US20090038629A1 - Flavor sheet for smoking article - Google Patents
Flavor sheet for smoking article Download PDFInfo
- Publication number
- US20090038629A1 US20090038629A1 US11/835,092 US83509207A US2009038629A1 US 20090038629 A1 US20090038629 A1 US 20090038629A1 US 83509207 A US83509207 A US 83509207A US 2009038629 A1 US2009038629 A1 US 2009038629A1
- Authority
- US
- United States
- Prior art keywords
- flavor
- menthol
- cigarette
- filter
- bearing sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000796 flavoring agent Substances 0.000 title claims abstract description 137
- 235000019634 flavors Nutrition 0.000 title claims abstract description 137
- 230000000391 smoking effect Effects 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 50
- 230000001112 coagulating effect Effects 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 claims description 105
- 229940041616 menthol Drugs 0.000 claims description 105
- 235000019504 cigarettes Nutrition 0.000 claims description 87
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 61
- 241000208125 Nicotiana Species 0.000 claims description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 55
- 239000000203 mixture Substances 0.000 claims description 48
- 239000003463 adsorbent Substances 0.000 claims description 35
- 239000000779 smoke Substances 0.000 claims description 30
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 25
- 239000000945 filler Substances 0.000 claims description 19
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 16
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 15
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 15
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 10
- 229920002678 cellulose Polymers 0.000 claims description 9
- 235000010980 cellulose Nutrition 0.000 claims description 9
- 235000011187 glycerol Nutrition 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 239000001913 cellulose Substances 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 8
- 150000002170 ethers Chemical class 0.000 claims description 8
- 229920005615 natural polymer Polymers 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 7
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 229920005862 polyol Polymers 0.000 claims description 7
- 150000003077 polyols Chemical class 0.000 claims description 7
- 229920001451 polypropylene glycol Polymers 0.000 claims description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 5
- 229920000070 poly-3-hydroxybutyrate Polymers 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 4
- 239000003995 emulsifying agent Substances 0.000 claims description 4
- 229920001610 polycaprolactone Polymers 0.000 claims description 4
- 239000004632 polycaprolactone Substances 0.000 claims description 4
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 claims description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 3
- 229920001908 Hydrogenated starch hydrolysate Polymers 0.000 claims description 3
- 239000004626 polylactic acid Substances 0.000 claims description 3
- 239000000600 sorbitol Substances 0.000 claims description 3
- 235000010356 sorbitol Nutrition 0.000 claims description 3
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 claims description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 2
- 239000004386 Erythritol Substances 0.000 claims description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 claims description 2
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- 229930091371 Fructose Natural products 0.000 claims description 2
- 239000005715 Fructose Substances 0.000 claims description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 claims description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 2
- 229930195725 Mannitol Natural products 0.000 claims description 2
- 229920000954 Polyglycolide Polymers 0.000 claims description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 2
- 240000008042 Zea mays Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- 239000008121 dextrose Substances 0.000 claims description 2
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 claims description 2
- 235000019414 erythritol Nutrition 0.000 claims description 2
- 229940009714 erythritol Drugs 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 229930182830 galactose Natural products 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 claims description 2
- 229960000367 inositol Drugs 0.000 claims description 2
- 235000010439 isomalt Nutrition 0.000 claims description 2
- 239000000905 isomalt Substances 0.000 claims description 2
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 claims description 2
- 239000000832 lactitol Substances 0.000 claims description 2
- 235000010448 lactitol Nutrition 0.000 claims description 2
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 claims description 2
- 229960003451 lactitol Drugs 0.000 claims description 2
- 239000008101 lactose Substances 0.000 claims description 2
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 claims description 2
- 235000010449 maltitol Nutrition 0.000 claims description 2
- 239000000845 maltitol Substances 0.000 claims description 2
- 229940035436 maltitol Drugs 0.000 claims description 2
- 239000000594 mannitol Substances 0.000 claims description 2
- 235000010355 mannitol Nutrition 0.000 claims description 2
- 229960001855 mannitol Drugs 0.000 claims description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 2
- 229920000609 methyl cellulose Polymers 0.000 claims description 2
- 235000010981 methylcellulose Nutrition 0.000 claims description 2
- 239000001923 methylcellulose Substances 0.000 claims description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 claims description 2
- 229960002920 sorbitol Drugs 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 239000006188 syrup Substances 0.000 claims description 2
- 235000020357 syrup Nutrition 0.000 claims description 2
- 235000010447 xylitol Nutrition 0.000 claims description 2
- 239000000811 xylitol Substances 0.000 claims description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 2
- 229960002675 xylitol Drugs 0.000 claims description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 claims 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 claims 1
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 119
- -1 but not limited to Chemical class 0.000 description 27
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000000243 solution Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- 239000004793 Polystyrene Substances 0.000 description 7
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 7
- 229920002223 polystyrene Polymers 0.000 description 7
- 229910052624 sepiolite Inorganic materials 0.000 description 7
- 235000019355 sepiolite Nutrition 0.000 description 7
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 7
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 7
- 239000004113 Sepiolite Substances 0.000 description 6
- 229920002301 cellulose acetate Polymers 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000005012 migration Effects 0.000 description 6
- 238000013508 migration Methods 0.000 description 6
- RMTFNDVZYPHUEF-XZBKPIIZSA-N 3-O-methyl-D-glucose Chemical compound O=C[C@H](O)[C@@H](OC)[C@H](O)[C@H](O)CO RMTFNDVZYPHUEF-XZBKPIIZSA-N 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 4
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 4
- 229920001503 Glucan Polymers 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010987 pectin Nutrition 0.000 description 4
- 239000001814 pectin Substances 0.000 description 4
- 229920001277 pectin Polymers 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 4
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 3
- FDCJDKXCCYFOCV-UHFFFAOYSA-N 1-hexadecoxyhexadecane Chemical compound CCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCC FDCJDKXCCYFOCV-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229940072056 alginate Drugs 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000010411 cooking Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229910052625 palygorskite Inorganic materials 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- ULDHMXUKGWMISQ-VIFPVBQESA-N (+)-carvone Chemical compound CC(=C)[C@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-VIFPVBQESA-N 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 2
- UHZXFFLTKRFUQF-UHFFFAOYSA-N 1-dodecoxyhexadecane Chemical compound CCCCCCCCCCCCCCCCOCCCCCCCCCCCC UHZXFFLTKRFUQF-UHFFFAOYSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- KWVPFECTOKLOBL-KTKRTIGZSA-N 2-[(z)-octadec-9-enoxy]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCO KWVPFECTOKLOBL-KTKRTIGZSA-N 0.000 description 2
- NLMKTBGFQGKQEV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hexadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO NLMKTBGFQGKQEV-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- IGIDLTISMCAULB-UHFFFAOYSA-N 3-methylvaleric acid Chemical compound CCC(C)CC(O)=O IGIDLTISMCAULB-UHFFFAOYSA-N 0.000 description 2
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N Benzylformate Chemical compound O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- 241000723346 Cinnamomum camphora Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 2
- KRCZYMFUWVJCLI-UHFFFAOYSA-N Dihydrocarveol Chemical compound CC1CCC(C(C)=C)CC1O KRCZYMFUWVJCLI-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XINCECQTMHSORG-UHFFFAOYSA-N Isoamyl isovalerate Chemical compound CC(C)CCOC(=O)CC(C)C XINCECQTMHSORG-UHFFFAOYSA-N 0.000 description 2
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- USMNOWBWPHYOEA-UHFFFAOYSA-N alpha-thujone Natural products CC1C(=O)CC2(C(C)C)C1C2 USMNOWBWPHYOEA-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229960000892 attapulgite Drugs 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 229930008380 camphor Natural products 0.000 description 2
- 229960000846 camphor Drugs 0.000 description 2
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 2
- ULDHMXUKGWMISQ-UHFFFAOYSA-N carvone Chemical compound CC(=C)C1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 2
- AZOCECCLWFDTAP-UHFFFAOYSA-N dihydrocarvone Chemical compound CC1CCC(C(C)=C)CC1=O AZOCECCLWFDTAP-UHFFFAOYSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000001087 glyceryl triacetate Substances 0.000 description 2
- 235000013773 glyceryl triacetate Nutrition 0.000 description 2
- 125000001145 hydrido group Chemical group *[H] 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- FXLOVSHXALFLKQ-UHFFFAOYSA-N p-tolualdehyde Chemical compound CC1=CC=C(C=O)C=C1 FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000770 propane-1,2-diol alginate Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 2
- 229960002622 triacetin Drugs 0.000 description 2
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 2
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 2
- 235000012141 vanillin Nutrition 0.000 description 2
- OJYLAHXKWMRDGS-UHFFFAOYSA-N zingerone Chemical compound COC1=CC(CCC(C)=O)=CC=C1O OJYLAHXKWMRDGS-UHFFFAOYSA-N 0.000 description 2
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 1
- YSTPAHQEHQSRJD-VIFPVBQESA-N (+)-piperitone Chemical compound CC(C)[C@@H]1CCC(C)=CC1=O YSTPAHQEHQSRJD-VIFPVBQESA-N 0.000 description 1
- 229930006970 (+)-piperitone Natural products 0.000 description 1
- NZGWDASTMWDZIW-MRVPVSSYSA-N (+)-pulegone Chemical compound C[C@@H]1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-MRVPVSSYSA-N 0.000 description 1
- MBDOYVRWFFCFHM-SNAWJCMRSA-N (2E)-hexenal Chemical compound CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 1
- OQWIKYXFAZAALW-FMDYKLJDSA-N (2S)-2-amino-5-oxo-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentanoic acid Chemical compound N[C@@H](CCC(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)C(O)=O OQWIKYXFAZAALW-FMDYKLJDSA-N 0.000 description 1
- QZWWLBNHCDXKFW-XRJQKLFWSA-N (2r,3r,4r,5s)-6-[2-hydroxyoctadecyl(methyl)amino]hexane-1,2,3,4,5-pentol Chemical compound CCCCCCCCCCCCCCCCC(O)CN(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO QZWWLBNHCDXKFW-XRJQKLFWSA-N 0.000 description 1
- GYYDPBCUIJTIBM-DYOGSRDZSA-N (2r,3s,4s,5r)-2-(hydroxymethyl)-6-[[(4r,5s)-4-hydroxy-3-methyl-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-methoxyoxane-3,5-diol Chemical compound O[C@@H]1[C@@H](OC)[C@@H](O)[C@@H](CO)OC1OC1[C@H]2OCC1OC(C)[C@H]2O GYYDPBCUIJTIBM-DYOGSRDZSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- 239000001306 (7E,9E,11E,13E)-pentadeca-7,9,11,13-tetraen-1-ol Substances 0.000 description 1
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- 0 *OCC([1*])O Chemical compound *OCC([1*])O 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical class C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- HSDSKVWQTONQBJ-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)ethanone Chemical compound CC(=O)C1=CC=C(C)C=C1C HSDSKVWQTONQBJ-UHFFFAOYSA-N 0.000 description 1
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- ILCOCZBHMDEIAI-UHFFFAOYSA-N 2-(2-octadecoxyethoxy)ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCO ILCOCZBHMDEIAI-UHFFFAOYSA-N 0.000 description 1
- MGYUQZIGNZFZJS-KTKRTIGZSA-N 2-[2-[(z)-octadec-9-enoxy]ethoxy]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCOCCO MGYUQZIGNZFZJS-KTKRTIGZSA-N 0.000 description 1
- JKXYOQDLERSFPT-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-octadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO JKXYOQDLERSFPT-UHFFFAOYSA-N 0.000 description 1
- UITSPQLTFPTHJZ-UHFFFAOYSA-N 2-[[3,4,5-tris(2-hydroxyethoxy)-6-methoxyoxan-2-yl]methoxy]ethanol Chemical compound COC1OC(COCCO)C(OCCO)C(OCCO)C1OCCO UITSPQLTFPTHJZ-UHFFFAOYSA-N 0.000 description 1
- CKJGHPBOPQNPHM-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanol;sodium Chemical compound [Na].OCCN(CCO)CCO CKJGHPBOPQNPHM-UHFFFAOYSA-N 0.000 description 1
- 239000001431 2-methylbenzaldehyde Substances 0.000 description 1
- ICIDSZQHPUZUHC-UHFFFAOYSA-N 2-octadecoxyethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCO ICIDSZQHPUZUHC-UHFFFAOYSA-N 0.000 description 1
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 description 1
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 1
- ADHFMENDOUEJRK-UHFFFAOYSA-N 9-[(4-fluorophenyl)methyl]-n-hydroxypyrido[3,4-b]indole-3-carboxamide Chemical compound C1=NC(C(=O)NO)=CC(C2=CC=CC=C22)=C1N2CC1=CC=C(F)C=C1 ADHFMENDOUEJRK-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 244000106483 Anogeissus latifolia Species 0.000 description 1
- 235000011514 Anogeissus latifolia Nutrition 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- BWTLOSXBKUMOHH-UHFFFAOYSA-N C.C.C.COCCC(C)=O Chemical compound C.C.C.COCCC(C)=O BWTLOSXBKUMOHH-UHFFFAOYSA-N 0.000 description 1
- 244000146553 Ceiba pentandra Species 0.000 description 1
- 235000003301 Ceiba pentandra Nutrition 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- ICMAFTSLXCXHRK-UHFFFAOYSA-N Ethyl pentanoate Chemical compound CCCCC(=O)OCC ICMAFTSLXCXHRK-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 240000004670 Glycyrrhiza echinata Species 0.000 description 1
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000001922 Gum ghatti Substances 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002884 Laureth 4 Polymers 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 241001482237 Pica Species 0.000 description 1
- 229920002669 Polyoxyl 20 Cetostearyl Ether Polymers 0.000 description 1
