Connect public, paid and private patent data with Google Patents Public Datasets

Extendible Stent Apparatus and Method for Deploying the Same

Download PDF

Info

Publication number
US20090132028A1
US20090132028A1 US12359872 US35987209A US20090132028A1 US 20090132028 A1 US20090132028 A1 US 20090132028A1 US 12359872 US12359872 US 12359872 US 35987209 A US35987209 A US 35987209A US 20090132028 A1 US20090132028 A1 US 20090132028A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
stent
vessel
main
flared
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12359872
Inventor
Gil M. Vardi
Charles J. Davidson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Advanced Stent Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/856Single tubular stent with a side portal passage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/064Blood vessels with special features to facilitate anastomotic coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • A61F2002/067Y-shaped blood vessels modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/821Ostial stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91583Adjacent bands being connected to each other by a bridge, whereby at least one of its ends is connected along the length of a strut between two consecutive apices within a band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers

Abstract

An imagable extendable stent apparatus for insertion into a bifurcating vessel or a vessel opening. The stent apparatus comprises a main stent and a flared stent, which may used individually or in combination with each other. The flared stent may be interlocked with the main stent to provide stent coverage over the entire region of a bifurcation. The main stent of the apparatus may be deployed at the bifurcation point of a vessel, allowing unimpeded future access to the side branch of the bifurcated vessel. The flared stent may be employed at vessel openings. Also disclosed and claimed are methods for implanting the extendable stent apparatus into the bifurcation point or the ostium of a subject vessel.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a Continuation application from application Ser. No. 11/267,437, filed Nov. 4, 2005, which is a Continuation application from application Ser. No. 10/050,524, filed Jan. 18, 2002, now issued U.S. Pat. No. 6,962,602, issued Nov. 8, 2005, which is a Continuation application from application Ser. No. 08/935,383, filed Sep. 23, 1997, now abandoned which is a Divisional application from application Ser. No. 08/744,002, filed Nov. 4, 1996, now abandoned, the contents of which is hereby incorporated by reference.
  • BACKGROUND
  • [0002]
    A type of endoprosthesis device, commonly referred to as a stent, is placed or implanted within a vein, artery or other tubular body organ for treating occlusions, stenoses, or aneurysms of the vessel. These stent devices are implanted within tubular vessels to reinforce collapsing, partially occluded, weakened, or abnormally dilated segments of the vessel wall. Stents have been used to treat dissections in blood vessel walls caused by balloon angioplasty of the coronary arteries as well as peripheral arteries and to improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall.
  • [0003]
    Stents also have been successfully implanted in the urinary tract, the bile duct, the esophagus and the tracheo-bronchial tree to reinforce those body organs. Two randomized multicenter trials have recently shown a lower restenosis rate in stent treated coronary arteries compared with balloon angioplasty alone (Serruys P W et. al. New England Journal of Medicine 331: 489-495, 1994, Fischman D L et. al. New England Journal of Medicine 331: 496-501, 1994).
  • [0004]
    One of the drawbacks of conventional stents is that they are produced in a straight tubular configuration. The use of such stents to treat disease at or near a branch or bifurcation of a vessel runs the risk of compromising the degree of patency of the primary vessel and/or its branches or bifurcation and also limits the ability to insert a second stent into the side branch if the angioplasty result is suboptimal. This may occur as a result of several mechanisms such as displacing diseased tissue or plaque shifting, vessel spasm, dissection with or without intimal flaps, thrombosis, and embolism.
  • [0005]
    The risk of branch compromise is increased in two anatomical situations. First the side branch can be compromised when there is a stenosis in the origin of the side branch. Second, when there is an eccentric lesion at the bifurcation site, asymmetric expansion can cause either plaque shifting or dissection at the side branch origin. There are reports of attempting to solve this problem by inserting a balloon into the side branch through the stent struts; however, this technique carries the risk of balloon entrapment and other major complications (Nakamura, S. et al., Catheterization and Cardiovascular Diagnosis 34: 353-361 (1995)). Moreover, adequate dilatation of the side branch is limited by elastic recoil of the origin of the side branch. In addition, the stent may pose a limitation to blood flow and may limit access to the side branch. The term “stent jail” is often used to describe this concept. In this regard, the tubular slotted hinged design of the Palmaz-Schatz intracoronary stent, in particular, is felt to be unfavorable for lesions with a large side branch and it is believed to pose a higher risk of side branch vessel entrapment where the stent prevents or limits access to the side branch. Id.
  • [0006]
    One common procedure for implanting the endoprosthesis or stent is to first open the region of the vessel with a balloon catheter and then place the stent in a position that bridges the treated portion of the vessel in order to prevent elastic recoil and restenosis of that segment. The angioplasty of the bifurcation lesion has traditionally been performed using the kissing balloon technique where two guidewires and two balloons are inserted, one into the main branch and the other into the side branch. Stent placement in this situation will require the removal of the guidewire from the side branch and reinsertion of the guidewire via the stent struts and insertion of a balloon through the struts of the stent. The removal of the guidewire poses the risk of occlusion of the side branch during the deployment of the stent in the main branch.
  • [0007]
    Prior art patents refer to the construction and design of both the stent as well as the apparatus for positioning the stent within the vessel. One representative patent to Chaudhury, U.S. Pat. No. 4,140,126, discloses a technique for positioning an elongated cylindrical stent at a region of an aneurysm to avoid catastrophic failure of the blood vessel wall. The '126 patent discloses a cylinder that expands to its implanted configuration after insertion with the aid of a catheter. Dotter, U.S. Pat. No. 4,503,569, discloses a spring stent which expands to an implanted configuration with a change in temperature. The spring stent is implanted in a coiled orientation and is then heated to cause the spring to expand. Palmaz, U.S. Pat. No. 4,733,665, discloses a number of stent configurations for implantation with the aid of a catheter. The catheter includes a mechanism for mounting and retaining the vascular prosthesis or stent, preferably on an inflatable portion of the catheter. The stents are implanted while imaged on a monitor. Once the stent is properly positioned, the catheter is expanded and the stent separated from the catheter body. The catheter can then be withdrawn from the subject, leaving the stent in place within the blood vessel. Palmaz, U.S. Pat. No. 4,739,762, discloses an expandable intraluminal graft. Schjeldahl et. al., U.S. Pat. No. 4,413,989, discloses a variety of balloon catheter constructions. Maginot, U.S. Pat. No. 5,456,712 and Maginot, U.S. Pat. No. 5,304,220 disclose graft and stent assembly and method of implantation where a stent is used to reinforce a graft surgically inserted into a blood vessel in order to bypass an occlusion. However, none of these patents relate to the treatment of bifurcation lesions, or disclose a bifurcating stent apparatus and method for deploying the same.
  • [0008]
    Taheri, U.S. Pat. No. 4,872,874, Piplani et. al., U.S. Pat. No. 5,489,295, and Marin et al., U.S. Pat. No. 5,507,769, disclose bifurcating graft material which may be implanted with stents. However, there is no mention of bifurcation of the stent, and the stent is used only to anchor the graft into the vessel wall. It does not reinforce the vessel wall, nor does it prevent restenosis after angioplasty.
  • [0009]
    MacGregor, U.S. Pat. No. 4,994,071, discloses a hinged bifurcating stent. In the 071' patent, in contrast to the present invention, there is a main stent with two additional stents attached at one end, creating a single unit with a bifurcation. The two additional stents are permanently attached and cannot be removed from the main stent. Thus, this invention may not be used in non-bifurcation vessels. In addition, studies with hinge-containing stents have shown that there is a high incidence of restenosis (tissue growth) at the hinge point that may cause narrowing or total occlusion of the vessel and thus compromise blood flow. Furthermore, this design has a relatively large size which makes insertion into the vessel difficult. Also, by having the two additional stents connected to the main stent, tracking into a wide-angle side branch may be difficult and may carry the risk of dissection of the vessel wall. Furthermore, once the device of the '071 patent is implanted, it is impossible to exchange the side branch stent should the need for a different stent size arise.
  • [0010]
    In general, when treating a bifurcation lesion using commercially available stents, great care should be taken to cover the origin of the branch because if left uncovered, this area is prone to restenosis. In order to cover the branch origin, conventional stents must either protrude into the lumen of the main artery or vessel from the branch (which may causes thrombosis [clotting of blood], again compromising blood flow), or they must be placed entirely within the branch, and will generally not cover the origin of the bifurcation. Another frequent complication experienced with the stenting of bifurcations include narrowing or occlusion of the origin of a side branch spanned by a stent placed in the main branch. Lastly, placement of a stent into a main vessel where the stent partially or completely extends across the opening of a branch may make future access into such branch vessels difficult if not impossible.
  • [0011]
    In addition, conventional stent technology is inadequate as a means of treating ostial lesions. Ostial lesions are lesions at the origin of a vessel. For example, ostial lesions may form in renal arteries, which are side branches extending from the aorta. Ostial lesions are prone to restenosis due to elastic recoil of the main vessel, such as the aorta. Therefore, the stent cover must include the thickness of the wall of the main vessel. This is extremely difficult to accomplish without protrusion of the stent into the main vessel.
  • [0012]
    Lastly, conventional stents are difficult to visualize during and after deployment. While some prior art balloon catheters are “marked” at the proximal and distal ends of the balloon with imagable patches, no FDA-approved stents are currently available which are themselves imagable through currently known imaging procedures used when inserting the stents into a vessel.
  • [0013]
    Accordingly, there is a need for an improved stent apparatus and method for deploying the same which 1) may be used to effectively treat bifurcation lesions which reduces the risk of restenosis or occlusion of the side branch and which completely covers bifurcation lesions with the stent apparatus, 2) may be used to treat lesions in one branch of a bifurcation while preserving access to the other branch for future treatment, 3) may be used to treat ostial lesions, 4) allows for differential sizing of the stents in a bifurcated stent apparatus even after the main stent is implanted, and which 5) may be readily visualized by current or future visualization techniques.
  • SUMMARY OF THE INVENTION
  • [0014]
    The present invention concerns a novel extendable stent apparatuses and method for deploying the same. More particularly, the invention concerns a stent apparatus comprising an extendable stent which is suitable for treating bifurcation lesions, and which may also be used to treat lesions at the origin of a blood vessel or other organ. As used herein, the term “vessel” means any tubular tissue, and is not limited to vessels of the vascular system. Devices constructed in accordance with the invention include, singularly or in combination, a flared stent comprising a compressible flared portion at its proximal end, which flared portion may comprise hooks, compressible mesh or any other means of creating such a flared portion at the proximal end of the stent, and a main stent comprising at least one substantially circular opening located between its proximal and distal ends. For ease of visualization, both the flared stent and the main stent may be comprised of materials which are imagable, or the stents of the invention may be “marked” at the ends with an imagable substance and the main stent may also be marked at any opening. At least one flared stent may be extended through at least one opening of the main stent into at least one branch vessel for treating bifurcated or branched lesions, or the stents of the invention may be inserted individually for the treatment of ostial lesions, or lesions near bifurcations requiring a stent in either the main or the branch vessel with unobstructed access to the unstented vessel in the bifurcation. The methods of the invention comprises a two-step process used to deploy both the main and the flared stent in a bifurcated vessel, or to deploy the main stent only within a bifurcated vessel.
  • [0015]
    The stent apparatus of the invention may be constructed from any non-immunoreactive material that allows the apparatus to be expanded from an initial shape to a shape which conforms to the shape of the vessel or vessels into which the apparatus is inserted, including but not limited to any of the materials disclosed in the prior art stents, which are incorporated herein by reference. It is hypothesized that the stent apparatuses of the invention may further be constructed of a substance which is observable by imaging methods including but not limited to magnetic resonance, ultrasound, radio-opaque or contrast-dye, or may be marked at certain points including but not limited to the ends and around any opening or flared portion in a stent of the invention, with a material which is discernable by imaging methods as described above.
  • [0016]
    A stent constructed in accordance with the invention is suitable for implantation into any vessel in the body, including but not limited to vessels in the cardiac system, the peripheral vascular system, the carotid and intracranial vessels, the venous system, the renal system, the biliary system, the gastrointestinal system, the tracheobronchial system, the biliary system and the genitourinary system.
  • [0017]
    The stents of the invention are deployed utilizing a set of guidewires and catheters, which are then withdrawn from the subject following deployment of the stents. The stents of the invention may be self-expanding to conform to the shape of the subject vessel, or they may be expanded utilizing balloon catheters, or by any method currently known or developed in the future which is effective for expanding the stents of the invention. The flared stent of the invention is constructed such that the flared portion is confined along the wall of the flared stent by a sheath running parallel to the longitudinal axis of the flared stent until deployment, during which the sheath is removed and the flared portion is expanded into a configuration extending radially, at least in part, from the longitudinal axis of the flared stent.
  • [0018]
    Thus, it is an object of the present invention to provide a double-stent apparatus which makes it possible to completely cover the origin of a bifurcation lesion with a stent apparatus.
  • [0019]
    Another object of the invention is to provide a single-stent apparatus and method for deploying the same which may be used to treat only one branch of a bifurcation lesion but which will facilitate future treatment of the corresponding branch.
  • [0020]
    Yet another object of the invention is to provide a single-stent apparatus which is effective in treating ostial lesions.
  • [0021]
    A further object of the invention is to provide a method for insertion of the extendable double-stent apparatus into both the main and branch vessels of a bifurcation lesion.
  • [0022]
    Additionally, it is an object of the invention to provide a stent apparatus which is imagable during and after insertion.
  • [0023]
    These objects and other object advantages and features of the invention will become better understood from the detailed description of the invention and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0024]
    FIG. 1 is a schematic depiction of the double-stent apparatus of the present invention in which both the main stent and the flared stent are fully dilated.
  • [0025]
    FIG. 2 is a schematic depiction of the main stent of the apparatus of the invention as deployed, without placement of the flared stent.
  • [0026]
    FIG. 3 is a schematic depiction of the flared stent of the apparatus as deployed, without the main stent.
  • [0027]
    FIG. 4 is a schematic depiction of the main stent of the apparatus deployed within a subject vessel.
  • [0028]
    FIG. 5 is a schematic depiction of the double-stent bifurcating stent apparatus, where the main stent is deployed and showing the placement of the flared stent apparatus prior to full deployment of the flared stent.
  • [0029]
    FIG. 6 is a schematic depiction of the method of the invention.
  • [0030]
    FIG. 6 a depicts initial placement of the main stent of the bifurcating stent apparatus into the vessel, along with the insertion of guidewire and stabilizing catheter for placement of the flared stent into the branch vessel of the subject.
  • [0031]
    FIG. 6 b is a schematic depiction of the step of inflating the main stent of the invention.
  • [0032]
    FIG. 6 c is a schematic depiction of the deployment of the flared stent over the side branch guidewire, through an opening in the main stent and into the branch vessel of the subject.
  • [0033]
    FIG. 6 d is a schematic depiction of the removal of the protective sheath of the flared stent, allowing for full expansion of the flared portion prior to placement and deployment.
  • [0034]
    FIG. 6 e is a schematic depiction of the fully extended flared stent positioned into the branch by the catheter, but prior to full deployment.
  • [0035]
    FIG. 6 f is a schematic depiction of the fully dilated main stent and the fully positioned flared stent, where the flared stent is being dilated by inflation of the balloon.
  • [0036]
    FIG. 6 g is a schematic depiction of the fully dilated bifurcating double stent of the invention, positioned into the bifurcation in a subject vessel.
  • [0037]
    The rectilinear matrices shown in the drawings are intended to show the shapes of the surfaces only, and do not illustrate the actual surface patterns or appearances of the stent apparatuses of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0038]
    The bifurcating double-stent apparatus 10 of the present invention comprises a generally cylindrical main stent 12 and a generally cylindrical flared stent 15, which are shown as fully dilated in a subject main vessel 8 and a subject branch vessel 7, as illustrated in FIG. 1.
  • [0039]
    The main stent 12 contains at least one generally circular opening 16 located between the proximal end 26 and the distal end 28 of the main stent 12 (FIG. 2), which opening is positioned over the opening 48 of a branch vessel in a vessel bifurcation 50, as shown in FIG. 2. The ends of the stent 12 and the opening are imaged during imaging procedures by placing markers 56 around the edges of the opening 16 in the main stent 12 and at the proximal end 26 and distal end 28 of the main stent, as illustrated in FIG. 4.
  • [0040]
    The flared stent apparatus 15 of the present invention comprises a generally cylindrical flared stent comprising a proximal end 30 and a distal end 32, as shown in FIG. 3. The proximal end 30 comprises a flared portion, illustrated here as extended loops 18, which flared portion, when dilated, is positioned within the lumen 58 of the main vessel 8 (FIG. 3). The ends of the flared stent 15 and the flared portion 18 are imaged during imaging procedures by placing markers 56 around the flared portion 18 and at the proximal end 30 and distal end 32 of the flared stent, as illustrated in FIG. 5.
  • [0041]
    As shown in the embodiment of the invention illustrated in FIG. 4, a guidewire 20 is inserted into the vessel 8 prior to insertion of the main stent 12, and is used to guide the main stent 12 into position within the vessel 8. Prior to insertion and dilation, the main stent 12 is disposed around the distal end of a catheter 48 which may include an inflatable balloon 24. The main stent/catheter apparatus is then threaded onto the main guidewire 20 and into the vessel 8. The main stent 12 is dilated by inflation of the balloon 24 until it expands the walls of the vessel 8, and is thus affixed into place.
  • [0042]
    As shown in the embodiment of the invention illustrated in FIG. 5, prior to insertion of the flared stent 15, a guidewire 36 and a stabilizing catheter 44 are inserted through the opening 16 in the main stent 12, and into a branch vessel. The stabilizing catheter 44 is used to place the opening in the main stent 12 over the opening 16 in the bifurcation. The guidewire 36 is used to guide the flared stent 15 into position within a vessel. During insertion and prior to dilation, the flared stent 15 is disposed around the distal end of a branch catheter 54 which may include an inflatable balloon 25, and the flared portion 18 of the flared stent 15 is held in a compressed position by a protective sheath 34.
  • [0043]
    In the bifurcating double-stent apparatus 10 of the invention, once the main stent 12 is dilated and the stabilizing catheter 44 is removed, the flared stent 15 is inserted over the branch guidewire 36 and through the opening 16 of the main stent 12 substantially as shown in FIG. 5, and affixed in place by the expansion of the flared portion 18 positioned at the proximal end 30 of the flared stent, as shown in FIGS. 1 and 5. The angle at which the flared stent 15 is affixed depends upon the vessel structure into which the bifurcating stent apparatus 10 is inserted (FIG. 1).
  • [0044]
    The inventive two-stage method for implanting the novel bifurcating double-stent apparatus 10 begins with insertion of the main guidewire 20 into the subject main vessel 8 and across the bifurcation 50. Once the main guidewire 20 is in position in the main vessel 8, the main stent 12 is mounted around a catheter 48 (which may also comprise a balloon 24), and the catheter 48 and stent 12 are inserted into the main vessel 8. The stent 12 is positioned so that the opening 16 is directly over the bifurcation point 50 in the subject vessel (FIG. 6 a). In order to aid such positioning, a side branch guidewire 36 and a stabilizing catheter 44 (as depicted in FIGS. 5 and 6) are also inserted through the opening 16 of the main stent 12 and into the branch vessel 7 (FIG. 6 a).
  • [0045]
    In an alternative embodiment of the method of the invention, the main stent 12, the catheters 44 and 48 and the side branch guidewire 36 may be assembled in advance of insertion (with the stabilizing catheter 44 and the side branch guidewire positioned through the opening 16 of the main stent) into the subject, and then inserted into the bifurcation point 50 in the main vessel 8 simultaneously, after which the side branch guidewire 36 and the stabilizing catheter 44 are threaded into the branch vessel 7 in order to properly align the opening 16 in the main stent 12 (FIG. 6 a).
  • [0046]
    To affix the main stent 12 in the desired position within the vessel 8, the stent 12 may be dilated by inflating the balloon 24 until the main stent 12 is in contact with the walls of the vessel 8 (FIG. 6 b). Once the main stent 12 is dilated, the catheters 44 and 48 are withdrawn, leaving the fully positioned main stent 12 and the main guidewire 20 in the main subject vessel, and the side branch guidewire 36 in the subject branch vessel (FIG. 6 c).
  • [0047]
    In the second stage of the method of deploying the bifurcating double-stent of the invention, the flared stent catheter 54, containing the compressed flared stent 15 in a protective sheath 34 and which may further contain a balloon 25 disposed around the flared stent catheter 54 and inside the compressed flared stent 15, is inserted into the subject branch vessel 7 around the side branch guidewire 36 as shown in FIG. 6 c. The compressed flared stent 15 is initially positioned so that the compressed proximal end 30 of the flared stent extends into the lumen 42 of the main stent 12 to facilitate full expansion of the flared portion 18 after withdrawal of the protective sheath 34, prior to the final positioning of the flared stent 15 into the branch of the bifurcation (FIG. 6 c). The distal end 32 of the flared stent is initially positioned within the branch vessel 7 (FIG. 6 c). After the proximal end 30 of the compressed flared stent is properly placed within the lumen 42 of the main stent, the protective sheath 34 is withdrawn from the vessel 8, and the flared portion 18 of the flared stent 15 is decompressed to extend radially, at least in part, to the longitudinal axis of the flared stent 15, as shown in FIG. 6 d. After the flared portion 18 of the flared stent 15 is in its flared configuration (as shown in FIG. 6 d), the flared stent 15 is advanced into the side branch 7 at its proximal end 30 until at least a portion of flared portion 18 of the flared sheath 15 contacts at least a portion of an edge of the opening 16 of the main stent 12, as shown in FIG. 6 e. In this example, a balloon 25 is inflated in order to dilate the flared stent 15 to bring the walls of the flared stent 15 into contact with the walls of the branch vessel 7, as shown in FIG. 6 f. All remaining catheters and guidewires are then withdrawn from the subject, leaving the fully deployed bifurcating double-stent apparatus of the invention 10, comprising the main stent 12 with at least one opening 16, and the flared stent 15 positioned through the opening 16 into the branch vessel 7, as shown in FIG. 6 g.
  • [0048]
    When treating ostial lesions, the flared stent 15 alone is used, and is positioned utilizing catheters and guidewires as described above, except that a stabilizing catheter is not used, and the flared portion 18 of the flared stent is positioned at the ostium of a vessel, instead of into a side branch through the an opening 16 in a main branch. After the flared stent 15 is positioned near the ostium of a subject vessel, the protective sheath 34 is retracted in order to allow the flared portion to fully expanded and the flared stent 15 is further advanced with the proximal end of the catheter until the unfolded hooks 18 are in contact with the walls of the subject vessel.
  • [0049]
    All the stents of the invention may be deployed using the methods of the invention without resort to a balloon catheter. For example, a self-expanding compressed stent contained within a protective sheath could be self-dilated by retraction of a protective sheath. Other methods of dilation of the stents of the invention may exist, or may become available in the future, and such methods are contemplated as being within the scope of this invention. While this example used self-unfolding loops to demonstrate one means of creating a flared portion, any other means of creating a flare, such as but not limited to creating a roll in the stent material which is then compressed, is contemplated as within the scope of this invention.
  • [0050]
    It is the intent that the invention include all modifications and alterations from the disclosed embodiments that fall within the scope of the claims of the invention.

