Connect public, paid and private patent data with Google Patents Public Datasets

Tracking and Security for Adherent Patient Monitor

Download PDF

Info

Publication number
US20090076346A1
US20090076346A1 US12209294 US20929408A US2009076346A1 US 20090076346 A1 US20090076346 A1 US 20090076346A1 US 12209294 US12209294 US 12209294 US 20929408 A US20929408 A US 20929408A US 2009076346 A1 US2009076346 A1 US 2009076346A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
patient
system
data
device
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12209294
Inventor
Kristofer J. James
Badri Amurthur
Mark J. Bly
Yatheendhar D. Manicka
Scott T. Mazar
Jerry S. Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Monitoring Inc
Original Assignee
Medtronic Monitoring Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3418Telemedicine, e.g. remote diagnosis, remote control of instruments or remote monitoring of patient carried devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body or parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body or parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0408Electrodes specially adapted therefor
    • A61B5/04085Multiple electrode holders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0809Detecting, measuring or recording devices for evaluating the respiratory organs by impedance pneumography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • G16H10/60
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • A61B2560/0412Low-profile patch shaped housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/08Sensors provided with means for identification, e.g. barcodes or memory chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • A61B5/02455Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals provided with high/low alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body or parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0452Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7232Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36521Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure the parameter being derived from measurement of an electrical impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36535Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body position or posture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36514Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
    • A61N1/36542Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body motion, e.g. acceleration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36592Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by the heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37282Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data characterised by communication with experts in remote locations using a network
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q2220/00Business processing using cryptography

Abstract

A heart failure patient management system includes a detecting system. The detecting system includes an adherent device configured to be coupled to a patient. The adherent device includes a plurality of sensors to monitor physiological parameters of the patient to determine heart failure status. At least one ID may be coupled to the adherent device that is addressable and unique to each adherent device. A wireless communication device is coupled to the plurality of sensors and configured to transfer patient data directly or indirectly from the plurality of sensors to a remote monitoring system. The remote monitoring system is coupled to the wireless communication device. An energy management device may be coupled to the plurality of sensors