- AZFUASHXSOTBNU-UHFFFAOYSA-N Propyl 2-methylpropanoate Chemical compound CCCOC(=O)C(C)C AZFUASHXSOTBNU-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- NZGWDASTMWDZIW-UHFFFAOYSA-N Pulegone Natural products CC1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-UHFFFAOYSA-N 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 229920001938 Vegetable gum Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 235000010407 ammonium alginate Nutrition 0.000 description 1
- 239000000728 ammonium alginate Substances 0.000 description 1
- KPGABFJTMYCRHJ-YZOKENDUSA-N ammonium alginate Chemical compound [NH4+].[NH4+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O KPGABFJTMYCRHJ-YZOKENDUSA-N 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 229940011037 anethole Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 235000013736 caramel Nutrition 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- WPGPCDVQHXOMQP-UHFFFAOYSA-N carvotanacetone Natural products CC(C)C1CC=C(C)C(=O)C1 WPGPCDVQHXOMQP-UHFFFAOYSA-N 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 229940081620 ceteth-2 Drugs 0.000 description 1
- 229940056318 ceteth-20 Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- 229940043350 citral Drugs 0.000 description 1
- 235000000484 citronellol Nutrition 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 229930007927 cymene Natural products 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229930007024 dihydrocarveol Natural products 0.000 description 1
- AZOCECCLWFDTAP-RKDXNWHRSA-N dihydrocarvone Natural products C[C@@H]1CC[C@@H](C(C)=C)CC1=O AZOCECCLWFDTAP-RKDXNWHRSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000019314 gum ghatti Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- NGAZZOYFWWSOGK-UHFFFAOYSA-N heptan-3-one Chemical compound CCCCC(=O)CC NGAZZOYFWWSOGK-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 229940100556 laureth-23 Drugs 0.000 description 1
- 229940061515 laureth-4 Drugs 0.000 description 1
- 229940010454 licorice Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000001055 magnesium Nutrition 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229930007503 menthone Natural products 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940100485 methyl gluceth-10 Drugs 0.000 description 1
- 229940031722 methyl gluceth-20 Drugs 0.000 description 1
- 229940044591 methyl glucose dioleate Drugs 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- XKLJHFLUAHKGGU-UHFFFAOYSA-N nitrous amide Chemical compound ON=N XKLJHFLUAHKGGU-UHFFFAOYSA-N 0.000 description 1
- 229940099570 oleth-2 Drugs 0.000 description 1
- 229940095127 oleth-20 Drugs 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 1
- 229930007459 p-menth-8-en-3-one Natural products 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- CGIHFIDULQUVJG-UHFFFAOYSA-N phytantriol Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)(O)C(O)CO CGIHFIDULQUVJG-UHFFFAOYSA-N 0.000 description 1
- CGIHFIDULQUVJG-VNTMZGSJSA-N phytantriol Natural products CC(C)CCC[C@H](C)CCC[C@H](C)CCC[C@@](C)(O)[C@H](O)CO CGIHFIDULQUVJG-VNTMZGSJSA-N 0.000 description 1
- 229920000071 poly(4-hydroxybutyrate) Polymers 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 235000010408 potassium alginate Nutrition 0.000 description 1
- 239000000737 potassium alginate Substances 0.000 description 1
- MZYRDLHIWXQJCQ-YZOKENDUSA-L potassium alginate Chemical compound [K+].[K+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O MZYRDLHIWXQJCQ-YZOKENDUSA-L 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000031070 response to heat Effects 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940098760 steareth-2 Drugs 0.000 description 1
- 229940100459 steareth-20 Drugs 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- FKHIFSZMMVMEQY-UHFFFAOYSA-N talc Chemical compound [Mg+2].[O-][Si]([O-])=O FKHIFSZMMVMEQY-UHFFFAOYSA-N 0.000 description 1
- 235000010491 tara gum Nutrition 0.000 description 1
- 239000000213 tara gum Substances 0.000 description 1
- 229930007110 thujone Natural products 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 229940117960 vanillin Drugs 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 238000007601 warm air drying Methods 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D1/00—Cigars; Cigarettes
- A24D1/002—Cigars; Cigarettes with additives, e.g. for flavouring
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/28—Treatment of tobacco products or tobacco substitutes by chemical substances
- A24B15/281—Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed
- A24B15/282—Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed by indirect addition of the chemical substances, e.g. in the wrapper, in the case
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/28—Treatment of tobacco products or tobacco substitutes by chemical substances
- A24B15/281—Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed
- A24B15/283—Treatment of tobacco products or tobacco substitutes by chemical substances the action of the chemical substances being delayed by encapsulation of the chemical substances
Definitions
- the present invention relates generally to compositions for delivering flavor to smoking articles. More specifically, the invention relates to flavor-generating compositions which reduce migration of volatile flavor constituents such as menthol from the tobacco column of a cigarette.
- menthol has been incorporated into cut tobacco filler in mentholated cigarettes. Because menthol is a crystalline solid at room temperature, it is usually applied by spraying the filler with an ethanolic solution of menthol. Tobacco filler treated in this manner typically contains between 0.3 and 1.3% by weight menthol.
- Loss of menthol on storage of mentholated cigarettes further reduces the amount of menthol ultimately delivered to the smoker.
- the menthol delivery of conventional mentholated cigarettes can be reduced by 57% after six months of storage in sealed cigarettes packages.
- Temperature and humidity conditions under which cigarettes are stored exert a substantial impact on menthol loss and consequently, significant differences in menthol delivery have been observed for the same brand of cigarettes in different regional markets.
- menthol The loss of menthol upon storage is due to the volatile nature of menthol which freely sublimes at room temperature. If menthol is initially located in the tobacco filler of a cigarette, substantial quantities will migrate to the packaging and atmosphere, during storage.
- the menthol will also tend to migrate from the tobacco filler to the filter.
- the degree of migration of menthol to the filter depends on the characteristics of the components comprising the filter.
- Conventional cigarette filters are formed from fibrous material, such as cellulose acetate, that has been gathered into a plug (i.e., a filter “tow”). The tow is held together by a plasticizer, commonly triacetin, which has been applied to the fibers. Studies have demonstrated that up to 35% of the menthol initially added to the tobacco filler migrates to the filter tow within a few weeks of storage. Menthol may be associated strongly with the plasticizer and therefore be unavailable for delivery to the smoker.
- cellulose acetate tow filters are designed to remove particulate matter from mainstream smoke but are ineffective to remove or reduce gas phase constituents.
- the gas phase of mainstream cigarette smoke contains certain components alleged to be harmful to a smoker, including certain aldehydes and olefinic constituents.
- Filters have been designed for the removal of gas-phase constituents along with particulates.
- Such filters typically incorporate an adsorbent material such as activated carbon (also known as “carbon,” “charcoal,” or “activated charcoal”) in a section of the filter.
- activated carbon also known as “carbon,” “charcoal,” or “activated charcoal”
- High surface area activated carbon is recognized as an effective adsorbent for removing gas phase components from mainstream smoke.
- the present invention provides compositions in the form of flavor-bearing sheets for the controlled delivery of volatile flavorants, such as menthol, to a smoker during smoking while reducing the migration of flavorant throughout the cigarette and packaging during storage.
- volatile flavorants such as menthol
- a flavor-bearing sheet for the controlled delivery of volatile flavorants in a smoking article.
- the flavor-bearing sheet comprises a non-volatile vitreous matrix having a volatile flavorant, such as menthol, dispersed therein.
- the non-volatile matrix is provided by film-forming coagulating materials such as, for example, polyols, polymeric ethers, polymeric esters, natural polymers and derivatives thereof, and combinations thereof.
- the film-forming coagulating materials comprise between about 15 to about 80% by weight of the flavor-bearing sheet and the volatile flavorant comprises between about 20 to about 75% by weight of the flavor-bearing sheet.
- the flavor-bearing sheets of the invention function to inhibit migration of volatile flavorants through physical entrapment of the flavorant in the low-vapor pressure matrix.
- the flavor-bearing sheets are dispersed in the tobacco column of a cigarette and release flavor into mainstream smoke upon combustion.
- the flavor-bearing sheets of the present invention are particularly useful for cigarettes having filters which incorporate gas phase adsorbents, such as activated carbon, because the volatile flavorant is isolated from the adsorbent until the cigarette is smoked.
- a cigarette comprising an adsorbent-bearing filter and a tobacco column abutting the filter, wherein the tobacco column includes a smokable material comprising shredded tobacco filler in admixture with a plurality of flavor-bearing sheets.
- the cigarettes include a so-called “plug-space-plug” filter having an adsorbent, such as granular activated carbon, disposed in a cavity formed between two fibrous filter components.
- the cigarettes may include so-called “dalmation” filter components wherein adsorbents such as activated carbon are dispersed in a fibrous tow material.
- the cigarettes of the present invention exhibit greatly diminished menthol loss on storage as compared to conventionally mentholated cigarettes.
- the mainstream smoke menthol delivery of the cigarettes having flavor-bearing sheets according to the present invention may be greater than about 70% of its initial value after storage for about 25 weeks in a sealed cigarette package.
- FIG. 1 is a graph comparing the weight loss of menthol from shredded flavor-bearing sheets of the present invention prepared according to Example 1 and conventional mentholated tobacco.
- FIG. 2 is a graph comparing the weight loss of menthol from shredded flavor-bearing sheets of the present invention prepared according to Examples 5 and 6 and conventional mentholated tobacco.
- FIG. 3 is a graph comparing the menthol content of shredded flavor-bearing sheets dried using an infrared lamp and shredded flavor-bearing sheets dried ambiently.
- FIG. 4 is a graph illustrating the mainstream smoke menthol levels for cigarettes having shredded flavor-bearing sheets prepared according to Example 1.
- FIG. 5 is a graph comparing the mainstream smoke menthol levels for cigarettes having shredded flavor-bearing sheets prepared according to Example 1 and conventional mentholated cigarettes.
- FIG. 6 is a graph of the mainstream smoke menthol content for cigarettes having shredded flavor-bearing sheets of the present invention prepared according to Example 11 after the cigarettes have been removed from sealed packages at weekly intervals of time.
- FIG. 7 is a graph of the taste ratings of cigarettes having shredded flavor-bearing sheets of the present invention prepared according to Example 11 after the cigarettes have been removed from sealed packages at monthly intervals of time.
- the present invention is founded on the discovery that migration of menthol and other volatile flavorants in a cigarette may be retarded by physically entrapping them in a non-volatile matrix which is capable of releasing the flavorant in response to heat or moisture generated upon combustion of the cigarette.
- the matrix takes the form of a vitreous (i.e., glassy) sheet which may be shredded and mixed with tobacco in the column of cigarette.
- the non-volatile matrix is provided by a film-forming coagulating material. While there is essentially no limitation on the selection of the film-forming coagulating material, it should be a material which is compatible with a smoking article, i.e., one which does not yield harmful products of combustion. Suitable materials include without limitation, polyols, polymeric ethers, polymeric esters, natural polymers and derivatives thereof, and combinations thereof.
- Useful polyols are exemplified by sugars and sugar alcohols, including, but not limited to, erythritol, glycerol, isomalt, mannitol, sorbitol, xylitol, maltitol, lactitol, hydrogenated starch hydrolysate, dextrose, glucose, fructose, sucrose, maltose, galactose, lactose, inositol, corn syrup and the like.
- sugars and sugar alcohols including, but not limited to, erythritol, glycerol, isomalt, mannitol, sorbitol, xylitol, maltitol, lactitol, hydrogenated starch hydrolysate, dextrose, glucose, fructose, sucrose, maltose, galactose, lactose, inositol, corn syrup and the like.
- Glucamine glucose glutamate, glucuronic acid, glycerin, 1,2,6-hexanetriol, hydroxystearyl methylglucamine, malitol, methyl gluceth-10, methyl gluceth-20, methyl glucose dioleate, methyl glucose sesquicaprylate/sesquicaprate, methyl glucose sesquicocoate, methyl glucose sesquiisostearate, methyl glucose sesquilaurate, methyl glucose sesquistearate, phytantriol, riboflavin, sorbeth-6, sorbeth-20, sorbeth-30, sorbeth-40, and thioglycerin are also non-limiting examples of polyols which may be useful in the practice of the invention.
- Polymeric ethers include, for example, the reaction products of alkylene oxides, represented by the general formula:
- R and R 1 are independently selected from hydrido and C 1 -C 20 branched or straight chain alkyl and n is an integer greater than 2.
- Preferred polymeric ethers are polyalkylene glycols, such as polyethylene glycol (PEG) and polypropylene glycol (PPG). Copolymers of polymeric ethers, including for example, PEG/PPG copolymers, are also contemplated to be useful.
- Polymeric ethers also include alkoxylated alcohols such as polyoxyl 20 cetostearyl ether (Atlas G-3713), poloxyl 2 cetyl ether (ceteth-2), poloxyl 10 cetyl ether (ceteth-10), poloxyl 20 cetyl ether (ceteth-20), poloxyl 4 lauryl cetyl ether (laureth-4), poloxyl 23 lauryl cetyl ether (laureth-23), poloxyl 2 oleyl ether (oleth-2), poloxyl 10 oleyl ether (oleth-10), poloxyl 20 oleyl ether (oleth-20), poloxyl 2 stearyl ether (steareth-2), poloxyl 10 stearyl ether (steareth-10), poloxyl 20 stearyl ether (steareth-20) and poloxyl 100 stearyl ether (steareth-100), and the like.
- Suitable polymeric esters include without limitation those represented by the general formula:
- each occurrence of R* is independently selected from hydrido and C 1 -C 20 branched or straight chain alkyl; m is an integer from 0 to 5; and n is an integer greater than 2.
- polymeric esters include the polyhydroxyalkanoates poly-3-hydroxybutyrate (PHB), poly(3-hydroxypropionate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhectanoate), poly(3-hydroxyoctanoate), poly(3-hydroxydodecanoate), poly(4-hydroxybutyrate), poly(5-hydroxyvalerate), and the like.