Claims (6)

1. A stent for treatment of a vessel bifurcation, the stent comprising:
a) a main body portion adapted to be positioned in a main vessel and comprising a surrounding side wall defining a passageway, the passageway extending to a first opening at a first end of the main body and a second opening at a second end of the main body;
b) at least one side branch opening provided in the surrounding side wall of the main body portion and in fluid flow communication with the passageway extending to the first opening and the second opening; and
c) a side branch ring provided on the surrounding side wall of the main body portion to surround and define the at least one side branch opening, wherein the side branch ring is sized to be positioned over an opening of a side branch vessel such that the side branch ring is adapted to seat against a side wall of the main vessel surrounding the intersection with the side branch vessel when the main body is positioned in the main artery.
2. The stent of claim 1 wherein the main body is further adapted to receive a secondary body within the at least one side branch opening.
3. The stent of claim 2 wherein at least a portion of the secondary body is engaged to the side branch ring.
4. The stent of claim 3 wherein the at least a portion of the secondary body comprises a flared portion.
5. The stent of claim 1 wherein the at least one side branch opening is generally circular.
6. The stent of claim 1 wherein the at least one side branch opening is at least partially defined by a plurality of radiopaque markers.
US12359872 1996-11-04 2009-01-26 Extendible Stent Apparatus and Method for Deploying the Same Abandoned US20090132028A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US74400296 true 1996-11-04 1996-11-04
US93538397 true 1997-09-23 1997-09-23
US10050524 US6962602B2 (en) 1996-11-04 2002-01-18 Method for employing an extendible stent apparatus
US11267437 US20060085061A1 (en) 1996-11-04 2005-11-04 Extendible stent apparatus and method for deploying the same
US12359872 US20090132028A1 (en) 1996-11-04 2009-01-26 Extendible Stent Apparatus and Method for Deploying the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12359872 US20090132028A1 (en) 1996-11-04 2009-01-26 Extendible Stent Apparatus and Method for Deploying the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11267437 Continuation US20060085061A1 (en) 1996-11-04 2005-11-04 Extendible stent apparatus and method for deploying the same

Publications (1)

Publication Number Publication Date
US20090132028A1 true true US20090132028A1 (en) 2009-05-21

Family

ID=24991046

Family Applications (6)

Application Number Title Priority Date Filing Date
US09007265 Expired - Lifetime US6210429B1 (en) 1996-11-04 1998-01-14 Extendible stent apparatus
US09827637 Abandoned US20010037137A1 (en) 1996-11-04 2001-04-06 Extendible stent apparatus
US09919226 Abandoned US20020156516A1 (en) 1996-11-04 2001-07-31 Method for employing an extendible stent apparatus
US10050524 Expired - Fee Related US6962602B2 (en) 1996-11-04 2002-01-18 Method for employing an extendible stent apparatus
US11267437 Abandoned US20060085061A1 (en) 1996-11-04 2005-11-04 Extendible stent apparatus and method for deploying the same
US12359872 Abandoned US20090132028A1 (en) 1996-11-04 2009-01-26 Extendible Stent Apparatus and Method for Deploying the Same

