 1994-10-25 Albany International Corp. Structural member
US5501133A (en) * 1990-03-29 1996-03-26 Albany International Corp. Apparatus for making a braid structure
US5697969A (en) * 1991-03-25 1997-12-16 Meadox Medicals, Inc. Vascular prosthesis and method of implanting
US5102727A (en) * 1991-06-17 1992-04-07 Milliken Research Corporation Electrically conductive textile fabric having conductivity gradient
US5767824A (en) * 1991-12-31 1998-06-16 Sarcos Group High-density, three-dimensional, intercoupled circuit structure
US5422462A (en) * 1993-04-12 1995-06-06 Matsushita Electric Industrial Co., Ltd. Electric heating sheet
US5802607A (en) * 1995-10-20 1998-09-08 Triplette; Walter W. Fencing jackets made from electrically conductive threads
US6032450A (en) * 1996-07-01 2000-03-07 Spoerry & Co. Ag Method for producing an electrically conductive yarn, the electrically conductive yarn and use of the electrically conductive yarn
US6045575A (en) * 1997-09-10 2000-04-04 Amt, Inc. Therapeutic method and internally illuminated garment for the management of disorders treatable by phototherapy
US6145551A (en) * 1997-09-22 2000-11-14 Georgia Tech Research Corp. Full-fashioned weaving process for production of a woven garment with intelligence capability
US6210771B1 (en) * 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
US5927060A (en) * 1997-10-20 1999-07-27 N.V. Bekaert S.A. Electrically conductive yarn
US6370019B1 (en) * 1998-02-17 2002-04-09 Sarnoff Corporation Sealing of large area display structures
US5962967A (en) * 1998-03-19 1999-10-05 Kiryuschev; Irina Electroluminescent device and method of manufacturing same
US6432850B1 (en) * 1998-03-31 2002-08-13 Seiren Co., Ltd. Fabrics and rust proof clothes excellent in conductivity and antistatic property
US6381482B1 (en) * 1998-05-13 2002-04-30 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure
US6315009B1 (en) * 1998-05-13 2001-11-13 Georgia Tech Research Corp. Full-fashioned garment with sleeves having intelligence capability
US6326947B1 (en) * 1999-03-02 2001-12-04 Microsoft Corporation Tactile character input in computer-based devices
US6072619A (en) * 1999-03-22 2000-06-06 Visson Ip, Llc Electro-optical light modulating device
US6153124A (en) * 2000-03-23 2000-11-28 Hung; Chu-An Electrically-conductive fabric
US20010036785A1 (en) * 2000-03-29 2001-11-01 Seiren Co., Ltd. Electrically conductive fabric
US20020076948A1 (en) * 2000-10-16 2002-06-20 Brian Farrell Method of manufacturing a fabric article to include electronic circuitry and an electrically active textile article
US20020074937A1 (en) * 2000-12-18 2002-06-20 Felix Guberman Flexible material for electrooptic displays
US20020167483A1 (en) * 2001-05-10 2002-11-14 Metcalf Darrell J. Apparel with contiguous video-imaging surface and apparatus for controlling and formatting video imagery on such surfaces
US6608438B2 (en) * 2001-11-09 2003-08-19 Visson Ip Llc 3-D flexible display structure
US7144830B2 (en) * 2002-05-10 2006-12-05 Sarnoff Corporation Plural layer woven electronic textile, article and method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986177B2 (en) 2009-06-19 2015-03-24 Tau Orthopedics, Llc Low profile passive exercise garment
US9770617B2 (en) 2009-06-19 2017-09-26 Tau Orthopedics, Llc Low profile passive exercise garment
US9656117B2 (en) 2009-06-19 2017-05-23 Tau Orthopedics, Llc Wearable resistance garment with power measurement
US9433814B2 (en) 2009-06-19 2016-09-06 Tau Orthopedics, Llc Toning garment with integrated damper
US9375603B2 (en) 2009-06-19 2016-06-28 Tau Orthopedics, Llc Garment for elevating physiological load under motion
US9327156B2 (en) 2009-06-19 2016-05-03 Tau Orthopedics, Llc Bidirectional, neutral bias toning garment
US20110111932A1 (en) * 2009-06-19 2011-05-12 Von Hoffmann Kaitlin Methods and apparatus for muscle specific resistance training
US20110229663A1 (en) * 2010-03-17 2011-09-22 Villarreal Jr Jesse Solid-core panel incorporating decorative and/or functional material
US8551280B2 (en) 2010-03-17 2013-10-08 Jesse Villarreal, JR. Solid-core panel incorporating decorative and/or functional material
CN102892580A (en) * 2010-03-17 2013-01-23 小杰西·维拉里尔 Solid-core panel incorporating decorative and/or functional material
WO2011116144A1 (en) * 2010-03-17 2011-09-22 Villarreal Jesse Jr Solid-core panel incorporating decorative and/or functional material
US20140338721A1 (en) * 2011-09-13 2014-11-20 Donald G. Parent Photovoltaic textiles
WO2015027228A1 (en) * 2013-08-22 2015-02-26 Parent Donald G Photovoltaic textiles
US9419236B2 (en) 2013-08-22 2016-08-16 Donald G. Parent Photovoltaic textiles
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US20160249478A1 (en) * 2015-02-20 2016-08-25 Microduino Inc. Electrical modules and modular electronic building systems
US9801300B2 (en) * 2015-02-20 2017-10-24 Microduino Inc. Electrical modules and modular electronic building systems