- PHB polyhydroxybutyrate
- PCL polycaprolactone
- Suitable natural polymers or natural polymer derivatives include without limitation starch and starch derivatives, including maltodextrin; cellulose and cellulose derivatives, including for example, methyl cellulose, ethyl cellulose, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate-butyrate, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, hydroxypropyl carboxymethyl cellulose, hydroxypropyl methyl carboxyethyl cellulose, hydroxypropyl carboxypropyl cellulose, hydroxybutyl carboxymethyl cellulose, and alkali metal salts of these carboxyalkyl celluloses; alginate and alginate derivatives such as alginic acid, sodium alginate, potassium alginate, ammonium alginate, magnesium alginate, calcium alginate, sodium triethanolamine alginate, and propylene glycol alginate (hydroxypropyl alginate);
- the film-forming coagulating materials of the present invention stand in contrast to the heat-irreversible coagulating (i.e., gelling) glucans disclosed in U.S. Pat. Nos. 4,109,663, 5,778,899, 6,109,272, and 6,499,490, the disclosures of which are hereby incorporated by reference herein.
- heat-irreversible coagulating or gelling glucans are typically 1,3- ⁇ -glucans, as exemplified by curdlan.
- the flavor-bearing sheets it is desirable for the flavor-bearing sheets to release flavorant into the mainstream smoke prior to combustion of the flavor-bearing sheet in order to minimize loss of menthol to side stream smoke.
- This may be accomplished by any non-combustion release mechanism, whereby hot gases generated by the advancing fire cone induce decomposition of the flavor sheet.
- water vapor produced by combustion of tobacco dissolves or decomposes the flavor-bearing sheets, thereby liberating the entrapped flavorant. This mechanism is not possible with the heat-irreversible coagulating glucans described above.
- the film-forming coagulating materials typically comprise between about 15 to about 80% by weight, more typically between about 50 to about 80% by weight, and preferably between about 60 to about 80% by weight of the flavor-bearing sheet.
- the flavor-bearing sheets comprise a flavorant. While it is contemplated that any flavorant will be useful, the advantages of the present invention will be most fully realized where the flavorant is a volatile flavorant.
- volatile flavorant is intended to refer expansively to any flavorant which readily enters the gas phase through evaporation or sublimation at ambient temperatures.
- volatile flavorant is meant to specifically include, in addition to volatile oils, flavorants which are solid at room temperature but readily sublime, including for example menthol, camphor, vanillin and the like.
- Volatile flavorants suitable for flavoring tobacco smoke are well known in the art and include, without limitation, acetaldehyde, amyl acetate, anethole, anisole, benzaldehyde, benzylformate, 2,3-butanedione, butyraldehyde, camphor, 1-carvone, d-carvone, cinnamaldehyde, citral, citronellol, p-cresyl methyl ether, cymene, dihydrocarvone, dihydrocarveol, 2,4-dimethylacetophenone, dipropyl ketone, ethyl acetate, ethyl amyl ketone, ethylbutyrate, ethyl butyl ketone, ethyl valerate, ethyl vanillin, eucalyptol, eugenol, hexenal, geraniol, iso
- the volatile flavorant will typically comprise between about 10 to about 75% by weight, more typically between about 15 to about 50% by weight, and preferably between about 20 to about 30% by weight of the flavor-bearing sheet.
- flavor-bearing sheet compositions include without limitation:
- the flavor-bearing sheets may optionally contain one or more nonvolatile flavorants.
- nonvolatile flavorants are well-known in the art and include, for example, cocoa, licorice, powdered tobacco, tobacco extract and the like. Volatile flavorants stabilized in microcapsules may also be present in the flavor sheets.
- the flavor-bearing sheets may optionally comprise various additives such as fillers, emulsifiers, humectants, fragrances, colorants, burn rate modifiers and the like.
- the flavor-bearing sheets comprise an adsorbent material for removing gas phase components of mainstream smoke. Suitable adsorbent materials are described elsewhere herein.
- the flavor-bearing sheets may be prepared from solutions or emulsions comprising the film-forming coagulating material, volatile flavorants, and a solvent.
- the solvent is typically a protic solvent such as water, ethanol, glycerin, and combinations thereof.
- the film-forming coagulating material and volatile flavorants may be added to the solvent in any order. It is desirable to apply efficient stirring or agitation to achieve a homogenous solution or emulsion. Stirring may be accomplished with any conventional mixer, including vertical mixers, planetary mixers, high-shear mixers and the like. Heating may optionally be employed to increase the solubility or dispersibility of poorly miscible components. Temperatures of about 40 to about 60° C., and preferably about 50° C. have been found suitable for this purpose. It may be useful to employ an emulsifier to improve the stability of resultant emulsions.
- the mixtures are cast onto a substantially flat surface, such as a glass sheet, stainless steel belt or polystyrene block, to form a layer typically having a thickness of about 0.5 mm to about 3 mm, and preferably from about 0.5 mm to about 1.0 mm. It has been found desirable to employ a casting blade for this purpose.
- Solvent is removed by evaporation under ambient conditions to produce a dried sheet of the non-volatile vitreous matrix material having the volatile flavorant dispersed therein. Drying times will depend on the selection of solvent and drying method. For example ambient drying will typically range from about 8 hours to about 24 hours and force warm air drying (e.g., infrared lamp) will typically range from 5 to 45 minutes.
- the flavor-bearing sheets formed from the layer of the menthol mixture have a thickness typically ranging from about 2 mil to about 5 mil. It will be understood that the final moisture content of the flavor-bearing sheet will depend on the thickness of the flavor-bearing sheet as well as the atmospheric humidity. For example, a flavor-bearing sheet having a thickness of 5 mil may have a moisture content of 15% ⁇ 5% and a flavor-bearing sheet having a thickness of 3 mil may have a moisture content of 10% ⁇ 2%.
- smokable materials are provided by shredding the flavor-bearing sheets described herein and mixing with shredded tobacco filler.
- the flavor-bearing sheets may be shredded with a paper shredder or the like to produce a plurality of shredded flavor-bearing sheets.
- the precise dimensions of the shredded flavor-bearing sheets are not critical. A confetti cut of about 1/32′′ by about 7/16′′ has been found to be useful. However, any other dimensions, such as, for example, a square cut of about 1/32′′ by about 1/32′′, are also within the scope of the invention.
- the flavor-bearing sheets may be pulverized to provide a powdered composition which can be added to shredded tobacco filler in essentially the same manner.
- it has been found less desirable to provide the compositions in the form of a powder due to the increase in total surface area from which menthol may migrate.
- the shredded flavor-bearing sheets are mixed with tobacco filler using any conventional method, including, by way of example, tumbling in a rotating drum mixer.
- the weight ratio of shredded flavor-bearing sheets to tobacco filler will typically range from about 1:100 to about 1:5 depending on the desired level of menthol delivery.
- the weight ratio of shredded flavor-bearing sheets to tobacco filler will be from about 1:10 to 1:20.
- Any shredded tobacco may be used with the present invention.
- suitable tobaccos include, but are not limited to, flue-cured, Burley, Turkish, Oriental, expanded tobacco, and reconstituted tobacco.
- Other tobacco materials suitable for use in the present invention are described in U.S. Pat. No. 5,404,890 to Gentry et. al., the disclosure of which is hereby incorporated by reference.
- a preferred tobacco is low tobacco-specific nitrosoamine (low TSNA) tobacco.
- the tobacco may be treated with additives and the like according to conventional practice.
- Flavored cigarettes typically comprise a paper-wrapped cylindrical column of tobacco.
- the tobacco column comprises shredded flavor-bearing sheets in admixture with cut tobacco filler, as described above.
- the present invention may be applicable to cigarettes having filters, as well as cigarettes without filters.
- the filter may be attached at the mouth or buccal end of the tobacco column.
- the filter may be attached to the tobacco column using any method known in the art, such as a conventional tipping overwrap.
- the filter may be any of various types of filters suitable for cigarettes.
- the filter may comprises a plug (i.e., “tow”) of filter medium capable of removing particulate material from mainstream smoke.
- the filter plug may comprise fibrous, webbed, and corrugated materials, formed from polyolefins, polyesters, cellulosics and the like.
- Cellulosics may include paper and cellulose acetate fiber. While such filters are effective for removing particulate material such as tar from mainstream smoke, they are ineffective for removing or reducing gas phase constituents of mainstream smoke. Therefore, preferred filters will incorporate an adsorbent material, such as activated carbon or Sepiolite, in a section of the filter.
- an adsorbent material such as activated carbon or Sepiolite
- the term “adsorbent” is intended to have its ordinary and accustomed meaning in the art, but should not be construed as limiting the invention to any particular mechanism or mode of action by which gas-phase constituents in mainstream smoke are reduced.
- activated carbon and Sepiolite are referred to herein as an “adsorbents,” but carbons and minerals which reduce gas phase constituents by adsorption, absorption, chemisorption, or otherwise are contemplated as being within the scope of the invention.
- Suitable adsorbent materials for use in the filters of the present invention include, but are not limited to, activated carbon, zeolite, magnesium silicates, aluminum silicates, silica gel, meerschaum, aluminum oxide, and florisil.
- Synthetic adsorbents such as, for example, carbonaceous resins derived from the pyrolysis of sulfonated styrene-divinylbenzene and sold under the trademarks Ambersorb 572 or Ambersorb 563 (Rohm and Haas, 5000 Richmond Street, Philadelphia, Pa. 19137) may also be employed.
- Activated carbon adsorbents are preferred. Any activated carbon material may be used in the practice of the invention, including but not limited to carbon materials derived from coal, tobacco material, peat, wood pulp, coconut hulls, kapok fibers, cotton fibers, cotton linters, and the like. Activated carbon materials of any degree of activation (surface area) may be used according to the present invention. Preferably, the activated carbon materials will have a degree of activation so as to provide about 25 to about 125 weight percent pickup of carbon tetrachloride. More preferably, the activated carbon material will provide about 60 weight percent pickup of carbon tetrachloride. Any mesh size activated carbon is useful in the practice of the invention.
- activated carbons may provide advantages during the manufacture of the cigarette, particularly in those embodiments of the invention having a filter cavity which is charged with a bed of activated carbon.
- Preferred activated carbons are granular coconut carbons with a mesh size of about 18 ⁇ 40 U.S such as coconut hull based carbons available from Calgon Corp. as PCB, PCGB and GRC-11 and those available from PICA USA (Columbus, Ohio) as G278.
- Suitable minerals include, for example, the hydrated magnesium silicate Sepiolite (TOLSA, S.A.) and the hydrated aluminum silicate Attapulgite (TOLSA, S.A.).
- Sepiolite and Attapulgite belong to the palygorskite family of minerals. They are lightweight, porous clays having a large specific surface and low chemical activity.
- the filter comprises a so-called “dalmation” filter component.
- a dalmation component comprises a fibrous filter material, such as cellulose acetate, which has been impregnated with an adsorbent.
- the fibrous filter material is treated with a plasticizer, such as triacetin, followed by dispersion of the adsorbent particles into the fibrous material.
- Dalmation filter components, and their method of manufacture, are well known in the art as described in U.S. Pat. Nos.
- the filter may be provided as, for example, a cellulose acetate tow having a carbonaceous paper gathered within the tow or wrapped concentrically around the tow, as described in U.S. Pat. No. 5,568,819 (Gentry et al.), the contents of which are hereby incorporated by reference.
- the filter is provided in a so-called “plug-space-plug” configuration.
- the filter will comprise a first particulate filter component at the buccal end of the filter and a second particulate filter component abutting the tobacco rod.
- the particulate filter components may be formed from any material suitable for removing particulates from mainstream smoke, as described above.
- the first and second particulate filter components are spaced apart to form a filter cavity therebetween.
- the filter including all three components is circumscribed by a conventional paper wrapper.
- the filter cavity will contain a bed of filter material comprising a gas phase adsorbent, such as granular activated carbon.
- the cavity is preferably filled to a 90% full condition, and more preferably to at least a 95% full condition, with the adsorbent filter medium.
- the amount of adsorbent should be selected to achieve the most effective gas phase reduction within the limits of the smoking article.
- the cavity is filled with about 125 mg to about 150 mg of activated carbon.
- the cavity is charged with activated carbon and Sepiolite in weight ratio ranging from 0:100 to 100:0.
- the cigarettes of the invention are not limited to any dimension. Typical cigarettes are cylindrically shaped rods having circumferences of about 22 mm to about 25 mm.
- the cigarette may be any length, including but not limited to, 80 mm, 84 mm, and 99 mm.
- the cigarette is 84 mm long and the downstream tow is 10 mm in length.
- the cavity ranges from about 3 mm to about 8 mm in length, and is preferably between about 5 mm and about 6 mm in length.
- the upstream tow is 10 mm in length.
- the cavity is 6 mm in length and the upstream tow is 9 mm in length.
- the cigarette is 99 mm long and the downstream tow is 10 mm in length.
- the cavity ranges from about 3 mm to about 8 mm in length, and is preferably between about 5 mm and about 6 mm in length. In an embodiment where the cavity is 5 mm in length, the upstream tow is 12 mm in length. In another embodiment, the cavity is 6 mm in length and the upstream tow is 11 mm in length.
- Ventilation may be provided by one or more circumferential rows of perforations through the tipping paper.
- the perforations may be located between the upstream and downstream ends of the filter cavity containing the adsorbent. Ventilation is preferably provided in the filter cavity by perforations located 14.5 mm from the buccal end of the downstream tow.
- ventilation reduces the amount of mainstream smoke reaching the smoker through dilution by ambient air and also tends to increase filtration efficiency by decreasing the velocity of mainstream smoke upstream of the perforations and thereby increasing its residence time in the filter.
- adsorbent filters examples include Caviflex, Dualcoal, Recessed Dualcoal, Sel-X-4, and Triple Filter from Baumartner Fibertec (Switzerland); Active Acetate Dual, Active Charcoal Triple Solid, Active Myria White, Active Patch Mono, Adsorbent Coated Thread, Triple Granular, and V.P.A. Dual from Filtrona International Incorporated (Milton Keynes, U.K.), each of which are contemplated to be useful in the practice of the invention.