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US09007265 Expired - Lifetime US6210429B1 (en) 1996-11-04 1998-01-14 Extendible stent apparatus
US09827637 Abandoned US20010037137A1 (en) 1996-11-04 2001-04-06 Extendible stent apparatus
US09919226 Abandoned US20020156516A1 (en) 1996-11-04 2001-07-31 Method for employing an extendible stent apparatus
US10050524 Expired - Fee Related US6962602B2 (en) 1996-11-04 2002-01-18 Method for employing an extendible stent apparatus
US11267437 Abandoned US20060085061A1 (en) 1996-11-04 2005-11-04 Extendible stent apparatus and method for deploying the same

Country Status (5)

Country Link
US (6) US6210429B1 (en)
DE (2) DE69736676D1 (en)
EP (2) EP1723931B1 (en)
ES (1) ES2273363T3 (en)
WO (2) WO1998019628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm

Families Citing this family (361)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017363A (en) * 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US6436104B2 (en) 1996-01-26 2002-08-20 Cordis Corporation Bifurcated axially flexible stent
US6258116B1 (en) * 1996-01-26 2001-07-10 Cordis Corporation Bifurcated axially flexible stent
US6770092B2 (en) 1996-05-03 2004-08-03 Medinol Ltd. Method of delivering a bifurcated stent
US5755734A (en) * 1996-05-03 1998-05-26 Medinol Ltd. Bifurcated stent and method of making same
US6440165B1 (en) 1996-05-03 2002-08-27 Medinol, Ltd. Bifurcated stent with improved side branch aperture and method of making same
US6251133B1 (en) 1996-05-03 2001-06-26 Medinol Ltd. Bifurcated stent with improved side branch aperture and method of making same
US7641685B2 (en) 1996-05-03 2010-01-05 Medinol Ltd. System and method for delivering a bifurcated stent
US7686846B2 (en) * 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
US20030139803A1 (en) * 2000-05-30 2003-07-24 Jacques Sequin Method of stenting a vessel with stent lumenal diameter increasing distally
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) * 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
EP1047356B2 (en) 1998-01-14 2014-03-12 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US20050060027A1 (en) 1999-01-13 2005-03-17 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US8298280B2 (en) 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US6692483B2 (en) 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
US8257425B2 (en) * 1999-01-13 2012-09-04 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US8211167B2 (en) 1999-12-06 2012-07-03 Boston Scientific Scimed, Inc. Method of using a catheter with attached flexible side sheath
US6835203B1 (en) 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7591846B2 (en) 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
US6599316B2 (en) * 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
WO1998019625A3 (en) * 1996-11-08 1998-07-02 Russell A Houser Percutaneous bypass graft and securing system
US6096073A (en) * 1997-02-25 2000-08-01 Scimed Life Systems, Inc. Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel
US6936057B1 (en) * 1997-05-19 2005-08-30 Cardio Medical Solutions, Inc. (Cms) Device and method for partially occluding blood vessels using flow-through balloon
US6056762A (en) * 1997-05-22 2000-05-02 Kensey Nash Corporation Anastomosis system and method of use
US6409755B1 (en) 1997-05-29 2002-06-25 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
US6740113B2 (en) 1998-05-29 2004-05-25 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
US6165195A (en) * 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6254627B1 (en) * 1997-09-23 2001-07-03 Diseno Y Desarrollo Medico S.A. De C.V. Non-thrombogenic stent jacket
US6520988B1 (en) 1997-09-24 2003-02-18 Medtronic Ave, Inc. Endolumenal prosthesis and method of use in bifurcation regions of body lumens
US7662409B2 (en) * 1998-09-25 2010-02-16 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US7520890B2 (en) * 1998-01-26 2009-04-21 Phillips Peter W Reinforced graft and method of deployment
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6099497A (en) 1998-03-05 2000-08-08 Scimed Life Systems, Inc. Dilatation and stent delivery system for bifurcation lesions
US6293967B1 (en) 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6241762B1 (en) * 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7314483B2 (en) * 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US7500988B1 (en) 2000-11-16 2009-03-10 Cordis Corporation Stent for use in a stent graft
US20040254635A1 (en) 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US6887268B2 (en) * 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
NL1009028C2 (en) * 1998-04-28 1999-10-29 Adri Marinus Blomme Suturing means for connecting a tubular vascular prosthesis to a blood vessel in the body, as well as branch-off means, a vascular prosthesis, a device for insertion into the body and attachment of a graft vessel and a vascular prosthesis system.
US6168621B1 (en) 1998-05-29 2001-01-02 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
FR2780270B1 (en) * 1998-06-25 2000-12-15 Patrice Bergeron three-dimensional positioning system of material endoluminally
US6143002A (en) * 1998-08-04 2000-11-07 Scimed Life Systems, Inc. System for delivering stents to bifurcation lesions
US6514281B1 (en) 1998-09-04 2003-02-04 Scimed Life Systems, Inc. System for delivering bifurcation stents
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US20130190856A1 (en) * 1998-09-05 2013-07-25 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US6190403B1 (en) 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US7344557B2 (en) * 2003-11-12 2008-03-18 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US8007528B2 (en) * 2004-03-17 2011-08-30 Boston Scientific Scimed, Inc. Bifurcated stent
CA2358453A1 (en) * 1999-01-22 2000-07-27 Khalid Al-Saadon Expandable endovascular medical tubular stent
CA2360551C (en) * 1999-01-27 2009-12-22 Scimed Life Systems, Inc. Bifurcation stent delivery system
DE19906956B4 (en) * 1999-02-19 2011-07-21 QualiMed Innovative Medizin-Produkte GmbH, 21423 Stent as well as methods of making a stent
EP1031328A1 (en) * 1999-02-26 2000-08-30 AMS ITALIA S.r.l. Bifurcated stent delivery balloon catheter
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US7387639B2 (en) * 1999-06-04 2008-06-17 Advanced Stent Technologies, Inc. Short sleeve stent delivery catheter and methods
US8617231B2 (en) 2001-05-18 2013-12-31 Boston Scientific Scimed, Inc. Dual guidewire exchange catheter system
DE19938377A1 (en) * 1999-08-06 2001-03-01 Biotronik Mess & Therapieg Stent for vascular branches
CN1409622A (en) * 1999-09-23 2003-04-09 先进扩张技术公司 Bifurcation stent system and method
US6689156B1 (en) * 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
US6652567B1 (en) * 1999-11-18 2003-11-25 David H. Deaton Fenestrated endovascular graft
US20040106972A1 (en) * 2000-11-20 2004-06-03 Deaton David H. Fenestrated endovascular graft
US6361555B1 (en) * 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
WO2001054568A1 (en) * 2000-01-27 2001-08-02 Sterilis, Inc. Cavity enlarger method and apparatus
NL1014364C2 (en) * 2000-02-11 2001-08-14 Surgical Innovations Vof Umbrella-stent.
US6423090B1 (en) 2000-02-11 2002-07-23 Advanced Cardiovascular Systems, Inc. Stent pattern with staged expansion
NL1014559C2 (en) * 2000-02-11 2001-08-14 Surgical Innovations Vof Umbrella-stent.
US6814752B1 (en) 2000-03-03 2004-11-09 Endovascular Technologies, Inc. Modular grafting system and method
DE60101455T2 (en) * 2000-03-03 2004-09-23 Cook Inc., Bloomington Endovascular stent device having
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US7544206B2 (en) * 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US20020169497A1 (en) * 2001-01-02 2002-11-14 Petra Wholey Endovascular stent system and method of providing aneurysm embolization
WO2002015824A3 (en) * 2000-08-25 2003-02-13 Kensey Nash Corp Covered stents, systems for deploying covered stents
US7101391B2 (en) * 2000-09-18 2006-09-05 Inflow Dynamics Inc. Primarily niobium stent
US6669722B2 (en) * 2000-09-22 2003-12-30 Cordis Corporation Stent with optimal strength and radiopacity characteristics
US6908477B2 (en) * 2000-10-13 2005-06-21 Rex Medical, L.P. Methods of implanting covered stents with side branch
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
DE60142131D1 (en) 2000-10-16 2010-06-24 Conor Medsystems Inc The expandable medical device for delivering a beneficial agent
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
US6582394B1 (en) * 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
US8870946B1 (en) * 2000-12-11 2014-10-28 W.L. Gore & Associates, Inc. Method of deploying a bifurcated side-access intravascular stent graft
US6645242B1 (en) * 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
WO2002067815A1 (en) * 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent
WO2002067653A3 (en) * 2001-02-26 2003-03-13 Scimed Life Systems Inc Bifurcated stent and delivery system
US7799064B2 (en) * 2001-02-26 2010-09-21 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US6740114B2 (en) 2001-03-01 2004-05-25 Cordis Corporation Flexible stent
US6790227B2 (en) 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
US6918925B2 (en) 2001-03-23 2005-07-19 Hassan Tehrani Branched aortic arch stent graft and method of deployment
US6733521B2 (en) 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US8337540B2 (en) * 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
US6749628B1 (en) 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
JP2004529735A (en) * 2001-06-18 2004-09-30 イーバ コーポレイション Prosthesis Uese' aggregates and how to use it
US7547321B2 (en) * 2001-07-26 2009-06-16 Alveolus Inc. Removable stent and method of using the same
WO2003011182A3 (en) 2001-08-01 2003-10-16 Edoardo Scarcello Device for anastomosing anatomical ducts
DE10153542B4 (en) * 2001-10-30 2006-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A process for preparing adapters for blood vessels
DE10153541B4 (en) * 2001-10-30 2008-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Blood vessel adapter
US7029496B2 (en) 2001-11-07 2006-04-18 Scimed Life Systems, Inc. Interlocking endoluminal device
US20100016943A1 (en) 2001-12-20 2010-01-21 Trivascular2, Inc. Method of delivering advanced endovascular graft
US7537607B2 (en) * 2001-12-21 2009-05-26 Boston Scientific Scimed, Inc. Stent geometry for improved flexibility
US9539121B2 (en) 2002-02-07 2017-01-10 Dsm Ip Assets B.V. Apparatus and methods for conduits and materials
US6949121B1 (en) * 2002-02-07 2005-09-27 Sentient Engineering & Technology, Llc Apparatus and methods for conduits and materials
US6989024B2 (en) 2002-02-28 2006-01-24 Counter Clockwise, Inc. Guidewire loaded stent for delivery through a catheter
US20060253480A1 (en) * 2002-04-06 2006-11-09 Staples Peter E Collaborative design process for a design team, outside suppliers, and outside manufacturers
US20030195609A1 (en) * 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
CA2483778A1 (en) * 2002-04-29 2003-11-13 Gel-Del Technologies, Inc. Biomatrix structural containment and fixation systems and methods of use thereof
WO2003105922A3 (en) 2002-06-13 2004-10-07 Existent Inc Guidewire system
US20050288769A1 (en) * 2002-06-13 2005-12-29 Oren Globerman Mechanical structures and implants using said structures
US6858038B2 (en) * 2002-06-21 2005-02-22 Richard R. Heuser Stent system
US6761734B2 (en) 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
US20040044391A1 (en) * 2002-08-29 2004-03-04 Stephen Porter Device for closure of a vascular defect and method of treating the same
US20040073294A1 (en) 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US7785653B2 (en) 2003-09-22 2010-08-31 Innovational Holdings Llc Method and apparatus for loading a beneficial agent into an expandable medical device
US6994721B2 (en) * 2002-10-21 2006-02-07 Israel Henry M Stent assembly
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7326242B2 (en) * 2002-11-05 2008-02-05 Boston Scientific Scimed, Inc. Asymmetric bifurcated crown
ES2325249T3 (en) 2002-11-08 2009-08-31 Jean-Claude Laborde stent for bifurcation.
US8105373B2 (en) 2002-12-16 2012-01-31 Boston Scientific Scimed, Inc. Flexible stent with improved axial strength
US7300460B2 (en) * 2002-12-31 2007-11-27 Counter Clockwise, Inc. Bifurcated guidewire and methods of use
US9125733B2 (en) * 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
EP3141215A1 (en) * 2003-01-14 2017-03-15 The Cleveland Clinic Foundation Branched vessel endoluminal device
US20050131524A1 (en) * 2003-02-25 2005-06-16 Majercak David C. Method for treating a bifurcated vessel
US7942920B2 (en) * 2003-02-25 2011-05-17 Cordis Corporation Stent with nested fingers for enhanced vessel coverage
US7918884B2 (en) * 2003-02-25 2011-04-05 Cordis Corporation Stent for treatment of bifurcated lesions
US20040181186A1 (en) * 2003-03-13 2004-09-16 Scimed Life Systems, Inc. Medical device
US7220274B1 (en) 2003-03-21 2007-05-22 Quinn Stephen F Intravascular stent grafts and methods for deploying the same
WO2004087214A1 (en) 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device with beneficial agent concentration gradient
WO2004089249A1 (en) * 2003-04-03 2004-10-21 William A. Cook Australia Pty. Ltd. Branch stent graft deployment and method
US7481834B2 (en) * 2003-04-14 2009-01-27 Tryton Medical, Inc. Stent for placement at luminal os
US7972372B2 (en) * 2003-04-14 2011-07-05 Tryton Medical, Inc. Kit for treating vascular bifurcations
US7758630B2 (en) 2003-04-14 2010-07-20 Tryton Medical, Inc. Helical ostium support for treating vascular bifurcations
US8083791B2 (en) * 2003-04-14 2011-12-27 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US8109987B2 (en) * 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7731747B2 (en) * 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US20040215220A1 (en) * 2003-04-24 2004-10-28 Dolan Mark J. Anastomotic stent, apparatus and methods of use thereof
GB0309616D0 (en) 2003-04-28 2003-06-04 Angiomed Gmbh & Co Loading and delivery of self-expanding stents
DE10321119A1 (en) * 2003-05-09 2004-11-25 Phytis Medical Devices Gmbh Marker for identifying functional points on implants, is arranged on catheter within functional point area of implant e.g. stent for easy arrangement and positioning of implant in human or animal body
US8465537B2 (en) * 2003-06-17 2013-06-18 Gel-Del Technologies, Inc. Encapsulated or coated stent systems
US8052751B2 (en) * 2003-07-02 2011-11-08 Flexcor, Inc. Annuloplasty rings for repairing cardiac valves
US20050033406A1 (en) * 2003-07-15 2005-02-10 Barnhart William H. Branch vessel stent and graft
US7655030B2 (en) 2003-07-18 2010-02-02 Boston Scientific Scimed, Inc. Catheter balloon systems and methods
US7959665B2 (en) 2003-07-31 2011-06-14 Abbott Cardiovascular Systems Inc. Intravascular stent with inverted end rings
US9427340B2 (en) 2004-12-14 2016-08-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
WO2005034852A3 (en) 2003-08-26 2007-12-13 Gel Del Technologies Inc Protein biomaterials and biocoacervates and methods of making and using thereof
US20050049680A1 (en) * 2003-09-03 2005-03-03 Fischell Tim A. Side branch stent with split proximal end
GB0322511D0 (en) * 2003-09-25 2003-10-29 Angiomed Ag Lining for bodily lumen
DE602004013352T2 (en) * 2003-10-10 2009-05-07 Cook Inc., Bloomington Stent implants with windows
DE602004018169D1 (en) * 2003-10-10 2009-01-15 Cook William Europ Stent window
US7425219B2 (en) * 2003-10-10 2008-09-16 Arshad Quadri System and method for endoluminal grafting of bifurcated and branched vessels
US7641684B2 (en) * 2003-10-16 2010-01-05 Minvasys, Sa Catheter system for stenting bifurcated vessels
US9278015B2 (en) * 2003-10-16 2016-03-08 Minvasys Catheter system for stenting and drug treatment of bifurcated vessels
CA2544416A1 (en) * 2003-11-03 2005-05-12 B-Balloon Ltd. Treatment of vascular bifurcations
US8287586B2 (en) * 2003-11-08 2012-10-16 Cook Medical Technologies Llc Flareable branch vessel prosthesis and method
US7090694B1 (en) 2003-11-19 2006-08-15 Advanced Cardiovascular Systems, Inc. Portal design for stent for treating bifurcated vessels
DE10356793A1 (en) * 2003-12-04 2005-07-07 Variomed Ag Stent to be positioned at branch of vessels, comprising specifically shaped edge for being safely held
EP1691746B1 (en) * 2003-12-08 2015-05-27 Gel-Del Technologies, Inc. Mucoadhesive drug delivery devices and methods of making and using thereof
US20050131526A1 (en) * 2003-12-10 2005-06-16 Shing-Chiu Wong Stent and balloon system for bifurcated vessels and lesions
US20070038283A1 (en) * 2004-02-06 2007-02-15 Mustapha Jihad A Ostial stent and balloon
US20050177221A1 (en) * 2004-02-06 2005-08-11 Mustapha Jihad A. Ostial stent
US7753951B2 (en) * 2004-03-04 2010-07-13 Y Med, Inc. Vessel treatment devices
US7780715B2 (en) * 2004-03-04 2010-08-24 Y Med, Inc. Vessel treatment devices
WO2005099629A1 (en) 2004-03-31 2005-10-27 Cook Incorporated Stent deployment device
US8048140B2 (en) 2004-03-31 2011-11-01 Cook Medical Technologies Llc Fenestrated intraluminal stent system
WO2005112798A3 (en) * 2004-05-21 2006-12-14 Pierre Hilaire Guidewire separator device and method of use
WO2005122959A3 (en) 2004-06-08 2007-03-15 Advanced Stent Tech Inc Stent with protruding branch portion for bifurcated vessels
WO2005122962A1 (en) * 2004-06-15 2005-12-29 Cook Incorporated Stent graft with internal tube
EP1621160B1 (en) * 2004-07-28 2008-03-26 Cordis Corporation Low deployment force delivery device
US20060047335A1 (en) * 2004-08-26 2006-03-02 Israel Henry M Catheter with deflector
WO2006036319A3 (en) * 2004-09-15 2007-12-13 Conor Medsystems Inc Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation
US20060064064A1 (en) * 2004-09-17 2006-03-23 Jang G D Two-step/dual-diameter balloon angioplasty catheter for bifurcation and side-branch vascular anatomy
US7717953B2 (en) * 2004-10-13 2010-05-18 Tryton Medical, Inc. Delivery system for placement of prosthesis at luminal OS
US7938307B2 (en) * 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
GB2420976B (en) * 2004-11-19 2006-12-20 Zvi Finkelstein Therapeutic implant
JP4888914B2 (en) * 2004-12-08 2012-02-29 イノベーショナル・ホールディングス・エルエルシーInnovational Holdings, LLC Expandable medical device with different hinge performance
DE102004062269A1 (en) * 2004-12-23 2006-07-13 Siemens Ag Method and device for safe operation of a switching device
US9101500B2 (en) * 2005-01-10 2015-08-11 Trireme Medical, Inc. Stent with self-deployable portion having wings of different lengths
JP4979591B2 (en) * 2005-01-10 2012-07-18 トライレム メディカル, インコーポレイテッド Stent having a self-expandable part
US8128680B2 (en) 2005-01-10 2012-03-06 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US20060155366A1 (en) * 2005-01-10 2006-07-13 Laduca Robert Apparatus and method for deploying an implantable device within the body