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • [0001]
    The present application claims the benefit under 35 USC 119(e) of U.S. Provisional Application Nos. 60/972,340, 60/972,537, 60/972,336 all filed Sep. 14, 2007, 61/055,666 filed May 23, 2008, and 61/079,746 filed Jul. 10, 2008; the full disclosures of which are incorporated herein by reference in their entirety.
  • [0002]
    The subject matter of the present application is related to the following applications: 60/972,512; 60/972,329; 60/972,354; 60/972,616; 60/972,363; 60/972,343; 60/972,581; 60/972,629; 60/972,316; 60/972,333; 60/972,359 all of which were filed on Sep. 14, 2007; 61/046,196 filed Apr. 18, 2008; 61/047,875 filed Apr. 25, 2008; and 61/055,645, 61/055,656, 61/055,662 all filed May 23, 2008.
  • [0003]
    The following applications are being filed concurrently with the present application, on Sep. 12, 2008: Attorney Docket Nos. 026843-000110US entitled “Multi-Sensor Patient Monitor to Detect Impending Cardiac Decompensation Prediction”; 026843-000220US entitled “Adherent Device with Multiple Physiological Sensors”; 026843-000410US entitled “Injectable Device for Physiological Monitoring”; 026843-000510US entitled “Delivery System for Injectable Physiological Monitoring System”; 026843-000620US entitled “Adherent Device for Cardiac Rhythm Management”; 026843-000710US entitled “Adherent Device for Respiratory Monitoring”; 026843-000810US entitled “Adherent Athletic Monitor”; 026843-000910US entitled “Adherent Emergency Monitor”; 026843-001320US entitled “Adherent Device with Physiological Sensors”; 026843-001410US entitled “Medical Device Automatic Start-up upon Contact to Patient Tissue”; 026843-001900US entitled “System and Methods for Wireless Body Fluid Monitoring”; 026843-002010US entitled “Adherent Cardiac Monitor with Advanced Sensing Capabilities”; 026843-002410US entitled “Adherent Device for Sleep Disordered Breathing”; 026843-002710US entitled “Dynamic Pairing of Patients to Data Collection Gateways”; 026843-003010US entitled “Adherent Multi-Sensor Device with Implantable Device Communications Capabilities”; 026843-003110US entitled “Data Collection in a Multi-Sensor Patient Monitor”; 026843-003210US entitled “Adherent Multi-Sensor Device with Empathic Monitoring”; and 026843-003310US entitled “Energy Management for Adherent Patient Monitor.”
  • BACKGROUND OF THE INVENTION
  • [0004]
    1. Field of the Invention
  • [0005]
    This invention relates generally to systems and methods that use wireless physiological monitoring, and more particularly to systems and methods for heart failure patient monitoring.
  • [0006]
    Frequent monitoring of patients permits the patients' physician to detect worsening symptoms as they begin to occur, rather than waiting until a critical condition has been reached. As such, home monitoring of patients with chronic conditions is becoming increasingly popular in the health care industry for the array of benefits it has the potential to provide. Potential benefits of home monitoring are numerous and include: better tracking and management of chronic disease conditions, earlier detection of changes in the patient condition, and reduction of overall health care expenses associated with long term disease management. The home monitoring of a number of diverse “chronic diseases” is of interest, where such diseases include diabetes, dietary disorders such as anorexia and obesity, anxiety, depression, epilepsy, respiratory diseases, AIDS and other chronic viral conditions, conditions associated with the long term use of immunosuppressants, e.g. in transplant patients, asthma, chronic hypertension, chronic use of anticoagulants, and the like.
  • [0007]
    Of particular interest in the home monitoring sector of the health care industry is the remote monitoring of patients with heart failure (HF), also known as congestive heart failure. HF is a syndrome in which the heart is unable to efficiently pump blood to the vital organs. Most instances of HF occur because of a decreased myocardial capacity to contract (systolic dysfunction). However, HF can also result when an increased pressure-stroke-volume load is imposed on the heart, such as when the heart is unable to expand sufficiently during diastole to accommodate the ventricular volume, causing an increased pressure load (diasystolic dysfunction).
  • [0008]
    In either case, HF is characterized by diminished cardiac output and/or damming back of blood in the venous system. In HF, there is a shift in the cardiac function curve and an increase in blood volume caused in part by fluid retention by the kidneys. Indeed, many of the significant morphologic changes encountered in HF are distant from the heart and are produced by the hypoxic and congestive effects of the failing circulation upon other organs and tissues. One of the major symptoms of HF is edema, which has been defined as the excessive accumulation of interstitial fluid, either localized or generalized.
  • [0009]
    HF is the most common indication for hospitalization among adults over 65 years of age, and the rate of admission for this condition has increased progressively over the past two decades. It has been estimated that HF affects more than 3 million patients in the U.S. (J. B. O'Connell et al., J. Heart Lung Transpl. (1993) 13(4):S107-112).
  • [0010]
    In the conventional management of HF patients, where help is sought only in crisis, a cycle occurs where patients fail to recognize early symptoms and do not seek timely help from their care-givers, leading to emergency department admissions (Miller, P. Z., 1995, “Home monitoring for congestive heart failure patients,” Caring Magazine, August 1995: 53-54). Recently, a prospective, randomized trial of 282 patients was conducted to assess the effect of the intervention on the rate of admission, quality of life, and cost of medical care. In this study, a nurse-directed, multi disciplinary intervention (which consisted of comprehensive education of the patient and family, diet, social-service consultation and planning, review of medications, and intensive assessment of patient condition and follow-up) resulted in fewer readmissions than the conventional treatment group and a concomitant overall decrease in the cost of care (M. W. Rich et al., New Engl. J. Med. (1995) 333:1190-95).
  • [0011]
    Similarly, comprehensive discharge planning and a home follow-up program was shown to decrease the number of readmissions and total hospital charges in an elderly population (M. Naylor et al., Amer. College Physicians (1994) 120:999-1006). Therefore, home monitoring is of particular interest in the HF management segment of the health care industry.
  • [0012]
    Another area in which home-monitoring is of particular interest is in the remote monitoring of a patient parameter that provides information on the titration of a drug, particularly with drugs that have a consequential effect following administration, such as insulin, anticoagulants, ACE inhibitors, .beta.-blockers, diuretics, etc.
  • [0013]
    Although a number of different home monitoring systems have been developed, there is continued interest in the development of new monitoring systems. Of particular interest would be the development of a system that provides for improved patient compliance, ease of use, etc. Of more particular interest would be the development of such a system that is particularly suited for use in the remote monitoring of patients suffering from HF.
  • [0014]
    There is a need for an improved home monitoring of patients with chronic conditions. There is a further need for an improved HF monitoring system.
  • [0015]
    2. Description of the Background Art
  • [0016]
    The following U.S. patents and Publications may describe relevant background art: U.S. Pat. Nos. 4,121,573; 4,955,381; 4,981,139; 5,080,099; 5,353,793; 5,511,553; 5,544,661; 5,558,638; 5,724,025; 5,772,586; 5,862,802; 5,944,659; 6,047,203; 6,117,077; 6,129,744; 6,225,901; 6,385,473; 6,416,471; 6,454,707; 6,527,711; 6,527,729; 6,551,252; 6,595,927; 6,595,929; 6,605,038; 6,645,153; 6,659,947; 6,821,249; 6,980,851; 6,988,989; 7,020,508; 7,054,679; 7,130,396; 7,153,262; 2003/0092975; 2004/0225199; 2005/0113703; 2005/0131288; 2006/0010090; 2006/0031102; 2006/0074462; 2006/0089679; 2006/0122474; 2006/0142820; 2006/0155183; 2006/0202816; 2006/0224051; 2006/0235281; 2006/0264730; 2007/0015973; 2007/0021678; 2007/0038038; and 2007/0180047.
  • BRIEF SUMMARY OF THE INVENTION
  • [0017]
    Accordingly, an object of the present invention is to provide an improved remote monitoring system of patients, for example patients with chronic conditions.
  • [0018]
    Another object of the present invention is to provide an improved remote monitoring system for HF patients.
  • [0019]
    A further object of the present invention is to provide a remote monitoring system for HF patients with at least one of an energy management device or at least one ID coupled to sensors to monitor a patient.
  • [0020]
    A further object of the present invention is to provide a remote monitoring system for HF patients that uses outputs of a plurality of sensors have multiple features to enhance physiological sensing performance.
  • [0021]
    Another object of the present invention is to provide a remote monitoring system for HF patients.
  • [0022]
    Still a further object of the present invention is to provide a remote monitoring system for HF patients where heart failure status is determined by a weighted combination change in sensor outputs.
  • [0023]
    Yet another object of the present invention is to provide a remote monitoring system for HF patients where heart failure status is determined when a rate of change of at least two sensor outputs is an abrupt change in the sensor outputs as compared to a change in the sensor outputs over a longer period of time.
  • [0024]
    A further object of the present invention is to provide a remote monitoring system for HF patients where heart failure status is determined by a tiered combination of at least a first and a second sensor output, with the first sensor output indicating a problem that is then verified by at least a second sensor output.
  • [0025]
    Another object of the present invention is to provide a remote monitoring system for HF patients where heart failure status is determined by a variance from a baseline value of sensor outputs.
  • [0026]
    Yet another object of the present invention is to provide a remote monitoring system for HF patients where baseline values are defined by a look up table.
  • [0027]
    Still a further object of the present invention is to provide a remote monitoring system for HF patients where heart failure status is determined when a first sensor output is at a high value that is greater than a baseline value, and at least one of a second a third sensor outputs is at a high value also sufficiently greater than a baseline value to indicate heart failure status.
  • [0028]
    Another object of the present invention is to provide a remote monitoring system for HF patients where heart failure status is determined by time weighting the outputs of at least first, second and third sensors, and the time weighting indicates a recent event that is indicative of the heart failure status.
  • [0029]
    These and other objects of the present invention can be achieved in many embodiments comprising a patient monitoring system that includes a detecting system. The detecting system has, (i) an adherent device configured to be coupled to a patient, the adherent device including a plurality of sensors that monitors physiological parameters of the patient, for example physiological parameters to determine heart failure status, (ii) at least one ID coupled to the adherent device that is addressable and unique to each adherent device, and (iii) a wireless communication device coupled to the plurality of sensors and configured to transfer patient data from the plurality of sensors to a remote monitoring system. The remote monitoring system is coupled to the wireless communication device. An energy management device may be coupled to the plurality of sensors so as to minimize power consumption when the patch is worn by the patient.
  • [0030]
    In a first aspect, embodiments of the present invention provide a patient monitoring system. The patient monitoring system comprises a patient detecting system for measuring the patient. The patient monitoring system includes an adherent device configured to be coupled to a patient. The adherent device includes a plurality of sensors that monitors physiological parameters. The patient monitoring system also includes at least one ID coupled to the adherent device. The at least one ID is addressable and unique to the adherent device. The patient monitoring system also includes a wireless communication device coupled to the plurality of sensors and a remote monitoring system. The remote monitoring system is coupled to the wireless communication device. The wireless communication system is configured to transfer patient data from the plurality of sensors to the remote monitoring system.
  • [0031]
    In many embodiments, the at least one ID comprises a memory component. In many embodiments, the ID comprises a sensor ID, which may comprise a memory component.
  • [0032]
    In many embodiments, the adherent device comprises a patch set configured to be coupled to the patient. The at least one ID may be unique to each adherent device. The at least one ID may comprise a removable memory component with a unique patient ID that is configured to be reused when patches associated with the adherent patch are replaced. The patch set may be linked together and may comprise replacement patches that are linked. In some embodiments, the patch set is linked by hardware. In some embodiments, the patch set is linked by software at the remote monitoring system.
  • [0033]
    In some embodiments, the adherent device is configured to register with the remote monitoring system when the adherent device is given to the patient. The adherent device may be configured to register via a web site and patient data is uploaded to the adherent device. A modem assigned to the patient may be configured to link to the adherent device. The modem may be configured to determine which patch is sending information to the modem. The modem may be configured to communicate only with the patch set of the patient and the modem may be configured to communicate only with patches associated with the modem. The modem may be at the remote monitoring system or at the patient detecting system. Registration with the remote monitoring system may occur automatically each time a patch of the adherent device is put on the patient. On registration, ID information may be sent to the remote monitoring system.
  • [0034]
    In many embodiments, the at least one ID is coupled to the adherent device with an ID sensor. In some embodiments, the ID sensor is configured to transmit to the remote monitoring system. In some embodiments, the ID sensor is configured to associate data from the plurality of sensors to the remote monitoring system. In some embodiments, the ID sensor is not incorporated in the adherent device. In some embodiments, the ID sensor is configured to associate the adherent patch with the patient with at least one of, caller ID, an RFID tag on the patient, a body tattoo, fingerprint ID and GPS. In some embodiments, the ID sensor is configured to produce a first output that has protected patient data with restricted communication and a second output that has general device and patient information for general communication. Access to the protected patient data may require an additional security verification. At least a portion of the protected patient data may be encrypted. The addition security verification may comprise at least one of a skin tattoo with an adherent device reader, a modem identification, an encrypted communication, an encrypted data storage on the adherent device, a biometric ID or an x-ray ID tag.
  • [0035]
    In many embodiments, the patient parameters comprise parameters to determine heart failure status of the patient.
  • [0036]
    In many embodiments, the adherent device is housed in a tamper proof housing prior to placement on the patient.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0037]
    FIG. 1 is a block diagram illustrating one embodiment of a patient monitoring system of the present invention;
  • [0038]
    FIGS. 2A and 2B illustrate exploded view and side views of embodiments of an adherent device with sensors configured to be coupled to the skin of a patient for monitoring purposes;
  • [0039]
    FIG. 3 illustrates one embodiment of an energy management device that is coupled to the plurality of sensors of FIG. 1;
  • [0040]
    FIG. 4 illustrates one embodiment of present invention illustrating logic resources configured to receive data from the sensors and/or the processed patient for monitoring purposes, analysis and/or prediction purposes;
  • [0041]
    FIG. 5 illustrates an embodiment of the patient monitoring system of the present invention with a memory management device;
  • [0042]
    FIG. 6 illustrates an embodiment of the patient monitoring system of the present invention with an external device coupled to the sensors;
  • [0043]
    FIG. 7 illustrates an embodiment of the patient monitoring system of the present invention with a notification device;
  • [0044]
    FIG. 8 is a block diagram illustrating an embodiment of the present invention with sensor leads that convey signals from the sensors to a monitoring unit at the detecting system, or through a wireless communication device to a remote monitoring system;
  • [0045]
    FIG. 9 is a block diagram illustrating an embodiment of the present invention with a control unit at the detecting system and/or the remote monitoring system;
  • [0046]
    FIG. 10 is a block diagram illustrating an embodiment of the present invention where a control unit encodes patient data and transmits it to a wireless network storage unit at the remote monitoring system;
  • [0047]
    FIG. 11 is a block diagram illustrating one embodiment of an internal structure of a main data collection station at the remote monitoring system of the present invention; and
  • [0048]
    FIG. 12 is a flow chart illustrating an embodiment of the present invention with operation steps performed by the system of the present invention in transmitting information to the main data collection station.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0049]
    Embodiments of the present invention comprise an adherent multi-sensor patient monitor capable of tracking a patient's physiological status. The monitor can be configured for and detecting and predicting physiological events, for example negative physiological events. The device may comprise an intelligent combination of sensors to enhance detection and prediction capabilities, for example to detect cardiac decompensation.
  • [0050]
    Decompensation is failure of the heart to maintain adequate blood circulation. Although the heart can maintain at least some pumping of blood, the quantity is inadequate to maintain healthy tissues. Several symptoms can result from decompensation including pulmonary congestion, breathlessness, faintness, cardiac palpitation, edema of the extremities, and enlargement of the liver. Cardiac decompensation can result in slow or sudden death. Sudden Cardiac Arrest (hereinafter “SCA”), also referred to as sudden cardiac death, is an abrupt loss of cardiac pumping function that can be caused by a ventricular arrhythmia, for example ventricular tachycardia and/or ventricular fibrillation. Although decompensation and SCA can be related in that patients with decompensation are also at an increased risk for SCA, decompensation is primarily a mechanical dysfunction caused by inadequate blood flow, and SCA is primarily an electrical dysfunction caused by inadequate and/or inappropriate electrical signals of the heart.
  • [0051]
    The combination of sensors can be used to detect cardiac decompensation, which can be difficult to diagnose in the early stages.
  • [0052]
    The adherent patch device may comprise an energy management device configured with a variety of energy management features. The energy management device comprises circuitry configured for energy management, for example at least one of timer circuitry, processor circuitry, or programmable array logic (PAL) circuitry. The energy management device may be configured with at least one of the following:
  • 1. Patch Activation
  • [0000]
      • a. Patch can be activated
      • b. Mechanism for removing from storage mode
      • i. Automatic impedance/physiological variable trigger
      • ii. Tab pull (e.g. integrated into package)
      • iii. Battery insertion
      • iv. Hall/reed switch
      • v. Breakable glass capsule
      • vi. Dome switch
      • vii. Light activated (storage in opaque package)
      • viii. Pressure activated (storage in vacuum sealed package)
      • ix. Temperature (body temperature activated)
      • x. Temp/activity/physiological variable within range
      • xi. Connection between electronics and patch
      • xii. Exposure to air (zinc-air battery, etc.)
      • xiii. Capacitive skin sensor
  • 2. Intermittent Sampling 3. Data Management
  • [0000]
      • a. Data compression
      • b. Prioritizing sensor data—all sensors monitored in real time—subset of sensors stored for report
      • c. Noise blanking
      • d. Low-power caching
      • e. Decimate old data
      • f. EOC dropoff to transfer data
      • g. ERI: call center notification
  • 4. Power/Energy Generation/Storage
  • [0000]
      • a. Thermo-electric unit
      • b. Kinetic
      • c. Fuel cell
      • d. Solar powered
      • e. Zinc-air
      • f. Faraday generator
      • g. Internal combustion
      • h. Nuclear powered
      • i. Micro-battery
      • j. Acoustic
      • k. Inductive
      • l. Rechargeable
  • 5. Energy Management
  • [0000]
      • a. Modulate clock speed to optimize energy
      • b. Physiological (e.g. sleep) control of sensors—duty cycle, sample rate control (based on always-on sensor)
  • 6. Energy Monitoring
  • [0000]
      • a. Monitor cell voltage drop—unload cell
      • b. Monitor coulomb-meter or other battery monitor
  • [0091]
    In one embodiment, illustrated in FIG. 1, the present invention is a patient management system, generally denoted as 10, that tracks the patient's physiological status, detects and predicts negative physiological events. In one embodiment, a plurality of sensors are used in combination to enhance detection and prediction capabilities as more fully explained below.
  • [0092]
    Embodiments may comprise a patient management system comprising an adherent patch that is applied to the patient, for example for monitoring heart failure patients. The patch can be configured to monitor physiological patient parameters, communicates wirelessly with a remote center, and provides alerts when necessary. The patient management system may comprise a variety of tracking and security devices.
  • [0093]
    The heart failure patient management system can monitor physiological parameters and uses algorithms to determine heart failure status and an predict impending cardiac decompensation. The system comprises an adherent patch device with wireless communication capabilities. The patch device is configured to communicate with a remote center, for example via an intermediate device in the patient's home.
  • [0094]
    The adherent patch device may be tagged with a sensor ID, which is addressable and unique to each patch. This ID may be transmitted to the remote sensor with the data stream, and can be used to associate the data with the particular patch system. If multiple disposable patches are used by the same patient, the multiple patches may be linked as a set, and replacement patches linked to the original set. At the hospital, when the patch set is given to the patient, the nurse may register via a web site and upload patient info onto patch, for example using a hospital unit with scanner and wireless connection to patch.
  • [0095]
    The modem may be assigned to the patient, which then links to the patch set. A particular modem can be configured to only communicate with a specific patch set, which is associated with a specific patient. Registration with the remote center may occur automatically.
  • [0096]
    The patch may be associated with a patient using caller ID (to determine the source of the modem communication, using an RFID tag on the patient, for example an implant or second patch, a body tattoo, a fingerprint ID, or GPS. A removable memory component, for example containing a unique tag, may be reused as the patches are replaced.
  • [0097]
    To enhance security, a tamper-proof electronics housing may be used with the adherent patch device.
  • [0098]
    The adherent patch device may also produce two different outputs, protected patient data with restricted communication and general device and/or patient information for general communication. The restricted communication may require additional security verification. The restricted communication may be encrypted, while general communication is not.
  • [0099]
    Additional security mechanism may include: skin tattoo with patch reader, modem identification, encrypted communication, encrypted data storage on the device, biometric ID, and x-ray ID tags.
  • [0100]
    In the embodiments illustrated in FIG. 1, a patient management system, generally denoted as 10, tracks the patient's physiological status, detects and predicts negative physiological events. In one embodiment, a plurality of sensors are used in combination to enhance detection and prediction capabilities as more fully explained below.
  • [0101]
    In one specific embodiment, the system 10 is used for decompensation prediction of a heart failure patient. For example system 10 may comprise a heart failure patient management system used for decompensation prediction of a heart failure patient. System 10 comprises a detecting system, for example a patient measuring system, denoted as 12, and a remote monitoring system 18. The detecting system comprises an adherent device configured to couple to the patient, for example configured to adhere to the patient's skin.
  • [0102]
    The adherent device comprises a plurality of sensors 14. The plurality of sensors can measure physiological parameters of the patient to monitor the patient and determine the status of the patient, for example to determine heart failure status. The physiological parameters can provide an indication of at least one physiological event, for example a cardiac decompensation or an impending cardiac decompensation. The plurality of sensors may be coupled to the patient, for example adhered to the patient's thorax. The adherent device may be housed in a tamper proof housing prior to placement on the patient.
  • [0103]
    The logic circuitry, or resources, can be configured in many ways to detect the at least one physiological event, such as heart failure. For example, the remote monitoring system may comprise the logic circuitry, and the remote monitoring system may determine HF status when a rate of change of at least two sensor outputs comprises an abrupt change in the sensor outputs, such as an abrupt change as compared to a change in the sensor outputs over a longer period of time. The remote monitoring system may determine HF status by a tiered combination of at least a first and a second sensor output, with the first sensor output indicating a problem that is then verified by at least a second sensor output. The remote monitoring system may determine HF status in response a variance from a baseline value of sensor outputs. In some embodiments, the baseline values may be defined by a look up table. The HF status may be determined when a first sensor output is at a high value that is greater than a baseline value, and at least one of a second or a third sensor outputs is at a high value also sufficiently greater than a baseline value to indicate heart failure status. Heart failure status may be determined by time weighting the outputs of at least first, second and third sensors, and the time weighting indicates a recent event that is indicative of the heart failure status. When the patient measuring system comprises the logic circuitry, the patient measuring system may similarly detect the at least one physiological event.
  • [0104]
    The detecting system 12 also includes a wireless communication device 16, coupled to the plurality of sensors 14. The wireless communication device transfers patient data directly or indirectly from the plurality of sensors 14 to a remote monitoring system 18. The remote monitoring system 18 uses data from the sensors to determine heart failure status and predict impending decompensation of the patient. The detecting system 12 can continuously, or non-continuously, monitor the patient, alerts are provided as necessary and medical intervention is provided when required. The wireless communication device 16 may comprise at least one of a gateway or a wireless local area network for receiving data from the plurality of sensors.
  • [0105]
    The plurality of sensors 14 may comprise at least one ID sensor. The at least one ID sensor may be coupled to the adherent device, addressable, and unique to each adherent device. The adherent device may comprise the ID sensor of the plurality of sensors 14.
  • [0106]
    FIGS. 2A and 2B show embodiments of the plurality of sensors 14 supported with an adherent device 200 configured to adhere to the skin. Adherent device 200 is described in U.S. App. No. 60/972,537, the full disclosure of which has been previously incorporated herein by reference. As illustrated in an exploded view of the adherent device, a cover 262, batteries 250, electronics 230, including but not limited to flex circuits and the like, an adherent tape 210T, the plurality of sensors may comprise electrodes and sensor circuitry, and hydrogels which interface the plurality of sensors 14 with the skin, are provided.
  • [0107]
    Adherent device 200 comprises a support, for example adherent patch 210, configured to adhere the device to the patient. Adherent patch 210 comprises a first side, or a lower side 210A, that is oriented toward the skin of the patient when placed on the patient and a second side, or upper side 210B, opposite of the first side. In many embodiments, adherent patch 210 comprises a tape 210T which is a material, preferably breathable, with an adhesive 216A. Patient side 210A comprises adhesive 216A to adhere the patch 210 and adherent device 200 to patient P. Electrodes 212A, 212B, 212C and 212D are affixed to adherent patch 210. In many embodiments, at least four electrodes are attached to the patch, for example six electrodes. In some embodiments the patch comprises two electrodes, for example two electrodes to measure the electrocardiogram (ECG) of the patient. Gel 214A, gel 214B, gel 214C and gel 214D can each be positioned over electrodes 212A, 212B, 212C and 212D, respectively, to provide electrical conductivity between the electrodes and the skin of the patient. In many embodiments, the electrodes can be affixed to the patch 210, for example with known methods and structures such as rivets, adhesive, stitches, etc. In many embodiments, patch 210 comprises a breathable material to permit air and/or vapor to flow to and from the surface of the skin. In some embodiments, a printed circuit board (PCB), for example flex PCB 220, may be connected to upper side 210B of patch 210 with connectors. In some embodiments, additional PCB's, for example rigid PCB's 220A, 220B, 220C and 220D, can be connected to flex PCB 220. Electronic components 230 can be connected to flex PCB 220 and/or mounted thereon. In some embodiments, electronic components 230 can be mounted on the additional PCB's.
  • [0108]
    Electronic circuitry and components 230 comprise circuitry and components to take physiologic measurements, transmit data to remote center and receive commands from remote center. In many embodiments, electronics components 230 may comprise known low power circuitry, for example complementary metal oxide semiconductor (CMOS) circuitry components. Electronics components 230 comprise an activity sensor and activity circuitry, impedance circuitry and electrocardiogram circuitry, for example ECG circuitry. In some embodiments, electronics circuitry may comprise a microphone and microphone circuitry to detect an audio signal from within the patient, and the audio signal may comprise a heart sound and/or a respiratory sound, for example an S3 heart sound and a respiratory sound with rales and/or crackles. Electronics circuitry and components 230 may comprise a temperature sensor, for example a thermistor, and temperature sensor circuitry to measure a temperature of the patient, for example a temperature of a skin of the patient.
  • [0109]
    A cover 262 can extend over the batteries, electronic components and flex printed circuit board. In many embodiments, an electronics housing 260 may be disposed under cover 262 to protect the electronic components, and in some embodiments electronics housing 260 may comprise an encapsulant over the electronic components and PCB. In some embodiments, cover 262 can be adhered to the adhesive patch with an adhesive. In many embodiments, electronics housing 260 may comprise a water proof material, for example a sealant adhesive such as epoxy or silicone coated over the electronics components and/or PCB. In some embodiments, electronics housing 260 may comprise metal and/or plastic. Metal or plastic may be potted with a material such as epoxy or silicone.
  • [0110]
    Cover 262 may comprise many known biocompatible cover, casing and/or housing materials, such as elastomers, for example silicone. The elastomer may be fenestrated to improve breathability. In some embodiments, cover 262 may comprise many known breathable materials, for example polyester, polyamide, and/or elastane (Spandex). The breathable fabric may be coated to make it water resistant, waterproof, and/or to aid in wicking moisture away from the patch.
  • [0111]
    Adherent device 200 comprises several layers. Gel 214A, or gel layer, is positioned on electrode 212A to provide electrical conductivity between the electrode and the skin. Electrode 212A may comprise an electrode layer. Adhesive patch 210 may comprise a layer of breathable tape 210T, for example a known breathable tape, such as tricot-knit polyester fabric. In many embodiments, a gap 269 extends from adhesive patch 210 to the electronics circuitry and components 230, such that breathable tape 210T can breath to provide patient comfort. An adhesive 216A, for example a layer of acrylate pressure sensitive adhesive, can be disposed on underside 210A of patch 210. A gel cover 280, or gel cover layer, for example a polyurethane non-woven tape, can be positioned over patch 210 comprising the breathable tape. A PCB layer, for example flex PCB 220, or flex PCB layer, can be positioned over gel cover 280 with electronic components 230 connected and/or mounted to flex PCB 220, for example mounted on flex PCB so as to comprise an electronics layer disposed on the flex PCB. In many embodiments, the adherent device may comprise a segmented inner component, for example the PCB, for limited flexibility. In many embodiments, the electronics layer may be encapsulated in electronics housing 260 which may comprise a waterproof material, for example silicone or epoxy. In many embodiments, the electrodes are connected to the PCB with a flex connection, for example trace 223A of flex PCB 220, so as to provide strain relive between the electrodes 212A, 212B, 212C and 212D and the PCB. Gel cover 280 can inhibit flow of gel 214A and liquid. In many embodiments, gel cover 280 can inhibit gel 214A from seeping through breathable tape 210T to maintain gel integrity over time. Gel cover 280 can also keep external moisture from penetrating into gel 214A. Gel cover 280 may comprise at least one aperture 280A sized to receive one of the electrodes. In many embodiments, cover 262 can encase the flex PCB and/or electronics and can be adhered to at least one of the electronics, the flex PCB or the adherent patch, so as to protect the device. In some embodiments, cover 262 attaches to adhesive patch 210 with adhesive 216B. Cover 262 can comprise many known biocompatible cover, housing and/or casing materials, for example silicone. In many embodiments, cover 262 comprises an outer polymer cover to provide smooth contour without limiting flexibility. In some embodiments, cover 262 may comprise a breathable fabric. Cover 262 may comprise many known breathable fabrics, for example breathable fabrics as described above. In some embodiments, the breathable fabric may comprise polyester, polyamide, and/or elastane (Spandex™) to allow the breathable fabric to stretch with body movement. In some embodiments, the breathable tape may contain and elute a pharmaceutical agent, such as an antibiotic, anti-inflammatory or antifungal agent, when the adherent device is placed on the patient.
  • [0112]
    In one embodiment, the wireless communication device 16 is configured to receive instructional data from the remote monitoring system.
  • [0113]
    Referring to FIG. 3, an energy management device 19 can be coupled to the plurality of sensors. In one embodiment, the energy management device 19 is part of the detecting system. In various embodiments, the energy management device 19 performs one or more of modulate a clock speed to optimize energy, monitor cell voltage drop—unload cell, monitor coulomb-meter or other battery monitor, battery end of life dropoff to transfer data, elective replacement indicator, call center notification, sensing windows by the sensors 14 based on a monitored physiological parameter and sensing rate control.
  • [0114]
    In one embodiment, energy management is achieved by using time as a variable. This can be achieved by intermittent sampling. Variable time courses can be used for measuring signals from the beginning and the duty cycle rates can be adjusted, for example adjusted at the remote monitoring system 18.
  • [0115]
    In one embodiment, the energy management device 19 is configured to generate energy by at least one of, a thermo-electric unit, kinetics, fuel cell, through solar power, a zinc air interface, Faraday generator, internal combustion, nuclear power, a micro-battery and with a rechargeable device.
  • [0116]
    Referring again to FIG. 1, the adherent device may include a patch set configured to be coupled to the patient. Patches in the patch set, as well as replacement patches can be linked together and coupled to hardware at the detecting system 12 or at the remote monitoring system 18. Patches of the patch set can also be linked at software at a back end at the remote monitoring system 18. Registration with the remote monitoring system 18 can occur each time a new patch is put on the patient.
  • [0117]
    When an adherent device is provided to a patient, a medical provider registers that adherent device, associated with that patient, with the remote monitoring system 18. Registration can take place a variety of different ways, including but not limited to, via a web site, and the like. Upon registration, patient data is uploaded to the adherent device. An association of the adherent patch with the patient occurs by at least one of, caller ID, an RFID tag on the patient, a body tattoo, fingerprint ID and GPS.
  • [0118]
    In one embodiment, a modem is assigned to the patient and links to the adherent device. The modem can be configured to determine which patch is sending information to the modem. The modem communicates only with the patch set of the patient, and the modem only communicates with those patches with which it is associated. The modem can be at the detecting system 12 or at the remote monitoring system 18.
  • [0119]
    In one embodiment, the ID sensor 14 has a removable memory component with a unique patient ID that is reused as patches of the patch set are replaced. In one embodiment, the ID sensor 14 produces a first output that has protected patient data with restricted communication, and a second output that has general device and patient information for general communication. Access to the protected patient data can require an additional security verification. At least a portion of the protected patient data can be encrypted. A variety of additional security verifications including but not limited to, a skin tattoo with an adherent device reader, a modem identification, an encrypted communication, an encrypted data storage on the adherent device, a biometric ID, an x-ray ID tag and the like.
  • [0120]
    The system 10 is configured to automatically detect events. The system 10 automatically detects events by at least one of, high noise states, physiological quietness, sensor continuity and compliance. In response to a detected physiological event, patient states are identified when data collection is inappropriate. In response to a detected physiological event, patient states are identified when data collection is desirable. Patient states include, physiological quietness, rest, relaxation, agitation, movement, lack of movement and a patient's higher level of patient activity.
  • [0121]
    The system can use an intelligent combination of sensors to enhance detection and prediction capabilities, as more fully discloses in U.S. patent application Ser. No. 60/972,537, identified as Attorney Docket No. 026843-000200US, filed Sep. 14, 2007, the full disclosure of which has been previously incorporated herein by reference, and as more fully explained below. The intelligent combination of sensors may comprise a sensor to measure at least two of an electrocardiogram signal, a hydration signal, an accelerometer signal or a respiration signal of the patient.
  • [0122]
    In one embodiment, the detecting system 12 communicates with the remote monitoring system 18 periodically or in response to a trigger event. The trigger event can include but is not limited to at least one of, time of day, if a memory is full, if an action is patient initiated, if an action is initiated from the remote monitoring system, a diagnostic event of the monitoring system, an alarm trigger, a mechanical trigger, and the like.
  • [0123]
    The adherent device be activated by a variety of different means including but not limited to, a physiological trigger, automatic impedance, a tab pull, battery insertion, a hall or reed switch, a breakable glass capsule, a dome switch, by light activation, pressure activation, body temperature activation, a connection between electronics associated with the sensors and the adherent device, exposure to air, by a capacitive skin sensor and the like.
  • [0124]
    The detecting system 12 can continuously, or non-continuously, monitor the patient, alerts are provided as necessary and medical intervention is provided when required. In one embodiment, the wireless communication device 16 is a wireless local area network for receiving data from the plurality of sensors.
  • [0125]
    A processor 20 is coupled to the plurality of sensors 14 and can also be a part of the wireless communication device 16. The processor 20 comprises at least one tangible medium and may comprise a processor system. The processor 20 receives data from the plurality of sensors 14 and creates processed patient data.
  • [0126]
    In many embodiments, the processor 20 comprises at least one of a processor of detecting system 12 comprising a tangible medium, a processor of remote monitoring system 18 comprising a tangible medium, a processor of wireless communication device 16 comprising a tangible medium or a processor of monitoring unit 22 comprising a tangible medium. In one embodiment, the processor 20 is located at the remote monitoring system. In another embodiment, the processor 20 is located at the detecting system 12.
  • [0127]
    The processor 20 can be integral with a monitoring unit 22 that is part of the detecting system 12 or part of the remote monitoring system, or both. The monitoring unit can be located at the remote monitoring system 18.
  • [0128]
    The processor 20 has program instructions for evaluating values received from the sensors 14 with respect to acceptable physiological ranges for each value received by the processor 20 and determine variances. The processor 20 can receive and store a sensed measured parameter from the sensors 14, compare the sensed measured value with a predetermined target value, determine a variance, accept and store a new predetermined target value and also store a series of questions from the remote monitoring system 18.
  • [0129]
    As shown in FIG. 4, logic resources 24 are provided that take the data from the sensors 14, and/or the processed patient data from the processor 20, to predict an impending decompensation. The logic resources 24 can be at the remote monitoring system 18 or at the detecting system 12, such as in the monitoring unit 22.
  • [0130]
    In one embodiment, illustrated in FIG. 5, a memory management device 25 is provided. In various embodiments, the memory management device 25 performs one or more of data compression, prioritizing of sensing by a sensor 14, monitoring all or some of sensor data by all or a portion of sensors 14, sensing by the sensors 14 in real time, noise blanking to provide that sensor data is not stored if a selected noise level is determined, low-power of battery caching and decimation of old sensor data.
  • [0131]
    The sensors 14 can have associated circuitry, e.g. processor 20, which can provide a variety of different functions, including but not limited to, initiation, programming, measuring, storing, analyzing, communicating, predicting, and displaying of a physiological event of the patient. Each of sensors 14 is preferably sealed, such as housed in a hermetically sealed package. In one embodiment, at least a portion of the sealed packages include a power source, a memory, logic resources and a wireless communication device. In one embodiment, the sensors 14 can include, flex circuits, thin film resistors, organic transistors and the like. The sensors 14 can include ceramics to enclose the electronics. Additionally, the sensors 14 can include drug eluting coatings, including but not limited to, an antibiotic, anti-inflammatory agent and the like.
  • [0132]
    A wide variety of different sensors 14 can be utilized, including but not limited to, bioimpedance, heart rate, heart rhythm, HRV, HRT, heart sounds, respiration rate, respiration rate variability, respiratory sounds, SpO2, blood pressure, activity, posture, wake/sleep, orthopnea, temperature, heat flux and an accelerometer. A variety of activity sensors can be utilized, including but not limited to a, ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise, posture and the like.
  • [0133]
    The outputs of the sensors 14 can have multiple features to enhance physiological sensing performance. These multiple features have multiple sensing vectors that can include redundant vectors. The sensors can include current delivery electrodes and sensing electrodes. Size and shape of current delivery electrodes, and the sensing electrodes, can be optimized to maximize sensing performance. The system 10 can be configured to determine an optimal sensing configuration and electronically reposition at least a portion of a sensing vector of a sensing electrode. The multiple features enhance the ability of system 10 to determine an optimal sensing configuration and electronically reposition sensing vectors. In one embodiment, the sensors 14 can be partially masked to minimize contamination of parameters sensed by the sensors 14.
  • [0134]
    The size and shape of current delivery electrodes, for bioimpedance, and sensing electrodes can be optimized to maximize sensing performance. Additionally, the outputs of the sensors 14 can be used to calculate and monitor blended indices. Examples of the blended indices include but are not limited to, heart rate (HR) or respiratory rate (RR) response to activity, HR/RR response to posture change, HR+RR, HR/RR+bioimpedance, and/or minute ventilation/accelerometer and the like.
  • [0135]
    The sensors 14 can be cycled in order to manage energy, and different sensors 14 can sample at different times. By way of illustration, and without limitation, instead of each sensor 14 being sampled at a physiologically relevant interval, e.g. every 30 seconds, one sensor 14 can be sampled at each interval, and sampling cycles between available sensors.
  • [0136]
    By way of illustration, and without limitation, the sensors 14 can sample no more than 30 seconds for every minute for ECG, no more than once a second for an accelerometer sensor, and no more than 60 seconds for every 15 minutes for bio-impedance.
  • [0137]
    In one embodiment, a first of sensors 14 comprises a core sensor that continuously monitors and detects, and a second of sensors 14 verifies a physiological status in response to the core sensor 14 raising a flag. Additionally, at least some of sensors 14 can be used for short term tracking, and other sensors of sensor 14 used for long term tracking.
  • [0138]
    Referring to FIG. 6, in one embodiment, an external device 38, which may comprise a medical treatment device, is coupled to the sensors 14. The external device 38 can be coupled to a monitoring unit 22 that is part of the detecting system 12, or in direct communication with the sensors 14. A variety of different external devices 38 can be used to monitor and/or treat the patient, the external devices 38 including but not limited to, a weight scale, blood pressure cuff, cardiac rhythm management device, a medical treatment device, medicament dispenser and the like. Suitable cardiac rhythm management devices include but are not limited to, Boston Scientific's Latitude system, Medtronic's C are Link system, St. Jude Medical's HouseCall system and the like. Such communication may occur directly, or via an external translator unit.
  • [0139]
    Referring again to FIG. 6, the external device 38 can be coupled to an auxiliary input of the monitoring unit 22 at the detecting system 12 or to the monitoring system 22 at the remote monitoring system 18. Additionally, an automated reader can be coupled to an auxiliary input in order to allow a single monitoring unit 22 to be used by multiple patients. As previously mentioned above, the monitoring unit 22 can be at the remote monitoring system 18 and each patient can have a patient identifier (ID) including a distinct patient identifier. In addition, the ID identifier can also contain patient specific configuration parameters. The automated reader can scan the patient identifier ID and transmit the patient ID number with a patient data packet such that the main data collection station can identify the patient.
  • [0140]
    It will be appreciated that other medical treatment devices can also be used. The sensors 14 can communicate wirelessly with the external devices 38 in a variety of ways including but not limited to, a public or proprietary communication standard and the like. The detecting system 12 comprising sensors 14 can be configured to serve as a communication hub for multiple medical devices, coordinating sensor data and therapy delivery while transmitting and receiving data from the remote monitoring system 18.
  • [0141]
    In one embodiment, the detecting system 12 comprising sensors 14 is configured to coordinate data sharing between the external systems 38 allowing for sensor integration across devices. The coordination of the sensors 14 provides for new pacing, sensing, defibrillation vectors and the like.
  • [0142]
    In one embodiment, the processor 20 is included in the monitoring unit 22 and the external device 38 is in direct communication with the monitoring unit 22.
  • [0143]
    In another embodiment, illustrated in FIG. 7, a notification device 42 is coupled to the detecting system 12 and the remote monitoring system 18. The notification device 42 is configured to provide notification when values received from the sensors 14 are not within acceptable physiological ranges. The notification device 42 can be at the remote monitoring system 18 or at the monitoring unit 22 that is part of the detecting system 12. A variety of notification devices 42 can be utilized, including but not limited to, a visible patient indicator, an audible alarm, an emergency medical service notification, a call center alert, direct medical provider notification and the like. The notification device 42 provides notification to a variety of different entities, including but not limited to, the patient, a caregiver, the remote monitoring system, a spouse, a family member, a medical provider, from one device to another device such as the external device 38, and the like.
  • [0144]
    Notification can be according to a preset hierarchy. By way of illustration, and without limitation, the preset hierarchy can be, patient notification first and medical provider second, patient notification second and medical provider first, and the like. Upon receipt of a notification, a medical provider, the remote monitoring system 18, or a medical treatment device can trigger a high-rate sampling of physiological parameters for alert verification.
  • [0145]
    The system 10 can also include an alarm 46, that can be coupled to the notification device 42, for generating a human perceptible signal when values received from the sensors 14 are not within acceptable physiological ranges. The alarm 46 can trigger an event to render medical assistance to the patient, provide notification as set forth above, continue to monitor, wait and see, and the like.
  • [0146]
    When the values received from the sensors 14 are not within acceptable physiological ranges the notification is with the at least one of, the patient, a spouse, a family member, a caregiver, a medical provider and from one device to another device, to allow for therapeutic intervention to prevent decompensation, and the like.
  • [0147]
    In another embodiment, the sensors 14 can switch between different modes, wherein the modes are selected from at least one of, a stand alone mode with communication directly with the remote monitoring system 18, communication with an implanted device, communication with a single implanted device, coordination between different devices (external systems) coupled to the plurality of sensors and different device communication protocols.
  • [0148]
    By way of illustration, and without limitation, the patient can be a congestive heart failure patient. Heart failure status is determined by a weighted combination change in sensor outputs and be determined by a number of different means, including but not limited to, (i) when a rate of change of at least two sensor outputs is an abrupt change in the sensor outputs as compared to a change in the sensor outputs over a longer period of time, (ii) by a tiered combination of at least a first and a second sensor output, with the first sensor output indicating a problem that is then verified by at least a second sensor output, (iii) by a variance from a baseline value of sensor outputs, and the like. The baseline values can be defined in a look up table.
  • [0149]
    In another embodiment, heart failure status is determined using three or more sensors by at least one of, (i) when the first sensor output is at a value that is sufficiently different from a baseline value, and at least one of the second and third sensor outputs is at a value also sufficiently different from a baseline value to indicate heart failure status, (ii) by time weighting the outputs of the first, second and third sensors, and the time weighting indicates a recent event that is indicative of the heart failure status and the like.
  • [0150]
    In one embodiment, the wireless communication device 16 can include a, modem, a controller to control data supplied by the sensors 14, serial interface, LAN or equivalent network connection and a wireless transmitter. Additionally, the wireless communication device 16 can include a receiver and a transmitter for receiving data indicating the values of the physiological event detected by the plurality of sensors, and for communicating the data to the remote monitoring system 18. Further, the wireless communication device 16 can have data storage for recording the data received from the sensors 14 and an access device for enabling access to information recording in the data storage from the remote monitoring system 18.
  • [0151]
    In various embodiments, the remote monitoring system 18 can include a receiver, a transmitter and a display for displaying data representative of values of the one physiological event detected by the sensors 14. The remote monitoring system can also include a, data storage mechanism that has acceptable ranges for physiological values stored therein, a comparator for comparing the data received from the monitoring system 12 with the acceptable ranges stored in the data storage device and a portable computer. The remote monitoring system 18 can be a portable unit with a display screen and a data entry device for communicating with the wireless communication device 16.
  • [0152]
    Referring now to FIG. 8, for each of sensors 14, a sensor lead 112 and 114 conveys signals from the sensor 14 to the monitoring unit 22 at the detecting system 12, or through the wireless communication device 16 to the remote monitoring system 18, or both. In one embodiment, each signal from a sensor 14 is first passed through a filter 116, such a low-pass filter, at the detecting system 12 or at the remote monitoring system 18, to smooth the signal and reduce noise. The signal is then transmitted to an analog-to-digital converter 118A, which transforms the signals into a stream of digital data values that can be stored in a digital memory 118B. From the digital memory 118B, data values are transmitted to a data bus 120, along which they are transmitted to other components of the circuitry to be processed and archived. From the data bus 120, the digital data can be stored in a non-volatile data archive memory. The digital data can be transferred via the data bus 120 to the at least one processor 20, which processes the data based in part on algorithms and other data stored in a non-volatile program memory.
  • [0153]
    The detecting system 12 can also include a power management module 122 configured to power down certain components of the system, including but not limited to, the analog-to-digital converters 118A, digital memories 118B and the non-volatile data archive memory and the like, between times when these components are in use. This helps to conserve battery power and thereby extend the battery life. Other circuitry and signaling modes may be devised by one skilled in the art.
  • [0154]
    As can be seen in FIG. 9, a control unit 126 is included at the detecting system 12, the remote monitoring system 18 or at both locations.
  • [0155]
    In one embodiment, the control unit 126 can be a known 486 microprocessor, available from Intel, Inc. of Santa Clara, Calif. The control unit 126 can be coupled to the sensors 14 directly at the detecting system 12, indirectly at the detecting system 12 or indirectly at the remote monitoring system 18. Additionally the control unit 126 can be coupled to a blood pressure monitor, a cardiac rhythm management device, a scale or a device that dispenses medication that can indicate the medication has been dispensed.
  • [0156]
    The control unit 126 can be powered by AC inputs which are coupled to internal AC/DC converters 134 that generate multiple DC voltage levels. After the control unit 126 has collected the patient data from the sensors 14, the control unit 126 encodes the recorded patient data and transmits the patient data through the wireless communication device 16 to transmit the encoded patient data to a wireless network storage unit 128 at the remote monitoring system 18 as shown in FIG. 10. In another embodiment, wireless communication device 16 transmits the patient data from the sensors 14 to the control unit 126 when it is at the remote monitoring system 18.
  • [0157]
    Each time the control unit 126 plans to transmit patient data to a main data collection station 130, located at the remote monitoring system 18, the control unit 126 attempts to establish a communication link. The communication link can be wireless, wired, or a combination of wireless and wired for redundancy, e.g., the wired link checks to see if a wireless communication can be established. If the wireless communication link 16 is available, the control unit 126 transmits the encoded patient data through the wireless communication device 16. However, if the wireless communication device 16 is not available for any reason, the control unit 126 waits and tries again until a link is established.
  • [0158]
    Referring now to FIG. 10 and FIG. 11, one embodiment of an internal structure of a main data collection station 130, at the remote monitoring system 18, is illustrated. The patient data can be transmitted to the remote monitoring system 18 by either the wireless communication device 16 or conventional modem to the wireless network storage unit 128. After receiving the patient data, the wireless network storage unit 128 can be accessed by the main data collection station 130. The main data collection station 130 allows the remote monitoring system 18 to monitor the patient data of numerous patients from a centralized location without requiring the patient or a medical provider to physically interact with each other.
  • [0159]
    The main data collection station 130 can include a communications server 136 that communicates with the wireless network storage unit 128. The wireless network storage unit 128 can be a centralized computer server that includes a unique, password protected mailbox assigned to and accessible by the main data collection station 130. The main data collection station 130 communicates with the wireless network storage unit 128 and downloads the patient data stored in a mailbox assigned to the main data collection station 130.
  • [0160]
    Once the communications server 136 has formed a link with the wireless network storage unit 128, and has downloaded the patient data, the patient data can be transferred to a database server 138. The database server 138 includes a patient database 140 that records and stores the patient data of the patients based upon identification included in the data packets sent by each of the monitoring units 22. For example, each data packet can include an identifier.
  • [0161]
    Each data packet transferred from the remote monitoring system 18 to the main data collection station 130 does not have to include any patient identifiable information. Instead, the data packet can include the serial number assigned to the specific detecting system 12. The serial number associated with the detecting system 12 can then be correlated to a specific patient by using information stored on the patient database 138. In this manner, the data packets transferred through the wireless network storage unit 128 do not include any patient-specific identification. Therefore, if the data packets are intercepted or improperly routed, patient confidentiality can not be breached.
  • [0162]
    The database server 138 can be accessible by an application server 142. The application server 142 can include a data adapter 144 that formats the patient data information into a form that can be viewed over a conventional web-based connection. The transformed data from the data adapter 144 can be accessible by propriety application software through a web server-146 such that the data can be viewed by a workstation 148. The workstation 148 can be a conventional personal computer that can access the patient data using proprietary software applications through, for example, HTTP protocol, and the like.
  • [0163]
    The main data collection station further can include an escalation server 150 that communicates with the database server 138. The escalation server 150 monitors the patient data packets that are received by the database server 138 from the monitoring unit 22. Specifically, the escalation server 150 can periodically poll the database server 138 for unacknowledged patient data packets. The patient data packets are sent to the remote monitoring system 18 where the processing of patient data occurs. The remote monitoring system 18 communicates with a medical provider if the event that an alert is required. If data packets are not acknowledged by the remote monitoring system 18. The escalation server 150 can be programmed to automatically deliver alerts to a specific medical provider if an alarm message has not been acknowledged within a selected time period after receipt of the data packet.
  • [0164]
    The escalation server 150 can be configured to generate the notification message to different people by different modes of communication after different delay periods and during different time periods.
  • [0165]
    The main data collection station 130 can include a batch server 152 connected to the database server 138. The batch server 152 allows an administration server 154 to have access to the patient data stored in the patient database 140. The administration server allows for centralized management of patient information and patient classifications.
  • [0166]
    The administration server 154 can include a batch server 156 that communicates with the batch server 152 and provides the downloaded data to a data warehouse server 158. The data warehouse server 158 can include a large database 160 that records and stores the patient data.
  • [0167]
    The administration server 154 can further include an application server 162 and a maintenance workstation 148 that allow personnel from an administrator to access and monitor the data stored in the database 160.
  • [0168]
    The data packet utilized in the transmission of the patient data can be a variable length ASCII character packet, or any generic data formats, in which the various patient data measurements are placed in a specific sequence with the specific readings separated by commas. The control unit 126 can convert the readings from each sensor 14 into a standardized sequence that forms part of the patient data packet. In this manner, the control unit 126 can be programmed to convert the patient data readings from the sensors 14 into a standardized data packet that can be interpreted and displayed by the main data collection station 130 at the remote monitoring system 18.
  • [0169]
    Referring now to the flow chart and method of operation shown in FIG. 12, if an external device 38 fails to generate a valid reading, as illustrated in step A, the control unit 126 fills the portion of the patient data packet associated with the external device 38 with a null indicator. The null indicator can be the lack of any characters between commas in the patient data packet. The lack of characters in the patient data packet can indicate that the patient was not available for the patient data recording. The null indicator in the patient data packet can be interpreted by the main data collection station 130 at the remote monitoring system 18 as a failed attempt to record the patient data due to the unavailability of the patient, a malfunction in one or more of the sensors 14, or a malfunction in one of the external devices 38. The null indicator received by the main data collection station 130 can indicate that the transmission from the detecting system 12 to the remote monitoring system 18 was successful. In one embodiment, the integrity of the data packet received by the main data collection station 130 can be determined using a cyclic redundancy code, CRC-16, check sum algorithm. The check sum algorithm can be applied to the data when the message can be sent and then again to the received message.
  • [0170]
    After the patient data measurements are complete, the control unit 126 displays the sensor data, including but not limited to blood pressure cuff data and the like, as illustrated by step B. In addition to displaying this data, the patient data can be placed in the patient data packet, as illustrated in step C.
  • [0171]
    As previously described, the system 10 can take additional measurements utilizing one or more auxiliary or external devices 38 such as those mentioned previously. Since the patient data packet has a variable length, the auxiliary device patient information can be added to the patient data packet being compiled by the remote monitoring unit 22 during patient data acquisition period being described. Data from the external devices 38 is transmitted by the wireless communication device 16 to the remote monitoring system 18 and can be included in the patient data packet.
  • [0172]
    If the remote monitoring system 18 can be set in either the auto mode or the wireless only mode, the remote monitoring unit 22 can first determine if there can be an internal communication error, as illustrated in step D.
  • [0173]
    A no communication error can be noted as illustrated in step E. If a communication error is noted the control unit 126 can proceed to wireless communication device 16 or to a conventional modem transmission sequence, as will be described below. However, if the communication device is working the control unit 126 can transmit the patient data information over the wireless network 16, as illustrated in step F. After the communication device has transmitted the data packet, the control unit 126 determines whether the transmission was successful, as illustrated in step G. If the transmission has been unsuccessful only once, the control unit 126 retries the transmission. However, if the communication device has failed twice, as illustrated in step H, the control unit 126 proceeds to the conventional modem process if the remote monitoring unit 22 was configured in an auto mode.
  • [0174]
    When the control unit 126 is at the detecting system 12, and the control unit 126 transmits the patient data over the wireless communication device 16, as illustrated in step I, if the transmission has been successful, the display of the remote monitoring unit 22 can display a successful message, as illustrated in step J. However, if the control unit 126 determines in step K that the communication of patient data has failed, the control unit 126 repeats the transmission until the control unit 126 either successfully completes the transmission or determines that the transmission has failed a selected number of times, as illustrated in step L. The control unit 126 can time out the and a failure message can be displayed, as illustrated in steps M and N. Once the transmission sequence has either failed or successfully transmitted the data to the main data collection station, the control unit 126 returns to a start program step, for example step A.
  • [0175]
    The processor system, as described above, can be configured to perform the method shown in FIG. 12, including many of the steps described above. It should be appreciated that the specific steps illustrated in FIG. 12 provide a particular method, according to one embodiment of the present invention. Other sequences of steps may also be performed according to alternative embodiments. For example, alternative embodiments of the present invention may perform the steps outlined above in a different order. Moreover, the individual steps illustrated in FIG. 12 may include multiple sub-steps that may be performed in various sequences as appropriate to the individual step. Furthermore, additional steps may be added or removed depending on the particular applications. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
  • [0176]
    Referring again to FIG. 11, the patient data packets are first sent and stored in the wireless network storage unit 128. From there, the patient data packets are downloaded into the main data collection station 130. The main data collection station 130 decodes the encoded patient data packets and records the patient data in the patient database 140. The patient database 140 can be divided into individual storage locations for each patient such that the main data collection station 130 can store and compile patient data information from a plurality of individual patients.
  • [0177]
    A report on the patient's status can be accessed by a medical provider through a medical provider workstation that is coupled to the remote monitoring system 18. Unauthorized access to the patient database can be prevented by individual medical provider usernames and passwords to provide additional security for the patient's recorded patient data.
  • [0178]
    The main data collection station 130 and the series of work stations 148 allow the remote monitoring system 18 to monitor the daily patient data measurements taken by a plurality of patients reporting patient data to the single main data collection station 130. The main data collection station 130 can be configured to display multiple patients on the display of the workstations 148. The internal programming for the main data collection station 130 can operate such that the patients are placed in a sequential top-to-bottom order based upon whether or not the patient can be generating an alarm signal for one of the patient data being monitored. For example, if one of the patients monitored by monitoring system 130 has a blood pressure exceeding a predetermined maximum amount, this patient can be moved toward the top of the list of patients and the patient's name and/or patient data can be highlighted such that the medical personnel can quickly identify those patients who may be in need of medical assistance. By way of illustration, and without limitation, the following paragraphs are a representative order ranking method for determining the order which the monitored patients are displayed:
  • [0179]
    Alarm Display Order Patient Status Patients are then sorted: 1 Medical Alarm Most alarms violated to least alarms violated, then oldest to newest 2 Missing Data Alarm Oldest to newest 3 Late Oldest to newest 4 Reviewed Medical Alarms Oldest to newest 5 Reviewed Missing Data Oldest to newest Alarms 6 Reviewed Null Oldest to newest 7 NDR Oldest to newest 8 Reviewed NDR Oldest to newest.
  • [0180]
    Alarm Display Order Patient Status Patients can then be sorted: 1 Medical Alarm Most alarms violated to least alarms violated, then oldest to newest 2 Missing Data Alarm Oldest to newest 3 Late Oldest to newest 4 Reviewed Medical Alarms Oldest to newest 5 Reviewed Missing Data Oldest to newest Alarms 6 Reviewed Null Oldest to newest 7 NDR Oldest to newest 8 Reviewed NDR Oldest to newest.
  • [0181]
    As listed in the above, the order of patients listed on the display can be ranked based upon the seriousness and number of alarms that are registered based upon the latest patient data information. For example, if the blood pressure of a single patient exceeds the tolerance level and the patient's heart rate also exceeds the maximum level, this patient will be placed above a patient who only has one alarm condition. In this manner, the medical provider can quickly determine which patient most urgently needs medical attention by simply identifying the patient's name at the top of the patient list. The order which the patients are displayed can be configurable by the remote monitoring system 18 depending on various preferences.
  • [0182]
    As discussed previously, the escalation server 150 automatically generates a notification message to a specified medical provider for unacknowledged data packets based on user specified parameters.
  • [0183]
    Referring again to FIG. 9, in addition to displaying the current patient data for the numerous patients being monitored, the software of the main data collection station 130 allows the medical provider to trend the patient data over a number of prior measurements in order to monitor the progress of a particular patient. In addition, the software allows the medical provider to determine whether or not a patient has been successful in recording their patient data as well as monitor the questions being asked by the remote monitoring unit 22.
  • [0184]
    As previously mentioned, the system 10 uses an intelligent combination of sensors to enhance detection and prediction capabilities. Electrocardiogram circuitry can be coupled to the sensors 14, or electrodes, to measure an electrocardiogram signal of the patient. An accelerometer can be mechanically coupled, for example adhered or affixed, to the sensors 14, adherent patch and the like, to generate an accelerometer signal in response to at least one of an activity or a position of the patient. The accelerometer signals improve patient diagnosis, and can be especially useful when used with other signals, such as electrocardiogram signals and impedance signals, including but not limited to, hydration, respiration, and the like. Mechanically coupling the accelerometer to the sensors 14, electrodes, for measuring impedance, hydration and the like can improve the quality and/or usefulness of the impedance and/or electrocardiogram signals. By way of illustration, and without limitation, mechanical coupling of the accelerometer to the sensors 14, electrodes, and to the skin of the patient can improve the reliability, quality and/or accuracy of the accelerometer measurements, as the sensor 14, electrode, signals can indicate the quality of mechanical coupling of the patch to the patient so as to indicate that the device is connected to the patient and that the accelerometer signals are valid. Other examples of sensor interaction include but are not limited to, (i) orthopnea measurement where the breathing rate is correlated with posture during sleep, and detection of orthopnea, (ii) a blended activity sensor using the respiratory rate to exclude high activity levels caused by vibration (e.g. driving on a bumpy road) rather than exercise or extreme physical activity, (iii) sharing common power, logic and memory for sensors, electrodes, and the like.
  • [0185]
    The signals from the plurality of sensors can be combined in many ways. In some embodiments, the signals can be used simultaneously to determine an impending cardiac decompensation.
  • [0186]
    In some embodiments, the signals can be combined by using the at least two of the electrocardiogram signal, the respiration signal or the activity signal to look up a value in a previously existing array.
  • [0000]
    TABLE 1
    Lookup Table for ECG and Respiration Signals.
    Respiration
    Heart Rate A-B bpm C-D bpm E-F bpm
    U-V per min N N Y
    W-X per min N Y Y
    Y-Z per min Y Y Y
  • [0187]
    Table 1 shows combination of the electrocardiogram signal with the respiration signal to look up a value in a pre-existing array. For example, at a heart rate in the range from A to B bpm and a respiration rate in the range from U to V per minute triggers a response of N. In some embodiments, the values in the table may comprise a tier or level of the response, for example four tiers. In specific embodiments, the values of the look up table can be determined in response to empirical data measured for a patient population of at least about 100 patients, for example measurements on about 1000 to 10,000 patients. The look up table shown in Table 1 illustrates the use of a look up table according to one embodiment, and one will recognize that many variables can be combined with a look up table.
  • [0188]
    In some embodiments, the table may comprise a three or more dimensional look up table, and the look up table may comprises a tier, or level, of the response, for example an alarm.
  • [0189]
    In some embodiments, the signals may be combined with at least one of adding, subtracting, multiplying, scaling or dividing the at least two of the electrocardiogram signal, the respiration signal or the activity signal. In specific embodiments, the measurement signals can be combined with positive and or negative coefficients determined in response to empirical data measured for a patient population of at least about 100 patients, for example data on about 1000 to 10,000 patients.
  • [0190]
    In some embodiments, a weighted combination may combine at least two measurement signals to generate an output value according to a formula of the general form
  • [0000]