- wrapping papers and tipping papers used in the practice of the invention may be any of the papers known in the art, including low-sidestream paper and reduced ignition propensity paper such as those disclosed in U.S. Pat. No. 6,837,248 to Zawadzki et al., which is hereby incorporated by reference.
- the present invention is not limited to the filter designs described above. It is contemplated that other filter arrangements are suitable for use with the present invention, including but not limited to those described in European Patent Application No. 579,410 and U.S. Pat. Nos. 5,568,819 (Gentry et al.), 5,365,951 (Arterbery et al.), 5,067,499 (Banerjee et al.), 4,881,556 (Clearman et al.), 4,357,950 (Berger et al.), 3,894,545 (Crellin et al.), which are hereby incorporated by reference. It will be appreciated by one skilled in the art that certain modifications and variations of the above described embodiments are within the scope of the invention.
- Examples 1-4 demonstrate various embodiments of the flavor bearing sheet of the present invention.
- a flavor-bearing sheet according to the present invention is provided by mixing 100 g of carboxymethyl cellulose with 900 g of water using an electric overhead stirrer to yield a 10% by weight aqueous carboxymethyl cellulose solution.
- To the solution was added 100 mg of sodium dodecylsulfate and the mixture was warmed to 50° C. 25 g of menthol was added and the mixture was stirred until the menthol was melted and homogenously dispersed into the solution.
- the mixture was allowed to cool to room temperature with continued stirring.
- the mixture was then cast onto polystyrene blocks using a casting blade set to 1.5 mm thickness and dried overnight under ambient conditions.
- the resultant sheet was separated from the polystyrene block and shredded to a confetti cut of about 1/32′′ by about 7/16′′ with a paper shredder.
- Another embodiment of a flavor-bearing sheet of the present invention is provided by slowly adding 11 g of carboxymethyl cellulose to a mixture of 190 g of water, 1 g of insoluble cellulose, and 0.5 g of caramel coloring. The mixture was continuously stirred at 500-1000 rpm for about 30 minutes until the carboxymethyl cellulose dissolved resulting in a brown opaque viscous mixture without lumps.
- a menthol solution consisting of 9.5 g of propylene glycol, 2.4 g of glycerol, 11.9 g of menthol, and 0.09 g of polysorbate 80 were stirred together until dissolved.
- the opaque viscous carboxymethol cellulose mixture was placed in a warm water bath at about 50° C. and the menthol solution was added. The mixture was stirred at 500-1000 rpm until creamy (about 15 minutes). The mixture was cast onto glass plates coated with cooking spray at 1.0 mm thickness and dried in oven at 90° C. for 45 minutes.
- a further embodiment of a flavor bearing sheet of the present invention is provided by stirring 1 g of an insoluble cellulose with 112 g of water at 300 rpm for 10 minutes. 11 g of pectin powder was then stirred into the mixture before it was heated to 185° F. The pectin mixture was removed from the heat and the viscous liquid was allowed to cool to room temperature with stirring.
- menthol mixture consisting of 7.2 g of propylene glycol, 1.8 g of glycerol, 9 g of menthol, and 0.13 g of polysorbate 80 was stirred together until dissolved.
- the menthol solution was stirred into the pectin mixture at 500 rpm in a warm water bath at 50° C. for 20 minutes.
- the mixture was cast onto glass plates coated with cooking spray at 1.0 mm thickness and dried in oven at 90° C. for 45 minutes.
- a flavor bearing sheet of the present invention 5 g of sodium alginate and 2 g of Gum Arabic were sprinkled into a stirred solution of 95 g of water and 4 g of propylene glycol and stirred until the solids dissolved. 4 g of solid menthol and 0.35 g of sodium dodecylsulfate were added and stirred into the mixture in a warm water bath at 50° C. for 20 minutes. The mixture was cast onto glass plates coated with cooking spray at 1.0 mm thickness and dried in oven at 90° C. for 30 minutes.
- Sheet 1 exhibited visible streaks of crystallized menthol in the finished sheet and on the surface while Sheet 2 had less.
- Sheets 3, 4, and 5 exhibited no evidence of crystallized menthol in the sheets.
- the following example demonstrates the improvement in film quality of the flavor bearing sheet of the present invention by adding glycerol, and the improvement in the taste quality of cigarettes made with such flavor bearing sheet.
- Flavor bearing sheet 1 was prepared by dissolving 12 g of carboxymethyl cellulose into a solution of 108 g of water and 9 g of propylene glycol. When the carboxymethyl cellulose was dissolved (after about 30 minutes), the mixture was stirred in a warm water bath where 9 g of solid menthol and 0.1 g of sodium dodecysulfate were added to the mixture. The mixture was stirred about 15 minutes until the menthol melted to yield a creamy mixture. The mixture was cast onto a polystyrene plate at 1.0 mm thickness and dried under an infrared lamp for 30 minutes, then air-dried until dry to the touch.
- Flavor bearing sheet 2 was prepared by dissolving 12 g of carboxymethyl cellulose into a solution of 108 g of water, 6 g of propylene glycol, and 3 g of glycerol. When the carboxymethyl cellulose was dissolved (after about 30 minutes), the mixture was stirred in a warm water bath where 9 g of solid menthol and 0.1 g of sodium dodecysulfate were added to the mixture. The mixture was stirred about 15 minutes until the menthol melted to yield a creamy mixture. The mixture was cast onto a polystyrene plate at 1.0 mm thickness and dried under an infrared lamp for 30 minutes, then air-dried until dry to the touch. It was observed that flavor bearing sheet 2 was more flexible than flavor bearing sheet 1.
- the prepared flavor bearing sheets were cut and blended with tobacco to make cigarettes. Three out of four panelists preferred the taste of cigarettes having flavor bearing sheet 2 containing glycerol compared to the taste of cigarettes having flavor bearing sheet 1.
- Examples 7-9 provide stability studies of various embodiments of flavor bearing sheets of the present invention described in the Examples above to evaluate their ability to retain menthol when exposed to atmospheric conditions.
- Samples of shredded flavor bearing sheets of Example 1 were weighed into vials and left open to ambient conditions for 14 days.
- Control samples of mentholated tobacco prepared by spraying tobacco with an ethanolic solution of menthol were similarly weighed into open vials.
- the control samples were obtained from freshly prepared Newport® brand cigarettes.
- Menthol content of the shredded flavor bearing sheet samples and control samples was determined by measuring weight loss after 1, 2, 3, 4, 7, and 14 days exposure to ambient conditions. The results are plotted in FIG. 1 as the percentage loss of menthol based on the initial weight.
- Flavor bearing sheets as prepared in Examples 5 and 6 were shredded. Twenty samples of each flavor bearing sheet were weighed into vials (40 mg each) and left open to allow menthol to evaporate. Mentholated tobacco from a commercial product was likewise weighed into 20 vials. Three vials from each sample were extracted and evaluated for menthol content weekly for 4 weeks. As shown in FIG. 2 , the mentholated sheets showed superior retention of menthol when compared to conventional mentholated tobacco.
- This example demonstrates the improvement in the retention of menthol in the flavor bearing sheet by using an infrared lamp to quickly dry the flavor bearing sheet before separation of a hydrophobic flavor from the aqueous medium.
- a flavor bearing sheet according to the present invention was prepared by slowly admixing 22.5 g of carboxymethyl cellulose to a solution of 0.9 g of propylene glycol, 0.1 g of sodium dodecylsulfate (0.1 g), and 150 g of water stirred at 500 rpm. The mixture was stirred an additional 30 minutes until the carboxymethyl cellulose dissolved to yield a clear viscous liquid. The mixture was placed in a warm water bath at 50° C. while 7.5 g of solid menthol was added. The mixture was stirred warm for 15 minutes at which time the menthol had completely dispersed into a creamy emulsion.
- the other half of the mixture was cast onto a polystyrene plate at 0.75 mm thickness and dried under an infrared lamp to speed the drying of the film.
- the resulting sheet was smooth on both surfaces and had very little evidence of crystalline menthol at the surface.
- the flavor sheet sample that was dried quickly by the infrared lamp proved to be superior compared to the air dried flavor sheet sample with regard to the retention of menthol over a 4 week period.
- Examples 10 and 11 provide stability studies of menthol in a shredded flavor bearing sheet included in the tobacco rod of a cigarette.
- a smokable composition was prepared by mixing 2.20 pounds of the shredded flavor-bearing sheets of Example 1 with 25.0 pounds of cut tobacco for four revolutions in a rotating drum. Cigarettes having plug-space-plug filters were prepared with the resultant mixture. The cigarette filters had a 10 mm plug of fiber tow at the buccal end, a 9 mm plug of fiber tow at the upstream end and a 6 mm cavity charged with 150 mg of sepiolite granules. The mean menthol content of each cigarette was 7.52 mg with a Relative Standard Deviation of 10.0%. As shown in FIG. 4 , after 47 weeks in a sealed package, the menthol levels in the mainstream smoke of the cigarettes was greater than 70% of the initial value.
- FIG. 5 shows a comparison of the menthol levels in the mainstream smoke of the cigarettes of Example 10 having shredded menthol sheets of the present invention prepared according to Example 1 and conventional carbon filter cigarettes having mentholated tobacco prepared by spraying tobacco with an ethanolic solution of menthol.
- the menthol levels in the mainstream smoke of the cigarettes having the shredded mentholated sheets is superior to that of the conventional cigarettes having the ethanolic menthol solution sprayed on the tobacco.
- a flavor bearing sheet according to the present invention is provided by dissolving 48 g of carboxymethyl cellulose in a solution of 3.6 g propylene glycol and 352 g water with mechanical stirring. 20.5 g of solid menthol was added to the viscous liquid and the mixture was stirred in a warm water bath until all of the menthol had melted. 0.4 g of sodium dodecylsulfate was added and the mixture was stirred vigorously at 800 rpm for 1 minute. The warm water bath was exchanged for a cool water bath and the mixture was stirred for 10 minutes to bring the mixture to room temperature. The mixture was cast onto PTFE-coated glass plates at a thickness of 1.0 mm and dried under an infrared lamp for 30 minutes. The sheets were then placed under a fan until dry to the touch, and shredded to 1/32′′ ⁇ 7/16′′ strips using a paper shredder. In this manner, 3500 g of the mentholated sheet was prepared.
- the shredded sheet was loaded into a metered solids addition funnel and the discharge was directed into the tobacco flow of a cigarette maker.
- the mentholated sheet was added at 60.0 g/min while the maker speed was set to 1100 cig/min to give an average content of 54 mg sheet per cigarette.
- the cigarettes were packed and evaluated weekly for menthol delivery.
- the menthol delivery in the mainstream smoke is plotted in FIG. 6 .
- the cigarettes were evaluated monthly for taste. As shown in FIG. 7 , the menthol taste intensity of the cigarettes was deemed to be acceptable for at least six months after packaging.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Tobacco Products (AREA)
Abstract
Description
- This application claims priority under 35 USC 119(e)(1) of U.S. Provisional Patent Application Ser. No. 60/690,759, filed Jun. 14, 2005, the entirety of which is incorporated herein by reference as if fully set forth herein.
- The present invention relates generally to compositions for delivering flavor to smoking articles. More specifically, the invention relates to flavor-generating compositions which reduce migration of volatile flavor constituents such as menthol from the tobacco column of a cigarette.
- The popularity of mentholated cigarettes has grown rapidly since their introduction in the United States in the 1920's. Today, mentholated cigarettes account for approximately one quarter of all cigarette sales in the United States.
- Conventionally, menthol has been incorporated into cut tobacco filler in mentholated cigarettes. Because menthol is a crystalline solid at room temperature, it is usually applied by spraying the filler with an ethanolic solution of menthol. Tobacco filler treated in this manner typically contains between 0.3 and 1.3% by weight menthol.
- However, the amount of menthol ultimately delivered to the smoker has traditionally proven difficult to control. There are several factors that affect the menthol delivery of a cigarette. For example, much of the menthol in conventional mentholated cigarettes does not enter the mainstream smoke when the cigarette is smoked and is consequently not delivered to the smoker. Approximately, 75% of the menthol is lost to the sidestream smoke.
- Loss of menthol on storage of mentholated cigarettes further reduces the amount of menthol ultimately delivered to the smoker. In fact, the menthol delivery of conventional mentholated cigarettes can be reduced by 57% after six months of storage in sealed cigarettes packages. Temperature and humidity conditions under which cigarettes are stored exert a substantial impact on menthol loss and consequently, significant differences in menthol delivery have been observed for the same brand of cigarettes in different regional markets.
- The loss of menthol upon storage is due to the volatile nature of menthol which freely sublimes at room temperature. If menthol is initially located in the tobacco filler of a cigarette, substantial quantities will migrate to the packaging and atmosphere, during storage.
- In addition, if the cigarette includes a filter, the menthol will also tend to migrate from the tobacco filler to the filter. The degree of migration of menthol to the filter depends on the characteristics of the components comprising the filter. Conventional cigarette filters are formed from fibrous material, such as cellulose acetate, that has been gathered into a plug (i.e., a filter “tow”). The tow is held together by a plasticizer, commonly triacetin, which has been applied to the fibers. Studies have demonstrated that up to 35% of the menthol initially added to the tobacco filler migrates to the filter tow within a few weeks of storage. Menthol may be associated strongly with the plasticizer and therefore be unavailable for delivery to the smoker.
- Conventional cellulose acetate tow filters are designed to remove particulate matter from mainstream smoke but are ineffective to remove or reduce gas phase constituents. The gas phase of mainstream cigarette smoke contains certain components alleged to be harmful to a smoker, including certain aldehydes and olefinic constituents. Filters have been designed for the removal of gas-phase constituents along with particulates. Such filters typically incorporate an adsorbent material such as activated carbon (also known as “carbon,” “charcoal,” or “activated charcoal”) in a section of the filter. High surface area activated carbon is recognized as an effective adsorbent for removing gas phase components from mainstream smoke.