US8287583B2 (en) * 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US20070150051A1 (en) * 2005-01-10 2007-06-28 Duke Fiduciary, Llc Vascular implants and methods of fabricating the same
US20080188803A1 (en) * 2005-02-03 2008-08-07 Jang G David Triple-profile balloon catheter
US7828837B2 (en) * 2005-02-17 2010-11-09 Khoury Medical Devices, LLC. Vascular endograft
US9597209B2 (en) 2005-02-17 2017-03-21 Khoury Medical Devices, Llc Vascular endograft
WO2006113501A1 (en) 2005-04-13 2006-10-26 The Cleveland Clinic Foundation Endoluminal prosthesis
US7922754B2 (en) * 2005-04-18 2011-04-12 Trireme Medical, Inc. Apparatus and methods for delivering prostheses to luminal bifurcations
US9034025B2 (en) 2005-05-23 2015-05-19 Ostial Corporation Balloon catheters and methods for use
US7862601B2 (en) * 2005-05-23 2011-01-04 Incept Llc Apparatus and methods for delivering a stent into an ostium
US8608789B2 (en) 2005-05-24 2013-12-17 Trireme Medical, Inc. Delivery system for bifurcation stents
US8317855B2 (en) * 2005-05-26 2012-11-27 Boston Scientific Scimed, Inc. Crimpable and expandable side branch cell
US8480728B2 (en) * 2005-05-26 2013-07-09 Boston Scientific Scimed, Inc. Stent side branch deployment initiation geometry
US7485140B2 (en) * 2005-06-17 2009-02-03 Boston Scientific Scimed, Inc. Bifurcation stent assembly
EP1909655A2 (en) 2005-06-20 2008-04-16 Sutura, Inc. Method and apparatus for applying a knot to a suture
CA2613901C (en) * 2005-06-29 2013-01-22 Bipin C. Patadia System and method for deploying a proximally-flaring stent
US7833259B2 (en) 2005-07-25 2010-11-16 Cook Incorporated Fenestrated endoluminal stent system
US7778684B2 (en) * 2005-08-08 2010-08-17 Boston Scientific Scimed, Inc. MRI resonator system with stent implant
US8038706B2 (en) * 2005-09-08 2011-10-18 Boston Scientific Scimed, Inc. Crown stent assembly
US7731741B2 (en) * 2005-09-08 2010-06-08 Boston Scientific Scimed, Inc. Inflatable bifurcation stent
US8043366B2 (en) * 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
JP2009508622A (en) * 2005-09-21 2009-03-05 ビー−バルーン リミティド Branch balloon and stent
US20070106368A1 (en) * 2005-11-07 2007-05-10 Carlos Vonderwalde Graft-stent assembly
US20070106375A1 (en) * 2005-11-07 2007-05-10 Carlos Vonderwalde Bifurcated stent assembly
US20070112418A1 (en) * 2005-11-14 2007-05-17 Boston Scientific Scimed, Inc. Stent with spiral side-branch support designs
US7766893B2 (en) * 2005-12-07 2010-08-03 Boston Scientific Scimed, Inc. Tapered multi-chamber balloon
US8343211B2 (en) * 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US8435284B2 (en) * 2005-12-14 2013-05-07 Boston Scientific Scimed, Inc. Telescoping bifurcated stent
US20070142904A1 (en) * 2005-12-20 2007-06-21 Boston Scientific Scimed, Inc. Bifurcated stent with multiple locations for side branch access
US7540881B2 (en) * 2005-12-22 2009-06-02 Boston Scientific Scimed, Inc. Bifurcation stent pattern
US20070203572A1 (en) * 2006-01-25 2007-08-30 Heuser Richard R Catheter system with stent apparatus for connecting adjacent blood vessels
US7914572B2 (en) * 2006-02-13 2011-03-29 William A. Cook Australia Pty. Ltd. Side branch stent graft construction
WO2007095031A3 (en) * 2006-02-13 2007-12-21 Bay Street Medical Inc System for delivering a stent
US8821561B2 (en) 2006-02-22 2014-09-02 Boston Scientific Scimed, Inc. Marker arrangement for bifurcation catheter
US8926679B2 (en) 2006-03-03 2015-01-06 Boston Scientific Scimed, Inc. Bifurcated stent system balloon folds
US20070208415A1 (en) * 2006-03-06 2007-09-06 Kevin Grotheim Bifurcated stent with controlled drug delivery
US7833264B2 (en) * 2006-03-06 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent
US20070208419A1 (en) * 2006-03-06 2007-09-06 Boston Scientific Scimed, Inc. Bifurcation stent with uniform side branch projection
US20070208414A1 (en) * 2006-03-06 2007-09-06 Shawn Sorenson Tapered strength rings on a bifurcated stent petal
US20070208411A1 (en) * 2006-03-06 2007-09-06 Boston Scientific Scimed, Inc. Bifurcated stent with surface area gradient
US8298278B2 (en) * 2006-03-07 2012-10-30 Boston Scientific Scimed, Inc. Bifurcated stent with improvement securement
US8197536B2 (en) * 2006-03-10 2012-06-12 Cordis Corporation Method for placing a medical device at a bifurcated conduit
US8043358B2 (en) * 2006-03-29 2011-10-25 Boston Scientific Scimed, Inc. Stent with overlap and high extension
US8348991B2 (en) * 2006-03-29 2013-01-08 Boston Scientific Scimed, Inc. Stent with overlap and high expansion
US20070233233A1 (en) * 2006-03-31 2007-10-04 Boston Scientific Scimed, Inc Tethered expansion columns for controlled stent expansion
CN101484090B (en) * 2006-04-19 2011-04-27 克利夫兰医学基金会 Twin bifurcated stent graft
US7744643B2 (en) 2006-05-04 2010-06-29 Boston Scientific Scimed, Inc. Displaceable stent side branch structure
JP5025726B2 (en) * 2006-06-06 2012-09-12 ウィリアム・エイ・クック・オーストラリア・プロプライエタリー・リミテッドWilliam A. Cook Australia Pty. Ltd. Stent with a crush zone
WO2008002441A3 (en) 2006-06-23 2008-05-29 Boston Scient Scimed Inc Bifurcated stent with twisted hinges
US7771465B2 (en) 2006-06-23 2010-08-10 Gore Enterprise Holdings, Inc. Branched stent delivery system
US8066753B2 (en) 2006-07-06 2011-11-29 Robert Kipperman Specialized catheter and method for placement in a bifurcated vessel
US7824438B2 (en) * 2006-07-06 2010-11-02 Robert Kipperman Method for placement of a stent assembly in a bifurcated vessel
US8029558B2 (en) 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US8613698B2 (en) * 2006-07-10 2013-12-24 Mcneil-Ppc, Inc. Resilient device
CN104257450B (en) * 2006-07-10 2017-05-10 第次质量卫生公司 Resilient means
US7717892B2 (en) * 2006-07-10 2010-05-18 Mcneil-Ppc, Inc. Method of treating urinary incontinence
US9044350B2 (en) * 2006-08-21 2015-06-02 Boston Scientific Scimed, Inc. Alignment sheath apparatus and method
US8834554B2 (en) 2006-08-22 2014-09-16 Abbott Cardiovascular Systems Inc. Intravascular stent
US8882826B2 (en) 2006-08-22 2014-11-11 Abbott Cardiovascular Systems Inc. Intravascular stent
US8177829B2 (en) * 2006-08-23 2012-05-15 Boston Scientific Scimed, Inc. Auxiliary balloon catheter
US8246670B2 (en) 2006-08-23 2012-08-21 Abbott Cardiovascular Systems Inc. Catheter system and method for delivering medical devices
GB0617219D0 (en) 2006-08-31 2006-10-11 Barts & London Nhs Trust Blood vessel prosthesis and delivery apparatus
US8216267B2 (en) 2006-09-12 2012-07-10 Boston Scientific Scimed, Inc. Multilayer balloon for bifurcated stent delivery and methods of making and using the same
US8454681B2 (en) * 2006-09-13 2013-06-04 Boston Scientific Scimed, Inc. Bifurcation delivery systems and methods
US8608790B2 (en) * 2006-10-06 2013-12-17 Boston Scientific Scimed, Inc. Bifurcation catheter and method
US7951191B2 (en) 2006-10-10 2011-05-31 Boston Scientific Scimed, Inc. Bifurcated stent with entire circumferential petal
US7871396B2 (en) * 2006-10-30 2011-01-18 Boston Scientific Scimed, Inc. Bifurcation catheter assembly and method
US8206429B2 (en) 2006-11-02 2012-06-26 Boston Scientific Scimed, Inc. Adjustable bifurcation catheter incorporating electroactive polymer and methods of making and using the same
US8398695B2 (en) * 2006-11-03 2013-03-19 Boston Scientific Scimed, Inc. Side branch stenting system using a main vessel constraining side branch access balloon and side branching stent
US8414611B2 (en) * 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Main vessel constraining side-branch access balloon
US20080114444A1 (en) * 2006-11-09 2008-05-15 Chun Ho Yu Modular stent graft and delivery system
US7842082B2 (en) 2006-11-16 2010-11-30 Boston Scientific Scimed, Inc. Bifurcated stent
US20080147174A1 (en) * 2006-12-11 2008-06-19 Trireme Medical, Inc. Apparatus and method of using markers to position stents in bifurcations
US8216298B2 (en) 2007-01-05 2012-07-10 Medtronic Vascular, Inc. Branch vessel graft method and delivery system
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US7959668B2 (en) * 2007-01-16 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent
JP2010517703A (en) * 2007-02-09 2010-05-27 タヘリ ラドュカ エルエルシー Method of processing vascular grafts and it
US20080255654A1 (en) * 2007-03-22 2008-10-16 Bay Street Medical System for delivering a stent
US8118861B2 (en) * 2007-03-28 2012-02-21 Boston Scientific Scimed, Inc. Bifurcation stent and balloon assemblies
US8647376B2 (en) * 2007-03-30 2014-02-11 Boston Scientific Scimed, Inc. Balloon fold design for deployment of bifurcated stent petal architecture
US8273115B2 (en) * 2007-04-24 2012-09-25 W. L. Gore & Associates, Inc. Side branched endoluminal prostheses and methods of delivery thereof
US9358142B2 (en) * 2007-04-24 2016-06-07 W. L. Gore & Associates, Inc. Catheter having guidewire channel
US7842056B2 (en) * 2007-05-18 2010-11-30 Boston Scientific Scimed, Inc. Cutting member for bifurcation catheter assembly
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8518103B2 (en) * 2007-06-04 2013-08-27 Boston Scientific Scimed, Inc. Bifurcated delivery system and method
WO2009003113A1 (en) 2007-06-26 2008-12-31 Unique Catheter Designs, Llc Catheter apparatus and methods for treating vasculatures
US7942661B2 (en) * 2007-07-18 2011-05-17 Boston Scientific Scimed, Inc. Bifurcated balloon folding method and apparatus
US9144508B2 (en) * 2007-07-19 2015-09-29 Back Bay Medical Inc. Radially expandable stent
US8486134B2 (en) 2007-08-01 2013-07-16 Boston Scientific Scimed, Inc. Bifurcation treatment system and methods
US20090043376A1 (en) * 2007-08-08 2009-02-12 Hamer Rochelle M Endoluminal Prosthetic Conduit Systems and Method of Coupling
WO2009029674A1 (en) * 2007-08-27 2009-03-05 Boston Scientific Limited Bulging balloon for bifurcation catheter assembly and methods
US20090069878A1 (en) * 2007-08-27 2009-03-12 Boston Scientific Scimed, Inc. Bifurcation post-dilatation balloon and methods
US7959669B2 (en) 2007-09-12 2011-06-14 Boston Scientific Scimed, Inc. Bifurcated stent with open ended side branch support
US20090076531A1 (en) * 2007-09-18 2009-03-19 Richardson Charles L Method and apparatus for bypass graft
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US7833266B2 (en) 2007-11-28 2010-11-16 Boston Scientific Scimed, Inc. Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment
US20090143713A1 (en) 2007-11-30 2009-06-04 Jacques Van Dam Biliary Shunts, Delivery Systems, Methods of Using the Same and Kits Therefor
US8277501B2 (en) 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
WO2009082654A1 (en) * 2007-12-21 2009-07-02 Cleveland Clinic Foundation Prosthesis for implantation in aorta
EP2237770A4 (en) * 2007-12-26 2011-11-09 Gel Del Technologies Inc Biocompatible protein particles, particle devices and methods thereof
WO2009088953A3 (en) 2007-12-31 2009-10-29 Boston Scientific Scimed Inc. Bifurcation stent delivery system and methods
GB0803302D0 (en) 2008-02-22 2008-04-02 Barts & London Nhs Trust Blood vessel prosthesis and delivery apparatus
WO2009105699A1 (en) 2008-02-22 2009-08-27 Endologix, Inc. Design and method of placement of a graft or graft system
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
US20090287148A1 (en) 2008-05-15 2009-11-19 Martin Daryl L Joined Inflation Portions for Bifurcation Catheter
US8333003B2 (en) * 2008-05-19 2012-12-18 Boston Scientific Scimed, Inc. Bifurcation stent crimping systems and methods
US8932340B2 (en) 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US8377108B2 (en) 2008-06-02 2013-02-19 Boston Scientific Scimed, Inc. Staggered two balloon bifurcation catheter assembly and methods
EP2299945B1 (en) 2008-06-05 2016-03-23 Boston Scientific Scimed, Inc. Balloon bifurcated lumen treatment
JP5662310B2 (en) 2008-06-05 2015-01-28 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Shrinkable branch device and manufacturing method thereof
US8308793B2 (en) * 2008-06-10 2012-11-13 Boston Scientific Scimed, Inc. Bifurcation catheter assembly with dynamic side branch lumen
US8398697B2 (en) * 2008-06-13 2013-03-19 Boston Scientific Scimed, Inc. Bifurcation catheter assembly with distally mounted side balloon and methods
US20090326643A1 (en) * 2008-06-27 2009-12-31 Boston Scientific Scimed, Inc. Balloon folding apparatus and method
EP2520320B1 (en) 2008-07-01 2016-11-02 Endologix, Inc. Catheter system
US20100016937A1 (en) * 2008-07-18 2010-01-21 Yousef Alkhatib Twisting Bifurcation Delivery System
US8333794B2 (en) * 2008-07-25 2012-12-18 Boston Scientific Scimed, Inc. Side balloon identifiers and methods for radial and axial alignment in a catheter assembly
US8152840B2 (en) 2008-07-31 2012-04-10 Boston Scientific Scimed, Inc. Bifurcation catheter assembly and methods
US8945198B2 (en) * 2008-07-31 2015-02-03 Boston Scientific Scimed, Inc. Locating side catheter branch relative to inflation portion
US8163123B2 (en) 2008-07-31 2012-04-24 Boston Scientific Scimed, Inc. Bifurcation catheter dual balloon bond and methods
US8309007B2 (en) * 2008-08-01 2012-11-13 Boston Scientific Scimed, Inc. Folding apparatus and methods for bifurcation post-dilatation balloon
US20100030192A1 (en) * 2008-08-01 2010-02-04 Boston Scientific Scimed, Inc. Catheter shaft bond arrangements and methods
US8187313B2 (en) * 2008-08-01 2012-05-29 Boston Scientific Scimed, Inc. Bifurcation catheter assembly side catheter branch construction and methods
US8715331B2 (en) * 2008-08-06 2014-05-06 Boston Scientific Scimed, Inc. Stent edge protection and methods
US8133199B2 (en) 2008-08-27 2012-03-13 Boston Scientific Scimed, Inc. Electroactive polymer activation system for a medical device
GB0816965D0 (en) * 2008-09-16 2008-10-22 Angiomed Ag Stent device adhesively bonded to a stent device pusher
US8828071B2 (en) 2008-09-25 2014-09-09 Advanced Bifurcation Systems, Inc. Methods and systems for ostial stenting of a bifurcation
US8808347B2 (en) 2008-09-25 2014-08-19 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
CA2739007C (en) 2008-09-25 2017-10-31 Advanced Bifurcation Systems, Inc. Partially crimped stent
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US9055946B2 (en) * 2008-11-26 2015-06-16 Phraxis Inc. Anastomotic connector
US20100137973A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Layered Bifurcation Stent
GB0901496D0 (en) 2009-01-29 2009-03-11 Angiomed Ag Delivery device for delivering a stent device
US8052741B2 (en) * 2009-03-23 2011-11-08 Medtronic Vascular, Inc. Branch vessel prosthesis with a roll-up sealing assembly
JP5509491B2 (en) * 2009-03-26 2014-06-04 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc Stent graft
US8945202B2 (en) 2009-04-28 2015-02-03 Endologix, Inc. Fenestrated prosthesis
GB0909319D0 (en) 2009-05-29 2009-07-15 Angiomed Ag Transluminal delivery system
US20100318170A1 (en) * 2009-06-15 2010-12-16 Richard Newhauser Proximal catheter flap for managing wire twist
US8366763B2 (en) 2009-07-02 2013-02-05 Tryton Medical, Inc. Ostium support for treating vascular bifurcations
US20110054438A1 (en) * 2009-08-28 2011-03-03 Webster Mark W I Stent delivery at a bifurcation, systems and methods
JP5651183B2 (en) 2009-10-13 2015-01-07 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc Parapurejia prevention stent graft
US9095456B2 (en) 2009-10-13 2015-08-04 Cook Medical Technologies Llc Paraplegia prevention stent graft
US20110152604A1 (en) * 2009-12-23 2011-06-23 Hull Jr Raymond J Intravaginal incontinence device
EP2549952A4 (en) 2010-03-24 2017-01-04 Advanced Bifurcation Systems Inc System and methods for treating a bifurcation
EP2549958A4 (en) 2010-03-24 2016-09-14 Advanced Bifurcation Systems Inc Methods and systems for treating a bifurcation with provisional side branch stenting
US9271733B2 (en) 2010-11-11 2016-03-01 Willson T. Asfora Sutureless vascular anastomosis connection
US8753386B2 (en) * 2010-11-15 2014-06-17 W. L. Gore & Associates, Inc. Stent-graft having facing side branch portals
US9198756B2 (en) 2010-11-18 2015-12-01 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
US9289295B2 (en) 2010-11-18 2016-03-22 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
EP2642946A4 (en) 2010-11-24 2016-07-20 Tryton Medical Inc Support for treating vascular bifurcations
EP2658484A1 (en) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Multi stage opening stent designs
CA2826760A1 (en) 2011-02-08 2012-08-16 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
WO2012109365A1 (en) 2011-02-08 2012-08-16 Advanced Bifurcation Systems, Inc. System and methods for treating a bifurcation with a fully crimped stent
CN103561807B (en) 2011-03-01 2015-11-25 恩朵罗杰克斯股份有限公司 The catheter system and method of use
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
WO2012118526A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
CN103889345B (en) 2011-04-15 2016-10-19 心脏缝合有限公司 Suturing device and method for suturing anatomical flap
US20120271410A1 (en) 2011-04-19 2012-10-25 Myles Douglas Branch endograft delivery
EP3053545A1 (en) 2011-04-28 2016-08-10 Cook Medical Technologies LLC Apparatus for facilitating deployment of an endoluminal prosthesis
WO2012154782A1 (en) * 2011-05-11 2012-11-15 Tyco Healthcare Group Lp Vascular remodeling device
US9597443B2 (en) 2011-06-15 2017-03-21 Phraxis, Inc. Anastomotic connector
CN103826577B (en) 2011-08-19 2017-03-22 哈利德·艾尔-萨阿敦 Stent system for bifurcation lesions, deployment device
FR2979228B1 (en) * 2011-08-22 2014-08-29 Ct Hospitalier Universitaire Nimes Universal aortic endoprosthesis
US8728148B2 (en) 2011-11-09 2014-05-20 Cook Medical Technologies Llc Diameter reducing tie arrangement for endoluminal prosthesis
CN106420107A (en) 2011-11-16 2017-02-22 波顿医疗公司 Device and method for aortic branched vessel repair
GB2499377B (en) * 2012-02-01 2014-04-30 Cook Medical Technologies Llc Implantable medical device
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
EP2841024B1 (en) 2012-04-26 2017-05-03 Tryton Medical, Inc. Support for treating vascular bifurcations
WO2013170081A1 (en) 2012-05-11 2013-11-14 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
CN104302250B (en) 2012-05-14 2017-03-15 C·R·巴德公司 Uniformly expandable stent
US9233015B2 (en) 2012-06-15 2016-01-12 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
USD723165S1 (en) 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
KR101804079B1 (en) 2013-09-12 2017-12-01 보스톤 싸이엔티픽 싸이메드 인코포레이티드 Stent with anti-migration connectors
EP2868294B1 (en) * 2013-11-04 2016-01-20 Cook Medical Technologies LLC Stent graft with a valve arrangement
US20150127084A1 (en) * 2013-11-05 2015-05-07 Hameem Unnabi Changezi Bifurcated Stent and Delivery System
US9662232B2 (en) 2014-04-11 2017-05-30 Red Vascular Technologies, LLC Alignment system for multiple branch endografts