Also Published As

Publication number Publication date Type
KR20050046656A (en) 2005-05-18 application
US20070049147A1 (en) 2007-03-01 application
JP2005525481A (en) 2005-08-25 application
US20120118427A1 (en) 2012-05-17 application
EP1507906A1 (en) 2005-02-23 application
CN1650057A (en) 2005-08-03 application
US20030211797A1 (en) 2003-11-13 application
US7144830B2 (en) 2006-12-05 grant
WO2003095729A1 (en) 2003-11-20 application
EP1507906A4 (en) 2006-08-23 application

Similar Documents

Publication Publication Date Title
US4824215A (en) Liquid crystal display apparatus
US5008788A (en) Multi-color illumination apparatus
US6549179B2 (en) LED display assembly
US6965196B2 (en) Electroluminescent sign
US4999936A (en) Illuminated sign
US6346777B1 (en) Led lamp apparatus
US7952107B2 (en) Solid state light sheet and encapsulated bare die semiconductor circuits with electrical insulator
US7413802B2 (en) Energy active composite yarn, methods for making the same, and articles incorporating the same
US4322735A (en) Display device
US20110006316A1 (en) Lighting device, display, and method for manufacturing the same
US6424092B1 (en) Flat display device and wiring method thereof, and image display system
US6279170B1 (en) Active labels for garments
US7199527B2 (en) Display device and methods of manufacturing and control
US7559131B2 (en) Method of making a radio frequency identification (RFID) tag
US5929562A (en) Organic light-emitting devices
US20050156870A1 (en) Refrigerator comprising a function display unit
US20030214471A1 (en) Electrooptical display with changeable pictures
EP0884782A1 (en) Integrated electro-optical package and method of fabrication
US6624565B2 (en) Cellular flexible display structure
WO2000072638A1 (en) Electroluminescent display
US6608438B2 (en) 3-D flexible display structure
US5131877A (en) Electroluminescent device
Dhawan et al. Woven fabric-based electrical circuits: Part i: Evaluating interconnect methods
US20060077144A1 (en) Light emitting display
US20020187697A1 (en) Electrooptical display

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHILADELPHIA UNIVERSITY, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BROOKSTEIN, DAVID STUART;GOVARINDARAJ, MUTHU;REEL/FRAME:022849/0052

Effective date: 20090619