- However, the use of activated carbon filters in mentholated cigarettes has met with only limited success to date. This is due largely to the fact that activated carbon is a very effective adsorbent of menthol. Thus, the greater part of menthol added to tobacco filler is irreversibly adsorbed by the activated carbon during storage and is therefore not available to be delivered to the smoker. For that reason, mentholated cigarettes having adsorbent filters traditionally have required larger amounts of menthol to be added to the tobacco filler during manufacture to offset adsorption by the carbon.
- In light of the foregoing considerations, it is therefore an object of the present invention to provide cigarettes flavored with volatile flavorants, such as menthol, which limit the dissipation of volatile flavorant from the cigarette during storage.
- It is another object of the invention to provide volatile flavorants, such as menthol, in a form which is compatible for use with adsorbent-bearing cigarette filters.
- In accordance with the foregoing objectives and others, the present invention provides compositions in the form of flavor-bearing sheets for the controlled delivery of volatile flavorants, such as menthol, to a smoker during smoking while reducing the migration of flavorant throughout the cigarette and packaging during storage.
- In one aspect of the invention, a flavor-bearing sheet for the controlled delivery of volatile flavorants in a smoking article is provided. The flavor-bearing sheet comprises a non-volatile vitreous matrix having a volatile flavorant, such as menthol, dispersed therein. The non-volatile matrix is provided by film-forming coagulating materials such as, for example, polyols, polymeric ethers, polymeric esters, natural polymers and derivatives thereof, and combinations thereof. The film-forming coagulating materials comprise between about 15 to about 80% by weight of the flavor-bearing sheet and the volatile flavorant comprises between about 20 to about 75% by weight of the flavor-bearing sheet. The flavor-bearing sheets of the invention function to inhibit migration of volatile flavorants through physical entrapment of the flavorant in the low-vapor pressure matrix. The flavor-bearing sheets are dispersed in the tobacco column of a cigarette and release flavor into mainstream smoke upon combustion.
- The flavor-bearing sheets of the present invention are particularly useful for cigarettes having filters which incorporate gas phase adsorbents, such as activated carbon, because the volatile flavorant is isolated from the adsorbent until the cigarette is smoked. In accordance with this aspect of the invention, a cigarette is provided comprising an adsorbent-bearing filter and a tobacco column abutting the filter, wherein the tobacco column includes a smokable material comprising shredded tobacco filler in admixture with a plurality of flavor-bearing sheets. In one implementation, the cigarettes include a so-called “plug-space-plug” filter having an adsorbent, such as granular activated carbon, disposed in a cavity formed between two fibrous filter components. Alternatively, the cigarettes may include so-called “dalmation” filter components wherein adsorbents such as activated carbon are dispersed in a fibrous tow material. The cigarettes of the present invention exhibit greatly diminished menthol loss on storage as compared to conventionally mentholated cigarettes. For example, the mainstream smoke menthol delivery of the cigarettes having flavor-bearing sheets according to the present invention may be greater than about 70% of its initial value after storage for about 25 weeks in a sealed cigarette package.
- These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following detailed description of the invention, including the illustrative embodiments, examples and figures.
- The drawings are for the purpose of illustrating the invention and are not intended to be limiting.
-
FIG. 1 is a graph comparing the weight loss of menthol from shredded flavor-bearing sheets of the present invention prepared according to Example 1 and conventional mentholated tobacco. -
FIG. 2 is a graph comparing the weight loss of menthol from shredded flavor-bearing sheets of the present invention prepared according to Examples 5 and 6 and conventional mentholated tobacco. -
FIG. 3 is a graph comparing the menthol content of shredded flavor-bearing sheets dried using an infrared lamp and shredded flavor-bearing sheets dried ambiently. -
FIG. 4 is a graph illustrating the mainstream smoke menthol levels for cigarettes having shredded flavor-bearing sheets prepared according to Example 1. -
FIG. 5 is a graph comparing the mainstream smoke menthol levels for cigarettes having shredded flavor-bearing sheets prepared according to Example 1 and conventional mentholated cigarettes. -
FIG. 6 is a graph of the mainstream smoke menthol content for cigarettes having shredded flavor-bearing sheets of the present invention prepared according to Example 11 after the cigarettes have been removed from sealed packages at weekly intervals of time. -
FIG. 7 is a graph of the taste ratings of cigarettes having shredded flavor-bearing sheets of the present invention prepared according to Example 11 after the cigarettes have been removed from sealed packages at monthly intervals of time. - The present invention is founded on the discovery that migration of menthol and other volatile flavorants in a cigarette may be retarded by physically entrapping them in a non-volatile matrix which is capable of releasing the flavorant in response to heat or moisture generated upon combustion of the cigarette. The matrix takes the form of a vitreous (i.e., glassy) sheet which may be shredded and mixed with tobacco in the column of cigarette.
- a. Flavor Sheets
- The non-volatile matrix is provided by a film-forming coagulating material. While there is essentially no limitation on the selection of the film-forming coagulating material, it should be a material which is compatible with a smoking article, i.e., one which does not yield harmful products of combustion. Suitable materials include without limitation, polyols, polymeric ethers, polymeric esters, natural polymers and derivatives thereof, and combinations thereof.
- Useful polyols are exemplified by sugars and sugar alcohols, including, but not limited to, erythritol, glycerol, isomalt, mannitol, sorbitol, xylitol, maltitol, lactitol, hydrogenated starch hydrolysate, dextrose, glucose, fructose, sucrose, maltose, galactose, lactose, inositol, corn syrup and the like. Glucamine, glucose glutamate, glucuronic acid, glycerin, 1,2,6-hexanetriol, hydroxystearyl methylglucamine, malitol, methyl gluceth-10, methyl gluceth-20, methyl glucose dioleate, methyl glucose sesquicaprylate/sesquicaprate, methyl glucose sesquicocoate, methyl glucose sesquiisostearate, methyl glucose sesquilaurate, methyl glucose sesquistearate, phytantriol, riboflavin, sorbeth-6, sorbeth-20, sorbeth-30, sorbeth-40, and thioglycerin are also non-limiting examples of polyols which may be useful in the practice of the invention.
- Polymeric ethers include, for example, the reaction products of alkylene oxides, represented by the general formula:
- wherein R and R1 are independently selected from hydrido and C1-C20 branched or straight chain alkyl and n is an integer greater than 2. Preferred polymeric ethers are polyalkylene glycols, such as polyethylene glycol (PEG) and polypropylene glycol (PPG). Copolymers of polymeric ethers, including for example, PEG/PPG copolymers, are also contemplated to be useful. Polymeric ethers also include alkoxylated alcohols such as
polyoxyl 20 cetostearyl ether (Atlas G-3713),poloxyl 2 cetyl ether (ceteth-2),poloxyl 10 cetyl ether (ceteth-10),poloxyl 20 cetyl ether (ceteth-20),poloxyl 4 lauryl cetyl ether (laureth-4), poloxyl 23 lauryl cetyl ether (laureth-23),poloxyl 2 oleyl ether (oleth-2),poloxyl 10 oleyl ether (oleth-10),poloxyl 20 oleyl ether (oleth-20),poloxyl 2 stearyl ether (steareth-2),poloxyl 10 stearyl ether (steareth-10),poloxyl 20 stearyl ether (steareth-20) andpoloxyl 100 stearyl ether (steareth-100), and the like. - Suitable polymeric esters include without limitation those represented by the general formula:
- wherein each occurrence of R* is independently selected from hydrido and C1-C20 branched or straight chain alkyl; m is an integer from 0 to 5; and n is an integer greater than 2. Such polymeric esters include the polyhydroxyalkanoates poly-3-hydroxybutyrate (PHB), poly(3-hydroxypropionate), poly(3-hydroxybutyrate), poly(3-hydroxyvalerate), poly(3-hydroxyhectanoate), poly(3-hydroxyoctanoate), poly(3-hydroxydodecanoate), poly(4-hydroxybutyrate), poly(5-hydroxyvalerate), and the like. Other interesting polymeric esters include polylactic acid (PLA), polyglycolide, and polycaprolactone (PCL).
- Suitable natural polymers or natural polymer derivatives include without limitation starch and starch derivatives, including maltodextrin; cellulose and cellulose derivatives, including for example, methyl cellulose, ethyl cellulose, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate-butyrate, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, hydroxypropyl carboxymethyl cellulose, hydroxypropyl methyl carboxyethyl cellulose, hydroxypropyl carboxypropyl cellulose, hydroxybutyl carboxymethyl cellulose, and alkali metal salts of these carboxyalkyl celluloses; alginate and alginate derivatives such as alginic acid, sodium alginate, potassium alginate, ammonium alginate, magnesium alginate, calcium alginate, sodium triethanolamine alginate, and propylene glycol alginate (hydroxypropyl alginate); and other vegetable gums including but not limited to carrageenan, dextran, furcellaran, pectin, gelatin, gum agar, locust bean gum, gum ghatti, guar gum, gum tragacanth, acacia, gum arabic, xanthan gum, karaya gum, and tara gum.
- The film-forming coagulating materials of the present invention stand in contrast to the heat-irreversible coagulating (i.e., gelling) glucans disclosed in U.S. Pat. Nos. 4,109,663, 5,778,899, 6,109,272, and 6,499,490, the disclosures of which are hereby incorporated by reference herein. Such heat-irreversible coagulating or gelling glucans are typically 1,3-β-glucans, as exemplified by curdlan. Unlike the heat-irreversible coagulating glucans, it is not necessary to apply heat to the cast emulsion in order to gel the matrix materials of the present invention. Second, in the practice of the present invention, it is desirable for the flavor-bearing sheets to release flavorant into the mainstream smoke prior to combustion of the flavor-bearing sheet in order to minimize loss of menthol to side stream smoke. This may be accomplished by any non-combustion release mechanism, whereby hot gases generated by the advancing fire cone induce decomposition of the flavor sheet. Without wishing to be bound by any theory, it is believed that water vapor produced by combustion of tobacco dissolves or decomposes the flavor-bearing sheets, thereby liberating the entrapped flavorant. This mechanism is not possible with the heat-irreversible coagulating glucans described above.
- The film-forming coagulating materials typically comprise between about 15 to about 80% by weight, more typically between about 50 to about 80% by weight, and preferably between about 60 to about 80% by weight of the flavor-bearing sheet.
- The flavor-bearing sheets comprise a flavorant. While it is contemplated that any flavorant will be useful, the advantages of the present invention will be most fully realized where the flavorant is a volatile flavorant. As used herein, the term “volatile flavorant” is intended to refer expansively to any flavorant which readily enters the gas phase through evaporation or sublimation at ambient temperatures. Thus, the term “volatile flavorant” is meant to specifically include, in addition to volatile oils, flavorants which are solid at room temperature but readily sublime, including for example menthol, camphor, vanillin and the like. Volatile flavorants suitable for flavoring tobacco smoke are well known in the art and include, without limitation, acetaldehyde, amyl acetate, anethole, anisole, benzaldehyde, benzylformate, 2,3-butanedione, butyraldehyde, camphor, 1-carvone, d-carvone, cinnamaldehyde, citral, citronellol, p-cresyl methyl ether, cymene, dihydrocarvone, dihydrocarveol, 2,4-dimethylacetophenone, dipropyl ketone, ethyl acetate, ethyl amyl ketone, ethylbutyrate, ethyl butyl ketone, ethyl valerate, ethyl vanillin, eucalyptol, eugenol, hexenal, geraniol, isoamyl isovalerate, limonene, linalool, menthol, menthone, 4-methyl benzaldehyde, methyl ethyl ketone, methyl hexyl ketone, methyl salicylate, 3-methyl valeric acid, pinene, d-piperitone, propylisobutyrate, pulegone, santalol, thujone, vanillin, zingerone and the like. Menthol is the preferred volatile flavorant.
- The volatile flavorant will typically comprise between about 10 to about 75% by weight, more typically between about 15 to about 50% by weight, and preferably between about 20 to about 30% by weight of the flavor-bearing sheet.
- Illustrative flavor-bearing sheet compositions include without limitation:
-
- a. polyethylene glycol (about 70 weight %); menthol (about 30 weight %)
- b. polylactic acid (about 70 weight %); menthol (about 30 weight %)
- c. sorbitol (about 79 weight %); menthol (about 20 weight %); sodium dodecylsulfate (about 1 weight %)
- d. hydrogenated starch hydrolysate (about 69 weight %); menthol (about 30 weight %); propylene glycol alginate (about 1 weight %)
- e. sodium carboxymethyl cellulose (about 69 weight %); menthol (about 30 weight %); sodium dodecylsulfate (about 1 weight %).
- In addition to the volatile flavorant, the flavor-bearing sheets may optionally contain one or more nonvolatile flavorants. Such flavorants are well-known in the art and include, for example, cocoa, licorice, powdered tobacco, tobacco extract and the like. Volatile flavorants stabilized in microcapsules may also be present in the flavor sheets.
- The flavor-bearing sheets may optionally comprise various additives such as fillers, emulsifiers, humectants, fragrances, colorants, burn rate modifiers and the like. In one interesting embodiment, the flavor-bearing sheets comprise an adsorbent material for removing gas phase components of mainstream smoke. Suitable adsorbent materials are described elsewhere herein.
- The flavor-bearing sheets may be prepared from solutions or emulsions comprising the film-forming coagulating material, volatile flavorants, and a solvent. The solvent is typically a protic solvent such as water, ethanol, glycerin, and combinations thereof. The film-forming coagulating material and volatile flavorants may be added to the solvent in any order. It is desirable to apply efficient stirring or agitation to achieve a homogenous solution or emulsion. Stirring may be accomplished with any conventional mixer, including vertical mixers, planetary mixers, high-shear mixers and the like. Heating may optionally be employed to increase the solubility or dispersibility of poorly miscible components. Temperatures of about 40 to about 60° C., and preferably about 50° C. have been found suitable for this purpose. It may be useful to employ an emulsifier to improve the stability of resultant emulsions.