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1596754A (en) * 1923-10-30 1926-08-17 Judson D Moschelle Reenforced tubing
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3872893A (en) * 1972-05-01 1975-03-25 Fred T Roberts & Company Self-reinforced plastic hose and method for molding same
US4140126A (en) * 1977-02-18 1979-02-20 Choudhury M Hasan Method for performing aneurysm repair
US4182339A (en) * 1978-05-17 1980-01-08 Hardy Thomas G Jr Anastomotic device and method
US4309994A (en) * 1980-02-25 1982-01-12 Grunwald Ronald P Cardiovascular cannula
US4410476A (en) * 1980-10-20 1983-10-18 The United States Of America As Represented By The Secretary Of The Navy Method for making radially compliant line array hose
US4413989A (en) * 1980-09-08 1983-11-08 Angiomedics Corporation Expandable occlusion apparatus
US4421810A (en) * 1975-02-12 1983-12-20 Rasmussen O B Perforated drainpipe and method of making same
US4453545A (en) * 1981-05-07 1984-06-12 Hiroshi Inoue Endotracheal tube with movable endobronchial blocker for one-lung anesthesia
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4552554A (en) * 1984-06-25 1985-11-12 Medi-Tech Incorporated Introducing catheter
US4681570A (en) * 1985-12-26 1987-07-21 Dalton Michael J Peritoneal catheter
US4689174A (en) * 1983-07-12 1987-08-25 Lupke Manfred Arno Alfred Producing double-walled helically wound thermoplastic pipe with a corrugated cutter wall and a smooth inner wall
US4731055A (en) * 1986-08-25 1988-03-15 Becton, Dickinson And Company Blood flow conduit
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4759748A (en) * 1986-06-30 1988-07-26 Raychem Corporation Guiding catheter
US4762128A (en) * 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4769029A (en) * 1987-06-19 1988-09-06 Patel Jayendrakumar I Prosthetic graft for arterial system repair
US4769005A (en) * 1987-08-06 1988-09-06 Robert Ginsburg Selective catheter guide
US4774949A (en) * 1983-06-14 1988-10-04 Fogarty Thomas J Deflector guiding catheter
US4819664A (en) * 1984-11-15 1989-04-11 Stefano Nazari Device for selective bronchial intubation and separate lung ventilation, particularly during anesthesia, intensive therapy and reanimation
US4872874A (en) * 1987-05-29 1989-10-10 Taheri Syde A Method and apparatus for transarterial aortic graft insertion and implantation
US4878495A (en) * 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4896670A (en) * 1988-04-19 1990-01-30 C. R. Bard, Inc. Kissing balloon catheter
US4900314A (en) * 1988-02-01 1990-02-13 Fbk International Corporation Collapse-resistant tubing for medical use
US4906244A (en) * 1988-10-04 1990-03-06 Cordis Corporation Balloons for medical devices and fabrication thereof
US4905667A (en) * 1987-05-12 1990-03-06 Ernst Foerster Apparatus for endoscopic-transpapillary exploration of biliary tract
US4909258A (en) * 1988-08-08 1990-03-20 The Beth Israel Hospital Association Internal mammary artery (IMA) catheter
US4946464A (en) * 1981-07-22 1990-08-07 Pevsner Paul H Method of manufacturing miniature balloon catheter and product thereof
US4957508A (en) * 1986-10-31 1990-09-18 Ube Industries, Ltd. Medical tubes
US4957501A (en) * 1987-12-31 1990-09-18 Biomat, S.A.R.L. Anti-embolic filter
US4964850A (en) * 1986-05-07 1990-10-23 Vincent Bouton Method for treating trans-nasal sinus afflictions using a double t-shaped trans-nasal aerator
US4983167A (en) * 1988-11-23 1991-01-08 Harvinder Sahota Balloon catheters
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5042976A (en) * 1987-01-13 1991-08-27 Terumo Kabushiki Kaisha Balloon catheter and manufacturing method of the same
US5054501A (en) * 1990-05-16 1991-10-08 Brigham & Women's Hospital Steerable guide wire for cannulation of tubular or vascular organs
US5059177A (en) * 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
US5061240A (en) * 1990-04-02 1991-10-29 George Cherian Balloon tip catheter for venous valve ablation
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5085664A (en) * 1988-07-22 1992-02-04 Luigi Bozzo Disobstructor dilator device for urinary pathology
US5102403A (en) * 1990-06-18 1992-04-07 Eckhard Alt Therapeutic medical instrument for insertion into body
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5117831A (en) * 1990-03-28 1992-06-02 Cardiovascular Imaging Systems, Inc. Vascular catheter having tandem imaging and dilatation components
US5122125A (en) * 1990-04-25 1992-06-16 Ashridge A.G. Catheter for angioplasty with soft centering tip
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5147317A (en) * 1990-06-04 1992-09-15 C.R. Bard, Inc. Low friction varied radiopacity guidewire
US5159920A (en) * 1990-06-18 1992-11-03 Mentor Corporation Scope and stent system
US5176617A (en) * 1989-12-11 1993-01-05 Medical Innovative Technologies R & D Limited Partnership Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct
US5192297A (en) * 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5211683A (en) * 1991-07-03 1993-05-18 Maginot Thomas J Method of implanting a graft prosthesis in the body of a patient
US5217440A (en) * 1989-10-06 1993-06-08 C. R. Bard, Inc. Multilaminate coiled film catheter construction
US5222971A (en) * 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5226913A (en) * 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5236446A (en) * 1988-03-02 1993-08-17 Dumon Jean Francois Tubular endoprosthesis for anatomical conduits
US5257974A (en) * 1992-08-19 1993-11-02 Scimed Life Systems, Inc. Performance enhancement adaptor for intravascular balloon catheter
US5263932A (en) * 1992-04-09 1993-11-23 Jang G David Bailout catheter for fixed wire angioplasty
US5282472A (en) * 1993-05-11 1994-02-01 Companion John A System and process for the detection, evaluation and treatment of prostate and urinary problems
US5304220A (en) * 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
US5320605A (en) * 1993-01-22 1994-06-14 Harvinder Sahota Multi-wire multi-balloon catheter
US5324257A (en) * 1992-05-04 1994-06-28 Cook, Incorporated Balloon catheter having an integrally formed guide wire channel
US5337733A (en) * 1989-10-23 1994-08-16 Peter Bauerfeind Tubular inserting device with variable rigidity
US5342295A (en) * 1993-09-24 1994-08-30 Cardiac Pathways Corporation Catheter assembly, catheter and multi-port introducer for use therewith
US5342387A (en) * 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5342297A (en) * 1992-07-10 1994-08-30 Jang G David Bailout receptacle for angioplasty catheter
US5350395A (en) * 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5395332A (en) * 1990-08-28 1995-03-07 Scimed Life Systems, Inc. Intravascualr catheter with distal tip guide wire lumen
US5395334A (en) * 1990-08-28 1995-03-07 Scimed Life Systems, Inc. Balloon catheter with distal guide wire lumen
US5404887A (en) * 1993-11-04 1995-04-11 Scimed Life Systems, Inc. Guide wire having an unsmooth exterior surface
US5409458A (en) * 1993-11-10 1995-04-25 Medtronic, Inc. Grooved balloon for dilatation catheter
US5413581A (en) * 1990-10-04 1995-05-09 Schneider (Europe) A.G. Method of using a balloon dilatation catheter and a guidewire
US5413586A (en) * 1991-03-14 1995-05-09 Ethnor Anti-pulmonary embolism filter and corresponding presentation and fitting kit
US5417208A (en) * 1993-10-12 1995-05-23 Arrow International Investment Corp. Electrode-carrying catheter and method of making same
US5425765A (en) * 1993-06-25 1995-06-20 Tiefenbrun; Jonathan Surgical bypass method
US5437638A (en) * 1993-01-29 1995-08-01 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Multifinger topocatheter tip for multilumen catheter for angioplasty and manipulation
US5443497A (en) * 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5445624A (en) * 1994-01-21 1995-08-29 Exonix Research Corporation Catheter with progressively compliant tip
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5449382A (en) * 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
US5456714A (en) * 1991-07-04 1995-10-10 Owen; Earl R. Tubular surgical implant having a locking ring and flange
US5456694A (en) * 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
US5458605A (en) * 1994-04-04 1995-10-17 Advanced Cardiovascular Systems, Inc. Coiled reinforced retractable sleeve for stent delivery catheter
US5607444A (en) * 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5674276A (en) * 1992-05-20 1997-10-07 Boston Scientific Corporation Tubular medical prosthesis
US5676697A (en) * 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US5843117A (en) * 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US7862604B1 (en) * 1995-02-24 2011-01-04 Endovascular Technologies, Inc. Bifurcated graft with an inferior extension

Family Cites Families (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939240A (en) * 1983-03-04 1990-07-03 Health Research, Inc. Monoclonal antibodies to human breast carcinoma cells and their use in diagnosis and therapy
US5000185A (en) * 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
WO1988006026A3 (en) 1987-02-17 1988-10-06 Alberto Arpesani Internal prosthesis for the substitution of a part of the human body particularly in vascular surgery
DE3711374A1 (en) 1987-04-04 1988-10-20 Huels Chemische Werke Ag Polyurethane powder coatings that give a matte surface after curing
US5531788A (en) 1989-10-09 1996-07-02 Foundation Pour L'avenir Pour La Recherche Medicale Appliquee Anti-Pulmonary embolism filter
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
CA2065634C (en) * 1991-04-11 1997-06-03 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
US5244619A (en) * 1991-05-03 1993-09-14 Burnham Warren R Method of making catheter with irregular inner and/or outer surfaces to reduce travelling friction
FR2678508B1 (en) 1991-07-04 1998-01-30 Celsa Lg Device for reinforcing the body vessels.
US5693084A (en) 1991-10-25 1997-12-02 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
CA2079417C (en) * 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5505702A (en) 1992-04-09 1996-04-09 Scimed Life Systems, Inc. Balloon catheter for dilatation and perfusion
DE4222380A1 (en) * 1992-07-08 1994-01-13 Ernst Peter Prof Dr M Strecker In the body of a patient percutaneously implantable endoprosthesis
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
US5487730A (en) * 1992-12-30 1996-01-30 Medtronic, Inc. Balloon catheter with balloon surface retention means
US5549553A (en) * 1993-04-29 1996-08-27 Scimed Life Systems, Inc. Dilation ballon for a single operator exchange intravascular catheter or similar device
FR2706764B1 (en) 1993-06-24 1995-08-04 Synthelabo
US5476471A (en) 1993-08-19 1995-12-19 Mind - E.M.S.G. Ltd Device and method for external correction of insufficient valves in venous junctions
US5913897A (en) 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
DE9319267U1 (en) 1993-12-15 1994-02-24 Vorwerk Dierk Dr Aortenendoprothese
US5545132A (en) 1993-12-21 1996-08-13 C. R. Bard, Inc. Helically grooved balloon for dilatation catheter and method of using
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
US5733303A (en) 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5843120A (en) 1994-03-17 1998-12-01 Medinol Ltd. Flexible-expandable stent
US5489271A (en) * 1994-03-29 1996-02-06 Boston Scientific Corporation Convertible catheter
US5549554A (en) 1994-04-01 1996-08-27 Advanced Cardiovascular Systems, Inc. Catheters having separable reusable components
US5562620A (en) 1994-04-01 1996-10-08 Localmed, Inc. Perfusion shunt device having non-distensible pouch for receiving angioplasty balloon
US5613949A (en) * 1994-04-01 1997-03-25 Advanced Cardiovascular Systems, Inc. Double balloon catheter assembly
US5545131A (en) 1994-04-28 1996-08-13 White Eagle International Technologies, Lp Artificial kidney
US5824041A (en) * 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5683451A (en) * 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5842044A (en) 1994-06-29 1998-11-24 Hyundai Electronics Co. Ltd. Input buffer device for a printer using an FIFO and data input method
US5636641A (en) * 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5575817A (en) * 1994-08-19 1996-11-19 Martin; Eric C. Aorto femoral bifurcation graft and method of implantation
US5609605A (en) * 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5507769A (en) 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
JP2911763B2 (en) 1994-10-27 1999-06-23 三桜子 布川 Artificial blood vessels
US5613980A (en) 1994-12-22 1997-03-25 Chauhan; Tusharsindhu C. Bifurcated catheter system and method
US5522801A (en) 1995-01-18 1996-06-04 Wang; Abe Integrate-forming silicone balloon catheter
NL9500094A (en) 1995-01-19 1996-09-02 Industrial Res Bv Y-shaped stent and method of the locations thereof.
US5755770A (en) * 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US5634902A (en) 1995-02-01 1997-06-03 Cordis Corporation Dilatation catheter with side aperture
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US7204848B1 (en) * 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US5709713A (en) * 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
US5707354A (en) 1995-04-17 1998-01-13 Cardiovascular Imaging Systems, Inc. Compliant catheter lumen and methods
US5613981A (en) 1995-04-21 1997-03-25 Medtronic, Inc. Bidirectional dual sinusoidal helix stent
FR2733682B1 (en) * 1995-05-04 1997-10-31 Dibie Alain Endoprosthesis for the treatment of stenosis on blood vessel bifurcations and installation of equipment for this purpose
US6602281B1 (en) 1995-06-05 2003-08-05 Avantec Vascular Corporation Radially expansible vessel scaffold having beams and expansion joints
US5593442A (en) 1995-06-05 1997-01-14 Localmed, Inc. Radially expansible and articulated vessel scaffold
US5707348A (en) * 1995-06-06 1998-01-13 Krogh; Steve S. Intravenous bandage
US5596990A (en) * 1995-06-06 1997-01-28 Yock; Paul Rotational correlation of intravascular ultrasound image with guide catheter position
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
JPH11507567A (en) * 1995-06-08 1999-07-06 バード ギャルウェイ リミティド Conduit within the stent
US5762631A (en) 1995-07-14 1998-06-09 Localmed, Inc. Method and system for reduced friction introduction of coaxial catheters
FR2737969B1 (en) * 1995-08-24 1998-01-30 Rieu Regis Intraluminal endoprosthesis in particular destiny has angioplasty
US5824036A (en) 1995-09-29 1998-10-20 Datascope Corp Stent for intraluminal grafts and device and methods for delivering and assembling same
US5669924A (en) * 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
US5628788A (en) 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
EP0918496B1 (en) 1996-03-13 2000-06-14 Medtronic, Inc. Endoluminal prostheses for multiple-branch body lumen systems
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6203569B1 (en) * 1996-01-04 2001-03-20 Bandula Wijay Flexible stent
US5938682A (en) 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US6436104B2 (en) * 1996-01-26 2002-08-20 Cordis Corporation Bifurcated axially flexible stent
US6017363A (en) 1997-09-22 2000-01-25 Cordis Corporation Bifurcated axially flexible stent
US5980553A (en) 1996-12-20 1999-11-09 Cordis Corporation Axially flexible stent
US5871537A (en) * 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
CA2192520A1 (en) * 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
US5824042A (en) * 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
BE1010183A3 (en) * 1996-04-25 1998-02-03 Dereume Jean Pierre Georges Em Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF.
US5755734A (en) 1996-05-03 1998-05-26 Medinol Ltd. Bifurcated stent and method of making same
CA2175720C (en) * 1996-05-03 2011-11-29 Ian M. Penn Bifurcated stent and method for the manufacture and delivery of same
US6770092B2 (en) * 1996-05-03 2004-08-03 Medinol Ltd. Method of delivering a bifurcated stent
US5669932A (en) 1996-05-29 1997-09-23 Isostent, Inc. Means for accurately positioning an expandable stent
US5617878A (en) * 1996-05-31 1997-04-08 Taheri; Syde A. Stent and method for treatment of aortic occlusive disease
US5750356A (en) 1996-05-31 1998-05-12 Anergen, Inc. Method for monitoring T cell reactivity
US5755773A (en) * 1996-06-04 1998-05-26 Medtronic, Inc. Endoluminal prosthetic bifurcation shunt
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) * 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5922020A (en) 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US5749825A (en) * 1996-09-18 1998-05-12 Isostent, Inc. Means method for treatment of stenosed arterial bifurcations
US5755778A (en) * 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US5868781A (en) 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US6596020B2 (en) * 1996-11-04 2003-07-22 Advanced Stent Technologies, Inc. Method of delivering a stent with a side opening
US6325826B1 (en) * 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6692483B2 (en) * 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
US7591846B2 (en) * 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
US8298280B2 (en) * 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US6884258B2 (en) * 1999-06-04 2005-04-26 Advanced Stent Technologies, Inc. Bifurcation lesion stent delivery using multiple guidewires
US7220275B2 (en) * 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6835203B1 (en) * 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6599316B2 (en) * 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US20050060027A1 (en) * 1999-01-13 2005-03-17 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US5749890A (en) * 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
DE29701758U1 (en) 1997-02-01 1997-03-27 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel, in particular in the region of a vessel bifurcation
US5720735A (en) 1997-02-12 1998-02-24 Dorros; Gerald Bifurcated endovascular catheter
DE29702671U1 (en) 1997-02-17 1997-04-10 Jomed Implantate Gmbh stent
WO1998036709A1 (en) 1997-02-25 1998-08-27 Scimed Life Systems, Inc. Stents and stent delivery and dilatation system for bifurcation lesions
US20020133222A1 (en) * 1997-03-05 2002-09-19 Das Gladwin S. Expandable stent having a plurality of interconnected expansion modules
US5897588A (en) 1997-03-14 1999-04-27 Hull; Cheryl C. Coronary stent and method of fabricating same
US5972017A (en) * 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
EP1011532B1 (en) * 1997-04-23 2014-05-07 Ethicon Endo-Surgery, Inc. Bifurcated stent and distal protection system
US6033433A (en) 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US6013054A (en) * 1997-04-28 2000-01-11 Advanced Cardiovascular Systems, Inc. Multifurcated balloon catheter
DE69835634T3 (en) 1997-05-07 2010-09-23 Cordis Corp. The intravascular stent and system for introducing (obstruction of the ostium of a vessel)
DE29708803U1 (en) 1997-05-17 1997-07-31 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel in the area of ​​a vessel bifurcation
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
CA2424551A1 (en) * 1997-05-27 1998-11-27 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US5913895A (en) 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
US6264662B1 (en) * 1998-07-21 2001-07-24 Sulzer Vascutek Ltd. Insertion aid for a bifurcated prosthesis
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US6383213B2 (en) * 1999-10-05 2002-05-07 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6165195A (en) * 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6361544B1 (en) * 1997-08-13 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6059822A (en) * 1997-08-22 2000-05-09 Uni-Cath Inc. Stent with different mesh patterns
US6520988B1 (en) * 1997-09-24 2003-02-18 Medtronic Ave, Inc. Endolumenal prosthesis and method of use in bifurcation regions of body lumens
US6013091A (en) 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US5893887A (en) * 1997-10-14 1999-04-13 Iowa-India Investments Company Limited Stent for positioning at junction of bifurcated blood vessel and method of making
US6033435A (en) * 1997-11-03 2000-03-07 Divysio Solutions Ulc Bifurcated stent and method for the manufacture and delivery of same
US6030414A (en) * 1997-11-13 2000-02-29 Taheri; Syde A. Variable stent and method for treatment of arterial disease
US5961548A (en) 1997-11-18 1999-10-05 Shmulewitz; Ascher Bifurcated two-part graft and methods of implantation
US6036682A (en) 1997-12-02 2000-03-14 Scimed Life Systems, Inc. Catheter having a plurality of integral radiopaque bands
US6179867B1 (en) * 1998-01-16 2001-01-30 Advanced Cardiovascular Systems, Inc. Flexible stent and method of use
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
CN1177570C (en) * 1998-02-12 2004-12-01 托马斯・R・马罗塔 Endovassular prosthesis for closing aneurysma opening
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6113579A (en) * 1998-03-04 2000-09-05 Scimed Life Systems, Inc. Catheter tip designs and methods for improved stent crossing
US6659957B1 (en) * 1998-03-05 2003-12-09 Gil M. Vardi Optical-acoustic imaging device
US6293967B1 (en) * 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6241762B1 (en) * 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6093203A (en) * 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US6168621B1 (en) * 1998-05-29 2001-01-02 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
DE69933560D1 (en) 1998-06-19 2006-11-23 Endologix Inc Self-expanding, branching, endovascular prosthesis
US6129738A (en) * 1998-06-20 2000-10-10 Medtronic Ave, Inc. Method and apparatus for treating stenoses at bifurcated regions
US6117140A (en) 1998-06-26 2000-09-12 Scimed Life Systems, Inc. Stent delivery device
US6117117A (en) * 1998-08-24 2000-09-12 Advanced Cardiovascular Systems, Inc. Bifurcated catheter assembly
US6095990A (en) 1998-08-31 2000-08-01 Parodi; Juan Carlos Guiding device and method for inserting and advancing catheters and guidewires into a vessel of a patient in endovascular treatments
US6514281B1 (en) 1998-09-04 2003-02-04 Scimed Life Systems, Inc. System for delivering bifurcation stents
US6017324A (en) * 1998-10-20 2000-01-25 Tu; Lily Chen Dilatation catheter having a bifurcated balloon
US6042597A (en) * 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6217440B1 (en) 1998-10-29 2001-04-17 Unisys Corporation Air mover system with reduced reverse air flow
US6190403B1 (en) * 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
DE69927055T2 (en) * 1998-12-11 2006-06-29 Endologix, Inc., Irvine Endoluminal vascular prosthesis
EP1150610A1 (en) * 1999-01-15 2001-11-07 Ventrica Inc. Methods and devices for forming vascular anastomoses
US6261316B1 (en) * 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6258099B1 (en) * 1999-03-31 2001-07-10 Scimed Life Systems, Inc. Stent security balloon/balloon catheter
US6786889B1 (en) * 1999-03-31 2004-09-07 Scimed Life Systems, Inc Textured and/or marked balloon for stent delivery
US6273911B1 (en) * 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6290673B1 (en) * 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6881761B2 (en) * 2000-05-29 2005-04-19 Showa Denko K.K. Porous polymer particle, anion exchanger, producing method thereof, column for ion chromatography, and method for measuring anions
US6293968B1 (en) * 1999-09-02 2001-09-25 Syde A. Taheri Inflatable intraluminal vascular stent
US6689156B1 (en) * 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
CN1409622A (en) * 1999-09-23 2003-04-09 先进扩张技术公司 Bifurcation stent system and method
US6254593B1 (en) * 1999-12-10 2001-07-03 Advanced Cardiovascular Systems, Inc. Bifurcated stent delivery system having retractable sheath
US6361555B1 (en) * 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
US6210433B1 (en) * 2000-03-17 2001-04-03 LARRé JORGE CASADO Stent for treatment of lesions of bifurcated vessels
US6682536B2 (en) * 2000-03-22 2004-01-27 Advanced Stent Technologies, Inc. Guidewire introducer sheath
US6468301B1 (en) * 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US20020032478A1 (en) * 2000-08-07 2002-03-14 Percardia, Inc. Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel
WO2002067815A1 (en) * 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent
WO2002067653A3 (en) * 2001-02-26 2003-03-13 Scimed Life Systems Inc Bifurcated stent and delivery system
US7244853B2 (en) * 2001-05-09 2007-07-17 President And Fellows Of Harvard College Dioxanes and uses thereof
US8337540B2 (en) * 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
US6749628B1 (en) * 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US20030014102A1 (en) * 2001-06-27 2003-01-16 James Hong Intravascular Stent
US6743259B2 (en) * 2001-08-03 2004-06-01 Core Medical, Inc. Lung assist apparatus and methods for use
CA2457860C (en) * 2001-08-23 2010-03-16 Darrel C. Gumm Rotating stent delivery system for side branch access and protection and method of using same
US7252679B2 (en) * 2001-09-13 2007-08-07 Cordis Corporation Stent with angulated struts
US7004963B2 (en) * 2001-09-14 2006-02-28 Scimed Life Systems, Inc. Conformable balloons
US7163553B2 (en) * 2001-12-28 2007-01-16 Advanced Cardiovascular Systems, Inc. Intravascular stent and method of use
US6939368B2 (en) * 2002-01-17 2005-09-06 Scimed Life Systems, Inc. Delivery system for self expanding stents for use in bifurcated vessels
CA2486363A1 (en) * 2002-05-28 2003-12-04 The Cleveland Clinic Foundation Minimally invasive treatment system for aortic aneurysms
US6858038B2 (en) * 2002-06-21 2005-02-22 Richard R. Heuser Stent system
US6761734B2 (en) * 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
US20040059406A1 (en) * 2002-09-20 2004-03-25 Cully Edward H. Medical device amenable to fenestration
US7326242B2 (en) * 2002-11-05 2008-02-05 Boston Scientific Scimed, Inc. Asymmetric bifurcated crown
US7314480B2 (en) * 2003-02-27 2008-01-01 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery
US7655030B2 (en) * 2003-07-18 2010-02-02 Boston Scientific Scimed, Inc. Catheter balloon systems and methods
EP1673040B1 (en) * 2003-10-10 2008-07-30 Cook Incorporated Stretchable prosthesis fenestration
US7425219B2 (en) * 2003-10-10 2008-09-16 Arshad Quadri System and method for endoluminal grafting of bifurcated and branched vessels
US20050131526A1 (en) * 2003-12-10 2005-06-16 Shing-Chiu Wong Stent and balloon system for bifurcated vessels and lesions
US7686841B2 (en) * 2003-12-29 2010-03-30 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery system
US7922753B2 (en) * 2004-01-13 2011-04-12 Boston Scientific Scimed, Inc. Bifurcated stent delivery system
US7225518B2 (en) * 2004-02-23 2007-06-05 Boston Scientific Scimed, Inc. Apparatus for crimping a stent assembly
US20050209673A1 (en) * 2004-03-04 2005-09-22 Y Med Inc. Bifurcation stent delivery devices
WO2005122959A3 (en) * 2004-06-08 2007-03-15 Advanced Stent Tech Inc Stent with protruding branch portion for bifurcated vessels
US20060041303A1 (en) * 2004-08-18 2006-02-23 Israel Henry M Guidewire with stopper
WO2006036319A3 (en) * 2004-09-15 2007-12-13 Conor Medsystems Inc Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation
JP4979591B2 (en) * 2005-01-10 2012-07-18 トライレム メディカル, インコーポレイテッド Stent having a self-expandable part
US20070073388A1 (en) * 2005-08-22 2007-03-29 Krolik Jeffrey A Flared stents and apparatus and methods for delivering them