    OUTPUT=aX+bY
  • [0191]
    where a and b comprise positive or negative coefficients determined from empirical data and X, and Z comprise measured signals for the patient, for example at least two of the electrocardiogram signal, the respiration signal or the activity signal. While two coefficients and two variables are shown, the data may be combined with multiplication and/or division. One or more of the variables may be the inverse of a measured variable.
  • [0192]
    In some embodiments, the ECG signal comprises a heart rate signal that can be divided by the activity signal. Work in relation to embodiments of the present invention suggest that an increase in heart rate with a decrease in activity can indicate an impending decompensation. The signals can be combined to generate an output value with an equation of the general form
  • [0000]

    OUTPUT=aX/Y+bZ
  • [0193]
    where X comprise a heart rate signal, Y comprises an activity signal and Z comprises a respiration signal, with each of the coefficients determined in response to empirical data as described above.
  • [0194]
    In some embodiments, the data may be combined with a tiered combination. While many tiered combinations can be used a tiered combination with three measurement signals can be expressed as
  • [0000]

    OUTPUT=(ΔX)+(ΔY)+(ΔZ)
  • [0195]
    where (ΔX), (ΔY), (ΔZ) may comprise change in heart rate signal from baseline, change in respiration signal from baseline and change in activity signal from baseline, and each may have a value of zero or one, based on the values of the signals. For example if the heart rate increases by 10%, (ΔX) can be assigned a value of 1. If respiration increases by 5%, (ΔY) can be assigned a value of 1. If activity decreases below 10% of a baseline value (ΔZ) can be assigned a value of 1. When the output signal is three, a flag may be set to trigger an alarm.
  • [0196]
    In some embodiments, the data may be combined with a logic gated combination. While many logic gated combinations can be used, a logic gated combination with three measurement signals can be expressed as
  • [0000]

    OUTPUT=(ΔX) AND (ΔY) AND (ΔZ)
  • [0197]
    where (ΔX), (ΔY), (ΔZ) may comprise change in heart rate signal from baseline, change in respiration signal from baseline and change in activity signal from baseline, and each may have a value of zero or one, based on the values of the signals. For example if the heart rate increases by 10%, (ΔX) can be assigned a value of 1. If respiration increases by 5%, (ΔY) can be assigned a value of 1. If activity decreases below 10% of a baseline value (ΔZ) can be assigned a value of 1. When each of (ΔX), (ΔY), (ΔZ) is one, the output signal is one, and a flag may be set to trigger an alarm. If any one of (ΔX), (ΔY) or (ΔZ) is zero, the output signal is zero and a flag may be set so as not to trigger an alarm. While a specific example with AND gates has been shown the data can be combined in may ways with known gates for example NAND, NOR, OR, NOT, XOR, XNOR gates. In some embodiments, the gated logic may be embodied in a truth table.
  • [0198]
    The adherent patch device, as described above, can be configured for continuous placement on the patient for and extended period, for example at least one week. The plurality of sensors, the wireless communication circuitry on the patch and the processor on the patch can be configured with duty cycles, such that the patient is monitored for at least one week and battery of the adherent patch will last for at least one week. Table II shows a configuration of the plurality of sensors, the wireless communication circuitry and duty cycles configured to monitor the patient for at least one week. The circuitry components shown in Table II may comprise known circuitry components, for example known ECG and HR circuitry, known Bioimpedance and Respiration Circuitry, known Accelerometer Circuitry, known Temperature Sensor Circuitry, Known Flash Memory Circuitry, known Processor Circuitry and known Wireless Circuitry. The power consumption of these known circuitry components can be used to analyze the performance of the patch.
  • [0000]
    TABLE II
    Duty cycle of patch device components for a one week patch.
    Current
    Consumed
    Patch Device Sampling Time and Duty (mAseconds
    Component Interval Cycle % per Day)
    ECG Circuitry  20 s per minute 36.8 18,670
    Bioimpedance  30 s per 15 minutes 4.4 30,639
    Circuitry
    Accelerometer  1 ms per 2-4 s 0.0006 0.21
    Circuitry
    Temperature Sensor  1 ms per 1 minute 1.3E−05 0.018
    Circuitry
    Flash Memory As needed 0.0034 23
    Processor 500 ms per second 52 541,843
    Wireless (BlueTooth) 2-3 minutes per 4 0.56 31,333
    Circuitry hours
  • [0199]
    As shown in Table II, most of the measurement circuitry comprises a duty cycle of no more than 50%, and the processor circuitry comprises a duty cycle of about 50% and the wireless communication circuitry comprises a duty cycle of no more than about 1%. The duty cycle of the wireless communication circuitry can be increased from 0.5% to at least about 1%, for example to about 3%, without significantly effecting the total current consumed. The total energy consumed per day for the configuration shown in Table II is about 170 mA Hours. A commercially available battery having a capacity of 1500 mA Hours will last about 8 days. This cycling of the measurement circuitry can allow the adherent device to monitor a patient, for example a heart failure patient, for at least about 1 week with the patch continuously adhered to the patient. In some embodiments, the duty cycle of the wireless communication circuitry can be increased, for example to about 5% and slightly larger battery used to provide a useful life of one week with the adherent patch continuously adhered to the patient. The data in Table II show that a heart failure patient can be continuously monitored with sensor cycling for an extended period of at least about one week and with wireless transmission of no more than about 5% when the adherent patch is adhered to the skin of the patient.
  • [0200]
    While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appended claims.

Claims (29)

1. A patient monitoring system, comprising:
a patient detecting system for measuring the patient including,
an adherent device configured to be coupled to a patient, the adherent device including a plurality of sensors that monitors physiological parameters,
at least one ID coupled to the adherent device that is addressable and unique to the adherent device;
a wireless communication device coupled to the plurality of sensors; and
a remote monitoring system coupled to the wireless communication device, the wireless communication system configured to transfer patient data from the plurality of sensors to the remote monitoring system.
2. The system of claim 1, wherein the at least one ID comprises a memory component.
3. The system of claim 1, wherein the at least one ID comprises a sensor ID.
4. The system of claim 3, wherein the sensor ID comprises a memory component.
5. The system of claim 1, wherein the adherent device comprises a patch set configured to be coupled to the patient.
6. The system of claim 5, wherein the at least one ID is unique to each adherent device.
7. The system of claim 5, wherein the at least one ID comprises a removable memory component with a unique patient ID that is configured to be reused when patches associated with the adherent patch are replaced.
8. The system of claim 5, wherein the patch set is linked together and comprises replacement patches that are linked.
9. The system of claim 8, wherein the patch set is linked by hardware.
10. The system of claim 8, wherein the patch set is linked by software at the remote monitoring system.
11. The system of claim 5, wherein the adherent device is configured to register with the remote monitoring system when the adherent device is given to the patient.
12. The system of claim 11, wherein the adherent device is configured register via a web site and patient data is uploaded to the adherent device.
13. The system of claim 11, wherein a modem assigned to the patient is configured to link to the adherent device.
14. The system of claim 13, wherein the modem is configured to determine which patch is sending information to the modem.
15. The system of claim 14, wherein the modem is configured to communicate only with the patch set of the patient and the modem is configured to communicate only with patches associated with the modem.
16. The system of claim 13, wherein the modem is at the remote monitoring system or at the patient detecting system.
17. The system of claim 13, wherein registration with the remote monitoring system occurs automatically each time a patch of the adherent device is put on the patient.
18. The system of claim 17, wherein on registration ID information is sent to the remote monitoring system.
19. The system of claim 1, wherein the at least one ID is coupled to the adherent device with an ID sensor.
20. The system of claim 19, wherein the ID sensor is configured to transmit to the remote monitoring system.
21. The system of claim 19, wherein the ID sensor is configured to associate data from the plurality of sensors to the remote monitoring system.
22. The system of claim 19, wherein the ID sensor is not incorporated in the adherent device.
23. The system of claim 19, wherein the ID sensor is configured to associate the adherent patch with the patient with at least one of, caller ID, an RFID tag on the patient, a body tattoo, fingerprint ID and GPS.
24. The system of claim 19, wherein the ID sensor is configured to produce a first output that has protected patient data with restricted communication and a second output that has general device and patient information for general communication.
25. The system of claim 24, wherein access to the protected patient data requires an additional security verification.
26. The system of claim 24, wherein at least a portion of the protected patient data is encrypted.
27. The system of claim 25, wherein the addition security verification comprises at least one of a skin tattoo with an adherent device reader, a modem identification, an encrypted communication, an encrypted data storage on the adherent device, a biometric ID or an x-ray ID tag.
28. The system of claim 1, wherein the patient parameters comprise parameters to determine heart failure status of the patient.
29. The system of claim 1, wherein the adherent device is housed in a tamper proof housing prior to placement on the patient.
US12209294 2007-09-14 2008-09-12 Tracking and Security for Adherent Patient Monitor Abandoned US20090076346A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US97253707 true 2007-09-14 2007-09-14
US97233607 true 2007-09-14 2007-09-14
US97234007 true 2007-09-14 2007-09-14
US5566608 true 2008-05-23 2008-05-23
US7974608 true 2008-07-10 2008-07-10
US12209294 US20090076346A1 (en) 2007-09-14 2008-09-12 Tracking and Security for Adherent Patient Monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12209294 US20090076346A1 (en) 2007-09-14 2008-09-12 Tracking and Security for Adherent Patient Monitor

Publications (1)

Publication Number Publication Date
US20090076346A1 true true US20090076346A1 (en) 2009-03-19

Family

ID=40452528

Family Applications (4)

Application Number Title Priority Date Filing Date
US12209278 Active 2033-06-22 US9411936B2 (en) 2007-09-14 2008-09-12 Dynamic pairing of patients to data collection gateways
US12209274 Abandoned US20090076343A1 (en) 2007-09-14 2008-09-12 Energy Management for Adherent Patient Monitor
US12209294 Abandoned US20090076346A1 (en) 2007-09-14 2008-09-12 Tracking and Security for Adherent Patient Monitor
US15227682 Pending US20160371452A1 (en) 2007-09-14 2016-08-03 Dynamic pairing of patients to data collection gateways

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12209278 Active 2033-06-22 US9411936B2 (en) 2007-09-14 2008-09-12 Dynamic pairing of patients to data collection gateways
US12209274 Abandoned US20090076343A1 (en) 2007-09-14 2008-09-12 Energy Management for Adherent Patient Monitor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15227682 Pending US20160371452A1 (en) 2007-09-14 2016-08-03 Dynamic pairing of patients to data collection gateways

Country Status (2)