- The mixtures are cast onto a substantially flat surface, such as a glass sheet, stainless steel belt or polystyrene block, to form a layer typically having a thickness of about 0.5 mm to about 3 mm, and preferably from about 0.5 mm to about 1.0 mm. It has been found desirable to employ a casting blade for this purpose. Solvent is removed by evaporation under ambient conditions to produce a dried sheet of the non-volatile vitreous matrix material having the volatile flavorant dispersed therein. Drying times will depend on the selection of solvent and drying method. For example ambient drying will typically range from about 8 hours to about 24 hours and force warm air drying (e.g., infrared lamp) will typically range from 5 to 45 minutes.
- The flavor-bearing sheets formed from the layer of the menthol mixture have a thickness typically ranging from about 2 mil to about 5 mil. It will be understood that the final moisture content of the flavor-bearing sheet will depend on the thickness of the flavor-bearing sheet as well as the atmospheric humidity. For example, a flavor-bearing sheet having a thickness of 5 mil may have a moisture content of 15%±5% and a flavor-bearing sheet having a thickness of 3 mil may have a moisture content of 10%±2%.
- b. Smokable Materials
- In one aspect of the invention, smokable materials are provided by shredding the flavor-bearing sheets described herein and mixing with shredded tobacco filler. The flavor-bearing sheets may be shredded with a paper shredder or the like to produce a plurality of shredded flavor-bearing sheets. The precise dimensions of the shredded flavor-bearing sheets are not critical. A confetti cut of about 1/32″ by about 7/16″ has been found to be useful. However, any other dimensions, such as, for example, a square cut of about 1/32″ by about 1/32″, are also within the scope of the invention.
- Alternatively, the flavor-bearing sheets may be pulverized to provide a powdered composition which can be added to shredded tobacco filler in essentially the same manner. In practice, it has been found less desirable to provide the compositions in the form of a powder due to the increase in total surface area from which menthol may migrate.
- The shredded flavor-bearing sheets are mixed with tobacco filler using any conventional method, including, by way of example, tumbling in a rotating drum mixer. The weight ratio of shredded flavor-bearing sheets to tobacco filler will typically range from about 1:100 to about 1:5 depending on the desired level of menthol delivery. Preferably, the weight ratio of shredded flavor-bearing sheets to tobacco filler will be from about 1:10 to 1:20.
- Any shredded tobacco may be used with the present invention. Examples of suitable tobaccos include, but are not limited to, flue-cured, Burley, Turkish, Oriental, expanded tobacco, and reconstituted tobacco. Other tobacco materials suitable for use in the present invention are described in U.S. Pat. No. 5,404,890 to Gentry et. al., the disclosure of which is hereby incorporated by reference. A preferred tobacco is low tobacco-specific nitrosoamine (low TSNA) tobacco. The tobacco may be treated with additives and the like according to conventional practice.
- c. Flavored Cigarettes
- In another aspect of the invention, flavored cigarettes are provided. Flavored cigarettes according to the invention typically comprise a paper-wrapped cylindrical column of tobacco. The tobacco column comprises shredded flavor-bearing sheets in admixture with cut tobacco filler, as described above.
- It is contemplated that the present invention may be applicable to cigarettes having filters, as well as cigarettes without filters. With regard to cigarettes having filters, the filter may be attached at the mouth or buccal end of the tobacco column. The filter may be attached to the tobacco column using any method known in the art, such as a conventional tipping overwrap.
- The filter may be any of various types of filters suitable for cigarettes. For example, the filter may comprises a plug (i.e., “tow”) of filter medium capable of removing particulate material from mainstream smoke. The filter plug may comprise fibrous, webbed, and corrugated materials, formed from polyolefins, polyesters, cellulosics and the like. Cellulosics may include paper and cellulose acetate fiber. While such filters are effective for removing particulate material such as tar from mainstream smoke, they are ineffective for removing or reducing gas phase constituents of mainstream smoke. Therefore, preferred filters will incorporate an adsorbent material, such as activated carbon or Sepiolite, in a section of the filter.
- As used herein, the term “adsorbent” is intended to have its ordinary and accustomed meaning in the art, but should not be construed as limiting the invention to any particular mechanism or mode of action by which gas-phase constituents in mainstream smoke are reduced. For instance, in accordance with the ordinary and accustomed nomenclature in the art, activated carbon and Sepiolite are referred to herein as an “adsorbents,” but carbons and minerals which reduce gas phase constituents by adsorption, absorption, chemisorption, or otherwise are contemplated as being within the scope of the invention.
- Suitable adsorbent materials for use in the filters of the present invention include, but are not limited to, activated carbon, zeolite, magnesium silicates, aluminum silicates, silica gel, meerschaum, aluminum oxide, and florisil. Synthetic adsorbents such as, for example, carbonaceous resins derived from the pyrolysis of sulfonated styrene-divinylbenzene and sold under the trademarks Ambersorb 572 or Ambersorb 563 (Rohm and Haas, 5000 Richmond Street, Philadelphia, Pa. 19137) may also be employed.
- Activated carbon adsorbents are preferred. Any activated carbon material may be used in the practice of the invention, including but not limited to carbon materials derived from coal, tobacco material, peat, wood pulp, coconut hulls, kapok fibers, cotton fibers, cotton linters, and the like. Activated carbon materials of any degree of activation (surface area) may be used according to the present invention. Preferably, the activated carbon materials will have a degree of activation so as to provide about 25 to about 125 weight percent pickup of carbon tetrachloride. More preferably, the activated carbon material will provide about 60 weight percent pickup of carbon tetrachloride. Any mesh size activated carbon is useful in the practice of the invention. However, larger mesh size activated carbons may provide advantages during the manufacture of the cigarette, particularly in those embodiments of the invention having a filter cavity which is charged with a bed of activated carbon. Preferred activated carbons are granular coconut carbons with a mesh size of about 18×40 U.S such as coconut hull based carbons available from Calgon Corp. as PCB, PCGB and GRC-11 and those available from PICA USA (Columbus, Ohio) as G278.
- Certain minerals are also preferred adsorbents in the practice of the invention. Suitable minerals include, for example, the hydrated magnesium silicate Sepiolite (TOLSA, S.A.) and the hydrated aluminum silicate Attapulgite (TOLSA, S.A.). Sepiolite and Attapulgite belong to the palygorskite family of minerals. They are lightweight, porous clays having a large specific surface and low chemical activity.
- In one embodiment, the filter comprises a so-called “dalmation” filter component. A dalmation component comprises a fibrous filter material, such as cellulose acetate, which has been impregnated with an adsorbent. Typically, the fibrous filter material is treated with a plasticizer, such as triacetin, followed by dispersion of the adsorbent particles into the fibrous material. Dalmation filter components, and their method of manufacture, are well known in the art as described in U.S. Pat. Nos. 6,257,242 B1 (Stpyridis), 5,622,190 (Arterbery et al.), 5,568,819 (Gentry et al.), 3,101,723 (Seligman et al.), the disclosures of which are hereby incorporated by reference.
- It is also known to incorporate adsorbents, such as activated carbon, into paper filter components. Accordingly, the filter may be provided as, for example, a cellulose acetate tow having a carbonaceous paper gathered within the tow or wrapped concentrically around the tow, as described in U.S. Pat. No. 5,568,819 (Gentry et al.), the contents of which are hereby incorporated by reference.
- In another embodiment, the filter is provided in a so-called “plug-space-plug” configuration. In this embodiment, the filter will comprise a first particulate filter component at the buccal end of the filter and a second particulate filter component abutting the tobacco rod. The particulate filter components may be formed from any material suitable for removing particulates from mainstream smoke, as described above. The first and second particulate filter components are spaced apart to form a filter cavity therebetween. The filter including all three components is circumscribed by a conventional paper wrapper. The filter cavity will contain a bed of filter material comprising a gas phase adsorbent, such as granular activated carbon. The cavity is preferably filled to a 90% full condition, and more preferably to at least a 95% full condition, with the adsorbent filter medium. The amount of adsorbent should be selected to achieve the most effective gas phase reduction within the limits of the smoking article. Preferably, the cavity is filled with about 125 mg to about 150 mg of activated carbon. In one interesting embodiment, the cavity is charged with activated carbon and Sepiolite in weight ratio ranging from 0:100 to 100:0.
- The cigarettes of the invention are not limited to any dimension. Typical cigarettes are cylindrically shaped rods having circumferences of about 22 mm to about 25 mm. The cigarette may be any length, including but not limited to, 80 mm, 84 mm, and 99 mm. In a preferred embodiment, the cigarette is 84 mm long and the downstream tow is 10 mm in length. The cavity ranges from about 3 mm to about 8 mm in length, and is preferably between about 5 mm and about 6 mm in length. In an embodiment where the cavity is 5 mm in length, the upstream tow is 10 mm in length. In another embodiment, the cavity is 6 mm in length and the upstream tow is 9 mm in length.
- In another preferred embodiment, the cigarette is 99 mm long and the downstream tow is 10 mm in length. The cavity ranges from about 3 mm to about 8 mm in length, and is preferably between about 5 mm and about 6 mm in length. In an embodiment where the cavity is 5 mm in length, the upstream tow is 12 mm in length. In another embodiment, the cavity is 6 mm in length and the upstream tow is 11 mm in length.
- Ventilation may be provided by one or more circumferential rows of perforations through the tipping paper. The perforations may be located between the upstream and downstream ends of the filter cavity containing the adsorbent. Ventilation is preferably provided in the filter cavity by perforations located 14.5 mm from the buccal end of the downstream tow. As is well-known, ventilation reduces the amount of mainstream smoke reaching the smoker through dilution by ambient air and also tends to increase filtration efficiency by decreasing the velocity of mainstream smoke upstream of the perforations and thereby increasing its residence time in the filter.
- Examples of commercially available adsorbent filters include Caviflex, Dualcoal, Recessed Dualcoal, Sel-X-4, and Triple Filter from Baumartner Fibertec (Switzerland); Active Acetate Dual, Active Charcoal Triple Solid, Active Myria White, Active Patch Mono, Adsorbent Coated Thread, Triple Granular, and V.P.A. Dual from Filtrona International Incorporated (Milton Keynes, U.K.), each of which are contemplated to be useful in the practice of the invention.
- The wrapping papers and tipping papers used in the practice of the invention may be any of the papers known in the art, including low-sidestream paper and reduced ignition propensity paper such as those disclosed in U.S. Pat. No. 6,837,248 to Zawadzki et al., which is hereby incorporated by reference.
- The present invention is not limited to the filter designs described above. It is contemplated that other filter arrangements are suitable for use with the present invention, including but not limited to those described in European Patent Application No. 579,410 and U.S. Pat. Nos. 5,568,819 (Gentry et al.), 5,365,951 (Arterbery et al.), 5,067,499 (Banerjee et al.), 4,881,556 (Clearman et al.), 4,357,950 (Berger et al.), 3,894,545 (Crellin et al.), which are hereby incorporated by reference. It will be appreciated by one skilled in the art that certain modifications and variations of the above described embodiments are within the scope of the invention.
- The following non-limiting examples are provided to illustrate various embodiments and attributes of the present invention. Examples 1-4 demonstrate various embodiments of the flavor bearing sheet of the present invention.
- A flavor-bearing sheet according to the present invention is provided by mixing 100 g of carboxymethyl cellulose with 900 g of water using an electric overhead stirrer to yield a 10% by weight aqueous carboxymethyl cellulose solution. To the solution was added 100 mg of sodium dodecylsulfate and the mixture was warmed to 50° C. 25 g of menthol was added and the mixture was stirred until the menthol was melted and homogenously dispersed into the solution. The mixture was allowed to cool to room temperature with continued stirring. The mixture was then cast onto polystyrene blocks using a casting blade set to 1.5 mm thickness and dried overnight under ambient conditions. The resultant sheet was separated from the polystyrene block and shredded to a confetti cut of about 1/32″ by about 7/16″ with a paper shredder.
- Another embodiment of a flavor-bearing sheet of the present invention is provided by slowly adding 11 g of carboxymethyl cellulose to a mixture of 190 g of water, 1 g of insoluble cellulose, and 0.5 g of caramel coloring. The mixture was continuously stirred at 500-1000 rpm for about 30 minutes until the carboxymethyl cellulose dissolved resulting in a brown opaque viscous mixture without lumps.
- Separately, a menthol solution consisting of 9.5 g of propylene glycol, 2.4 g of glycerol, 11.9 g of menthol, and 0.09 g of
polysorbate 80 were stirred together until dissolved. The opaque viscous carboxymethol cellulose mixture was placed in a warm water bath at about 50° C. and the menthol solution was added. The mixture was stirred at 500-1000 rpm until creamy (about 15 minutes). The mixture was cast onto glass plates coated with cooking spray at 1.0 mm thickness and dried in oven at 90° C. for 45 minutes. - A further embodiment of a flavor bearing sheet of the present invention is provided by stirring 1 g of an insoluble cellulose with 112 g of water at 300 rpm for 10 minutes. 11 g of pectin powder was then stirred into the mixture before it was heated to 185° F. The pectin mixture was removed from the heat and the viscous liquid was allowed to cool to room temperature with stirring.
- Separately, a menthol mixture consisting of 7.2 g of propylene glycol, 1.8 g of glycerol, 9 g of menthol, and 0.13 g of
polysorbate 80 was stirred together until dissolved. The menthol solution was stirred into the pectin mixture at 500 rpm in a warm water bath at 50° C. for 20 minutes. The mixture was cast onto glass plates coated with cooking spray at 1.0 mm thickness and dried in oven at 90° C. for 45 minutes. - In another embodiment of the a flavor bearing sheet of the present invention 5 g of sodium alginate and 2 g of Gum Arabic were sprinkled into a stirred solution of 95 g of water and 4 g of propylene glycol and stirred until the solids dissolved. 4 g of solid menthol and 0.35 g of sodium dodecylsulfate were added and stirred into the mixture in a warm water bath at 50° C. for 20 minutes. The mixture was cast onto glass plates coated with cooking spray at 1.0 mm thickness and dried in oven at 90° C. for 30 minutes.