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1596754A (en) * 1923-10-30 1926-08-17 Judson D Moschelle Reenforced tubing
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3872893A (en) * 1972-05-01 1975-03-25 Fred T Roberts & Company Self-reinforced plastic hose and method for molding same
US4421810A (en) * 1975-02-12 1983-12-20 Rasmussen O B Perforated drainpipe and method of making same
US4140126A (en) * 1977-02-18 1979-02-20 Choudhury M Hasan Method for performing aneurysm repair
US4182339A (en) * 1978-05-17 1980-01-08 Hardy Thomas G Jr Anastomotic device and method
US4309994A (en) * 1980-02-25 1982-01-12 Grunwald Ronald P Cardiovascular cannula
US4413989A (en) * 1980-09-08 1983-11-08 Angiomedics Corporation Expandable occlusion apparatus
US4410476A (en) * 1980-10-20 1983-10-18 The United States Of America As Represented By The Secretary Of The Navy Method for making radially compliant line array hose
US4453545A (en) * 1981-05-07 1984-06-12 Hiroshi Inoue Endotracheal tube with movable endobronchial blocker for one-lung anesthesia
US4946464A (en) * 1981-07-22 1990-08-07 Pevsner Paul H Method of manufacturing miniature balloon catheter and product thereof
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4774949A (en) * 1983-06-14 1988-10-04 Fogarty Thomas J Deflector guiding catheter
US4689174A (en) * 1983-07-12 1987-08-25 Lupke Manfred Arno Alfred Producing double-walled helically wound thermoplastic pipe with a corrugated cutter wall and a smooth inner wall
US4552554A (en) * 1984-06-25 1985-11-12 Medi-Tech Incorporated Introducing catheter
US4819664A (en) * 1984-11-15 1989-04-11 Stefano Nazari Device for selective bronchial intubation and separate lung ventilation, particularly during anesthesia, intensive therapy and reanimation
US4739762A (en) * 1985-11-07 1988-04-26 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4739762B1 (en) * 1985-11-07 1998-10-27 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4681570A (en) * 1985-12-26 1987-07-21 Dalton Michael J Peritoneal catheter
US5350395A (en) * 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4964850A (en) * 1986-05-07 1990-10-23 Vincent Bouton Method for treating trans-nasal sinus afflictions using a double t-shaped trans-nasal aerator
US4759748A (en) * 1986-06-30 1988-07-26 Raychem Corporation Guiding catheter
US4731055A (en) * 1986-08-25 1988-03-15 Becton, Dickinson And Company Blood flow conduit
US4957508A (en) * 1986-10-31 1990-09-18 Ube Industries, Ltd. Medical tubes
US4762128A (en) * 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US5042976A (en) * 1987-01-13 1991-08-27 Terumo Kabushiki Kaisha Balloon catheter and manufacturing method of the same
US4905667A (en) * 1987-05-12 1990-03-06 Ernst Foerster Apparatus for endoscopic-transpapillary exploration of biliary tract
US4878495A (en) * 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4872874A (en) * 1987-05-29 1989-10-10 Taheri Syde A Method and apparatus for transarterial aortic graft insertion and implantation
US4769029A (en) * 1987-06-19 1988-09-06 Patel Jayendrakumar I Prosthetic graft for arterial system repair
US4769005A (en) * 1987-08-06 1988-09-06 Robert Ginsburg Selective catheter guide
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
US4957501A (en) * 1987-12-31 1990-09-18 Biomat, S.A.R.L. Anti-embolic filter
US4900314A (en) * 1988-02-01 1990-02-13 Fbk International Corporation Collapse-resistant tubing for medical use
US5236446A (en) * 1988-03-02 1993-08-17 Dumon Jean Francois Tubular endoprosthesis for anatomical conduits
US4896670A (en) * 1988-04-19 1990-01-30 C. R. Bard, Inc. Kissing balloon catheter
US5085664A (en) * 1988-07-22 1992-02-04 Luigi Bozzo Disobstructor dilator device for urinary pathology
US4909258A (en) * 1988-08-08 1990-03-20 The Beth Israel Hospital Association Internal mammary artery (IMA) catheter
US5226913A (en) * 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US4906244A (en) * 1988-10-04 1990-03-06 Cordis Corporation Balloons for medical devices and fabrication thereof
US4983167A (en) * 1988-11-23 1991-01-08 Harvinder Sahota Balloon catheters
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5217440A (en) * 1989-10-06 1993-06-08 C. R. Bard, Inc. Multilaminate coiled film catheter construction
US5337733A (en) * 1989-10-23 1994-08-16 Peter Bauerfeind Tubular inserting device with variable rigidity
US5176617A (en) * 1989-12-11 1993-01-05 Medical Innovative Technologies R & D Limited Partnership Use of a stent with the capability to inhibit malignant growth in a vessel such as a biliary duct
US5117831A (en) * 1990-03-28 1992-06-02 Cardiovascular Imaging Systems, Inc. Vascular catheter having tandem imaging and dilatation components
US5061240A (en) * 1990-04-02 1991-10-29 George Cherian Balloon tip catheter for venous valve ablation
US5059177A (en) * 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
US5122125A (en) * 1990-04-25 1992-06-16 Ashridge A.G. Catheter for angioplasty with soft centering tip
US5054501A (en) * 1990-05-16 1991-10-08 Brigham & Women's Hospital Steerable guide wire for cannulation of tubular or vascular organs
US5147317A (en) * 1990-06-04 1992-09-15 C.R. Bard, Inc. Low friction varied radiopacity guidewire
US5102403A (en) * 1990-06-18 1992-04-07 Eckhard Alt Therapeutic medical instrument for insertion into body
US5159920A (en) * 1990-06-18 1992-11-03 Mentor Corporation Scope and stent system
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5395334A (en) * 1990-08-28 1995-03-07 Scimed Life Systems, Inc. Balloon catheter with distal guide wire lumen
US5395332A (en) * 1990-08-28 1995-03-07 Scimed Life Systems, Inc. Intravascualr catheter with distal tip guide wire lumen
US5413581A (en) * 1990-10-04 1995-05-09 Schneider (Europe) A.G. Method of using a balloon dilatation catheter and a guidewire
US5222971A (en) * 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5413586A (en) * 1991-03-14 1995-05-09 Ethnor Anti-pulmonary embolism filter and corresponding presentation and fitting kit
US5304220A (en) * 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
US5211683A (en) * 1991-07-03 1993-05-18 Maginot Thomas J Method of implanting a graft prosthesis in the body of a patient
US5456712A (en) * 1991-07-03 1995-10-10 Maginot; Thomas J. Graft and stent assembly
US5456714A (en) * 1991-07-04 1995-10-10 Owen; Earl R. Tubular surgical implant having a locking ring and flange
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5192297A (en) * 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5263932A (en) * 1992-04-09 1993-11-23 Jang G David Bailout catheter for fixed wire angioplasty
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5324257A (en) * 1992-05-04 1994-06-28 Cook, Incorporated Balloon catheter having an integrally formed guide wire channel
US5674276A (en) * 1992-05-20 1997-10-07 Boston Scientific Corporation Tubular medical prosthesis
US5342387A (en) * 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5342297A (en) * 1992-07-10 1994-08-30 Jang G David Bailout receptacle for angioplasty catheter
US5257974A (en) * 1992-08-19 1993-11-02 Scimed Life Systems, Inc. Performance enhancement adaptor for intravascular balloon catheter
US5338300A (en) * 1992-08-19 1994-08-16 Scimed Life Systems, Inc. Performance enhancement adaptor for intravascular balloon catheter
US5449382A (en) * 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
US5320605A (en) * 1993-01-22 1994-06-14 Harvinder Sahota Multi-wire multi-balloon catheter
US5437638A (en) * 1993-01-29 1995-08-01 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Multifinger topocatheter tip for multilumen catheter for angioplasty and manipulation
US5282472A (en) * 1993-05-11 1994-02-01 Companion John A System and process for the detection, evaluation and treatment of prostate and urinary problems
US5425765A (en) * 1993-06-25 1995-06-20 Tiefenbrun; Jonathan Surgical bypass method
US5342295A (en) * 1993-09-24 1994-08-30 Cardiac Pathways Corporation Catheter assembly, catheter and multi-port introducer for use therewith
US5417208A (en) * 1993-10-12 1995-05-23 Arrow International Investment Corp. Electrode-carrying catheter and method of making same
US5404887A (en) * 1993-11-04 1995-04-11 Scimed Life Systems, Inc. Guide wire having an unsmooth exterior surface
US5409458A (en) * 1993-11-10 1995-04-25 Medtronic, Inc. Grooved balloon for dilatation catheter
US5443497A (en) * 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5607444A (en) * 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5445624A (en) * 1994-01-21 1995-08-29 Exonix Research Corporation Catheter with progressively compliant tip
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5458605A (en) * 1994-04-04 1995-10-17 Advanced Cardiovascular Systems, Inc. Coiled reinforced retractable sleeve for stent delivery catheter
US5456694A (en) * 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US7862604B1 (en) * 1995-02-24 2011-01-04 Endovascular Technologies, Inc. Bifurcated graft with an inferior extension
US5843117A (en) * 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5676697A (en) * 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm

Also Published As

Publication number Publication date Type
ES2273363T3 (en) 2007-05-01 grant
US6210429B1 (en) 2001-04-03 grant
US20060085061A1 (en) 2006-04-20 application
EP1723931A2 (en) 2006-11-22 application
EP1723931A3 (en) 2008-09-10 application
DE69736676D1 (en) 2006-10-26 grant
EP0944366B1 (en) 2006-09-13 grant
EP1723931B1 (en) 2012-01-04 grant
EP0944366A4 (en) 2004-07-07 application
WO1998019628A1 (en) 1998-05-14 application
US20010037137A1 (en) 2001-11-01 application
US20020156516A1 (en) 2002-10-24 application
EP0944366A1 (en) 1999-09-29 application
US6962602B2 (en) 2005-11-08 grant
DE69736676T2 (en) 2007-01-11 grant
WO1999036002A1 (en) 1999-07-22 application
US20020116047A1 (en) 2002-08-22 application

Similar Documents

Publication Publication Date Title
US6264682B1 (en) Stent and catheter assembly and method for treating bifurcations
US4776337A (en) Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5776161A (en) Medical stents, apparatus and method for making same
US5478349A (en) Placement of endoprostheses and stents
US6908477B2 (en) Methods of implanting covered stents with side branch
US6629992B2 (en) Sheath for self-expanding stent
US6387120B2 (en) Stent and catheter assembly and method for treating bifurcations
US6221090B1 (en) Stent delivery assembly
US6254593B1 (en) Bifurcated stent delivery system having retractable sheath
US5593417A (en) Intravascular stent with secure mounting means
US5906640A (en) Bifurcated stent and method for the manufacture and delivery of same
EP0335341B1 (en) Expandable intraluminal graft and apparatus for implanting an expandable intraluminal graft
US6884258B2 (en) Bifurcation lesion stent delivery using multiple guidewires
US5669924A (en) Y-shuttle stent assembly for bifurcating vessels and method of using the same
US6033435A (en) Bifurcated stent and method for the manufacture and delivery of same
US5807398A (en) Shuttle stent delivery catheter
US5591198A (en) Multiple sinusoidal wave configuration stent
US6508836B2 (en) Stent and catheter assembly and method for treating bifurcations
US6582394B1 (en) Stent and catheter assembly and method for treating bifurcated vessels
US6027526A (en) Stent having varied amounts of structural strength along its length
US5578075A (en) Minimally invasive bioactivated endoprosthesis for vessel repair
US20070173921A1 (en) Flared stents and apparatus and methods for delivering them
US6254627B1 (en) Non-thrombogenic stent jacket
US6746477B2 (en) Expandable stent
US6605110B2 (en) Stent with enhanced bendability and flexibility

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED STENT TECHNOLOGIES, INC.;REEL/FRAME:022722/0369

Effective date: 20090515

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED STENT TECHNOLOGIES, INC.;REEL/FRAME:022722/0369

Effective date: 20090515