Country Link
US (4) US9411936B2 (en)
WO (2) WO2009036316A1 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080306560A1 (en) * 2007-06-06 2008-12-11 Macho John D Wearable defibrillator with audio input/output
US20080306562A1 (en) * 2007-06-07 2008-12-11 Donnelly Edward J Medical device configured to test for user responsiveness
US20080312709A1 (en) * 2007-06-13 2008-12-18 Volpe Shane S Wearable medical treatment device with motion/position detection
US20090062626A1 (en) * 2004-11-08 2009-03-05 Koninklijke Philips Electronics N.V. Safe identification and association of wireless sensors
US20100179421A1 (en) * 2007-05-24 2010-07-15 Joe Tupin System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume.
US20100298899A1 (en) * 2007-06-13 2010-11-25 Donnelly Edward J Wearable medical treatment device
US20110060215A1 (en) * 2009-03-30 2011-03-10 Tupin Jr Joe Paul Apparatus and method for continuous noninvasive measurement of respiratory function and events
US20110066041A1 (en) * 2009-09-15 2011-03-17 Texas Instruments Incorporated Motion/activity, heart-rate and respiration from a single chest-worn sensor, circuits, devices, processes and systems
US20110295087A1 (en) * 2009-02-04 2011-12-01 Shigeki Shinoda Biological information detection sensor, electric apparatus using thereof and biological information detection method
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
US20120097745A1 (en) * 2010-10-25 2012-04-26 Symbol Technologies, Inc. Advisory alarm for returning cordless electro-optical reader to base station of point-of-transaction checkout system
US20120172733A1 (en) * 2009-08-27 2012-07-05 Jawon Medical Co., Ltd Apparatus and method of measuring blood pressure of examinee while detecting body activity of examinee
US8249686B2 (en) 2007-09-14 2012-08-21 Corventis, Inc. Adherent device for sleep disordered breathing
US8374688B2 (en) 2007-09-14 2013-02-12 Corventis, Inc. System and methods for wireless body fluid monitoring
US8406842B2 (en) 2010-12-09 2013-03-26 Zoll Medical Corporation Electrode with redundant impedance reduction
US8412317B2 (en) 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US8460189B2 (en) 2007-09-14 2013-06-11 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
US8600486B2 (en) 2011-03-25 2013-12-03 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
US8644925B2 (en) 2011-09-01 2014-02-04 Zoll Medical Corporation Wearable monitoring and treatment device
WO2014043158A1 (en) * 2012-09-11 2014-03-20 Zansors Llc Wearable patch comprising multiple separable adhesive layers
US8684925B2 (en) 2007-09-14 2014-04-01 Corventis, Inc. Injectable device for physiological monitoring
US8706215B2 (en) 2010-05-18 2014-04-22 Zoll Medical Corporation Wearable ambulatory medical device with multiple sensing electrodes
US8718752B2 (en) 2008-03-12 2014-05-06 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
US8790259B2 (en) 2009-10-22 2014-07-29 Corventis, Inc. Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
US8814792B2 (en) 2010-07-27 2014-08-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
EP2769669A1 (en) * 2013-02-22 2014-08-27 Seiko Instruments Inc. Electronic device, heart-rate signal receiving method and program
US8880196B2 (en) 2013-03-04 2014-11-04 Zoll Medical Corporation Flexible therapy electrode
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
US8897860B2 (en) 2011-03-25 2014-11-25 Zoll Medical Corporation Selection of optimal channel for rate determination
US8897868B2 (en) 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
US8983597B2 (en) 2012-05-31 2015-03-17 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US9007216B2 (en) 2010-12-10 2015-04-14 Zoll Medical Corporation Wearable therapeutic device
US9008801B2 (en) 2010-05-18 2015-04-14 Zoll Medical Corporation Wearable therapeutic device
US9017255B2 (en) 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US9078582B2 (en) 2009-04-22 2015-07-14 Lifewave Biomedical, Inc. Fetal monitoring device and methods
US20150201858A1 (en) * 2008-08-15 2015-07-23 Global Cardiac Monitors, Inc. Diagnostic device for remote sensing and transmitting biophysiological signals
US9135398B2 (en) 2011-03-25 2015-09-15 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9173670B2 (en) 2013-04-08 2015-11-03 Irhythm Technologies, Inc. Skin abrader
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9241649B2 (en) 2010-05-12 2016-01-26 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
WO2016053897A1 (en) * 2014-10-03 2016-04-07 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Wearable devices configured for facilitating diagnosis and/or assessment of pulmonary diseases, and corresponding methods
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9411936B2 (en) 2007-09-14 2016-08-09 Medtronic Monitoring, Inc. Dynamic pairing of patients to data collection gateways
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US9427165B2 (en) 2012-03-02 2016-08-30 Medtronic Monitoring, Inc. Heuristic management of physiological data
US9427564B2 (en) 2010-12-16 2016-08-30 Zoll Medical Corporation Water resistant wearable medical device
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9579516B2 (en) 2013-06-28 2017-02-28 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US9597004B2 (en) 2014-10-31 2017-03-21 Irhythm Technologies, Inc. Wearable monitor
US9597523B2 (en) 2014-02-12 2017-03-21 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9615792B2 (en) 2010-07-27 2017-04-11 Carefusion 303, Inc. System and method for conserving battery power in a patient monitoring system
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9684767B2 (en) 2011-03-25 2017-06-20 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US9782132B2 (en) 2012-10-07 2017-10-10 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US9782578B2 (en) 2011-05-02 2017-10-10 Zoll Medical Corporation Patient-worn energy delivery apparatus and techniques for sizing same
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
US9814894B2 (en) 2012-05-31 2017-11-14 Zoll Medical Corporation Systems and methods for detecting health disorders
US9878171B2 (en) 2013-03-01 2018-01-30 Zoll Medical Corporation Systems and methods for configuring a wearable medical monitoring and/or treatment device

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1982649A1 (en) 1999-06-22 2008-10-22 The University Of Queensland A method and device for measuring tissue oedema
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US8396565B2 (en) * 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
WO2005122888A1 (en) 2004-06-18 2005-12-29 The University Of Queensland Oedema detection
WO2006056074A1 (en) 2004-11-26 2006-06-01 Z-Tech (Canada) Inc. Weighted gradient method and system for diagnosing disease
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
CN101287411B (en) 2005-04-28 2013-03-06 普罗秋斯生物医学公司 Pharma-informatics system
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
CA2609111C (en) * 2005-07-01 2016-10-18 Scott Chetham A method and apparatus for performing impedance measurements in accordance with determining an electrode arrangement using a displayed representation
EP2460468A1 (en) * 2005-07-01 2012-06-06 Impedimed Limited Monitoring system
US8099250B2 (en) * 2005-08-02 2012-01-17 Impedimed Limited Impedance parameter values
EP1920418A4 (en) 2005-09-01 2010-12-29 Proteus Biomedical Inc Implantable zero-wire communications system
JP5208749B2 (en) 2005-10-11 2013-06-12 インペダイムド・リミテッドImpedimed Limited Hydration status monitoring
US9339641B2 (en) 2006-01-17 2016-05-17 Emkinetics, Inc. Method and apparatus for transdermal stimulation over the palmar and plantar surfaces
JP2009544338A (en) 2006-05-02 2009-12-17 プロテウス バイオメディカル インコーポレイテッド Treatment regimens tailored to the patient
ES2545730T3 (en) 2006-05-30 2015-09-15 Impedimed Limited Impedance measurements
EP2069013A2 (en) * 2006-10-02 2009-06-17 Emkinetics, Inc. Method and apparatus for magnetic induction therapy
US20100168501A1 (en) * 2006-10-02 2010-07-01 Daniel Rogers Burnett Method and apparatus for magnetic induction therapy
US9005102B2 (en) 2006-10-02 2015-04-14 Emkinetics, Inc. Method and apparatus for electrical stimulation therapy
EP2087589B1 (en) 2006-10-17 2011-11-23 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
JP5916277B2 (en) 2006-10-25 2016-05-11 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible control activation identifier
WO2008063626A3 (en) 2006-11-20 2008-07-03 Proteus Biomedical Inc Active signal processing personal health signal receivers
CA2670293C (en) 2006-11-30 2017-01-03 Impedimed Limited Measurement apparatus
CA2675438A1 (en) * 2007-01-15 2008-07-24 Impedimed Limited Monitoring system
US8858432B2 (en) 2007-02-01 2014-10-14 Proteus Digital Health, Inc. Ingestible event marker systems
CN103066226B (en) 2007-02-14 2016-09-14 普罗透斯数字保健公司 The body having a high surface area electrode power supply
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
CA2703361C (en) * 2007-03-30 2016-06-28 Impedimed Limited Active guarding for reduction of resistive and capacitive signal loading with adjustable control of compensation level
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
WO2009042812A1 (en) 2007-09-25 2009-04-02 Proteus Biomedical, Inc. In-body device with virtual dipole signal amplification
CA2704061C (en) * 2007-11-05 2017-06-20 Impedimed Limited Impedance determination
US9392947B2 (en) * 2008-02-15 2016-07-19 Impedimed Limited Blood flow assessment of venous insufficiency
CA2717862C (en) 2008-03-05 2016-11-22 Proteus Biomedical, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
JP5654988B2 (en) 2008-07-08 2015-01-14 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible event marker data framework
US8688225B2 (en) 2008-07-11 2014-04-01 Medtronic, Inc. Posture state detection using selectable system control parameters
US9050471B2 (en) 2008-07-11 2015-06-09 Medtronic, Inc. Posture state display on medical device user interface
US9440084B2 (en) * 2008-07-11 2016-09-13 Medtronic, Inc. Programming posture responsive therapy
US20100010577A1 (en) * 2008-07-11 2010-01-14 Medtronic, Inc. Linking posture states for posture responsive therapy
US8504150B2 (en) 2008-07-11 2013-08-06 Medtronic, Inc. Associating therapy adjustments with posture states using a stability timer
US8200340B2 (en) * 2008-07-11 2012-06-12 Medtronic, Inc. Guided programming for posture-state responsive therapy
US8231556B2 (en) 2008-07-11 2012-07-31 Medtronic, Inc. Obtaining baseline patient information
US8708934B2 (en) * 2008-07-11 2014-04-29 Medtronic, Inc. Reorientation of patient posture states for posture-responsive therapy
US8447411B2 (en) 2008-07-11 2013-05-21 Medtronic, Inc. Patient interaction with posture-responsive therapy
US8540633B2 (en) 2008-08-13 2013-09-24 Proteus Digital Health, Inc. Identifier circuits for generating unique identifiable indicators and techniques for producing same
US8280517B2 (en) 2008-09-19 2012-10-02 Medtronic, Inc. Automatic validation techniques for validating operation of medical devices
US8036748B2 (en) 2008-11-13 2011-10-11 Proteus Biomedical, Inc. Ingestible therapy activator system and method
EP2348987B1 (en) 2008-11-28 2017-03-22 Impedimed Limited Impedance measurement process
GB2466784B (en) * 2008-12-03 2013-01-02 Trysome Ltd Criticality of data in a data logging system
EP2358270A4 (en) 2008-12-11 2014-08-13 Proteus Digital Health Inc Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8082312B2 (en) * 2008-12-12 2011-12-20 Event Medical, Inc. System and method for communicating over a network with a medical device
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
CA2792224A1 (en) 2008-12-15 2010-07-01 Proteus Digital Health, Inc. Body-associated receiver and method
CN102365084B (en) 2009-01-06 2014-04-30 普罗秋斯数字健康公司 Pharmaceutical dosages delivery system
US20100234755A1 (en) * 2009-03-11 2010-09-16 Latman Neal S Electrode holder for use on hairy animals such as horses, camels, and the like
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US8545402B2 (en) 2009-04-28 2013-10-01 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US9327070B2 (en) 2009-04-30 2016-05-03 Medtronic, Inc. Medical device therapy based on posture and timing
US8175720B2 (en) 2009-04-30 2012-05-08 Medtronic, Inc. Posture-responsive therapy control based on patient input
US9026223B2 (en) 2009-04-30 2015-05-05 Medtronic, Inc. Therapy system including multiple posture sensors
EP2432458A4 (en) 2009-05-12 2014-02-12 Proteus Digital Health Inc Ingestible event markers comprising an ingestible component
WO2010135513A1 (en) * 2009-05-20 2010-11-25 Sensis Corporation Corpsman/medic medical assistant system and method
WO2010141838A1 (en) * 2009-06-05 2010-12-09 Nonin Medical, Inc. Oximetry with remote display
US20120116186A1 (en) * 2009-07-20 2012-05-10 University Of Florida Research Foundation, Inc. Method and apparatus for evaluation of a subject's emotional, physiological and/or physical state with the subject's physiological and/or acoustic data
US9610459B2 (en) * 2009-07-24 2017-04-04 Emkinetics, Inc. Cooling systems and methods for conductive coils
EP2467707A4 (en) 2009-08-21 2014-12-17 Proteus Digital Health Inc Apparatus and method for measuring biochemical parameters
JP2013508119A (en) 2009-10-26 2013-03-07 エムキネティクス, インコーポレイテッド Nerve, method and apparatus for electromagnetic stimulation of the muscles and body tissue
US9615767B2 (en) 2009-10-26 2017-04-11 Impedimed Limited Fluid level indicator determination
CN102667834B (en) 2009-11-04 2016-08-31 普罗秋斯数字健康公司 Supply chain management system
US9585593B2 (en) 2009-11-18 2017-03-07 Chung Shing Fan Signal distribution for patient-electrode measurements
CN103405341A (en) 2009-12-02 2013-11-27 普罗秋斯数字健康公司 Integrated ingestible event marker system with pharmaceutical product
WO2011076884A3 (en) * 2009-12-23 2011-09-09 Delta, Dansk Elektronik, Lys Og Akustik A monitoring system
US9149210B2 (en) * 2010-01-08 2015-10-06 Medtronic, Inc. Automated calibration of posture state classification for a medical device
US8579834B2 (en) 2010-01-08 2013-11-12 Medtronic, Inc. Display of detected patient posture state
US9357949B2 (en) 2010-01-08 2016-06-07 Medtronic, Inc. User interface that displays medical therapy and posture data
US8171094B2 (en) * 2010-01-19 2012-05-01 Event Medical, Inc. System and method for communicating over a network with a medical device
WO2011094606A3 (en) 2010-02-01 2011-10-20 Proteus Biomedical, Inc. Data gathering system
US9000914B2 (en) 2010-03-15 2015-04-07 Welch Allyn, Inc. Personal area network pairing
KR20130045261A (en) 2010-04-07 2013-05-03 프로테우스 디지털 헬스, 인코포레이티드 Miniature ingestible device
US9566441B2 (en) 2010-04-30 2017-02-14 Medtronic, Inc. Detecting posture sensor signal shift or drift in medical devices
US8588884B2 (en) 2010-05-28 2013-11-19 Emkinetics, Inc. Microneedle electrode
US20130096466A1 (en) * 2010-06-17 2013-04-18 The Regents Of The University Of California Energy aware sensor management for wearable medical systems optimization
US8957777B2 (en) * 2010-06-30 2015-02-17 Welch Allyn, Inc. Body area network pairing improvements for clinical workflows
US8907782B2 (en) 2010-06-30 2014-12-09 Welch Allyn, Inc. Medical devices with proximity detection
CN103167831B (en) * 2010-10-19 2016-08-10 皇家飞利浦电子股份有限公司 Anxiety monitoring
US20120094600A1 (en) 2010-10-19 2012-04-19 Welch Allyn, Inc. Platform for patient monitoring
WO2012071280A3 (en) 2010-11-22 2012-07-26 Proteus Biomedical, Inc. Ingestible device with pharmaceutical product
US20120165616A1 (en) * 2010-12-27 2012-06-28 Nir Geva Portable monitoring unit and a method for monitoring a monitored person
US8712541B2 (en) 2011-01-28 2014-04-29 Medtronic, Inc. Far field telemetry operations between an external device and an implantable medical device during recharge of the implantable medical device via a proximity coupling
US8634927B2 (en) 2011-01-28 2014-01-21 Medtronic, Inc. Medical device recharge systems using a controller in wireless communication with a separate recharge device
GB201101857D0 (en) * 2011-02-03 2011-03-23 Isansys Lifecare Ltd Health monitoring
EP2683291A4 (en) 2011-03-11 2014-09-03 Proteus Digital Health Inc Wearable personal body associated device with various physical configurations
CN103517669B (en) * 2011-03-11 2016-04-20 太空实验室健康护理有限公司 Determining the level of multi-parameter management alarms during patient monitoring system and method
US20120289787A1 (en) * 2011-05-13 2012-11-15 Kurgan Michael J System for clinical workflow enhancements using a business rules engine that collates heterogeneous healthcare data, and a method thereof
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
CA2817048A1 (en) 2011-06-10 2012-12-13 Aliphcom Power management in a data-capable strapband
US8793522B2 (en) * 2011-06-11 2014-07-29 Aliphcom Power management in a data-capable strapband
US9077183B2 (en) 2011-09-06 2015-07-07 Portland State University Distributed low-power wireless monitoring
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
CN102663661B (en) * 2012-04-10 2015-04-22 华为技术有限公司 Health Information Systems
US9737719B2 (en) 2012-04-26 2017-08-22 Medtronic, Inc. Adjustment of therapy based on acceleration
CN102688070A (en) * 2012-06-08 2012-09-26 深圳市理邦精密仪器股份有限公司 Fetus monitoring data processing method and system
RU2015105699A (en) 2012-07-23 2016-09-10 Протеус Диджитал Хелс, Инк. Methods for the preparation of ingestible event markers containing ingestible component
US20140081155A1 (en) * 2012-09-14 2014-03-20 Scott R. Coggins Methods And Apparatus for Wireless Electrode Having Power Conservation
KR101565013B1 (en) 2012-10-18 2015-11-02 프로테우스 디지털 헬스, 인코포레이티드 Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
US9526420B2 (en) 2012-10-26 2016-12-27 Nortek Security & Control Llc Management, control and communication with sensors
WO2014089441A1 (en) * 2012-12-06 2014-06-12 Carematix, Inc. Wireless blood pressure measuring techniques
KR20150110570A (en) * 2013-01-08 2015-10-02 엠씨10, 인크 Application for monitoring a property of a surface
US9833192B2 (en) 2013-03-15 2017-12-05 Thought Technology Ltd. Finger mounted physiology sensor
JP2016532929A (en) 2013-06-19 2016-10-20 ゾール メディカル コーポレイションZOLL Medical Corporation System and method for determining a position using the medical device
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
WO2015042411A1 (en) 2013-09-20 2015-03-26 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
WO2015044722A1 (en) 2013-09-24 2015-04-02 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
FR3013131B1 (en) * 2013-11-08 2017-02-03 Essilor Int (Compagnie Generale D'optique) Method for quality control measurements of optometry
JP6209958B2 (en) * 2013-12-03 2017-10-11 Tdk株式会社 Biological sensor
WO2015140801A3 (en) * 2014-03-20 2015-12-10 Wefind-Tech Ltd Frequent periodic adaptation and durability of multi-device wireless communication according to the environment and ad-hoc status of the communicating device
US20150272452A1 (en) * 2014-03-31 2015-10-01 Welch Allyn, Inc. Single site vitals
NL2012890B1 (en) * 2014-05-26 2016-06-08 Amicimi Bvba System and method.
ES2554136B1 (en) * 2014-05-27 2016-11-16 Miguel HERNÁNDEZ DÍAZ Remote system monitoring multiple vital signs and automatic diagnosis of cardiovascular disease in patients with mobile data transmission technology and protocol activation medical emergency.
US20150363280A1 (en) * 2014-06-13 2015-12-17 Google Inc. Conditional Storage
CN104771166A (en) * 2015-05-04 2015-07-15 思澜科技(成都)有限公司 Sleep breath state signal acquisition device based on biological resistance and monitoring system
US9833200B2 (en) 2015-05-14 2017-12-05 University Of Florida Research Foundation, Inc. Low IF architectures for noncontact vital sign detection
US20170064045A1 (en) * 2015-08-31 2017-03-02 Ayla Networks, Inc. Management of multi-radio gateway device using virtual gateway device
JP2017086430A (en) * 2015-11-09 2017-05-25 日本光電工業株式会社 Biological sensor, signal processing device, and identifier storage device
DE102015224836A1 (en) * 2015-12-10 2017-06-14 Volkswagen Aktiengesellschaft Method for controlling a functional component of a motor vehicle by means of a medical implant of a user of the automobile computer program control device for a motor vehicle and medical implant
US9814388B2 (en) 2016-02-11 2017-11-14 General Electric Company Wireless patient monitoring system and method
WO2017165526A1 (en) * 2016-03-22 2017-09-28 Hmicro, Inc. Systems and methods for physiological signal collection

Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170459A (en) * 1962-03-20 1965-02-23 Clifford G Phipps Bio-medical instrumentation electrode
US3370459A (en) * 1964-04-16 1968-02-27 Cescati Arturo Device for detecting pressure existing in pneumatic tires
US3942517A (en) * 1973-12-03 1976-03-09 Dracard Limited Electrodes
US4008712A (en) * 1975-11-14 1977-02-22 J. M. Richards Laboratories Method for monitoring body characteristics
US4077406A (en) * 1976-06-24 1978-03-07 American Cyanamid Company Pellet implanter for animal treatment
US4141366A (en) * 1977-11-18 1979-02-27 Medtronic, Inc. Lead connector for tape electrode
US4185621A (en) * 1977-10-28 1980-01-29 Triad, Inc. Body parameter display incorporating a battery charger
US4308872A (en) * 1977-04-07 1982-01-05 Respitrace Corporation Method and apparatus for monitoring respiration
US4498479A (en) * 1981-06-24 1985-02-12 Kone Oy Electrocardiograph (ECG) electrode testing system
US4721110A (en) * 1984-08-06 1988-01-26 Lampadius Michael S Respiration-controlled cardiac pacemaker
US4730611A (en) * 1986-09-02 1988-03-15 Absorbent Cotton Company Medical dressing device
US4895163A (en) * 1988-05-24 1990-01-23 Bio Analogics, Inc. System for body impedance data acquisition
US4911175A (en) * 1987-09-17 1990-03-27 Diana Twyman Method for measuring total body cell mass and total extracellular mass by bioelectrical resistance and reactance
US4981139A (en) * 1983-08-11 1991-01-01 Pfohl Robert L Vital signs monitoring and communication system
US4988335A (en) * 1988-08-16 1991-01-29 Ideal Instruments, Inc. Pellet implanter apparatus
US5001632A (en) * 1989-12-22 1991-03-19 Hall Tipping Justin Video game difficulty level adjuster dependent upon player's aerobic activity level during exercise
US5080099A (en) * 1988-08-26 1992-01-14 Cardiotronics, Inc. Multi-pad, multi-function electrode
US5083563A (en) * 1990-02-16 1992-01-28 Telectronics Pacing Systems, Inc. Implantable automatic and haemodynamically responsive cardioverting/defibrillating pacemaker
US5086781A (en) * 1989-11-14 1992-02-11 Bookspan Mark A Bioelectric apparatus for monitoring body fluid compartments
US5282840A (en) * 1992-03-26 1994-02-01 Medtronic, Inc. Multiple frequency impedance measurement system
US5482036A (en) * 1991-03-07 1996-01-09 Masimo Corporation Signal processing apparatus and method
US5607454A (en) * 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
US5718234A (en) * 1996-09-30 1998-02-17 Northrop Grumman Corporation Physiological data communication system
US5724025A (en) * 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US5860860A (en) * 1996-01-31 1999-01-19 Federal Patent Corporation Integral video game and cardio-waveform display
US5862802A (en) * 1981-04-03 1999-01-26 Forrest M. Bird Ventilator having an oscillatory inspiratory phase and method
US5862803A (en) * 1993-09-04 1999-01-26 Besson; Marcus Wireless medical diagnosis and monitoring equipment
US5865733A (en) * 1997-02-28 1999-02-02 Spacelabs Medical, Inc. Wireless optical patient monitoring apparatus
US5876353A (en) * 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6027523A (en) * 1997-10-06 2000-02-22 Arthrex, Inc. Suture anchor with attached disk
US6185452B1 (en) * 1997-02-26 2001-02-06 Joseph H. Schulman Battery-powered patient implantable device
US6190313B1 (en) * 1998-04-20 2001-02-20 Allen J. Hinkle Interactive health care system and method
US6190324B1 (en) * 1999-04-28 2001-02-20 Medtronic, Inc. Implantable medical device for tracking patient cardiac status
US6336903B1 (en) * 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US6339722B1 (en) * 1995-09-26 2002-01-15 A. J. Van Liebergen Holding B.V. Apparatus for the in-vivo non-invasive measurement of a biological parameter concerning a bodily fluid of a person or animal
US20020019588A1 (en) * 2000-06-23 2002-02-14 Marro Dominic P. Frontal electrode array for patient EEG signal acquisition
US6512949B1 (en) * 1999-07-12 2003-01-28 Medtronic, Inc. Implantable medical device for measuring time varying physiologic conditions especially edema and for responding thereto
US20030023184A1 (en) * 2001-07-23 2003-01-30 Jonathan Pitts-Crick Method and system for diagnosing and administering therapy of pulmonary congestion
US20030028321A1 (en) * 2001-06-29 2003-02-06 The Regents Of The University Of California Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting
US20030028221A1 (en) * 2001-07-31 2003-02-06 Qingsheng Zhu Cardiac rhythm management system for edema
US6520967B1 (en) * 1999-10-20 2003-02-18 Cauthen Research Group, Inc. Spinal implant insertion instrument for spinal interbody prostheses
US20040006279A1 (en) * 2002-07-03 2004-01-08 Shimon Arad (Abboud) Apparatus for monitoring CHF patients using bio-impedance technique
US20040010303A1 (en) * 2001-09-26 2004-01-15 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US6687540B2 (en) * 1999-03-12 2004-02-03 Cardiac Pacemakers, Inc. Discrimination of supraventricular tachycardia and ventricular tachycardia events
US6697658B2 (en) * 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US20050027207A1 (en) * 2000-12-29 2005-02-03 Westbrook Philip R. Sleep apnea risk evaluation
US20050027204A1 (en) * 2003-06-26 2005-02-03 Kligfield Paul D. ECG diagnostic system and method
US6858006B2 (en) * 2000-09-08 2005-02-22 Wireless Medical, Inc. Cardiopulmonary monitoring
US20050043675A1 (en) * 2003-08-21 2005-02-24 Pastore Joseph M. Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure
US20060004377A1 (en) * 2003-07-15 2006-01-05 Cervitech, Inc. Insertion instrument for cervical prostheses
US20060004300A1 (en) * 2002-11-22 2006-01-05 James Kennedy Multifrequency bioimpedance determination
US6985078B2 (en) * 2000-03-14 2006-01-10 Kabushiki Kaisha Toshiba Wearable life support apparatus and method
US20060009701A1 (en) * 2004-06-29 2006-01-12 Polar Electro Oy Method of monitoring human relaxation level, and user-operated heart rate monitor
US20060010090A1 (en) * 2004-07-12 2006-01-12 Marina Brockway Expert system for patient medical information analysis
US6987965B2 (en) * 2000-04-18 2006-01-17 Motorola, Inc. Programmable wireless electrode system for medical monitoring
US6988989B2 (en) * 2000-05-19 2006-01-24 Welch Allyn Protocol, Inc. Patient monitoring system
US20060020218A1 (en) * 2004-02-26 2006-01-26 Warwick Freeman Method and apparatus for continuous electrode impedance monitoring
US6993678B2 (en) * 2000-10-13 2006-01-31 Seagate Technology Llc Logical zone table generation process and apparatus
US20060025661A1 (en) * 2004-08-02 2006-02-02 Sweeney Robert J Device for monitoring fluid status
US20060030782A1 (en) * 2004-08-05 2006-02-09 Adnan Shennib Heart disease detection patch
US20060030781A1 (en) * 2004-08-05 2006-02-09 Adnan Shennib Emergency heart sensor patch
US20060031102A1 (en) * 2000-06-16 2006-02-09 Bodymedia, Inc. System for detecting, monitoring, and reporting an individual's physiological or contextual status
US6997879B1 (en) * 2002-07-09 2006-02-14 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
US7003346B2 (en) * 2001-05-03 2006-02-21 Singer Michaeal G Method for illness and disease determination and management
US20060041280A1 (en) * 2004-08-19 2006-02-23 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
US7156808B2 (en) * 1999-12-17 2007-01-02 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US7156807B2 (en) * 2000-07-13 2007-01-02 Ge Medical Systems Information Technologies, Inc. Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities
US7160253B2 (en) * 2002-11-08 2007-01-09 Polar Electro Oy Method and device for measuring stress
US7160252B2 (en) * 2003-01-10 2007-01-09 Medtronic, Inc. Method and apparatus for detecting respiratory disturbances
US20070010721A1 (en) * 2005-06-28 2007-01-11 Chen Thomas C H Apparatus and system of Internet-enabled wireless medical sensor scale
US20070010750A1 (en) * 2003-10-03 2007-01-11 Akinori Ueno Biometric sensor and biometric method
US20070015976A1 (en) * 2005-06-01 2007-01-18 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US20070015973A1 (en) * 2005-06-03 2007-01-18 Reuven Nanikashvili Communication terminal, medical telemetry system and method for monitoring physiological data
US20070016089A1 (en) * 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
US7167743B2 (en) * 2004-03-16 2007-01-23 Medtronic, Inc. Collecting activity information to evaluate therapy
US7166063B2 (en) * 2001-10-01 2007-01-23 The Nemours Foundation Brace compliance monitor
US20070021678A1 (en) * 2005-07-19 2007-01-25 Cardiac Pacemakers, Inc. Methods and apparatus for monitoring physiological responses to steady state activity
US20070027388A1 (en) * 2005-08-01 2007-02-01 Chang-An Chou Patch-type physiological monitoring apparatus, system and network
US20070027497A1 (en) * 2005-07-27 2007-02-01 Cyberonics, Inc. Nerve stimulation for treatment of syncope
US20070038078A1 (en) * 2005-07-08 2007-02-15 Daniel Osadchy Relative impedance measurement
US20070038038A1 (en) * 1999-10-18 2007-02-15 Bodymedia, Inc. Wearable human physiological and environmental data sensors and reporting system therefor
US20070043301A1 (en) * 2002-05-14 2007-02-22 Idex Asa Volume specific characterization of human skin by electrical immitance
US7184821B2 (en) * 2003-12-03 2007-02-27 Regents Of The University Of Minnesota Monitoring thoracic fluid changes
US20080004499A1 (en) * 2006-06-28 2008-01-03 Davis Carl C System and method for the processing of alarm and communication information in centralized patient monitoring
US7319386B2 (en) * 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US20080024294A1 (en) * 2003-06-23 2008-01-31 Cardiac Pacemakers, Inc. Systems, devices, and methods for selectively preventing data transfer from a medical device
US7336187B2 (en) * 2002-10-18 2008-02-26 The Trustees Of Boston University Patient activity monitor
US20090018410A1 (en) * 2006-03-02 2009-01-15 Koninklijke Philips Electronics N.V. Body parameter sensing

Family Cites Families (557)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US834261A (en) 1906-04-04 1906-10-30 Clarence S Chambers Vaccine-injector.
US2087124A (en) 1936-10-08 1937-07-13 Clarence O Smith Wire cable cutter
US2184511A (en) 1937-10-28 1939-12-26 Samuel M Bagno Method and apparatus for measuring impedance
US3232291A (en) * 1962-11-23 1966-02-01 San Francisco Res Corp Surgical adhesive tape and bandage
USRE30101E (en) 1964-08-19 1979-09-25 Regents Of The University Of Minnesota Impedance plethysmograph
US3517999A (en) 1966-01-07 1970-06-30 Itt Optical strain gauge
US3620216A (en) 1969-06-25 1971-11-16 Abbott Lab Implant trocar
US3677260A (en) 1970-09-04 1972-07-18 Statham Instrument Inc Arrhythmia detector
US3805769A (en) 1971-08-27 1974-04-23 R Sessions Disposable electrode
US3845757A (en) 1972-07-12 1974-11-05 Minnesota Mining & Mfg Biomedical monitoring electrode
US3882853A (en) 1973-02-15 1975-05-13 Cardiodynamics Biomedical electrode
US3874368A (en) 1973-04-19 1975-04-01 Manfred Asrican Impedance plethysmograph having blocking system
US4121573A (en) 1973-10-04 1978-10-24 Goebel Fixture Co. Wireless cardiac monitoring system and electrode-transmitter therefor
US3972329A (en) 1974-11-25 1976-08-03 Kaufman John George Body electrode for electro-medical use
US4024312A (en) 1976-06-23 1977-05-17 Johnson & Johnson Pressure-sensitive adhesive tape having extensible and elastic backing composed of a block copolymer
US4216462A (en) 1978-03-06 1980-08-05 General Electric Company Patient monitoring and data processing system
US4838273A (en) 1979-04-30 1989-06-13 Baxter International Inc. Medical electrode
US4300575A (en) 1979-06-25 1981-11-17 Staodynamics, Inc. Air-permeable disposable electrode
US4522211A (en) 1979-12-06 1985-06-11 C. R. Bard, Inc. Medical electrode construction
US4358678A (en) 1980-11-19 1982-11-09 Hersey Products, Inc. Fiber optic transducer and method
US4409983A (en) 1981-08-20 1983-10-18 Albert David E Pulse measuring device
US4699146A (en) 1982-02-25 1987-10-13 Valleylab, Inc. Hydrophilic, elastomeric, pressure-sensitive adhesive
US4451254A (en) 1982-03-15 1984-05-29 Eli Lilly And Company Implant system
WO1983003746A1 (en) 1982-04-22 1983-11-10 Karolinska Institutet Method and apparatus for monitoring the fluid balance of the body
US4450527A (en) 1982-06-29 1984-05-22 Bomed Medical Mfg. Ltd. Noninvasive continuous cardiac output monitor
US4478223A (en) 1982-12-06 1984-10-23 Allor Douglas R Three dimensional electrocardiograph
US4692685A (en) 1984-03-14 1987-09-08 Blaze Kevin L Electrical measuring apparatus, and methods for determining the condition or identity of biological material
JPH0148014B2 (en) 1984-06-11 1989-10-17 Toshio Asai
DE3513400C2 (en) 1985-04-15 1993-09-09 Philips Patentverwaltung Gmbh, 20097 Hamburg, De
US4673387A (en) 1985-05-06 1987-06-16 N. J. Phillips Pty. Limited Pellet injector
US4781200A (en) 1985-10-04 1988-11-01 Baker Donald A Ambulatory non-invasive automatic fetal monitoring system
US4669480A (en) 1985-10-16 1987-06-02 Murray Electronics Associates Limited Partnership Temperature indicating electrotherapy electrode/coil and method of use
US4661103A (en) 1986-03-03 1987-04-28 Engineering Development Associates, Ltd. Multiple implant injector
US4733107A (en) 1986-07-10 1988-03-22 Western Digital Corporation Low current high precision CMOS schmitt trigger circuit
FR2604890A1 (en) 1986-10-14 1988-04-15 Thomson Csf An optical detection simultaneous movements of the heart and respiration and its use synchronizing image acquisition devices is nuclear magnetic resonance
US4838279A (en) 1987-05-12 1989-06-13 Fore Don C Respiration monitor
US4850370A (en) 1987-07-22 1989-07-25 Dower Gordon E Method and apparatus for sensing and analyzing electrical activity of the human heart
JPH0445778B2 (en) 1987-11-12 1992-07-27 Kao Corp
US4880004A (en) 1988-06-07 1989-11-14 Intermedics, Inc. Implantable cardiac stimulator with automatic gain control and bandpass filtering in feedback loop
US4955381A (en) 1988-08-26 1990-09-11 Cardiotronics, Inc. Multi-pad, multi-function electrode
US5012810A (en) 1988-09-22 1991-05-07 Minnesota Mining And Manufacturing Company Biomedical electrode construction
US5133355A (en) 1988-09-22 1992-07-28 Minnesota Mining And Manufacturing Company Biomedical electrode construction
US5511553A (en) 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5168874A (en) 1989-02-15 1992-12-08 Jacob Segalowitz Wireless electrode structure for use in patient monitoring system
JPH0315502U (en) 1989-06-28 1991-02-15
US5769793A (en) 1989-09-08 1998-06-23 Steven M. Pincus System to determine a relative amount of patternness
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5027824A (en) 1989-12-01 1991-07-02 Edmond Dougherty Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances
US5140985A (en) 1989-12-11 1992-08-25 Schroeder Jon M Noninvasive blood glucose measuring device
US5125412A (en) 1990-07-23 1992-06-30 Thornton William E Musculoskeletal activity monitor
US5113869A (en) 1990-08-21 1992-05-19 Telectronics Pacing Systems, Inc. Implantable ambulatory electrocardiogram monitor
JPH06501858A (en) 1990-08-31 1994-03-03
US5063937A (en) 1990-09-12 1991-11-12 Wright State University Multiple frequency bio-impedance measurement system
US5271411A (en) 1990-09-21 1993-12-21 Colin Electronics Co., Ltd. Method and apparatus for ECG signal analysis and cardiac arrhythmia detection
US5642734A (en) 1990-10-04 1997-07-01 Microcor, Inc. Method and apparatus for noninvasively determining hematocrit
US5150708A (en) 1990-12-03 1992-09-29 Spacelabs, Inc. Tabbed defibrillator electrode pad
US5437285A (en) 1991-02-20 1995-08-01 Georgetown University Method and apparatus for prediction of sudden cardiac death by simultaneous assessment of autonomic function and cardiac electrical stability
US7328053B1 (en) 1993-10-06 2008-02-05 Masimo Corporation Signal processing apparatus
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
US5226417A (en) 1991-03-11 1993-07-13 Nellcor, Inc. Apparatus for the detection of motion transients
CA2106378A1 (en) 1991-04-05 1992-10-06 Tom D. Bennett Subcutaneous multi-electrode sensing system
DE69231753D1 (en) 1991-06-12 2001-04-26 Univ Florida Atlantic Detection of atherosclerosis in humans
NL9101489A (en) 1991-09-03 1993-04-01 Texas Instruments Holland Injector for hypodermically implanting an object into a living being.
US5309917A (en) 1991-09-12 1994-05-10 Drexel University System and method of impedance cardiography and heartbeat determination
US5335664A (en) 1991-09-17 1994-08-09 Casio Computer Co., Ltd. Monitor system and biological signal transmitter therefor
US5257627A (en) 1991-11-14 1993-11-02 Telmed, Inc. Portable non-invasive testing apparatus
US5353793A (en) 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
US5291013A (en) 1991-12-06 1994-03-01 Alamed Corporation Fiber optical monitor for detecting normal breathing and heartbeat motion based on changes in speckle patterns
DE69215204D1 (en) 1992-01-29 1996-12-19 Hewlett Packard Gmbh A method and system for monitoring vital functions
US5301677A (en) 1992-02-06 1994-04-12 Cardiac Pacemakers, Inc. Arrhythmia detector using delta modulated turning point morphology of the ECG wave
ES2155068T3 (en) 1992-04-03 2001-05-01 Micromedical Ind Ltd Physiological supervision system.
US5241300B1 (en) 1992-04-24 1995-10-31 Johannes Buschmann Sids detection apparatus and methods
EP0575984A3 (en) 1992-06-24 1996-08-07 N I Medical Ltd A non-invasive system for determination of the main cardiorespiratory parameters of the human body
US5984102A (en) 1992-09-24 1999-11-16 Survivalink Corporation Medical electrode packaging technology
US5411530A (en) 1992-11-13 1995-05-02 Akhtar; Masood Sensing algorithm for anti-tachycardia devices using dual chamber sensing
US5362069A (en) 1992-12-03 1994-11-08 Heartbeat Corporation Combination exercise device/video game
US5375604A (en) 1992-12-11 1994-12-27 Siemens Medical Electronics, Inc. Transportable modular patient monitor
US5450845A (en) 1993-01-11 1995-09-19 Axelgaard; Jens Medical electrode system
US5558638A (en) 1993-04-30 1996-09-24 Healthdyne, Inc. Patient monitor and support system
US5406945A (en) 1993-05-24 1995-04-18 Ndm Acquisition Corp. Biomedical electrode having a secured one-piece conductive terminal
US5464012A (en) 1993-09-13 1995-11-07 Hewlett-Packard Company Patient alarm detection using target mode
US5454377A (en) 1993-10-08 1995-10-03 The Ohio State University Method for measuring the myocardial electrical impedance spectrum
US5523742A (en) 1993-11-18 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Motion sensor
US5544661A (en) 1994-01-13 1996-08-13 Charles L. Davis Real time ambulatory patient monitor
US5964703A (en) 1994-01-14 1999-10-12 E-Z-Em, Inc. Extravasation detection electrode patch
US5447529A (en) 1994-01-28 1995-09-05 Philadelphia Heart Institute Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation
US6067467A (en) 1994-02-07 2000-05-23 New York University EEG operative and post-operative patient monitoring method
US5598848A (en) 1994-03-31 1997-02-04 Ep Technologies, Inc. Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium
US5575284A (en) 1994-04-01 1996-11-19 University Of South Florida Portable pulse oximeter
US5566671A (en) 1994-05-23 1996-10-22 Lyons; Chad Medical acoustic sensor receptacle
WO1995033372A1 (en) 1994-06-07 1995-12-14 Agrizap, Inc. A portable pest electrocution device with resistive switch sensor
US5518001A (en) 1994-06-17 1996-05-21 Pacesetter, Inc. Cardiac device with patient-triggered storage of physiological sensor data
CN1149955C (en) 1994-10-11 2004-05-19 奥珍・马丁森 Measurement of moisture content in skin
US5560368A (en) 1994-11-15 1996-10-01 Berger; Ronald D. Methodology for automated QT variability measurement
US5772508A (en) 1995-09-28 1998-06-30 Amtex Co., Ltd. Game or play facilities controlled by physiological information
US5817035A (en) 1994-11-24 1998-10-06 The Institute Of Respiratory Medicine Ltd. Biophysical foetal monitor
US5778882A (en) * 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5564434A (en) 1995-02-27 1996-10-15 Medtronic, Inc. Implantable capacitive absolute pressure and temperature sensor
US5503157A (en) 1995-03-17 1996-04-02 Sramek; Bohumir System for detection of electrical bioimpedance signals
US5788682A (en) 1995-04-28 1998-08-04 Maget; Henri J.R. Apparatus and method for controlling oxygen concentration in the vicinity of a wound
US6327487B1 (en) 1995-05-04 2001-12-04 Robert A. Stratbucker Bioelectric interface
US5807272A (en) 1995-10-31 1998-09-15 Worcester Polytechnic Institute Impedance spectroscopy system for ischemia monitoring and detection
US5678562A (en) 1995-11-09 1997-10-21 Burdick, Inc. Ambulatory physiological monitor with removable disk cartridge and wireless modem
US5748103A (en) 1995-11-13 1998-05-05 Vitalcom, Inc. Two-way TDMA telemetry system with power conservation features
US5944659A (en) 1995-11-13 1999-08-31 Vitalcom Inc. Architecture for TDMA medical telemetry system
US5803915A (en) 1995-12-07 1998-09-08 Ohmeda Inc. System for detection of probe dislodgement
US6035233A (en) 1995-12-11 2000-03-07 Intermedics Inc. Implantable medical device responsive to heart rate variability analysis
US6463328B1 (en) 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
FI960636A (en) 1996-02-12 1997-08-13 Nokia Mobile Phones Ltd A method for monitoring the patient's state of health
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US6496715B1 (en) 1996-07-11 2002-12-17 Medtronic, Inc. System and method for non-invasive determination of optimal orientation of an implantable sensing device
EP0944414B1 (en) 1996-07-11 2005-11-09 Medtronic, Inc. Minimally invasive implantable device for monitoring physiologic events
US5687717A (en) 1996-08-06 1997-11-18 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
US6141575A (en) 1996-08-16 2000-10-31 Price; Michael A. Electrode assemblies
DE19638585A1 (en) 1996-09-20 1998-03-26 Biotronik Mess & Therapieg Device for Rejektionsdiagnostik after organ transplantation
US6112224A (en) 1996-09-20 2000-08-29 Georgia Tech Research Corporation Patient monitoring station using a single interrupt resource to support multiple measurement devices
US5814079A (en) 1996-10-04 1998-09-29 Medtronic, Inc. Cardiac arrhythmia management by application of adnodal stimulation for hyperpolarization of myocardial cells
US6198394B1 (en) 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US5957861A (en) 1997-01-31 1999-09-28 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6102856A (en) 1997-02-12 2000-08-15 Groff; Clarence P Wearable vital sign monitoring system
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6164284A (en) 1997-02-26 2000-12-26 Schulman; Joseph H. System of implantable devices for monitoring and/or affecting body parameters
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US6148233A (en) 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
JP4555919B2 (en) 1997-03-17 2010-10-06 ノンインベイシブ モニタリング システムズ インコーポレイテッド Feedback system of physiological sign
EP1014851A4 (en) 1997-04-11 2003-07-16 Heartlink World Patent Corp Method for diagnosing psychiatric disorders
US7941534B2 (en) 1997-04-14 2011-05-10 Carlos De La Huerga System and method to authenticate users to computer systems
US5788643A (en) 1997-04-22 1998-08-04 Zymed Medical Instrumentation, Inc. Process for monitoring patients with chronic congestive heart failure
US6050267A (en) 1997-04-28 2000-04-18 American Cardiac Ablation Co. Inc. Catheter positioning system
FR2766376B1 (en) 1997-07-25 1999-10-22 Lhd Lab Hygiene Dietetique Device for therapeutic treatment of wounds
CA2300843A1 (en) 1997-08-19 1999-02-25 Philipp Lang Measurement of capillary related interstitial fluid using ultrasound methods and devices
US6259939B1 (en) 1997-08-20 2001-07-10 R. Z. Comparative Diagnostics Ltd. Electrocardiography electrodes holder including electrocardiograph electronics
US6090056A (en) 1997-08-27 2000-07-18 Emergency Medical Systems, Inc. Resuscitation and alert system
US6007532A (en) 1997-08-29 1999-12-28 3M Innovative Properties Company Method and apparatus for detecting loss of contact of biomedical electrodes with patient skin
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US6080106A (en) 1997-10-28 2000-06-27 Alere Incorporated Patient interface system with a scale
US6050951A (en) 1997-11-10 2000-04-18 Critikon Company, L.L.C. NIBP trigger in response to detected heart rate variability
US20050096513A1 (en) 1997-11-11 2005-05-05 Irvine Sensors Corporation Wearable biomonitor with flexible thinned integrated circuit
US6129744A (en) 1997-12-04 2000-10-10 Vitatron Medical, B.V. Cardiac treatment system and method for sensing and responding to heart failure
US6047259A (en) 1997-12-30 2000-04-04 Medical Management International, Inc. Interactive method and system for managing physical exams, diagnosis and treatment protocols in a health care practice
US6125297A (en) 1998-02-06 2000-09-26 The United States Of America As Represented By The United States National Aeronautics And Space Administration Body fluids monitor
US6038464A (en) 1998-02-09 2000-03-14 Axelgaard Manufacturing Co., Ltd. Medical electrode
US5904708A (en) 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
US6579231B1 (en) 1998-03-27 2003-06-17 Mci Communications Corporation Personal medical monitoring unit and system
US5941831A (en) 1998-04-03 1999-08-24 Pacesetter, Inc. Method for diagnosing cardiac arrhythmias using interval irregularity
US5967995A (en) 1998-04-28 1999-10-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education System for prediction of life-threatening cardiac arrhythmias
US6045513A (en) 1998-05-13 2000-04-04 Medtronic, Inc. Implantable medical device for tracking patient functional status
JP3507437B2 (en) * 1998-05-13 2004-03-15 シグナス, インコーポレイテッド Collection assembly for the transdermal sampling system
CA2335282A1 (en) 1998-06-17 1999-12-23 Nimeda Ltd. Non-invasive monitoring of physiological parameters
US6095991A (en) 1998-07-23 2000-08-01 Individual Monitoring Systems, Inc. Ambulatory body position monitor
EP1102560A4 (en) 1998-08-07 2003-03-12 Infinite Biomedical Technologi Implantable myocardial ischemia detection, indication and action technology
US6052615A (en) 1998-08-17 2000-04-18 Zymed Medical Instrumentation, Inc. Method and apparatus for sensing and analyzing electrical activity of the human heart using a four electrode arrangement
US6267730B1 (en) 1998-08-25 2001-07-31 Kenneth M. Pacunas Apnea detecting system
JP4689825B2 (en) 1998-08-26 2011-05-25 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド Optical detection device
US6104949A (en) 1998-09-09 2000-08-15 Vitatron Medical, B.V. Medical device
US6343140B1 (en) * 1998-09-11 2002-01-29 Quid Technologies Llc Method and apparatus for shooting using biometric recognition
WO2000017615A3 (en) 1998-09-23 2000-07-13 Keith Bridger Physiological sensing device
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US6402689B1 (en) 1998-09-30 2002-06-11 Sicel Technologies, Inc. Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors
US6306088B1 (en) 1998-10-03 2001-10-23 Individual Monitoring Systems, Inc. Ambulatory distributed recorders system for diagnosing medical disorders
US6519487B1 (en) * 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
WO2000025858A1 (en) * 1998-11-02 2000-05-11 Alza Corporation Electrotransport device including a compatible antimicrobial agent
US6358208B1 (en) 1998-11-21 2002-03-19 Philipp Lang Assessment of cardiovascular performance using ultrasound methods and devices that interrogate interstitial fluid
US6398727B1 (en) * 1998-12-23 2002-06-04 Baxter International Inc. Method and apparatus for providing patient care
US6049730A (en) 1998-12-28 2000-04-11 Flaga Hf Method and apparatus for improving the accuracy of interpretation of ECG-signals
US6295466B1 (en) 1999-01-06 2001-09-25 Ball Semiconductor, Inc. Wireless EKG
US6206831B1 (en) 1999-01-06 2001-03-27 Scimed Life Systems, Inc. Ultrasound-guided ablation catheter and methods of use
US6117077A (en) 1999-01-22 2000-09-12 Del Mar Medical Systems, Llc Long-term, ambulatory physiological recorder
US6473640B1 (en) 1999-01-25 2002-10-29 Jay Erlebacher Implantable device and method for long-term detection and monitoring of congestive heart failure
WO2000044580A8 (en) 1999-01-27 2000-09-28 Compumedics Sleep Pty Ltd Vigilance monitoring system
US6305943B1 (en) 1999-01-29 2001-10-23 Biomed Usa, Inc. Respiratory sinus arrhythmia training system
US6212427B1 (en) 1999-02-02 2001-04-03 J&J Engineering Heart rate variability feedback monitor system
US6266554B1 (en) 1999-02-12 2001-07-24 Cardiac Pacemakers, Inc. System and method for classifying cardiac complexes
US6821249B2 (en) 1999-03-08 2004-11-23 Board Of Regents, The University Of Texas Temperature monitoring of congestive heart failure patients as an indicator of worsening condition
US6454707B1 (en) 1999-03-08 2002-09-24 Samuel W. Casscells, III Method and apparatus for predicting mortality in congestive heart failure patients
US6751498B1 (en) 1999-03-15 2004-06-15 The Johns Hopkins University Apparatus and method for non-invasive, passive fetal heart monitoring
GB2348707B (en) 1999-04-07 2003-07-09 Healthcare Technology Ltd Heart activity detection apparatus
US6385473B1 (en) 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6450953B1 (en) 1999-04-15 2002-09-17 Nexan Limited Portable signal transfer unit
US6416471B1 (en) * 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6454708B1 (en) 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US7577475B2 (en) 1999-04-16 2009-08-18 Cardiocom System, method, and apparatus for combining information from an implanted device with information from a patient monitoring apparatus
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
EP1191987A1 (en) 1999-05-21 2002-04-03 Michael Charles Cooke A feedback assembly for computer games
US6312378B1 (en) 1999-06-03 2001-11-06 Cardiac Intelligence Corporation System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care
EP1982649A1 (en) 1999-06-22 2008-10-22 The University Of Queensland A method and device for measuring tissue oedema
US7454359B2 (en) 1999-06-23 2008-11-18 Visicu, Inc. System and method for displaying a health status of hospitalized patients
US6287252B1 (en) 1999-06-30 2001-09-11 Monitrak Patient monitor
US7149773B2 (en) 1999-07-07 2006-12-12 Medtronic, Inc. System and method of automated invoicing for communications between an implantable medical device and a remote computer system or health care provider
US6450820B1 (en) 1999-07-09 2002-09-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for encouraging physiological self-regulation through modulation of an operator's control input to a video game or training simulator
US6347245B1 (en) * 1999-07-14 2002-02-12 Medtronic, Inc. Medical device ECG marker for use in compressed data system
US6221011B1 (en) 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
CA2314517A1 (en) 1999-07-26 2001-01-26 Gust H. Bardy System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
JP2001052930A (en) 1999-08-06 2001-02-23 Tdk Corp Laminated inductor and manufacture thereof
US6442422B1 (en) 1999-08-11 2002-08-27 Ge Medical Systems Information Technologies, Inc. Compliance monitoring apparatus and method
US6721594B2 (en) 1999-08-24 2004-04-13 Cardiac Pacemakers, Inc. Arrythmia display
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6272377B1 (en) 1999-10-01 2001-08-07 Cardiac Pacemakers, Inc. Cardiac rhythm management system with arrhythmia prediction and prevention
US6350237B1 (en) 1999-11-05 2002-02-26 General Electric Company Method and apparatus for monitoring fetal status data
US6600949B1 (en) 1999-11-10 2003-07-29 Pacesetter, Inc. Method for monitoring heart failure via respiratory patterns
US6527729B1 (en) 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US6480733B1 (en) 1999-11-10 2002-11-12 Pacesetter, Inc. Method for monitoring heart failure
US6942622B1 (en) 1999-11-10 2005-09-13 Pacesetter, Inc. Method for monitoring autonomic tone
US6368284B1 (en) 1999-11-16 2002-04-09 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof
US6277078B1 (en) 1999-11-19 2001-08-21 Remon Medical Technologies, Ltd. System and method for monitoring a parameter associated with the performance of a heart
US7127370B2 (en) 2000-01-07 2006-10-24 Nocwatch International Inc. Attitude indicator and activity monitoring device
US7483743B2 (en) 2000-01-11 2009-01-27 Cedars-Sinai Medical Center System for detecting, diagnosing, and treating cardiovascular disease
US6714813B2 (en) 2000-01-21 2004-03-30 Tanita Corporation Method for measuring the degree of edema and apparatus using the same
US6551251B2 (en) 2000-02-14 2003-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Passive fetal heart monitoring system
US6699200B2 (en) 2000-03-01 2004-03-02 Medtronic, Inc. Implantable medical device with multi-vector sensing electrodes
US6893396B2 (en) 2000-03-01 2005-05-17 I-Medik, Inc. Wireless internet bio-telemetry monitoring system and interface
GB0005247D0 (en) 2000-03-03 2000-04-26 Btg Int Ltd Electrical impedance method for differentiating tissue types
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
US6871211B2 (en) 2000-03-28 2005-03-22 Ge Medical Systems Information Technologies, Inc. Intranet-based medical data distribution system
WO2001078577A3 (en) * 2000-04-17 2003-01-09 Vivometrics Inc Systems and methods for ambulatory monitoring of physiological signs
FR2808609B1 (en) 2000-05-05 2006-02-10 Univ Rennes And device for detecting abnormal situations METHOD
JP2004507285A (en) 2000-05-05 2004-03-11 ヒル−ロム サービシーズ,インコーポレイティド Hospital for monitoring and control system and method
US6478800B1 (en) 2000-05-08 2002-11-12 Depuy Acromed, Inc. Medical installation tool
US6572557B2 (en) 2000-05-09 2003-06-03 Pacesetter, Inc. System and method for monitoring progression of cardiac disease state using physiologic sensors
US20040049132A1 (en) 2000-06-15 2004-03-11 The Procter & Gamble Company Device for body activity detection and processing
US7261690B2 (en) * 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US20060122474A1 (en) 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
WO2002000111A1 (en) 2000-06-23 2002-01-03 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6480734B1 (en) 2000-06-30 2002-11-12 Cardiac Science Inc. Cardiac arrhythmia detector using ECG waveform-factor and its irregularity
US6569160B1 (en) 2000-07-07 2003-05-27 Biosense, Inc. System and method for detecting electrode-tissue contact
US6636754B1 (en) 2000-07-10 2003-10-21 Cardiodynamics International Corporation Apparatus and method for determining cardiac output in a living subject
US6602201B1 (en) 2000-07-10 2003-08-05 Cardiodynamics International Corporation Apparatus and method for determining cardiac output in a living subject
US7149576B1 (en) 2000-07-10 2006-12-12 Cardiodynamics International Corporation Apparatus and method for defibrillation of a living subject
US20020032581A1 (en) 2000-07-17 2002-03-14 Reitberg Donald P. Single-patient drug trials used with accumulated database: risk of habituation
CA2414309C (en) 2000-07-18 2006-10-31 Motorola, Inc. Wireless electrocardiograph system and method
JP3977983B2 (en) 2000-07-31 2007-09-19 株式会社タニタ Dehydrated state determining apparatus according to the bioelectrical impedance measurement
US20020099277A1 (en) 2000-09-12 2002-07-25 Nexan Limited Disposable vital signs monitoring sensor band with removable alignment sheet
DE10046075A1 (en) 2000-09-15 2002-04-04 Friendly Sensors Ag Apparatus and method for generating measurement data
US6572636B1 (en) 2000-09-19 2003-06-03 Robert Sean Hagen Pulse sensing patch and associated methods
US6752151B2 (en) 2000-09-25 2004-06-22 Respironics, Inc. Method and apparatus for providing variable positive airway pressure
US6490478B1 (en) 2000-09-25 2002-12-03 Cardiac Science Inc. System and method for complexity analysis-based cardiac tachyarrhythmia detection
US6665559B2 (en) 2000-10-06 2003-12-16 Ge Medical Systems Information Technologies, Inc. Method and apparatus for perioperative assessment of cardiovascular risk
CA2425224A1 (en) 2000-10-10 2002-04-18 Alan Remy Magill Health monitoring
US20020045836A1 (en) 2000-10-16 2002-04-18 Dima Alkawwas Operation of wireless biopotential monitoring system
FI119716B (en) 2000-10-18 2009-02-27 Polar Electro Oy The electrode and the heart rate measurement arrangement
US6738671B2 (en) 2000-10-26 2004-05-18 Medtronic, Inc. Externally worn transceiver for use with an implantable medical device
US6978177B1 (en) 2000-11-14 2005-12-20 Cardiac Pacemakers, Inc. Method and apparatus for using atrial discrimination algorithms to determine optimal pacing therapy and therapy timing
US6658300B2 (en) 2000-12-18 2003-12-02 Biosense, Inc. Telemetric reader/charger device for medical sensor
WO2002052480A1 (en) 2000-12-22 2002-07-04 Trac Medical Solutions, Inc. Dynamic electronic chain-of-trust document with audit trail
DE60215924D1 (en) 2001-02-08 2006-12-21 Mini Mitter Co Inc Skin patches with temperature sensor
US6749566B2 (en) 2001-02-14 2004-06-15 Draeger Medical Systems, Inc. Patient monitoring area network
EP1238630A3 (en) 2001-03-01 2004-03-31 Tre Esse Progettazione Biomedica S.r.l Process and implantable device for the intrapulmonary assessing of density dependant physical properties of the lung tissue
US6595929B2 (en) 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
WO2002080762A1 (en) 2001-04-06 2002-10-17 Medic4All Inc. A physiological monitoring system for a computational device of a human subject
US20050283197A1 (en) 2001-04-10 2005-12-22 Daum Douglas R Systems and methods for hypotension
EP1249691A1 (en) 2001-04-11 2002-10-16 Omron Corporation Electronic clinical thermometer
US6665385B2 (en) 2001-04-23 2003-12-16 Cardionet, Inc. Medical monitoring system having multipath communications capability
US6641542B2 (en) 2001-04-30 2003-11-04 Medtronic, Inc. Method and apparatus to detect and treat sleep respiratory events
US7702394B2 (en) 2001-05-01 2010-04-20 Intrapace, Inc. Responsive gastric stimulator
US6894204B2 (en) 2001-05-02 2005-05-17 3M Innovative Properties Company Tapered stretch removable adhesive articles and methods
US20060161073A1 (en) 2001-05-03 2006-07-20 Singer Michael G In vitro and in vivo assessment of organs and tissue and use, transplant, freshness and tissue conditions
US6587715B2 (en) 2001-05-03 2003-07-01 The Nutrition Solutions Corporation Assessment of organs for transplant, xenotransplant, and predicting time of death
JP2004529709A (en) 2001-05-03 2004-09-30 テルズート・テクノロジーズ・インコーポレーテッド The medical wireless monitoring devices and systems
US20070104840A1 (en) 2001-05-03 2007-05-10 Singer Michael G Method and system for the determination of palatability
US7242306B2 (en) 2001-05-08 2007-07-10 Hill-Rom Services, Inc. Article locating and tracking apparatus and method
US6622042B1 (en) 2001-05-09 2003-09-16 Pacesetter, Inc. Implantable cardiac stimulation device and method utilizing electrogram spectral analysis for therapy administration
JP2005502937A (en) 2001-05-15 2005-01-27 サイコジェニックス・インコーポレーテッドPsychogenics Inc. System and method for monitoring the behavior and Information Engineering
US6952695B1 (en) 2001-05-15 2005-10-04 Global Safety Surveillance, Inc. Spontaneous adverse events reporting
US6701271B2 (en) 2001-05-17 2004-03-02 International Business Machines Corporation Method and apparatus for using physical characteristic data collected from two or more subjects
EP1389173B1 (en) 2001-05-21 2006-03-08 Colder Products Company Connector apparatus for controlling fluid dispensing
US20050065445A1 (en) 2001-05-22 2005-03-24 Arzbaecher Robert C. Cardiac arrest monitor and alarm system
US6816744B2 (en) 2001-05-29 2004-11-09 Reproductive Health Technologies, Inc. Device and system for remote for in-clinic trans-abdominal/vaginal/cervical acquisition, and detection, analysis, and communication of maternal uterine and maternal and fetal cardiac and fetal brain activity from electrical signals
US6653014B2 (en) 2001-05-30 2003-11-25 Birch Point Medical, Inc. Power sources for iontophoretic drug delivery systems
US6795722B2 (en) 2001-06-18 2004-09-21 Neotech Products, Inc. Electrode sensor package and application to the skin of a newborn or infant
US6993378B2 (en) * 2001-06-25 2006-01-31 Science Applications International Corporation Identification by analysis of physiometric variation
US7044911B2 (en) 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
WO2003003899A3 (en) 2001-07-02 2004-03-18 Ultramove Ltd Methods and apparatus for objective fetal diagnosis
WO2003009221A3 (en) 2001-07-20 2003-12-04 Hill Rom Services Inc Badge for a locating and tracking system
DE60143115D1 (en) 2001-09-28 2010-11-04 Csem Ct Suisse Electronique Method and apparatus for pulse measurement
DE10148440A1 (en) 2001-10-01 2003-04-17 Inflow Dynamics Inc Implantable medical device for monitoring congestive heart failure comprises electrodes for measuring lung and heart tissue impedance, with an increase in impedance above a threshold value triggering an alarm
US20090182204A1 (en) 2001-10-04 2009-07-16 Semler Herbert J Body composition, circulation, and vital signs monitor and method
US20030087244A1 (en) 2001-10-09 2003-05-08 Vitivity, Inc Diagnosis and treatment of vascular disease
US20030093298A1 (en) 2001-10-12 2003-05-15 Javier Hernandez System and method for providing secure remote access to patient files by authenticating personnel with biometric data
US6748269B2 (en) 2001-10-17 2004-06-08 Cardiac Pacemakers, Inc. Algorithm for discrimination of 1:1 tachycardias
US6810282B2 (en) 2001-10-25 2004-10-26 GE Medical Systems Information Technolgies, Inc. Method and apparatus for dynamically selecting an electrocardiogram compression process based on computerized analysis of cardiac rhythm and contour
FR2831450B1 (en) 2001-10-30 2004-07-30 Ela Medical Sa Implantable medical device active for the treatment of cardiac rhythm disorders, including improved means of detection of atrial arrhythmias
US7054679B2 (en) 2001-10-31 2006-05-30 Robert Hirsh Non-invasive method and device to monitor cardiac parameters
US6577139B2 (en) 2001-11-06 2003-06-10 Keystone Thermometrics Impedance converter circuit
US6894456B2 (en) 2001-11-07 2005-05-17 Quallion Llc Implantable medical power module
US6980851B2 (en) 2001-11-15 2005-12-27 Cardiac Pacemakers, Inc. Method and apparatus for determining changes in heart failure status
DE10156833A1 (en) * 2001-11-20 2003-05-28 Boehm Stephan Electrode for biomedical measurements has contact plate connected to line driver high impedance input and current source current output, line driver, current source close to contact plate
JP4068567B2 (en) 2001-12-12 2008-03-26 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング The determination of the hydration status of the patient
GB0130010D0 (en) * 2001-12-14 2002-02-06 Isis Innovation Combining measurements from breathing rate sensors
US20030149349A1 (en) 2001-12-18 2003-08-07 Jensen Thomas P. Integral patch type electronic physiological sensor
US20030143544A1 (en) 2002-01-09 2003-07-31 Vitivity, Inc. Diagnosis and treatment of vascular disease
US6980852B2 (en) 2002-01-25 2005-12-27 Subqiview Inc. Film barrier dressing for intravascular tissue monitoring system
US6912414B2 (en) 2002-01-29 2005-06-28 Southwest Research Institute Electrode systems and methods for reducing motion artifact
US6645153B2 (en) 2002-02-07 2003-11-11 Pacesetter, Inc. System and method for evaluating risk of mortality due to congestive heart failure using physiologic sensors
US6936006B2 (en) 2002-03-22 2005-08-30 Novo Nordisk, A/S Atraumatic insertion of a subcutaneous device
CA2379268A1 (en) 2002-03-26 2003-09-26 Izmail Batkin Skin impedance matched biopotential electrode
WO2003082403A3 (en) 2002-03-27 2004-01-08 Cvrx Inc Devices and methods for cardiovascular reflex control via coupled electrodes
US20030187370A1 (en) 2002-03-27 2003-10-02 Kodama Roy K. Uterine contraction sensing system and method
US7654901B2 (en) 2002-04-10 2010-02-02 Breving Joel S Video game system using bio-feedback devices
CA2699672C (en) * 2002-04-16 2014-08-19 Carematix, Inc. Method and apparatus for remotely monitoring the condition of a patient
US7136703B1 (en) 2002-04-16 2006-11-14 Pacesetter, Inc. Programmer and surface ECG system with wireless communication
EP1501414A1 (en) 2002-05-07 2005-02-02 Izmail Batkin Remote monitoring of cardiac electrical activity using a cell phone device
US20030221687A1 (en) 2002-05-09 2003-12-04 William Kaigler Medication and compliance management system and method
US20050228234A1 (en) 2002-05-17 2005-10-13 Chang-Ming Yang Method and device for monitoring physiologic signs and implementing emergency disposals
US6922586B2 (en) 2002-05-20 2005-07-26 Richard J. Davies Method and system for detecting electrophysiological changes in pre-cancerous and cancerous tissue
US6906530B2 (en) 2002-05-30 2005-06-14 D.J. Geisel Technology, Inc. Apparatus and method to detect moisture
US7047067B2 (en) 2002-05-31 2006-05-16 Uab Research Foundation Apparatus, methods, and computer program products for evaluating a risk of cardiac arrhythmias from restitution properties
EP1521615A4 (en) 2002-06-11 2010-11-03 Jeffrey A Matos System for cardiac resuscitation
US20040014422A1 (en) * 2002-07-19 2004-01-22 Nokia Corporation Method and system for handovers using service description data
US7257438B2 (en) 2002-07-23 2007-08-14 Datascope Investment Corp. Patient-worn medical monitoring device
US7027862B2 (en) 2002-07-25 2006-04-11 Medtronic, Inc. Apparatus and method for transmitting an electrical signal in an implantable medical device
US20040019292A1 (en) * 2002-07-29 2004-01-29 Drinan Darrel Dean Method and apparatus for bioelectric impedance based identification of subjects
CA2530993A1 (en) 2002-08-01 2004-02-12 Biopad Ltd. Bio-filter pad for facilitating the detection of an occurence of a physiological action, and method thereof, and fetal activity monitoring apparatus
GB0218547D0 (en) 2002-08-09 2002-09-18 Diagnostic Ultrasound Europ B Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams
US6879850B2 (en) 2002-08-16 2005-04-12 Optical Sensors Incorporated Pulse oximeter with motion detection
US20060149168A1 (en) 2002-08-19 2006-07-06 Robert Czarnek Capacitive uterine contraction sensor
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7294105B1 (en) 2002-09-03 2007-11-13 Cheetah Omni, Llc System and method for a wireless medical communication system
US7118531B2 (en) 2002-09-24 2006-10-10 The Johns Hopkins University Ingestible medical payload carrying capsule with wireless communication
JP4813058B2 (en) 2002-10-09 2011-11-09 ボディーメディア インコーポレイテッド Detecting human physiological and contextual information, receiving, deriving and apparatus for displaying
US20040073094A1 (en) 2002-10-15 2004-04-15 Baker Donald A. Fetal monitoring systems with ambulatory patient units and telemetric links for improved uses
GB0224299D0 (en) 2002-10-18 2002-11-27 Cambridge Neurotechnology Ltd Cardiac monitoring apparatus and method
GB0224425D0 (en) 2002-10-21 2002-11-27 Univ Leicester Method for prediction of cardiac disease
US6878121B2 (en) 2002-11-01 2005-04-12 David T. Krausman Sleep scoring apparatus and method
CA2505008A1 (en) 2002-11-07 2004-05-27 Block, David Cesar Monitoring respiratory movements device
US7130679B2 (en) 2002-11-20 2006-10-31 Medtronic, Inc. Organ rejection monitoring
US20040106951A1 (en) 2002-11-22 2004-06-03 Edman Carl Frederick Use of electric fields to minimize rejection of implanted devices and materials
US20040100376A1 (en) 2002-11-26 2004-05-27 Kimberly-Clark Worldwide, Inc. Healthcare monitoring system
EP1571982A1 (en) 2002-11-27 2005-09-14 Z-Tech (Canada) Inc. Apparatus for determining adequacy of electrode-to-skin contact and electrode quality for bioelectrical measurements
US7072718B2 (en) 2002-12-03 2006-07-04 Cardiac Pacemakers, Inc. Antenna systems for implantable medical device telemetry
US8814793B2 (en) 2002-12-03 2014-08-26 Neorad As Respiration monitor
US7986994B2 (en) 2002-12-04 2011-07-26 Medtronic, Inc. Method and apparatus for detecting change in intrathoracic electrical impedance
US7452334B2 (en) 2002-12-16 2008-11-18 The Regents Of The University Of Michigan Antenna stent device for wireless, intraluminal monitoring
WO2004054430A3 (en) 2002-12-16 2004-10-07 Tal Davidson Device, system and method for selective activation of in vivo sensors
US7468032B2 (en) 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
US20040143170A1 (en) 2002-12-20 2004-07-22 Durousseau Donald R. Intelligent deception verification system
US7395117B2 (en) 2002-12-23 2008-07-01 Cardiac Pacemakers, Inc. Implantable medical device having long-term wireless capabilities
US7127541B2 (en) * 2002-12-23 2006-10-24 Microtune (Texas), L.P. Automatically establishing a wireless connection between adapters
GB0230361D0 (en) 2002-12-27 2003-02-05 Koninkl Philips Electronics Nv Electrode arrangement
US20040133079A1 (en) 2003-01-02 2004-07-08 Mazar Scott Thomas System and method for predicting patient health within a patient management system
DE10300735A1 (en) 2003-01-11 2004-07-22 Corscience Gmbh & Co.Kg A method for detecting a fibrillation condition and apparatus for defibrillation
US7423526B2 (en) 2003-01-29 2008-09-09 Despotis George J Integrated patient diagnostic and identification system
US7445605B2 (en) 2003-01-31 2008-11-04 The Board Of Trustees Of The Leland Stanford Junior University Detection of apex motion for monitoring cardiac dysfunction
US6956572B2 (en) * 2003-02-10 2005-10-18 Siemens Medical Solutions Health Services Corporation Patient medical parameter user interface system
EP1594551A2 (en) 2003-02-19 2005-11-16 Sicel Technologies, Inc. In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes
JP2006520657A (en) 2003-03-21 2006-09-14 ウェルチ・アリン・インコーポレーテッド Personal status physiological monitoring systems and structures, and monitoring method
EP1608433B1 (en) * 2003-03-31 2009-03-11 ALZA Corporation Electrotransport device having a reservoir housing having a flexible conductive element
US20040199056A1 (en) 2003-04-03 2004-10-07 International Business Machines Corporation Body monitoring using local area wireless interfaces
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US20040215240A1 (en) 2003-04-11 2004-10-28 Lovett Eric G. Reconfigurable subcutaneous cardiac device
US7130684B2 (en) 2003-04-30 2006-10-31 Medtronic, Inc. Method and apparatus for improving ventricular status using the force interval relationship
US20040225203A1 (en) 2003-05-06 2004-11-11 Jemison Mae C. Real-time and simultaneous monitoring of multiple parameters from multiple living beings
DE602004023190D1 (en) 2003-05-08 2009-10-29 Aimedics Pty Ltd Patient monitoring device
US20040225199A1 (en) 2003-05-08 2004-11-11 Evanyk Shane Walter Advanced physiological monitoring systems and methods
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
US20050158539A1 (en) 2003-06-25 2005-07-21 Andover Coated Products, Inc. Pressure-sensitive adhesive tapes
US7171258B2 (en) 2003-06-25 2007-01-30 Cardiac Pacemakers, Inc. Method and apparatus for trending a physiological cardiac parameter
US7142907B2 (en) 2003-07-01 2006-11-28 Ge Medical Systems Information Technologies, Inc. Method and apparatus for algorithm fusion of high-resolution electrocardiograms
US7145027B2 (en) 2003-07-08 2006-12-05 W.C. Heraeus Gmbh & Co. Kg Method for producing chlorotris(triphenylphosphine) rhodium (i)
US7320689B2 (en) * 2003-07-15 2008-01-22 Cervitech, Inc. Multi-part cervical endoprosthesis with insertion instrument
US20050027175A1 (en) * 2003-07-31 2005-02-03 Zhongping Yang Implantable biosensor
US20060195020A1 (en) 2003-08-01 2006-08-31 Martin James S Methods, systems, and apparatus for measuring a pulse rate
US20050131288A1 (en) 2003-08-15 2005-06-16 Turner Christopher T. Flexible, patient-worn, integrated, self-contained sensor systems for the acquisition and monitoring of physiologic data
CA2539547A1 (en) 2003-08-20 2005-03-03 Philometron, Inc. Hydration monitoring
US20070299325A1 (en) 2004-08-20 2007-12-27 Brian Farrell Physiological status monitoring system
US7194306B1 (en) 2003-09-05 2007-03-20 Pacesetter, Inc. Cardiac optimization through low-frequency analysis of hemodynamic variables
EP1512371B1 (en) 2003-09-05 2007-01-03 Tanita Corporation Bioelectrical impedance measuring apparatus
WO2005025405A3 (en) 2003-09-10 2005-06-30 Maternus Partners Ltd Periumbilical infant ecg sensor and monitoring system
EP1667579A4 (en) 2003-09-12 2008-06-11 Bodymedia Inc Method and apparatus for measuring heart related parameters
US20050059867A1 (en) 2003-09-13 2005-03-17 Cheng Chung Yuan Method for monitoring temperature of patient
US7088242B2 (en) 2003-09-16 2006-08-08 International Business Machines Corporation Collective personal articles tracking
US20050187482A1 (en) 2003-09-16 2005-08-25 O'brien David Implantable wireless sensor
US7616988B2 (en) 2003-09-18 2009-11-10 Cardiac Pacemakers, Inc. System and method for detecting an involuntary muscle movement disorder
US7129836B2 (en) 2003-09-23 2006-10-31 Ge Medical Systems Information Technologies, Inc. Wireless subject monitoring system
US7225024B2 (en) 2003-09-30 2007-05-29 Cardiac Pacemakers, Inc. Sensors having protective eluting coating and method therefor
US8428717B2 (en) 2003-10-14 2013-04-23 Medtronic, Inc. Method and apparatus for monitoring tissue fluid content for use in an implantable cardiac device
US8467876B2 (en) 2003-10-15 2013-06-18 Rmx, Llc Breathing disorder detection and therapy delivery device and method
WO2005046446A3 (en) 2003-11-10 2006-08-31 Darrel Dean Drinan Structures and devices for parenteral drug delivery and diagnostic sampling
CA2545881C (en) 2003-11-18 2014-04-08 Vivometrics, Inc. Method and system for processing data from ambulatory physiological monitoring
EP1691683B1 (en) 2003-11-26 2014-12-31 CardioNet, Inc. System and method for processing and presenting arrhythmia information to facilitate heart arrhythmia identification and treatment
US20050124901A1 (en) 2003-12-05 2005-06-09 Misczynski Dale J. Method and apparatus for electrophysiological and hemodynamic real-time assessment of cardiovascular fitness of a user
JP4845739B2 (en) 2003-12-12 2011-12-28 フィロメトロン,インコーポレイティド Multiplex section-type non-oral drug delivery device
US20050137626A1 (en) 2003-12-19 2005-06-23 Pastore Joseph M. Drug delivery system and method employing external drug delivery device in conjunction with computer network
US20050137464A1 (en) 2003-12-23 2005-06-23 Bomba Frank C. Wireless sensor and sensor initialization device and method
US20050148895A1 (en) 2004-01-06 2005-07-07 Misczynski Dale J. Method and apparatus for ECG derived sleep monitoring of a user
EP1708613B1 (en) 2004-01-15 2011-12-14 Koninklijke Philips Electronics N.V. Adaptive physiological monitoring system and methods of using the same
WO2005077260A1 (en) 2004-02-12 2005-08-25 Biopeak Corporation Non-invasive method and apparatus for determining a physiological parameter
US7277741B2 (en) 2004-03-09 2007-10-02 Nellcor Puritan Bennett Incorporated Pulse oximetry motion artifact rejection using near infrared absorption by water
JP2005253840A (en) 2004-03-15 2005-09-22 Tanita Corp Skin condition estimating device
US7805196B2 (en) 2004-03-16 2010-09-28 Medtronic, Inc. Collecting activity information to evaluate therapy
EP1729845B1 (en) 2004-03-18 2017-02-22 Respironics, Inc. Methods and devices for relieving stress
EP1737341A4 (en) 2004-03-24 2009-07-29 Noninvasive Medical Technologi Thoracic impedance monitor and electrode array and method of use
CN1933871A (en) 2004-03-25 2007-03-21 皇家飞利浦电子股份有限公司 Defibrillation electrode having drug delivery capability
US20050215844A1 (en) 2004-03-25 2005-09-29 Ten Eyck Lawrence G Patient carestation
US7505814B2 (en) 2004-03-26 2009-03-17 Pacesetter, Inc. System and method for evaluating heart failure based on ventricular end-diastolic volume using an implantable medical device
US20060009697A1 (en) * 2004-04-07 2006-01-12 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
US20050228244A1 (en) 2004-04-07 2005-10-13 Triage Wireless, Inc. Small-scale, vital-signs monitoring device, system and method
US20080058614A1 (en) 2005-09-20 2008-03-06 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
US20050261598A1 (en) 2004-04-07 2005-11-24 Triage Wireless, Inc. Patch sensor system for measuring vital signs
US7238159B2 (en) 2004-04-07 2007-07-03 Triage Wireless, Inc. Device, system and method for monitoring vital signs
US20050228238A1 (en) 2004-04-09 2005-10-13 Arnold Monitzer Patient parameter automatic acquisition system
WO2005104930A1 (en) 2004-04-30 2005-11-10 Biowatch Pty Ltd Animal health monitoring system
US7470232B2 (en) 2004-05-04 2008-12-30 General Electric Company Method and apparatus for non-invasive ultrasonic fetal heart rate monitoring
US7899526B2 (en) 2004-05-10 2011-03-01 Regents Of The University Of Minnesota Portable device for monitoring electrocardiographic signals and indices of blood flow
US7324845B2 (en) 2004-05-17 2008-01-29 Beth Israel Deaconess Medical Center Assessment of sleep quality and sleep disordered breathing based on cardiopulmonary coupling
US20050261743A1 (en) 2004-05-19 2005-11-24 Kroll Mark W System and method for automated fluid monitoring
KR100592934B1 (en) 2004-05-21 2006-06-23 한국전자통신연구원 Wearable physiological signal detection module and measurement apparatus with the same
US7333850B2 (en) 2004-05-28 2008-02-19 University Of Florida Research Foundation, Inc. Maternal-fetal monitoring system
US20050277841A1 (en) 2004-06-10 2005-12-15 Adnan Shennib Disposable fetal monitor patch
US7548785B2 (en) 2004-06-10 2009-06-16 Pacesetter, Inc. Collecting and analyzing sensed information as a trend of heart failure progression or regression
WO2006009767A1 (en) 2004-06-18 2006-01-26 Neuronetrix, Inc Wireless electrode for biopotential measurement
US7206630B1 (en) 2004-06-29 2007-04-17 Cleveland Medical Devices, Inc Electrode patch and wireless physiological measurement system and method
WO2006008745A3 (en) 2004-07-23 2007-10-18 Intercure Ltd Apparatus and method for breathing pattern determination using a non-contact microphone
US20060047215A1 (en) 2004-09-01 2006-03-02 Welch Allyn, Inc. Combined sensor assembly
US20060058593A1 (en) 2004-09-02 2006-03-16 Drinan Darrel D Monitoring platform for detection of hypovolemia, hemorrhage and blood loss
US20060066449A1 (en) 2004-09-08 2006-03-30 Industrial Widget Works Company RFMON: devices and methods for wireless monitoring of patient vital signs through medical sensor readings from passive RFID tags
US20060135858A1 (en) 2004-09-13 2006-06-22 International Business Machines Corporation Displaying information related to a physical parameter of an individual
US8271093B2 (en) 2004-09-17 2012-09-18 Cardiac Pacemakers, Inc. Systems and methods for deriving relative physiologic measurements using a backend computing system
US20070106132A1 (en) 2004-09-28 2007-05-10 Elhag Sammy I Monitoring device, method and system
US7840275B2 (en) 2004-10-01 2010-11-23 Medtronic, Inc. In-home remote monitor with smart repeater, memory and emergency event management
US7341560B2 (en) 2004-10-05 2008-03-11 Rader, Fishman & Grauer Pllc Apparatuses and methods for non-invasively monitoring blood parameters
US7609145B2 (en) 2004-10-06 2009-10-27 Martis Ip Holdings, Llc Test authorization system
US20080058656A1 (en) 2004-10-08 2008-03-06 Costello Benedict J Electric tomography
US7996075B2 (en) 2004-10-20 2011-08-09 Cardionet, Inc. Monitoring physiological activity using partial state space reconstruction
US7865236B2 (en) 2004-10-20 2011-01-04 Nervonix, Inc. Active electrode, bio-impedance based, tissue discrimination system and methods of use
US7212849B2 (en) 2004-10-28 2007-05-01 Cardiac Pacemakers, Inc. Methods and apparatuses for arrhythmia detection and classification using wireless ECG
US7917199B2 (en) 2004-11-02 2011-03-29 Medtronic, Inc. Patient event marking in combination with physiological signals
US8768446B2 (en) 2004-11-02 2014-07-01 Medtronic, Inc. Clustering with combined physiological signals
WO2006050602A1 (en) 2004-11-09 2006-05-18 Cybiocare Inc. Method and apparatus for the reduction of spurious effects on physiological measurements
US7751868B2 (en) 2004-11-12 2010-07-06 Philips Electronics Ltd Integrated skin-mounted multifunction device for use in image-guided surgery
JP2006343306A (en) 2004-11-15 2006-12-21 Denso Corp Gas concentration detector
DE602005026980D1 (en) 2004-11-24 2011-04-28 Koninkl Philips Electronics Nv Internet Protocol-based telemetry-patient-monitoring system
US20060116592A1 (en) 2004-12-01 2006-06-01 Medtronic, Inc. Method and apparatus for detection and monitoring of T-wave alternans
DE602005026054D1 (en) 2004-12-17 2011-03-03 Medtronic Inc System for monitoring or treatment of disorders of the nervous system
US8108046B2 (en) 2004-12-17 2012-01-31 Medtronic, Inc. System and method for using cardiac events to trigger therapy for treating nervous system disorders
US8734341B2 (en) 2004-12-20 2014-05-27 Ipventure, Inc. Method and apparatus to sense hydration level of a person
FI20045503A (en) 2004-12-28 2006-06-29 Polar Electro Oy The sensor system, accessories and a heart rate monitor
US7701227B2 (en) 2005-01-05 2010-04-20 Rensselaer Polytechnic Institute High precision voltage source for electrical impedance tomography
US8577455B2 (en) 2005-01-18 2013-11-05 Medtronic, Inc. Method and apparatus for arrhythmia detection in a medical device
JP2006198334A (en) 2005-01-24 2006-08-03 Tanita Corp Bioelectrical impedance measuring device and body composition measuring apparatus
JP2006204742A (en) 2005-01-31 2006-08-10 Konica Minolta Sensing Inc Method and system for evaluating sleep, its operation program, pulse oxymeter, and system for supporting sleep
JP4731936B2 (en) 2005-02-09 2011-07-27 本田技研工業株式会社 Rotary variable resistor
EP1871219A4 (en) 2005-02-22 2011-06-01 Health Smart Ltd Methods and systems for physiological and psycho-physiological monitoring and uses thereof
US20060212097A1 (en) 2005-02-24 2006-09-21 Vijay Varadan Method and device for treatment of medical conditions and monitoring physical movements
US7722622B2 (en) 2005-02-25 2010-05-25 Synthes Usa, Llc Implant insertion apparatus and method of use
US7616110B2 (en) 2005-03-11 2009-11-10 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
EP1865779A4 (en) 2005-03-21 2008-06-04 Vicus Therapeutics Spe 1 Llc Compositions and methods for ameliorating cachexia
US20060224079A1 (en) 2005-03-31 2006-10-05 Washchuk Bohdan O Edema monitoring system and method utilizing an implantable medical device
US20060224072A1 (en) 2005-03-31 2006-10-05 Cardiovu, Inc. Disposable extended wear heart monitor patch
US8480577B2 (en) 2005-04-15 2013-07-09 Ivy Biomedical Systems, Inc. Wireless patient monitoring system
CN101163439A (en) 2005-04-20 2008-04-16 皇家飞利浦电子股份有限公司 Patient monitoring systems
US20060241641A1 (en) 2005-04-22 2006-10-26 Sdgi Holdings, Inc. Methods and instrumentation for distraction and insertion of implants in a spinal disc space
US7991467B2 (en) 2005-04-26 2011-08-02 Medtronic, Inc. Remotely enabled pacemaker and implantable subcutaneous cardioverter/defibrillator system
US7657317B2 (en) 2005-04-26 2010-02-02 Boston Scientific Neuromodulation Corporation Evaluating stimulation therapies and patient satisfaction
US7822627B2 (en) 2005-05-02 2010-10-26 St Martin Edward Method and system for generating an echocardiogram report
US20060252999A1 (en) * 2005-05-03 2006-11-09 Devaul Richard W Method and system for wearable vital signs and physiology, activity, and environmental monitoring
US7917196B2 (en) 2005-05-09 2011-03-29 Cardiac Pacemakers, Inc. Arrhythmia discrimination using electrocardiograms sensed from multiple implanted electrodes
US7907997B2 (en) 2005-05-11 2011-03-15 Cardiac Pacemakers, Inc. Enhancements to the detection of pulmonary edema when using transthoracic impedance
US9089275B2 (en) 2005-05-11 2015-07-28 Cardiac Pacemakers, Inc. Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
US8688189B2 (en) 2005-05-17 2014-04-01 Adnan Shennib Programmable ECG sensor patch
WO2006124623A3 (en) 2005-05-18 2007-09-20 Wyk Rachelle Van System, method, and kit for positioning a monitor transducer on a patient
US7340296B2 (en) 2005-05-18 2008-03-04 Cardiac Pacemakers, Inc. Detection of pleural effusion using transthoracic impedance
US8900154B2 (en) 2005-05-24 2014-12-02 Cardiac Pacemakers, Inc. Prediction of thoracic fluid accumulation
KR100634544B1 (en) 2005-06-04 2006-10-09 삼성전자주식회사 Apparatus and method for measuring moisture content in skin using portable terminal
US7387607B2 (en) 2005-06-06 2008-06-17 Intel Corporation Wireless medical sensor system
FR2886532B1 (en) 2005-06-07 2008-03-28 Commissariat Energie Atomique Method and fall detection system of a person
US20060281996A1 (en) 2005-06-14 2006-12-14 Kuo Terry B Method of electrocardiogram (ECG) anaylysis and device thereof
US20060293571A1 (en) 2005-06-23 2006-12-28 Skanda Systems Distributed architecture for remote patient monitoring and caring
US7295879B2 (en) 2005-06-24 2007-11-13 Kenergy, Inc. Double helical antenna assembly for a wireless intravascular medical device
US7813778B2 (en) 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor
DE602005004282T2 (en) 2005-08-17 2008-11-27 Osypka Medical Gmbh Digital demodulation apparatus and method for the measurement of electrical bioimpedance or bioadmittance
US7775983B2 (en) 2005-09-16 2010-08-17 Cardiac Pacemakers, Inc. Rapid shallow breathing detection for use in congestive heart failure status determination
US8992436B2 (en) * 2005-09-16 2015-03-31 Cardiac Pacemakers, Inc. Respiration monitoring using respiration rate variability
US20070073361A1 (en) 2005-09-23 2007-03-29 Bioq, Inc. Medical device for restoration of autonomic and immune functions impaired by neuropathy
WO2007038607A3 (en) 2005-09-27 2007-07-05 Telzuit Technologies Llc Apparatus and method for monitoring patients
US20070083092A1 (en) 2005-10-07 2007-04-12 Rippo Anthony J External exercise monitor
US20070082189A1 (en) 2005-10-11 2007-04-12 Gillette William J Waterproof, breathable composite material
JP5208749B2 (en) 2005-10-11 2013-06-12 インペダイムド・リミテッドImpedimed Limited Hydration status monitoring
JP2007105316A (en) 2005-10-14 2007-04-26 Konica Minolta Sensing Inc Bioinformation measuring instrument
US7420472B2 (en) 2005-10-16 2008-09-02 Bao Tran Patient monitoring apparatus
US8118750B2 (en) 2005-10-21 2012-02-21 Medtronic, Inc. Flow sensors for penile tumescence
US20070123903A1 (en) 2005-10-31 2007-05-31 Depuy Spine, Inc. Medical Device installation tool and methods of use
US20070123904A1 (en) 2005-10-31 2007-05-31 Depuy Spine, Inc. Distraction instrument and method for distracting an intervertebral site
US7942824B1 (en) 2005-11-04 2011-05-17 Cleveland Medical Devices Inc. Integrated sleep diagnostic and therapeutic system and method
US7682313B2 (en) 2005-11-23 2010-03-23 Vital Sensors Holding Company, Inc. Implantable pressure monitor
US7766840B2 (en) 2005-12-01 2010-08-03 Cardiac Pacemakers, Inc. Method and system for heart failure status evaluation based on a disordered breathing index
US7957809B2 (en) 2005-12-02 2011-06-07 Medtronic, Inc. Closed-loop therapy adjustment
US8016776B2 (en) 2005-12-02 2011-09-13 Medtronic, Inc. Wearable ambulatory data recorder
WO2007065015A3 (en) 2005-12-03 2008-02-14 Masimo Corp Physiological alarm notification system
US8267926B2 (en) 2005-12-06 2012-09-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US20070180047A1 (en) 2005-12-12 2007-08-02 Yanting Dong System and method for providing authentication of remotely collected external sensor measures
EP1965697A2 (en) 2005-12-19 2008-09-10 Philips Electronics N.V. Apparatus for monitoring a person's heart rate and/or heart rate variation; wristwatch comprising the same
US7761158B2 (en) 2005-12-20 2010-07-20 Cardiac Pacemakers, Inc. Detection of heart failure decompensation based on cumulative changes in sensor signals
US20070142715A1 (en) 2005-12-20 2007-06-21 Triage Wireless, Inc. Chest strap for measuring vital signs
US8050774B2 (en) 2005-12-22 2011-11-01 Boston Scientific Scimed, Inc. Electrode apparatus, systems and methods
US20070149282A1 (en) 2005-12-27 2007-06-28 Industrial Technology Research Institute Interactive gaming method and apparatus with emotion perception ability
US20070162089A1 (en) 2006-01-09 2007-07-12 Transoma Medical, Inc. Cross-band communications in an implantable device
US20070172424A1 (en) 2006-01-26 2007-07-26 Mark Costin Roser Enabling drug adherence through closed loop monitoring & communication
WO2007092543A3 (en) 2006-02-06 2008-05-08 Univ Leland Stanford Junior Non-invasive cardiac monitor and methods of using continuously recorded cardiac data
US20070255184A1 (en) 2006-02-10 2007-11-01 Adnan Shennib Disposable labor detection patch
EP2032025A4 (en) 2006-02-28 2011-10-26 St Jude Medical Medical device and method for monitoring hematocrit and svo2
US8200320B2 (en) 2006-03-03 2012-06-12 PhysioWave, Inc. Integrated physiologic monitoring systems and methods
US7668588B2 (en) 2006-03-03 2010-02-23 PhysioWave, Inc. Dual-mode physiologic monitoring systems and methods
WO2007106455A3 (en) 2006-03-10 2008-02-21 Optical Sensors Inc Cardiography system and method using automated recognition of hemodynamic parameters and waveform attributes
DE102006015291B4 (en) 2006-04-01 2015-10-29 Drägerwerk AG & Co. KGaA A method for adjusting a patient monitor
US20080021336A1 (en) * 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
US7359837B2 (en) 2006-04-27 2008-04-15 Medtronic, Inc. Peak data retention of signal data in an implantable medical device
US7818050B2 (en) 2006-05-02 2010-10-19 Lono Medical Systems, Llc Passive phonography heart monitor
US7616980B2 (en) 2006-05-08 2009-11-10 Tyco Healthcare Group Lp Radial electrode array
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
US20070282173A1 (en) 2006-05-31 2007-12-06 Bily Wang Vital sign sending method and a sending apparatus thereof
US7346380B2 (en) 2006-06-16 2008-03-18 Axelgaard Manufacturing Co., Ltd. Medical electrode
US9820658B2 (en) * 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US8700143B2 (en) * 2006-07-28 2014-04-15 Medtronic, Inc. Adaptations to optivol alert algorithm
WO2008017042A1 (en) 2006-08-03 2008-02-07 Microchips, Inc. Cardiac biosensor devices and methods
US9773060B2 (en) 2006-09-05 2017-09-26 Cardiac Pacemaker, Inc. System and method for providing automatic setup of a remote patient care environment
US20080091089A1 (en) 2006-10-12 2008-04-17 Kenneth Shane Guillory Single use, self-contained surface physiological monitor
CN101601040A (en) 2006-10-24 2009-12-09 麦德爱普斯股份有限公司 Systems and methods for adapter-based communication with a medical device
US8449469B2 (en) 2006-11-10 2013-05-28 Sotera Wireless, Inc. Two-part patch sensor for monitoring vital signs
US20080120784A1 (en) 2006-11-28 2008-05-29 General Electric Company Smart bed system and apparatus
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US20080171929A1 (en) 2007-01-11 2008-07-17 Katims Jefferson J Method for standardizing spacing between electrodes, and medical tape electrodes
US20080294020A1 (en) 2007-01-25 2008-11-27 Demetrios Sapounas System and method for physlological data readings, transmission and presentation
US9044136B2 (en) 2007-02-16 2015-06-02 Cim Technology Inc. Wearable mini-size intelligent healthcare system
US20080221399A1 (en) 2007-03-05 2008-09-11 Triage Wireless, Inc. Monitor for measuring vital signs and rendering video images
US20080220865A1 (en) 2007-03-06 2008-09-11 Wei Hsu Interactive playstation controller
US20080287752A1 (en) 2007-05-10 2008-11-20 Mayo Foundation For Medical Education And Research Ear canal physiological parameter monitoring system
US7884727B2 (en) 2007-05-24 2011-02-08 Bao Tran Wireless occupancy and day-light sensing
US20080293491A1 (en) 2007-05-25 2008-11-27 Asustek Computer Inc. Game Controller
US9754078B2 (en) 2007-06-21 2017-09-05 Immersion Corporation Haptic health feedback monitoring
US9380966B2 (en) 2007-06-22 2016-07-05 Vioptix, Inc. Tissue retractor oximeter
US20090017910A1 (en) 2007-06-22 2009-01-15 Broadcom Corporation Position and motion tracking of an object
US20090005016A1 (en) * 2007-06-29 2009-01-01 Betty Eng Apparatus and method to maintain a continuous connection of a cellular device and a sensor network
US20090018456A1 (en) * 2007-07-11 2009-01-15 Chin-Yeh Hung Display storage apparatus capable of detecting a pulse
US8926509B2 (en) 2007-08-24 2015-01-06 Hmicro, Inc. Wireless physiological sensor patches and systems
US20090062670A1 (en) 2007-08-30 2009-03-05 Gary James Sterling Heart monitoring body patch and system
US8591430B2 (en) 2007-09-14 2013-11-26 Corventis, Inc. Adherent device for respiratory monitoring
US20090076341A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent Athletic Monitor
WO2009036319A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent emergency patient monitor
EP2194856A4 (en) 2007-09-14 2014-07-16 Corventis Inc Adherent cardiac monitor with advanced sensing capabilities
US20090076342A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent Multi-Sensor Device with Empathic Monitoring
US9411936B2 (en) 2007-09-14 2016-08-09 Medtronic Monitoring, Inc. Dynamic pairing of patients to data collection gateways
WO2009036260A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Data collection in a multi-sensor patient monitor
WO2009036256A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Injectable physiological monitoring system
EP2194858B1 (en) 2007-09-14 2017-11-22 Corventis, Inc. Medical device automatic start-up upon contact to patient tissue
EP2195076A4 (en) 2007-09-14 2014-12-31 Corventis Inc Adherent device for cardiac rhythm management
EP2194864A4 (en) 2007-09-14 2014-11-12 Corventis Inc System and methods for wireless body fluid monitoring
US20090076345A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent Device with Multiple Physiological Sensors
WO2009114548A1 (en) 2008-03-12 2009-09-17 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
EP2254461A4 (en) * 2008-03-19 2012-12-26 Ericsson Telefon Ab L M Nfc communications for implanted medical data acquisition devices
US20090292194A1 (en) 2008-05-23 2009-11-26 Corventis, Inc. Chiropractic Care Management Systems and Methods
US20100191310A1 (en) 2008-07-29 2010-07-29 Corventis, Inc. Communication-Anchor Loop For Injectable Device
WO2010025144A1 (en) 2008-08-29 2010-03-04 Corventis, Inc. Method and apparatus for acute cardiac monitoring
WO2011050283A3 (en) 2009-10-22 2011-07-14 Corventis, Inc. Remote detection and monitoring of functional chronotropic incompetence
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3170459A (en) * 1962-03-20 1965-02-23 Clifford G Phipps Bio-medical instrumentation electrode
US3370459A (en) * 1964-04-16 1968-02-27 Cescati Arturo Device for detecting pressure existing in pneumatic tires
US3942517A (en) * 1973-12-03 1976-03-09 Dracard Limited Electrodes
US4008712A (en) * 1975-11-14 1977-02-22 J. M. Richards Laboratories Method for monitoring body characteristics
US4077406A (en) * 1976-06-24 1978-03-07 American Cyanamid Company Pellet implanter for animal treatment
US4308872A (en) * 1977-04-07 1982-01-05 Respitrace Corporation Method and apparatus for monitoring respiration
US4185621A (en) * 1977-10-28 1980-01-29 Triad, Inc. Body parameter display incorporating a battery charger
US4141366A (en) * 1977-11-18 1979-02-27 Medtronic, Inc. Lead connector for tape electrode
US5862802A (en) * 1981-04-03 1999-01-26 Forrest M. Bird Ventilator having an oscillatory inspiratory phase and method
US4498479A (en) * 1981-06-24 1985-02-12 Kone Oy Electrocardiograph (ECG) electrode testing system
US4981139A (en) * 1983-08-11 1991-01-01 Pfohl Robert L Vital signs monitoring and communication system
US4721110A (en) * 1984-08-06 1988-01-26 Lampadius Michael S Respiration-controlled cardiac pacemaker
US4730611A (en) * 1986-09-02 1988-03-15 Absorbent Cotton Company Medical dressing device
US4911175A (en) * 1987-09-17 1990-03-27 Diana Twyman Method for measuring total body cell mass and total extracellular mass by bioelectrical resistance and reactance
US4895163A (en) * 1988-05-24 1990-01-23 Bio Analogics, Inc. System for body impedance data acquisition
US4988335A (en) * 1988-08-16 1991-01-29 Ideal Instruments, Inc. Pellet implanter apparatus
US5080099A (en) * 1988-08-26 1992-01-14 Cardiotronics, Inc. Multi-pad, multi-function electrode
US5086781A (en) * 1989-11-14 1992-02-11 Bookspan Mark A Bioelectric apparatus for monitoring body fluid compartments
US5001632A (en) * 1989-12-22 1991-03-19 Hall Tipping Justin Video game difficulty level adjuster dependent upon player's aerobic activity level during exercise
US5083563A (en) * 1990-02-16 1992-01-28 Telectronics Pacing Systems, Inc. Implantable automatic and haemodynamically responsive cardioverting/defibrillating pacemaker
US5482036A (en) * 1991-03-07 1996-01-09 Masimo Corporation Signal processing apparatus and method
US5282840A (en) * 1992-03-26 1994-02-01 Medtronic, Inc. Multiple frequency impedance measurement system
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US5607454A (en) * 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
US5862803A (en) * 1993-09-04 1999-01-26 Besson; Marcus Wireless medical diagnosis and monitoring equipment
US20040015058A1 (en) * 1993-09-04 2004-01-22 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
US5724025A (en) * 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US6339722B1 (en) * 1995-09-26 2002-01-15 A. J. Van Liebergen Holding B.V. Apparatus for the in-vivo non-invasive measurement of a biological parameter concerning a bodily fluid of a person or animal
US5860860A (en) * 1996-01-31 1999-01-19 Federal Patent Corporation Integral video game and cardio-waveform display
US5718234A (en) * 1996-09-30 1998-02-17 Northrop Grumman Corporation Physiological data communication system
US5876353A (en) * 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6185452B1 (en) * 1997-02-26 2001-02-06 Joseph H. Schulman Battery-powered patient implantable device
US5865733A (en) * 1997-02-28 1999-02-02 Spacelabs Medical, Inc. Wireless optical patient monitoring apparatus
US6027523A (en) * 1997-10-06 2000-02-22 Arthrex, Inc. Suture anchor with attached disk
US6190313B1 (en) * 1998-04-20 2001-02-20 Allen J. Hinkle Interactive health care system and method
US6687540B2 (en) * 1999-03-12 2004-02-03 Cardiac Pacemakers, Inc. Discrimination of supraventricular tachycardia and ventricular tachycardia events
US6190324B1 (en) * 1999-04-28 2001-02-20 Medtronic, Inc. Implantable medical device for tracking patient cardiac status
US6512949B1 (en) * 1999-07-12 2003-01-28 Medtronic, Inc. Implantable medical device for measuring time varying physiologic conditions especially edema and for responding thereto
US20070038038A1 (en) * 1999-10-18 2007-02-15 Bodymedia, Inc. Wearable human physiological and environmental data sensors and reporting system therefor
US6520967B1 (en) * 1999-10-20 2003-02-18 Cauthen Research Group, Inc. Spinal implant insertion instrument for spinal interbody prostheses
US6336903B1 (en) * 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US7156808B2 (en) * 1999-12-17 2007-01-02 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6985078B2 (en) * 2000-03-14 2006-01-10 Kabushiki Kaisha Toshiba Wearable life support apparatus and method
US6987965B2 (en) * 2000-04-18 2006-01-17 Motorola, Inc. Programmable wireless electrode system for medical monitoring
US6988989B2 (en) * 2000-05-19 2006-01-24 Welch Allyn Protocol, Inc. Patient monitoring system
US20060031102A1 (en) * 2000-06-16 2006-02-09 Bodymedia, Inc. System for detecting, monitoring, and reporting an individual's physiological or contextual status
US20020019588A1 (en) * 2000-06-23 2002-02-14 Marro Dominic P. Frontal electrode array for patient EEG signal acquisition
US7156807B2 (en) * 2000-07-13 2007-01-02 Ge Medical Systems Information Technologies, Inc. Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities
US6858006B2 (en) * 2000-09-08 2005-02-22 Wireless Medical, Inc. Cardiopulmonary monitoring
US20070021797A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex stimulation synchronized to circadian rhythm
US20070021796A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex modulation to gradually decrease blood pressure
US20070021792A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex Modulation Based On Monitored Cardiovascular Parameter
US20070021794A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex Therapy for Disordered Breathing
US20070021799A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Automatic baroreflex modulation based on cardiac activity
US20070038262A1 (en) * 2000-09-27 2007-02-15 Cvrx, Inc. Baroreflex stimulation system to reduce hypertension
US20070038255A1 (en) * 2000-09-27 2007-02-15 Cvrx, Inc. Baroreflex stimulator with integrated pressure sensor
US20070021798A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Baroreflex stimulation to treat acute myocardial infarction
US20070021790A1 (en) * 2000-09-27 2007-01-25 Cvrx, Inc. Automatic baroreflex modulation responsive to adverse event
US6993678B2 (en) * 2000-10-13 2006-01-31 Seagate Technology Llc Logical zone table generation process and apparatus
US20050027207A1 (en) * 2000-12-29 2005-02-03 Westbrook Philip R. Sleep apnea risk evaluation
US7003346B2 (en) * 2001-05-03 2006-02-21 Singer Michaeal G Method for illness and disease determination and management
US20030028321A1 (en) * 2001-06-29 2003-02-06 The Regents Of The University Of California Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting
US6697658B2 (en) * 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US20030023184A1 (en) * 2001-07-23 2003-01-30 Jonathan Pitts-Crick Method and system for diagnosing and administering therapy of pulmonary congestion
US20030028221A1 (en) * 2001-07-31 2003-02-06 Qingsheng Zhu Cardiac rhythm management system for edema
US20040010303A1 (en) * 2001-09-26 2004-01-15 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US7166063B2 (en) * 2001-10-01 2007-01-23 The Nemours Foundation Brace compliance monitor
US20070043301A1 (en) * 2002-05-14 2007-02-22 Idex Asa Volume specific characterization of human skin by electrical immitance
US20040006279A1 (en) * 2002-07-03 2004-01-08 Shimon Arad (Abboud) Apparatus for monitoring CHF patients using bio-impedance technique
US6997879B1 (en) * 2002-07-09 2006-02-14 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
US7336187B2 (en) * 2002-10-18 2008-02-26 The Trustees Of Boston University Patient activity monitor
US7160253B2 (en) * 2002-11-08 2007-01-09 Polar Electro Oy Method and device for measuring stress
US20060004300A1 (en) * 2002-11-22 2006-01-05 James Kennedy Multifrequency bioimpedance determination
US7160252B2 (en) * 2003-01-10 2007-01-09 Medtronic, Inc. Method and apparatus for detecting respiratory disturbances
US20080024294A1 (en) * 2003-06-23 2008-01-31 Cardiac Pacemakers, Inc. Systems, devices, and methods for selectively preventing data transfer from a medical device
US20050027204A1 (en) * 2003-06-26 2005-02-03 Kligfield Paul D. ECG diagnostic system and method
US20060004377A1 (en) * 2003-07-15 2006-01-05 Cervitech, Inc. Insertion instrument for cervical prostheses
US20050043675A1 (en) * 2003-08-21 2005-02-24 Pastore Joseph M. Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure
US20070010750A1 (en) * 2003-10-03 2007-01-11 Akinori Ueno Biometric sensor and biometric method
US7184821B2 (en) * 2003-12-03 2007-02-27 Regents Of The University Of Minnesota Monitoring thoracic fluid changes
US20060020218A1 (en) * 2004-02-26 2006-01-26 Warwick Freeman Method and apparatus for continuous electrode impedance monitoring
US7167743B2 (en) * 2004-03-16 2007-01-23 Medtronic, Inc. Collecting activity information to evaluate therapy
US20060009701A1 (en) * 2004-06-29 2006-01-12 Polar Electro Oy Method of monitoring human relaxation level, and user-operated heart rate monitor
US20060010090A1 (en) * 2004-07-12 2006-01-12 Marina Brockway Expert system for patient medical information analysis
US20060025661A1 (en) * 2004-08-02 2006-02-02 Sweeney Robert J Device for monitoring fluid status
US7319386B2 (en) * 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US20060030782A1 (en) * 2004-08-05 2006-02-09 Adnan Shennib Heart disease detection patch
US20060030781A1 (en) * 2004-08-05 2006-02-09 Adnan Shennib Emergency heart sensor patch
US20060041280A1 (en) * 2004-08-19 2006-02-23 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
US20070015976A1 (en) * 2005-06-01 2007-01-18 Medtronic, Inc. Correlating a non-polysomnographic physiological parameter set with sleep states
US20070015973A1 (en) * 2005-06-03 2007-01-18 Reuven Nanikashvili Communication terminal, medical telemetry system and method for monitoring physiological data
US20070010721A1 (en) * 2005-06-28 2007-01-11 Chen Thomas C H Apparatus and system of Internet-enabled wireless medical sensor scale
US20070038078A1 (en) * 2005-07-08 2007-02-15 Daniel Osadchy Relative impedance measurement
US20070016089A1 (en) * 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
US20070021678A1 (en) * 2005-07-19 2007-01-25 Cardiac Pacemakers, Inc. Methods and apparatus for monitoring physiological responses to steady state activity
US20070027497A1 (en) * 2005-07-27 2007-02-01 Cyberonics, Inc. Nerve stimulation for treatment of syncope
US20070027388A1 (en) * 2005-08-01 2007-02-01 Chang-An Chou Patch-type physiological monitoring apparatus, system and network
US20090018410A1 (en) * 2006-03-02 2009-01-15 Koninklijke Philips Electronics N.V. Body parameter sensing
US20080004499A1 (en) * 2006-06-28 2008-01-03 Davis Carl C System and method for the processing of alarm and communication information in centralized patient monitoring

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924150B2 (en) * 2004-11-08 2011-04-12 Koninklijke Philips Electronics N.V. Safe identification and association of wireless sensors
US20090062626A1 (en) * 2004-11-08 2009-03-05 Koninklijke Philips Electronics N.V. Safe identification and association of wireless sensors
US20100179421A1 (en) * 2007-05-24 2010-07-15 Joe Tupin System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume.
US8463361B2 (en) 2007-05-24 2013-06-11 Lifewave, Inc. System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume
US8774917B2 (en) 2007-06-06 2014-07-08 Zoll Medical Corporation Wearable defibrillator with audio input/output
US8369944B2 (en) 2007-06-06 2013-02-05 Zoll Medical Corporation Wearable defibrillator with audio input/output
US20080306560A1 (en) * 2007-06-06 2008-12-11 Macho John D Wearable defibrillator with audio input/output
US8965500B2 (en) 2007-06-06 2015-02-24 Zoll Medical Corporation Wearable defibrillator with audio input/output
US9492676B2 (en) 2007-06-06 2016-11-15 Zoll Medical Corporation Wearable defibrillator with audio input/output
US9370666B2 (en) 2007-06-07 2016-06-21 Zoll Medical Corporation Medical device configured to test for user responsiveness
US20080306562A1 (en) * 2007-06-07 2008-12-11 Donnelly Edward J Medical device configured to test for user responsiveness
US8271082B2 (en) 2007-06-07 2012-09-18 Zoll Medical Corporation Medical device configured to test for user responsiveness
US9737262B2 (en) 2007-06-13 2017-08-22 Zoll Medical Corporation Wearable medical monitoring device
US8140154B2 (en) 2007-06-13 2012-03-20 Zoll Medical Corporation Wearable medical treatment device
US8649861B2 (en) 2007-06-13 2014-02-11 Zoll Medical Corporation Wearable medical treatment device
US8676313B2 (en) 2007-06-13 2014-03-18 Zoll Medical Corporation Wearable medical treatment device with motion/position detection
US9283399B2 (en) 2007-06-13 2016-03-15 Zoll Medical Corporation Wearable medical treatment device
US20100298899A1 (en) * 2007-06-13 2010-11-25 Donnelly Edward J Wearable medical treatment device
US20100312297A1 (en) * 2007-06-13 2010-12-09 Zoll Medical Corporation Wearable medical treatment device with motion/position detection
US20080312709A1 (en) * 2007-06-13 2008-12-18 Volpe Shane S Wearable medical treatment device with motion/position detection
US7974689B2 (en) 2007-06-13 2011-07-05 Zoll Medical Corporation Wearable medical treatment device with motion/position detection
US9398859B2 (en) 2007-06-13 2016-07-26 Zoll Medical Corporation Wearable medical treatment device with motion/position detection
US8790257B2 (en) 2007-09-14 2014-07-29 Corventis, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
US8374688B2 (en) 2007-09-14 2013-02-12 Corventis, Inc. System and methods for wireless body fluid monitoring
US8460189B2 (en) 2007-09-14 2013-06-11 Corventis, Inc. Adherent cardiac monitor with advanced sensing capabilities
US8591430B2 (en) 2007-09-14 2013-11-26 Corventis, Inc. Adherent device for respiratory monitoring
US8285356B2 (en) 2007-09-14 2012-10-09 Corventis, Inc. Adherent device with multiple physiological sensors
US9411936B2 (en) 2007-09-14 2016-08-09 Medtronic Monitoring, Inc. Dynamic pairing of patients to data collection gateways
US9186089B2 (en) 2007-09-14 2015-11-17 Medtronic Monitoring, Inc. Injectable physiological monitoring system
US8116841B2 (en) 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
US8897868B2 (en) 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
US8684925B2 (en) 2007-09-14 2014-04-01 Corventis, Inc. Injectable device for physiological monitoring
US9538960B2 (en) 2007-09-14 2017-01-10 Medtronic Monitoring, Inc. Injectable physiological monitoring system
US9579020B2 (en) 2007-09-14 2017-02-28 Medtronic Monitoring, Inc. Adherent cardiac monitor with advanced sensing capabilities
US9770182B2 (en) 2007-09-14 2017-09-26 Medtronic Monitoring, Inc. Adherent device with multiple physiological sensors
US8249686B2 (en) 2007-09-14 2012-08-21 Corventis, Inc. Adherent device for sleep disordered breathing
US9320443B2 (en) 2007-09-14 2016-04-26 Medtronic Monitoring, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
US8718752B2 (en) 2008-03-12 2014-05-06 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
US9668667B2 (en) 2008-04-18 2017-06-06 Medtronic Monitoring, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US8412317B2 (en) 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US20150201858A1 (en) * 2008-08-15 2015-07-23 Global Cardiac Monitors, Inc. Diagnostic device for remote sensing and transmitting biophysiological signals
US20110295087A1 (en) * 2009-02-04 2011-12-01 Shigeki Shinoda Biological information detection sensor, electric apparatus using thereof and biological information detection method
US20110060215A1 (en) * 2009-03-30 2011-03-10 Tupin Jr Joe Paul Apparatus and method for continuous noninvasive measurement of respiratory function and events
US9002427B2 (en) 2009-03-30 2015-04-07 Lifewave Biomedical, Inc. Apparatus and method for continuous noninvasive measurement of respiratory function and events
US9078582B2 (en) 2009-04-22 2015-07-14 Lifewave Biomedical, Inc. Fetal monitoring device and methods
US9131854B2 (en) * 2009-08-27 2015-09-15 Jawon Medical Co., Ltd Apparatus and method of measuring blood pressure of examinee while detecting body activity of examinee
US20120172733A1 (en) * 2009-08-27 2012-07-05 Jawon Medical Co., Ltd Apparatus and method of measuring blood pressure of examinee while detecting body activity of examinee
US20110066041A1 (en) * 2009-09-15 2011-03-17 Texas Instruments Incorporated Motion/activity, heart-rate and respiration from a single chest-worn sensor, circuits, devices, processes and systems
US9615757B2 (en) 2009-10-22 2017-04-11 Medtronic Monitoring, Inc. Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
US8790259B2 (en) 2009-10-22 2014-07-29 Corventis, Inc. Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
US9173615B2 (en) 2010-04-05 2015-11-03 Medtronic Monitoring, Inc. Method and apparatus for personalized physiologic parameters
US9241649B2 (en) 2010-05-12 2016-01-26 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
US9008801B2 (en) 2010-05-18 2015-04-14 Zoll Medical Corporation Wearable therapeutic device
US9462974B2 (en) 2010-05-18 2016-10-11 Zoll Medical Corporation Wearable ambulatory medical device with multiple sensing electrodes
US9457178B2 (en) 2010-05-18 2016-10-04 Zoll Medical Corporation Wearable therapeutic device system
US8706215B2 (en) 2010-05-18 2014-04-22 Zoll Medical Corporation Wearable ambulatory medical device with multiple sensing electrodes
US9215989B2 (en) 2010-05-18 2015-12-22 Zoll Medical Corporation Wearable ambulatory medical device with multiple sensing electrodes
US9017255B2 (en) 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9615792B2 (en) 2010-07-27 2017-04-11 Carefusion 303, Inc. System and method for conserving battery power in a patient monitoring system
US8814792B2 (en) 2010-07-27 2014-08-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
US20120097745A1 (en) * 2010-10-25 2012-04-26 Symbol Technologies, Inc. Advisory alarm for returning cordless electro-optical reader to base station of point-of-transaction checkout system
US8406842B2 (en) 2010-12-09 2013-03-26 Zoll Medical Corporation Electrode with redundant impedance reduction
US9037271B2 (en) 2010-12-09 2015-05-19 Zoll Medical Corporation Electrode with redundant impedance reduction
US9007216B2 (en) 2010-12-10 2015-04-14 Zoll Medical Corporation Wearable therapeutic device
US9427564B2 (en) 2010-12-16 2016-08-30 Zoll Medical Corporation Water resistant wearable medical device
US9827434B2 (en) 2010-12-16 2017-11-28 Zoll Medical Corporation Water resistant wearable medical device
US9456778B2 (en) 2011-03-25 2016-10-04 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
US8600486B2 (en) 2011-03-25 2013-12-03 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
US8897860B2 (en) 2011-03-25 2014-11-25 Zoll Medical Corporation Selection of optimal channel for rate determination
US9204813B2 (en) 2011-03-25 2015-12-08 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
US9378637B2 (en) 2011-03-25 2016-06-28 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9684767B2 (en) 2011-03-25 2017-06-20 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US8798729B2 (en) 2011-03-25 2014-08-05 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
US9659475B2 (en) 2011-03-25 2017-05-23 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9408548B2 (en) 2011-03-25 2016-08-09 Zoll Medical Corporation Selection of optimal channel for rate determination
US9135398B2 (en) 2011-03-25 2015-09-15 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9782578B2 (en) 2011-05-02 2017-10-10 Zoll Medical Corporation Patient-worn energy delivery apparatus and techniques for sizing same
US9131901B2 (en) 2011-09-01 2015-09-15 Zoll Medical Corporation Wearable monitoring and treatment device
US9848826B2 (en) 2011-09-01 2017-12-26 Zoll Medical Corporation Wearable monitoring and treatment device
US8644925B2 (en) 2011-09-01 2014-02-04 Zoll Medical Corporation Wearable monitoring and treatment device
US9427165B2 (en) 2012-03-02 2016-08-30 Medtronic Monitoring, Inc. Heuristic management of physiological data
US8983597B2 (en) 2012-05-31 2015-03-17 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US9320904B2 (en) 2012-05-31 2016-04-26 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US9675804B2 (en) 2012-05-31 2017-06-13 Zoll Medical Corporation Medical monitoring and treatment device with external pacing
US9814894B2 (en) 2012-05-31 2017-11-14 Zoll Medical Corporation Systems and methods for detecting health disorders
WO2014043158A1 (en) * 2012-09-11 2014-03-20 Zansors Llc Wearable patch comprising multiple separable adhesive layers
JP2016500011A (en) * 2012-09-11 2016-01-07 ザンソース,リミテッド ライアビリティー カンパニーZansors LLC Wearable patch comprising a plurality of separable adhesive layer
US9629585B2 (en) 2012-09-11 2017-04-25 Zansors Llc Wearable patch comprising multiple separable adhesive layers
US9782132B2 (en) 2012-10-07 2017-10-10 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
EP2769669A1 (en) * 2013-02-22 2014-08-27 Seiko Instruments Inc. Electronic device, heart-rate signal receiving method and program
US9878171B2 (en) 2013-03-01 2018-01-30 Zoll Medical Corporation Systems and methods for configuring a wearable medical monitoring and/or treatment device
US9132267B2 (en) 2013-03-04 2015-09-15 Zoll Medical Corporation Flexible therapy electrode system
US9272131B2 (en) 2013-03-04 2016-03-01 Zoll Medical Corporation Flexible and/or tapered therapy electrode
US8880196B2 (en) 2013-03-04 2014-11-04 Zoll Medical Corporation Flexible therapy electrode
US9173670B2 (en) 2013-04-08 2015-11-03 Irhythm Technologies, Inc. Skin abrader
US9451975B2 (en) 2013-04-08 2016-09-27 Irhythm Technologies, Inc. Skin abrader
US9579516B2 (en) 2013-06-28 2017-02-28 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US9554715B2 (en) 2013-09-25 2017-01-31 Bardy Diagnostics, Inc. System and method for electrocardiographic data signal gain determination with the aid of a digital computer
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9545228B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography and respiration-monitoring patch
US9642537B2 (en) 2013-09-25 2017-05-09 Bardy Diagnostics, Inc. Ambulatory extended-wear electrocardiography and syncope sensor monitor
US9820665B2 (en) 2013-09-25 2017-11-21 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9730593B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9730641B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography value encoding and compression
US9737211B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Ambulatory rescalable encoding monitor recorder
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9597523B2 (en) 2014-02-12 2017-03-21 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
WO2016053897A1 (en) * 2014-10-03 2016-04-07 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Wearable devices configured for facilitating diagnosis and/or assessment of pulmonary diseases, and corresponding methods
US9597004B2 (en) 2014-10-31 2017-03-21 Irhythm Technologies, Inc. Wearable monitor
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US9788722B2 (en) 2015-10-05 2017-10-17 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer

Also Published As

Publication number Publication date Type
US20090076343A1 (en) 2009-03-19 application
US9411936B2 (en) 2016-08-09 grant
US20090073991A1 (en) 2009-03-19 application
WO2009036316A1 (en) 2009-03-19 application
US20160371452A1 (en) 2016-12-22 application
WO2009036333A1 (en) 2009-03-19 application

Similar Documents

Publication Publication Date Title
US7127300B2 (en) Method and apparatus for enabling data communication between an implantable medical device and a patient management system
US6970742B2 (en) Method for detecting, diagnosing, and treating cardiovascular disease
US7874993B2 (en) System and method for diagnosing and monitoring congestive heart failure
US7460899B2 (en) Apparatus and method for monitoring heart rate variability
US7289761B2 (en) Systems, devices, and methods for selectively preventing data transfer from a medical device
US8460189B2 (en) Adherent cardiac monitor with advanced sensing capabilities
US20060271116A1 (en) Prediction of thoracic fluid accumulation
US8094009B2 (en) Health-related signaling via wearable items
US20060258952A1 (en) Enhancements to the detection of pulmonary edema when using transthoracic impedance
US20100063365A1 (en) Apparatus and System for Monitoring
US20090131759A1 (en) Life sign detection and health state assessment system
US8317776B2 (en) Circulatory monitoring systems and methods
US20060293609A1 (en) Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance
US6609023B1 (en) System for the detection of cardiac events
US8114021B2 (en) Body-associated receiver and method
US6190324B1 (en) Implantable medical device for tracking patient cardiac status
US7590449B2 (en) Patient signaling method for treating cardiovascular disease
US20120108917A1 (en) Patient monitoring systems and methods
US8140154B2 (en) Wearable medical treatment device
US8130093B2 (en) Repeater providing data exchange with a medical device for remote patient care and method thereof
US20060064134A1 (en) Systems and methods for deriving relative physiologic measurements
US20060064143A1 (en) Systems and methods for deriving relative physiologic measurements using a backend computing system
US20080114219A1 (en) Monitoring of chronobiological rhythms for disease and drug management using one or more implantable device
US20120203076A1 (en) Portable Physiological Data Monitoring Device
US7395117B2 (en) Implantable medical device having long-term wireless capabilities

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORVENTIS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAMES, KRISTOFER J.;AMURTHUR, BADRI;BLY, MARK J.;AND OTHERS;REEL/FRAME:021891/0652;SIGNING DATES FROM 20080919 TO 20080930

AS Assignment

Owner name: TRIPLEPOINT CAPITAL LLC, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:CORVENTIS, INC.;REEL/FRAME:021948/0001

Effective date: 20081112

AS Assignment

Owner name: COMERICA BANK, MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:CORVENTIS, INC.;REEL/FRAME:029608/0809

Effective date: 20121220

AS Assignment

Owner name: CORVENTIS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK;REEL/FRAME:034478/0514

Effective date: 20141211

AS Assignment

Owner name: MEDTRONIC CORVENTIS, INC., CALIFORNIA

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:CORVENTIS, INC.;MEDTRONIC CORVENTIS, INC.;REEL/FRAME:034889/0175

Effective date: 20140620

Owner name: MEDTRONIC MONITORING, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:MEDTRONIC CORVENTIS, INC.;REEL/FRAME:034904/0926

Effective date: 20140805

AS Assignment

Owner name: MEDTRONIC MONITORING, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:MEDTRONIC CORVENTIS, INC.;REEL/FRAME:035133/0438

Effective date: 20140805

Owner name: MEDTRONIC CORVENTIS, INC., CALIFORNIA

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:CORVENTIS, INC.;MEDTRONIC CORVENTIS, INC.;REEL/FRAME:035096/0185

Effective date: 20140620