- The following example demonstrates the improvement in film quality of the flavor bearing sheet of the present invention by adding propylene glycol.
- Five flavor bearing sheets were prepared having the ratio of ingredients as set forth in the following table. In each of these sheets 0.10 g of sodium dodecylsulfate was used as the emulsifier and the sheets were dried under an infrared lamp.
-
Propylene Carboxymethyl Sample Glycol Menthol Cellulose Sheet 1: 5% 30% 65% Sheet 2: 15% 30% 55% Sheet 3: 25% 30% 45% Sheet 4: 35% 30% 35% Sheet 5: 45% 30% 25% -
Sheet 1 exhibited visible streaks of crystallized menthol in the finished sheet and on the surface whileSheet 2 had less.Sheets - The following example demonstrates the improvement in film quality of the flavor bearing sheet of the present invention by adding glycerol, and the improvement in the taste quality of cigarettes made with such flavor bearing sheet.
-
Flavor bearing sheet 1 was prepared by dissolving 12 g of carboxymethyl cellulose into a solution of 108 g of water and 9 g of propylene glycol. When the carboxymethyl cellulose was dissolved (after about 30 minutes), the mixture was stirred in a warm water bath where 9 g of solid menthol and 0.1 g of sodium dodecysulfate were added to the mixture. The mixture was stirred about 15 minutes until the menthol melted to yield a creamy mixture. The mixture was cast onto a polystyrene plate at 1.0 mm thickness and dried under an infrared lamp for 30 minutes, then air-dried until dry to the touch. -
Flavor bearing sheet 2 was prepared by dissolving 12 g of carboxymethyl cellulose into a solution of 108 g of water, 6 g of propylene glycol, and 3 g of glycerol. When the carboxymethyl cellulose was dissolved (after about 30 minutes), the mixture was stirred in a warm water bath where 9 g of solid menthol and 0.1 g of sodium dodecysulfate were added to the mixture. The mixture was stirred about 15 minutes until the menthol melted to yield a creamy mixture. The mixture was cast onto a polystyrene plate at 1.0 mm thickness and dried under an infrared lamp for 30 minutes, then air-dried until dry to the touch. It was observed thatflavor bearing sheet 2 was more flexible thanflavor bearing sheet 1. - The prepared flavor bearing sheets were cut and blended with tobacco to make cigarettes. Three out of four panelists preferred the taste of cigarettes having
flavor bearing sheet 2 containing glycerol compared to the taste of cigarettes havingflavor bearing sheet 1. - Examples 7-9 provide stability studies of various embodiments of flavor bearing sheets of the present invention described in the Examples above to evaluate their ability to retain menthol when exposed to atmospheric conditions.
- Samples of shredded flavor bearing sheets of Example 1 were weighed into vials and left open to ambient conditions for 14 days. Control samples of mentholated tobacco prepared by spraying tobacco with an ethanolic solution of menthol were similarly weighed into open vials. The control samples were obtained from freshly prepared Newport® brand cigarettes. Menthol content of the shredded flavor bearing sheet samples and control samples was determined by measuring weight loss after 1, 2, 3, 4, 7, and 14 days exposure to ambient conditions. The results are plotted in
FIG. 1 as the percentage loss of menthol based on the initial weight. - As illustrated in
FIG. 1 , about 20% of the menthol was lost from the shredded flavor-bearing sheets over the first day followed by a rapid stabilization in menthol loss. Without wishing to be bound by any theory, it is believed that the initial menthol loss might be explained by the migration of loosely encapsulated menthol at or near the surface or the sheet. After loss of loosely encapsulated menthol over the first day, only about 10% additional menthol is lost over the next 13 days, with a total menthol loss after 14 days of about 25%. In the control samples, a very slight increase in weight was observed over the first three days. It is believed that this effect may arise due to the hydroscopic nature of dried tobacco which allows it to absorb water from the air, thereby preventing the menthol loss to be accurately measured until the tobacco moisture levels establish equilibrium with ambient water over the first three days. Thereafter, the weight loss in the control samples rapidly accelerates to yield a total weight loss of about 50% after 14 days. - Flavor bearing sheets as prepared in Examples 5 and 6 were shredded. Twenty samples of each flavor bearing sheet were weighed into vials (40 mg each) and left open to allow menthol to evaporate. Mentholated tobacco from a commercial product was likewise weighed into 20 vials. Three vials from each sample were extracted and evaluated for menthol content weekly for 4 weeks. As shown in
FIG. 2 , the mentholated sheets showed superior retention of menthol when compared to conventional mentholated tobacco. - This example demonstrates the improvement in the retention of menthol in the flavor bearing sheet by using an infrared lamp to quickly dry the flavor bearing sheet before separation of a hydrophobic flavor from the aqueous medium.
- In this example, a flavor bearing sheet according to the present invention was prepared by slowly admixing 22.5 g of carboxymethyl cellulose to a solution of 0.9 g of propylene glycol, 0.1 g of sodium dodecylsulfate (0.1 g), and 150 g of water stirred at 500 rpm. The mixture was stirred an additional 30 minutes until the carboxymethyl cellulose dissolved to yield a clear viscous liquid. The mixture was placed in a warm water bath at 50° C. while 7.5 g of solid menthol was added. The mixture was stirred warm for 15 minutes at which time the menthol had completely dispersed into a creamy emulsion.
- About one-half of the mixture was cast onto a polystyrene plate at 0.75 mm thickness and allowed to dry ambiently overnight. The resulting sheet had a rough texture on the top surface with a noticable amount of crystalline menthol on the surface of the film.
- The other half of the mixture was cast onto a polystyrene plate at 0.75 mm thickness and dried under an infrared lamp to speed the drying of the film. The resulting sheet was smooth on both surfaces and had very little evidence of crystalline menthol at the surface.
- As shown in
FIG. 3 , the flavor sheet sample that was dried quickly by the infrared lamp proved to be superior compared to the air dried flavor sheet sample with regard to the retention of menthol over a 4 week period. - Examples 10 and 11 provide stability studies of menthol in a shredded flavor bearing sheet included in the tobacco rod of a cigarette.
- A smokable composition was prepared by mixing 2.20 pounds of the shredded flavor-bearing sheets of Example 1 with 25.0 pounds of cut tobacco for four revolutions in a rotating drum. Cigarettes having plug-space-plug filters were prepared with the resultant mixture. The cigarette filters had a 10 mm plug of fiber tow at the buccal end, a 9 mm plug of fiber tow at the upstream end and a 6 mm cavity charged with 150 mg of sepiolite granules. The mean menthol content of each cigarette was 7.52 mg with a Relative Standard Deviation of 10.0%. As shown in
FIG. 4 , after 47 weeks in a sealed package, the menthol levels in the mainstream smoke of the cigarettes was greater than 70% of the initial value. -
FIG. 5 shows a comparison of the menthol levels in the mainstream smoke of the cigarettes of Example 10 having shredded menthol sheets of the present invention prepared according to Example 1 and conventional carbon filter cigarettes having mentholated tobacco prepared by spraying tobacco with an ethanolic solution of menthol. As illustrated inFIG. 5 , after about 10 weeks in sealed packs, the menthol levels in the mainstream smoke of the cigarettes having the shredded mentholated sheets is superior to that of the conventional cigarettes having the ethanolic menthol solution sprayed on the tobacco. - A flavor bearing sheet according to the present invention is provided by dissolving 48 g of carboxymethyl cellulose in a solution of 3.6 g propylene glycol and 352 g water with mechanical stirring. 20.5 g of solid menthol was added to the viscous liquid and the mixture was stirred in a warm water bath until all of the menthol had melted. 0.4 g of sodium dodecylsulfate was added and the mixture was stirred vigorously at 800 rpm for 1 minute. The warm water bath was exchanged for a cool water bath and the mixture was stirred for 10 minutes to bring the mixture to room temperature. The mixture was cast onto PTFE-coated glass plates at a thickness of 1.0 mm and dried under an infrared lamp for 30 minutes. The sheets were then placed under a fan until dry to the touch, and shredded to 1/32″× 7/16″ strips using a paper shredder. In this manner, 3500 g of the mentholated sheet was prepared.
- The shredded sheet was loaded into a metered solids addition funnel and the discharge was directed into the tobacco flow of a cigarette maker. The mentholated sheet was added at 60.0 g/min while the maker speed was set to 1100 cig/min to give an average content of 54 mg sheet per cigarette. The cigarettes were packed and evaluated weekly for menthol delivery. The menthol delivery in the mainstream smoke is plotted in
FIG. 6 . In addition, the cigarettes were evaluated monthly for taste. As shown inFIG. 7 , the menthol taste intensity of the cigarettes was deemed to be acceptable for at least six months after packaging. - Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. It should be understood that all such modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the following claims.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/835,092 US20090038629A1 (en) | 2007-08-07 | 2007-08-07 | Flavor sheet for smoking article |
PCT/US2008/072307 WO2009021018A1 (en) | 2007-08-07 | 2008-08-06 | Flavor sheet for smoking article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/835,092 US20090038629A1 (en) | 2007-08-07 | 2007-08-07 | Flavor sheet for smoking article |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090038629A1 true US20090038629A1 (en) | 2009-02-12 |
Family
ID=40341699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/835,092 Abandoned US20090038629A1 (en) | 2007-08-07 | 2007-08-07 | Flavor sheet for smoking article |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090038629A1 (en) |
WO (1) | WO2009021018A1 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110061667A1 (en) * | 2008-05-19 | 2011-03-17 | Yasuo Tanaka | Flavor-containing material for cigarette, process for producing the same, and cigarette |
US20120121511A1 (en) * | 2010-11-12 | 2012-05-17 | Los Alamos National Security, Llc | Infection detection methods and systems and related compounds and compositions |
US20130019884A1 (en) * | 2010-03-26 | 2013-01-24 | Japan Tobacco Inc. | Cigarette with increased volatile flavor delivery |
CN103169154A (en) * | 2011-12-23 | 2013-06-26 | 马鞍山同杰良生物材料有限公司 | Compound filter tip bar and preparation method thereof |
CN104351946A (en) * | 2014-10-22 | 2015-02-18 | 浙江中烟工业有限责任公司 | Cigarette filter rod for selectively reducing phenol content in smoke gas of cigarettes as well as preparation method and application of cigarette filter rod |
US20150107611A1 (en) * | 2012-05-31 | 2015-04-23 | Philip Morris Products S.A. | Electrically operated aerosol generating system |
US20150107610A1 (en) * | 2012-05-31 | 2015-04-23 | Philip Morris Products S.A. | Flavoured rods for use in aerosol-generating articles |
US9089163B2 (en) | 2010-12-01 | 2015-07-28 | Tobacco Research And Development Institute (Proprietary) Limited | Feed mechanism |
US9462828B2 (en) | 2009-03-09 | 2016-10-11 | British American Tobacco (Investments) Limited | Apparatus for introducing objects into filter rod material |
CN106333385A (en) * | 2016-08-26 | 2017-01-18 | 云南养瑞科技集团有限公司 | Filter stick for short cigarettes |
CN107259638A (en) * | 2017-06-23 | 2017-10-20 | 湖北中烟工业有限责任公司 | It is a kind of that there is the low temperature cigarette for reducing flue-gas temperature and flavouring function |
US10470488B2 (en) | 2011-09-09 | 2019-11-12 | Philip Morris Products S.A. | Smoking article comprising a flavour delivery material |
US10568357B2 (en) | 2012-05-31 | 2020-02-25 | Philip Morris Products S.A. | Thermally conducting rods for use in aerosol-generating articles |
US20210015170A1 (en) * | 2019-07-15 | 2021-01-21 | Bio-On S.P.A. | Aerosol-generating articles suitable for use in aerosol-generating devices |
KR20210031980A (en) * | 2018-07-31 | 2021-03-23 | 니코벤처스 트레이딩 리미티드 | Aerosol-generating substrate |
US11039642B2 (en) | 2011-12-30 | 2021-06-22 | Philip Morris Products S.A. | Smoking article with front-plug and aerosol-forming substrate and method |
CN113347894A (en) * | 2018-07-31 | 2021-09-03 | 尼科投资贸易有限公司 | Aerosol generation |
US11140916B2 (en) | 2012-02-13 | 2021-10-12 | Philip Morris Products S.A. | Aerosol-generating article having an aerosol-cooling element |
WO2021221290A1 (en) * | 2020-04-29 | 2021-11-04 | 주식회사 케이티앤지 | Coating composition of low ignition propensity cigarette paper, smoking article using same, and method for manufacturing low ignition propensity cigarette paper |
CN113951537A (en) * | 2021-11-18 | 2022-01-21 | 湖北中烟工业有限责任公司 | Preparation method of high-thermal-conductivity heating non-combustion menthol slow-release material |
US11272731B2 (en) | 2011-12-30 | 2022-03-15 | Philip Morris Products S.A. | Aerosol-generating article for use with an aerosol-generating device |
US11278052B2 (en) | 2012-06-21 | 2022-03-22 | Philip Morris Products S.A. | Smoking article for use with an internal heating element |
EP3986170A4 (en) * | 2020-08-25 | 2022-04-27 | KT&G Corporation | Flavor containing sheet comprising modified cellulose and smoking article comprising the same |
CN114403499A (en) * | 2021-12-13 | 2022-04-29 | 江苏大亚滤嘴材料有限公司 | Flavor essence and application thereof in flavoring hollow-tube filter sticks |
JP2022533917A (en) * | 2019-05-24 | 2022-07-27 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Novel aerosol-generating substrate |
CN114938861A (en) * | 2022-06-30 | 2022-08-26 | 安徽中烟工业有限责任公司 | Traditional cigarette flavoring particle coating material and application thereof |
CN115484837A (en) * | 2019-11-29 | 2022-12-16 | 尼科创业贸易有限公司 | Aerosol generation comprising an amorphous solid with alginate and pectin as gelling agents |
US11528932B2 (en) * | 2016-11-30 | 2022-12-20 | Japan Tobacco Inc. | Flavor-containing sheet for smoking article and smoking article comprising the same |
US11582998B2 (en) | 2011-12-30 | 2023-02-21 | Philip Morris Products S.A. | Smoking article with front-plug and method |
US20230118168A1 (en) * | 2020-01-30 | 2023-04-20 | Nicoventures Trading Limited | Aerosol generation |
US20230136497A1 (en) * | 2020-08-25 | 2023-05-04 | Kt&G Corporation | Flavor containing sheet comprising lm-pectin for smoking articles and smoking article comprising the same |
CN116367736A (en) * | 2021-04-29 | 2023-06-30 | 韩国烟草人参公社 | Tobacco extract sheet, its preparation method and smoking article containing it |
JPWO2023163112A1 (en) * | 2022-02-25 | 2023-08-31 | ||
US20240138468A1 (en) * | 2010-03-26 | 2024-05-02 | Philip Morris Usa Inc. | Smoking article using a continuous structure of an encapsulated material |
JP2024530097A (en) * | 2022-07-26 | 2024-08-16 | ケーティー アンド ジー コーポレイション | Fragrant sheet containing activated carbon, filter and smoking article containing same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201101714D0 (en) * | 2011-02-01 | 2011-03-16 | British American Tobacco Co | Smoking article |
MY167285A (en) | 2012-03-28 | 2018-08-15 | Japan Tobacco Inc | Cut Piece of Flavor-Containing Sheet for Smoking Article |
EP3973794A4 (en) * | 2019-05-21 | 2022-12-21 | Japan Tobacco Inc. | Fragrance-containing sheet for heating-type flavor inhaler, and heating-type flavor inhaler |
GB201917484D0 (en) * | 2019-11-29 | 2020-01-15 | Nicoventures Trading Ltd | Aerosol generation |
GB201917472D0 (en) * | 2019-11-29 | 2020-01-15 | Nicoventures Trading Ltd | Aerosol generation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030154993A1 (en) * | 2002-01-09 | 2003-08-21 | Paine John B. | Cigarette filter with beaded carbon |
US20050039767A1 (en) * | 2002-11-19 | 2005-02-24 | John-Paul Mua | Reconstituted tobacco sheet and smoking article therefrom |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4715390A (en) * | 1985-11-19 | 1987-12-29 | Philip Morris Incorporated | Matrix entrapment of flavorings for smoking articles |
EP0691083B1 (en) * | 1994-01-26 | 1998-12-16 | Japan Tobacco Inc. | Flavor generating article |
US6225434B1 (en) * | 1997-08-01 | 2001-05-01 | Ppg Industries Ohio, Inc. | Film-forming compositions having improved scratch resistance |
EA006748B1 (en) * | 2002-04-12 | 2006-04-28 | Филип Моррис Продактс, С. А. | Activated carbon fiber cigarette filter |
EP1648362A4 (en) * | 2003-07-01 | 2012-01-11 | Todd Maibach | FILM CONTAINING THERAPEUTIC AGENTS |
-
2007
- 2007-08-07 US US11/835,092 patent/US20090038629A1/en not_active Abandoned
-
2008
- 2008-08-06 WO PCT/US2008/072307 patent/WO2009021018A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030154993A1 (en) * | 2002-01-09 | 2003-08-21 | Paine John B. | Cigarette filter with beaded carbon |
US20050039767A1 (en) * | 2002-11-19 | 2005-02-24 | John-Paul Mua | Reconstituted tobacco sheet and smoking article therefrom |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110061667A1 (en) * | 2008-05-19 | 2011-03-17 | Yasuo Tanaka | Flavor-containing material for cigarette, process for producing the same, and cigarette |
US9462828B2 (en) | 2009-03-09 | 2016-10-11 | British American Tobacco (Investments) Limited | Apparatus for introducing objects into filter rod material |
US9101165B2 (en) * | 2010-03-26 | 2015-08-11 | Japan Tobacco Inc. | Cigarette with increased volatile flavor delivery |
US20130019884A1 (en) * | 2010-03-26 | 2013-01-24 | Japan Tobacco Inc. | Cigarette with increased volatile flavor delivery |
US20240138468A1 (en) * | 2010-03-26 | 2024-05-02 | Philip Morris Usa Inc. | Smoking article using a continuous structure of an encapsulated material |
EP2550877A4 (en) * | 2010-03-26 | 2017-03-22 | Japan Tobacco, Inc. | Cigarette with increased volatile-flavor delivery |
US20120121511A1 (en) * | 2010-11-12 | 2012-05-17 | Los Alamos National Security, Llc | Infection detection methods and systems and related compounds and compositions |
US9089163B2 (en) | 2010-12-01 | 2015-07-28 | Tobacco Research And Development Institute (Proprietary) Limited | Feed mechanism |
US10092032B2 (en) | 2010-12-01 | 2018-10-09 | Tobacco Research And Development Institute (Proprietary) Limited | Feed mechanism |
US9101166B2 (en) | 2010-12-01 | 2015-08-11 | Tobacco Research And Development Institute (Proprietary) Limited | Feed mechanism |
US10470488B2 (en) | 2011-09-09 | 2019-11-12 | Philip Morris Products S.A. | Smoking article comprising a flavour delivery material |
CN103169154A (en) * | 2011-12-23 | 2013-06-26 | 马鞍山同杰良生物材料有限公司 | Compound filter tip bar and preparation method thereof |
US11582998B2 (en) | 2011-12-30 | 2023-02-21 | Philip Morris Products S.A. | Smoking article with front-plug and method |
US11039642B2 (en) | 2011-12-30 | 2021-06-22 | Philip Morris Products S.A. | Smoking article with front-plug and aerosol-forming substrate and method |
US11272731B2 (en) | 2011-12-30 | 2022-03-15 | Philip Morris Products S.A. | Aerosol-generating article for use with an aerosol-generating device |
US12256772B2 (en) | 2011-12-30 | 2025-03-25 | Philip Morris Products S.A. | Aerosol-generating article for use with an aerosol-generating device |
US11140916B2 (en) | 2012-02-13 | 2021-10-12 | Philip Morris Products S.A. | Aerosol-generating article having an aerosol-cooling element |
AU2013269592B2 (en) * | 2012-05-31 | 2017-03-02 | Philip Morris Products S.A. | Electrically operated aerosol generating system |
US10010110B2 (en) * | 2012-05-31 | 2018-07-03 | Philip Morris Products S.A. | Electrically operated aerosol generating system |
US10568357B2 (en) | 2012-05-31 | 2020-02-25 | Philip Morris Products S.A. | Thermally conducting rods for use in aerosol-generating articles |
RU2621661C1 (en) * | 2012-05-31 | 2017-06-06 | Филип Моррис Продактс С.А. | Electric aerosol-generating system |
US20150107610A1 (en) * | 2012-05-31 | 2015-04-23 | Philip Morris Products S.A. | Flavoured rods for use in aerosol-generating articles |
US20150107611A1 (en) * | 2012-05-31 | 2015-04-23 | Philip Morris Products S.A. | Electrically operated aerosol generating system |
US11571017B2 (en) * | 2012-05-31 | 2023-02-07 | Philip Morris Products S.A. | Flavoured rods for use in aerosol-generating articles |
US12201141B2 (en) | 2012-06-21 | 2025-01-21 | Philip Morris Products S.A. | Smoking article for use with an internal heating element |
US11278052B2 (en) | 2012-06-21 | 2022-03-22 | Philip Morris Products S.A. | Smoking article for use with an internal heating element |
CN104351946A (en) * | 2014-10-22 | 2015-02-18 | 浙江中烟工业有限责任公司 | Cigarette filter rod for selectively reducing phenol content in smoke gas of cigarettes as well as preparation method and application of cigarette filter rod |
CN106333385A (en) * | 2016-08-26 | 2017-01-18 | 云南养瑞科技集团有限公司 | Filter stick for short cigarettes |
US11528932B2 (en) * | 2016-11-30 | 2022-12-20 | Japan Tobacco Inc. | Flavor-containing sheet for smoking article and smoking article comprising the same |
US11805803B2 (en) | 2016-11-30 | 2023-11-07 | Japan Tobacco Inc. | Flavor-containing sheet for smoking article and smoking article comprising the same |
CN107259638A (en) * | 2017-06-23 | 2017-10-20 | 湖北中烟工业有限责任公司 | It is a kind of that there is the low temperature cigarette for reducing flue-gas temperature and flavouring function |
US12156537B2 (en) | 2018-07-31 | 2024-12-03 | Nicoventures Trading Limited | Aerosol generating article with wrapper comprising aerosol-forming material |
US12096787B2 (en) | 2018-07-31 | 2024-09-24 | Nicoventures Trading Limited | Aerosol generating substrate |
KR102720556B1 (en) * | 2018-07-31 | 2024-10-21 | 니코벤처스 트레이딩 리미티드 | Aerosol generating device |
CN114040685A (en) * | 2018-07-31 | 2022-02-11 | 尼科创业贸易有限公司 | aerosol-generating substrates |
CN113347894A (en) * | 2018-07-31 | 2021-09-03 | 尼科投资贸易有限公司 | Aerosol generation |
KR20210031980A (en) * | 2018-07-31 | 2021-03-23 | 니코벤처스 트레이딩 리미티드 | Aerosol-generating substrate |
JP2022533917A (en) * | 2019-05-24 | 2022-07-27 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | Novel aerosol-generating substrate |
JP7561142B2 (en) | 2019-05-24 | 2024-10-03 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | New aerosol generating substrate |
US20210015170A1 (en) * | 2019-07-15 | 2021-01-21 | Bio-On S.P.A. | Aerosol-generating articles suitable for use in aerosol-generating devices |
CN115484837A (en) * | 2019-11-29 | 2022-12-16 | 尼科创业贸易有限公司 | Aerosol generation comprising an amorphous solid with alginate and pectin as gelling agents |
US20230118168A1 (en) * | 2020-01-30 | 2023-04-20 | Nicoventures Trading Limited | Aerosol generation |
WO2021221290A1 (en) * | 2020-04-29 | 2021-11-04 | 주식회사 케이티앤지 | Coating composition of low ignition propensity cigarette paper, smoking article using same, and method for manufacturing low ignition propensity cigarette paper |
US20230136497A1 (en) * | 2020-08-25 | 2023-05-04 | Kt&G Corporation | Flavor containing sheet comprising lm-pectin for smoking articles and smoking article comprising the same |
US20220295870A1 (en) * | 2020-08-25 | 2022-09-22 | Kt&G Corporation | Flavor containing sheet comprising modified cellulose and smoking article comprising the same |
EP3986170A4 (en) * | 2020-08-25 | 2022-04-27 | KT&G Corporation | Flavor containing sheet comprising modified cellulose and smoking article comprising the same |
CN116367736A (en) * | 2021-04-29 | 2023-06-30 | 韩国烟草人参公社 | Tobacco extract sheet, its preparation method and smoking article containing it |
CN113951537A (en) * | 2021-11-18 | 2022-01-21 | 湖北中烟工业有限责任公司 | Preparation method of high-thermal-conductivity heating non-combustion menthol slow-release material |
CN114403499A (en) * | 2021-12-13 | 2022-04-29 | 江苏大亚滤嘴材料有限公司 | Flavor essence and application thereof in flavoring hollow-tube filter sticks |
JPWO2023163112A1 (en) * | 2022-02-25 | 2023-08-31 | ||
CN114938861A (en) * | 2022-06-30 | 2022-08-26 | 安徽中烟工业有限责任公司 | Traditional cigarette flavoring particle coating material and application thereof |
JP2024530097A (en) * | 2022-07-26 | 2024-08-16 | ケーティー アンド ジー コーポレイション | Fragrant sheet containing activated carbon, filter and smoking article containing same |
JP7677571B2 (en) | 2022-07-26 | 2025-05-15 | ケーティー アンド ジー コーポレイション | Fragrant sheet containing activated carbon, filter and smoking article containing same |
Also Published As
Publication number | Publication date |
---|---|
WO2009021018A1 (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090038629A1 (en) | Flavor sheet for smoking article | |
US20250160386A1 (en) | Tobacco composition | |
US12075822B2 (en) | Capsule for tobacco industry product | |
US20210219601A1 (en) | Filter for aerosol generating device | |
US7856988B2 (en) | Method of making reconstituted tobacco with bonded flavorant | |
RU1831300C (en) | Cigarette | |
US20120152264A1 (en) | Aerosol Generating Material for a Smoking Article | |
US20180279666A1 (en) | Aerosol generating material and devices including the same | |
JP7530975B2 (en) | Tobacco Composition | |
CN1217634A (en) | Smokable filler material for smoking articles | |
WO2021165418A1 (en) | Smokeless article | |
US20220386685A1 (en) | Smokeless article | |
RU2802648C2 (en) | Tobacco composition | |
TW202512942A (en) | Solid flavour-generating material for use in a flavour delivery system | |
JP2025510880A (en) | Compositions Comprising Aerosol-Forming Materials and Binders and Uses Thereof - Patent application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LORILLARD LICENSING COMPANY, L.L.C., NORTH CAROLIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ERGLE, J. DENNIS;ZAWADZKI, MICHAEL A.;YEE, SIMON F.;REEL/FRAME:019660/0582;SIGNING DATES FROM 20070725 TO 20070801 |
|
AS | Assignment |
Owner name: LORILLARD LICENSING COMPANY, L.L.C., NORTH CAROLIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ERGLE, J. DENNIS;ZAWADSKI, MICHAEL A.;LEE, SIMON F.;REEL/FRAME:019722/0765;SIGNING DATES FROM 20070725 TO 20070801 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |