US20090001075A1 - Container - Google Patents

Container Download PDF

Info

Publication number
US20090001075A1
US20090001075A1 US12/147,765 US14776508A US2009001075A1 US 20090001075 A1 US20090001075 A1 US 20090001075A1 US 14776508 A US14776508 A US 14776508A US 2009001075 A1 US2009001075 A1 US 2009001075A1
Authority
US
United States
Prior art keywords
container
floor
wood
steel
container according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/147,765
Inventor
Sidong He
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China International Marine Containers Group Co Ltd
Original Assignee
China International Marine Containers Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China International Marine Containers Group Co Ltd filed Critical China International Marine Containers Group Co Ltd
Assigned to CHINA INTERNATIONAL MARINE CONTAINERS (GROUP) LTD. reassignment CHINA INTERNATIONAL MARINE CONTAINERS (GROUP) LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HE, SIDONG
Publication of US20090001075A1 publication Critical patent/US20090001075A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • B65D88/121ISO containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/023Modular panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/08Interconnections of wall parts; Sealing means therefor

Definitions

  • the present invention relates to a large scale rigid container for material transportation, and more particularly to a container for transporting freight.
  • Containers as freight carriers, have been widely applied in the international transport since 1960s, each of them usually comprises a bottom frame for supporting the freight; a roof panel arranged just over and in parallel with the bottom frame with a certain distance; two side walls formed by vertically upward extending the bottom frame in the direction of its length to the roof panel; and two end walls formed by vertically upward extending the bottom frame in the direction of its width to the roof panel, wherein the bottom frame, the two end walls, the two side walls and the roof panel form an enclosed hexahedral box structure.
  • a door structure element is arranged on the side wall or the end wall.
  • the traditional strategy is to pave wood floors on the bottom frame of the container; however, with the increasing attention to the forest protection in the world, the wood materials are more and more difficult to be available, because such wood materials are mainly from tropical rain forest area. Accordingly, it is always a difficult problem in the container industry on how to reduce the consuming amount of the wood materials for manufacturing the container so as to save resource.
  • An object of the present invention is to provide a container, which can effectively save wood materials and have excellent strength.
  • a container comprises a bottom frame including two parallel bottom side rails and two bottom end rails transversally connected to corresponding ends of the two bottom side rails; a case body arranged on and connected to the bottom frame; corner posts arranged at the case body and extending in a height direction of the case body; and one or more wood floors and one or more steel floors extending along the length direction of the bottom side rail, which are alternately arranged in parallel with the bottom side rails and fixed between the two bottom end rails, wherein an upper surface of the steel floor is flush with an upper surface of the wood floor.
  • the steel floor may be an element configured in such a way that a middle portion thereof is bulged to form a flat top acting as a steel floor surface; and the container may further comprise bottom cross members provided between the two sides of the element and the two bottom side rails respectively, wherein the wood floor is fixed on an upper surface of the bottom cross member, and the upper surface of the bottom cross member is lower than the steel floor surface in such a way that a height difference between the upper surface of the bottom cross member and the steel floor surface matches a thickness of the wood floor.
  • each of the corner posts may be concaved inwardly at its surface outside the container to form a reinforcing rib, which extends from a bottom end of the corner post to a top end of the corner post and has a ‘V’-shaped or an arc-shaped cross section.
  • each of the two header plates may be provided with a reinforcing rib, which is arranged along a width direction of the container and has a ‘V’-shaped or an arc-shaped cross section.
  • the bottom cross member may have a cross section in any shape selected from a group of ‘L’, ‘I’, ‘C’ and ‘U’.
  • the element may have a ‘ ⁇ ’-shaped cross section.
  • a reinforcing board may be provided in the space formed by the bulged portion of the element.
  • the reinforcing board may have a cross section in any shape selected from a group of ‘L’, ‘I’, ‘C’ and ‘U”.
  • the strength of the steel used may be higher than the traditional Corten-A (SPA-H).
  • one steel floor may be arranged at a middle portion of the bottom frame and two wood floors may be arranged at both sides of the steel floor.
  • one wood floor may be arranged at middle portion of the bottom frame and two steel floors may be arranged at both sides of the wood floor.
  • the present invention has the following beneficial effects: (1) compared with the current bottom structure made of wood entirely, it can save a lot of wood materials, since the steel floor and wood floor are arranged alternately and extend along the length direction of bottom side rail; (2) it can have advantages such as excellent integral rigidity, since the steel floor is provided with a reinforcing board so that the strength of the bottom structure can be enhanced; (3) it can have advantages such as high strength, since the corner post is concaved inwardly at its surface outside the container to form a reinforcing rib so that the strength of the container can be increased.
  • FIG. 1 is a projection view for illustrating the cutaway construction of the present invention, viewing from a side wall of the container;
  • FIG. 2 is a projection view for illustrating the cutaway construction of the present invention, viewing from an end wall of the container;
  • FIG. 3 is a projection view for illustrating the partially enlarged construction of the bottom frame shown in FIG. 2 of the present invention, viewing from the end wall of the container;
  • FIG. 4 is a cross section view taken along a direction in parallel with the bottom frame for illustrating the transversally cutaway construction of the front corner post of the present invention
  • FIG. 5 is a cross section view taken along a direction in parallel with the bottom frame for illustrating the transversally cutaway construction of the rear corner post of the present invention
  • FIG. 6 is a projection view for illustrating the partially enlarged construction of the roof panel near to the side wall of the present invention, viewing from the end wall of the container;
  • FIG. 7 is a projection view for illustrating the partially enlarged construction of the roof panel near to the side wall of the present invention, viewing from the side wall of the container.
  • the present invention comprises a bottom frame 1 in a rectangle form as a whole, two side walls 2 fixed on the length sides of the bottom frame 1 ; two end walls 3 fixed on the width sides of the bottom fame 1 ; and a roof panel 4 arranged in parallel with the bottom frame 1 and connected to the side walls 2 and end walls 3 respectively to form a enclosed hexahedral box of the container.
  • the side wall 2 and the end wall 3 are selectively provided with a door structure element, through which the freight can be loaded into the container.
  • the door structure element arranged at the end wall 3 is taken as an example to further describe the present invention in detail.
  • the end wall 3 with the door structure element is designated as front end wall 31
  • the opposite one is designated as rear end wall 32 .
  • the bottom frame 1 of the present invention comprises two bottom side rails 11 for forming the length sides of the bottom frame 1 and two bottom end rails 12 for forming the width sides of the bottom frame 1 .
  • the two bottom end rails 12 are connected with the two bottom side rails 11 so that the bottom frame 1 is in a rectangle shape as a whole.
  • a wood floor(s) 15 and a steel floor(s) 16 are provided between the two bottom end rails 12 and in parallel with the bottom side rails 11 .
  • the steel floor 16 and the wood floor 15 are fixed to each other and arranged alternately, extending along the length direction of bottom side rail 11 respectively.
  • An upper surface of the steel floor 16 is flush with an upper surface of the wood floor 15 .
  • the bottom frame 1 comprises one steel floor 16 located close to the middle of each of the bottom end rails 12 and two wood floors 15 located between the two sides of the steel floor 16 and the two bottom side rails 11 respectively.
  • more than one steel floor 16 can be provided, and a plurality of wood floors 15 arranged alternately with respect to the steel floor 16 can be provided correspondingly.
  • the above structure can save at least a half of wood materials, since the wood floors 15 and the steel floor 16 are alternately arranged between the two bottom end rails 12 and extend along the length direction of bottom side rail 11 .
  • the steel floor 16 is formed of one element 13 having a length substantially matching the length of bottom side rail 11 so that the two ends of the element 13 can be fixed to the two bottom end rails 12 of the container respectively; obviously, the steel floor 16 may also consist of a plurality of elements 13 , the total length of which are substantially equal to the length of bottom side rail 11 .
  • the element 13 is configured with ‘ ⁇ ’-shaped cross-section such that a middle portion thereof is bulged with respect to the end portions thereof.
  • the bulged middle portion is a flat top extending along the length direction of the bottom side rail 11 so as to form a steel floor surface 131 for supporting the freight, and the bottom ends of the bulged middle portion extend outward to form two supporting feet 132 .
  • the bottom cross member 14 has a ‘L’-shaped cross section along the length direction of the bottom side rail 11 ; obviously, the cross section may be in any shape such as ‘I’, ‘C’ or ‘U’.
  • the wood floor 15 is provided on the bottom cross member 14 , and the surface 141 of the bottom cross member 14 for supporting the wood floor is lower than the steel floor surface 131 on the top of the element 13 by a height difference, which is about the thickness of the wood floor 15 .
  • a height difference which is about the thickness of the wood floor 15 .
  • a plurality of elements 13 can be fixed at the width sides of the bottom frame 1 .
  • the supporting feet 132 on both sides of the elements 13 cooperate with the two bottom side rails 11 so as to support and fix the bottom cross member 14 , and then the wood floor 15 is located on the upper surface of the bottom cross member 14 to be flush with the steel floor surface 131 . This also can save wood materials.
  • a reinforcing board 133 extends downwardly from the top of the element 13 into the inner space formed by the bulged portion of the element 13 , and thus may effectively enhance the strength of the element 13 .
  • the reinforcing board 133 has an ‘L’-shaped cross section in parallel with the length direction of the bottom side rail 11 .
  • the cross section may be in another shape such as ‘I’, ‘C’, or ‘U’.
  • each element 13 may substantively equal to the distance between the two end rails 12 ; obviously, the element 13 could have a plurality of portions and the total length of the plurality of portions may substantially equal to the distance between the two end rails 12 .
  • the bottom cross member 14 can be arranged between two adjacent elements 13 . In the case where the bottom cross member 14 are arranged alternately, the wood floors 15 will be also arranged alternately, since the bottom cross member 14 arranged at the supporting foot 132 of the element 13 is used to fix the wood floor 15 . Therefore, it can save wood materials compared with that made of the wood floor 15 entirely.
  • the wood floor 15 may be arranged at middle portion of the bottom frame and the steel floors 16 may be arranged at both sides of the wood floor 15 so that the wood floor 15 and the steel floors 16 are arranged alternately.
  • Such an arrangement also can have a function of saving wood materials.
  • the front end wall 31 of the present invention comprises two front corner posts 311 and a door structure element 312 arranged between the two front corner posts 311 and movably connected with them.
  • Each of the front corner posts 311 is fixed at the corner end of the bottom frame 1 and extends vertically upward to the roof panel 4 .
  • the front corner post 311 comprises an inner corner post 313 and an outer corner post 314 , which has a reinforcing rib 315 concaved inwardly towards the inner corner post 313 .
  • the reinforcing rib 315 extends to the top end of the front corner post 311 from the bottom end of the front corner post 311 and has generally a ‘V’-shape or an arc shape viewing from the cross section of the outer corner post 314 .
  • the reinforcing rib 315 can be arranged at other appropriate positions of the outer corner post 314 and the number of the reinforcing rib is not limited to only one.
  • the reinforcing rib 315 can effectively damp external impact force if the external impact force is exerted to the front corner post 311 . Therefore, compared with the current corner post structure, the front corner post 311 has advantages such as resistance to impact, high strength, etc.
  • the wall plate of the door structure element 312 is a corrugated plate with more than eight bulges. With so many bulges effective to bear the impact from outside, the strength of the wall plate is increased, so that the thickness of the wall plate and thus the total weight thereof can be reduced.
  • the rear end wall 32 of the present invention comprises two back corner posts 321 and a wall plate 322 arranged between the two back corner posts 321 .
  • the two back corner posts 321 are arranged at two corner ends opposite to the front corner post 311 shown in FIG. 4 of the bottom frame 1 , and vertically extend to the roof panel 4 therefrom.
  • Each back corner post 321 has reinforcing ribs 323 and 324 concaved inwardly at its surface outside the container.
  • the reinforcing ribs 323 and 324 extend to the top end of the rear corner post 321 from the bottom end of the rear corner post 321 and have generally a ‘V’ shape or an arc shape viewing from the cross section of the rear corner post 321 .
  • the reinforcing ribs 323 and 324 can be arranged at other appropriate positions of the rear corner post 321 and the number of the reinforcing ribs is not limited to only two, for example, the number can be one or more.
  • the reinforcing ribs 323 and 324 can effectively damp external impact force if the external impact force is exerted to the rear corner post 321 . Therefore, compared with the current corner post structure, the rear corner post 321 has advantages such as resistance to impact, high strength, etc.
  • the wall plate 322 is a corrugated plate with more than eight bulges. With so many bulges effective to bear the impact from outside, the strength of the wall plate 322 is increased, so that the thickness of the wall plate 322 and thus the total weight thereof can be reduced.
  • the roof panel 4 of the present invention is a corrugated plate with more than five bulges 41 and a relatively small wave length.
  • a sloping transition surface 43 is provided on the joining area connecting the roof panel 4 with the two side walls to reduce the thickness of the steel plate for forming the roof panel 4 , so that the total weight of the roof panel 4 can be reduced.
  • reinforcing bulges 42 protruding upwards are provided on the two end header plates of the roof panel 4 proximate to the two end walls 3 and extend in the same direction as the reinforcing bulges 41 .
  • the reinforcing bulges 42 can improve the strength of the roof panel 4 when a force is exerted on the roof panel 4 from outside.
  • the strength of the entire roof panel 4 is improved, it is possible to relatively reduce the thickness of the roof panel 4 . Therefore, the total weight of the container can be reduced while the strength of the entire roof panel 4 is improved.
  • the structure of the bottom frame 1 as shown in FIGS. 2 and 3 , the structure of the end wall 3 as shown in FIGS. 4 and 5 and the structure of the roof panel 4 as shown in FIGS. 6 and 7 can be applied to the construction of one and the same container so that the container has high strength and low weight, and can save wood materials.
  • the structure of the bottom frame 1 as shown in FIGS. 2 and 3 , the structure of the end wall 3 as shown in FIGS. 4 and 5 and the structure of the roof panel 4 as shown in FIGS. 6 and 7 can applied to the construction of a container individually or in combination, to obtain one or all advantages they can bring about.
  • the steel used in the present invention can have a higher strength than that of the steel (i.e., Corten A (SPA-H)) used in the traditional container. It ensures that the strength of the container can not be lowered due to the thickness thereof being decreasing, and thus the whole weight of the container can be reduced.
  • SPA-H Corten A

Abstract

The present invention discloses a container, which comprises: a bottom frame including two parallel bottom side rails and two bottom end rails transversally connected to the ends of the two bottom side rails, two side walls, four corner posts, a front end, a rear end, a roof panel and two header plates connected to the roof panel, two bottom end rails; one or more wood floors and one or more steel floors extending along the length direction of the bottom side rail, which are alternately arranged in parallel with the bottom side rails and fixed between the two bottom end rails; and an upper surface of the steel floor is flush with an upper surface of the wood floor. The container of the present invention has high strength and low weight, and saves wood material.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a large scale rigid container for material transportation, and more particularly to a container for transporting freight.
  • BACKGROUND OF THE INVENTION
  • Containers, as freight carriers, have been widely applied in the international transport since 1960s, each of them usually comprises a bottom frame for supporting the freight; a roof panel arranged just over and in parallel with the bottom frame with a certain distance; two side walls formed by vertically upward extending the bottom frame in the direction of its length to the roof panel; and two end walls formed by vertically upward extending the bottom frame in the direction of its width to the roof panel, wherein the bottom frame, the two end walls, the two side walls and the roof panel form an enclosed hexahedral box structure. Additionally, for the convenience of loading freight, a door structure element is arranged on the side wall or the end wall. In the case where such container carries the freight, the bottom frame and corner posts connecting the side wall with the end wall are subject to more stress, in order to prevent the corner post from being damaged under external force, a traditional design taken in the art is to select a larger sized steel element as a corner post, and similarly in order to prevent the bottom frame from being damaged by external force, each part of the bottom frame adopts a larger sized steel element. Therefore, the container gets heavier and heavier, which goes against saving steel and the development of containers.
  • Besides, in order to support the freight stably, the traditional strategy is to pave wood floors on the bottom frame of the container; however, with the increasing attention to the forest protection in the world, the wood materials are more and more difficult to be available, because such wood materials are mainly from tropical rain forest area. Accordingly, it is always a difficult problem in the container industry on how to reduce the consuming amount of the wood materials for manufacturing the container so as to save resource.
  • For the reasons set forth above, the traditional containers are heavy, highly reliant on wood materials and low in strength. Therefore, it is necessary to improve the structure of the current container to adapt to the development of the container industry.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a container, which can effectively save wood materials and have excellent strength.
  • In order to solve the above technical problems, the present invention adopts the following technical solution. A container comprises a bottom frame including two parallel bottom side rails and two bottom end rails transversally connected to corresponding ends of the two bottom side rails; a case body arranged on and connected to the bottom frame; corner posts arranged at the case body and extending in a height direction of the case body; and one or more wood floors and one or more steel floors extending along the length direction of the bottom side rail, which are alternately arranged in parallel with the bottom side rails and fixed between the two bottom end rails, wherein an upper surface of the steel floor is flush with an upper surface of the wood floor.
  • In the container, the steel floor may be an element configured in such a way that a middle portion thereof is bulged to form a flat top acting as a steel floor surface; and the container may further comprise bottom cross members provided between the two sides of the element and the two bottom side rails respectively, wherein the wood floor is fixed on an upper surface of the bottom cross member, and the upper surface of the bottom cross member is lower than the steel floor surface in such a way that a height difference between the upper surface of the bottom cross member and the steel floor surface matches a thickness of the wood floor.
  • In the container, each of the corner posts may be concaved inwardly at its surface outside the container to form a reinforcing rib, which extends from a bottom end of the corner post to a top end of the corner post and has a ‘V’-shaped or an arc-shaped cross section.
  • In the container, each of the two header plates may be provided with a reinforcing rib, which is arranged along a width direction of the container and has a ‘V’-shaped or an arc-shaped cross section.
  • In the container, the bottom cross member may have a cross section in any shape selected from a group of ‘L’, ‘I’, ‘C’ and ‘U’.
  • In the container, the element may have a ‘Ω’-shaped cross section.
  • In the container, a reinforcing board may be provided in the space formed by the bulged portion of the element.
  • In the container, the reinforcing board may have a cross section in any shape selected from a group of ‘L’, ‘I’, ‘C’ and ‘U”.
  • In the container, the strength of the steel used may be higher than the traditional Corten-A (SPA-H).
  • In the container, one steel floor may be arranged at a middle portion of the bottom frame and two wood floors may be arranged at both sides of the steel floor.
  • In the container, one wood floor may be arranged at middle portion of the bottom frame and two steel floors may be arranged at both sides of the wood floor.
  • Compared with the prior art, the present invention has the following beneficial effects: (1) compared with the current bottom structure made of wood entirely, it can save a lot of wood materials, since the steel floor and wood floor are arranged alternately and extend along the length direction of bottom side rail; (2) it can have advantages such as excellent integral rigidity, since the steel floor is provided with a reinforcing board so that the strength of the bottom structure can be enhanced; (3) it can have advantages such as high strength, since the corner post is concaved inwardly at its surface outside the container to form a reinforcing rib so that the strength of the container can be increased.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a projection view for illustrating the cutaway construction of the present invention, viewing from a side wall of the container;
  • FIG. 2 is a projection view for illustrating the cutaway construction of the present invention, viewing from an end wall of the container;
  • FIG. 3 is a projection view for illustrating the partially enlarged construction of the bottom frame shown in FIG. 2 of the present invention, viewing from the end wall of the container;
  • FIG. 4 is a cross section view taken along a direction in parallel with the bottom frame for illustrating the transversally cutaway construction of the front corner post of the present invention;
  • FIG. 5 is a cross section view taken along a direction in parallel with the bottom frame for illustrating the transversally cutaway construction of the rear corner post of the present invention;
  • FIG. 6 is a projection view for illustrating the partially enlarged construction of the roof panel near to the side wall of the present invention, viewing from the end wall of the container; and
  • FIG. 7 is a projection view for illustrating the partially enlarged construction of the roof panel near to the side wall of the present invention, viewing from the side wall of the container.
  • DESCRIPTION OF THE INVENTION
  • With reference to FIG. 1, the present invention comprises a bottom frame 1 in a rectangle form as a whole, two side walls 2 fixed on the length sides of the bottom frame 1; two end walls 3 fixed on the width sides of the bottom fame 1; and a roof panel 4 arranged in parallel with the bottom frame 1 and connected to the side walls 2 and end walls 3 respectively to form a enclosed hexahedral box of the container. Furthermore, the side wall 2 and the end wall 3 are selectively provided with a door structure element, through which the freight can be loaded into the container. For the convenience of description and understanding, the door structure element arranged at the end wall 3 is taken as an example to further describe the present invention in detail. Moreover, for the purpose of distinguishing the two end walls, the end wall 3 with the door structure element is designated as front end wall 31, and the opposite one is designated as rear end wall 32.
  • With reference to FIGS. 2 and 3, the bottom frame 1 of the present invention comprises two bottom side rails 11 for forming the length sides of the bottom frame 1 and two bottom end rails 12 for forming the width sides of the bottom frame 1. The two bottom end rails 12 are connected with the two bottom side rails 11 so that the bottom frame 1 is in a rectangle shape as a whole.
  • A wood floor(s) 15 and a steel floor(s) 16 are provided between the two bottom end rails 12 and in parallel with the bottom side rails 11. The steel floor 16 and the wood floor 15 are fixed to each other and arranged alternately, extending along the length direction of bottom side rail 11 respectively. An upper surface of the steel floor 16 is flush with an upper surface of the wood floor 15. In this embodiment, preferably, the bottom frame 1 comprises one steel floor 16 located close to the middle of each of the bottom end rails 12 and two wood floors 15 located between the two sides of the steel floor 16 and the two bottom side rails 11 respectively. Alternatively, more than one steel floor 16 can be provided, and a plurality of wood floors 15 arranged alternately with respect to the steel floor 16 can be provided correspondingly.
  • Compared with the traditional bottom structure for the container made of wood floor entirely, the above structure can save at least a half of wood materials, since the wood floors 15 and the steel floor 16 are alternately arranged between the two bottom end rails 12 and extend along the length direction of bottom side rail 11.
  • A preferable embodiment in which the steel floor 16 and the wood floor 15 are arranged alternately is shown in the drawings. The steel floor 16 is formed of one element 13 having a length substantially matching the length of bottom side rail 11 so that the two ends of the element 13 can be fixed to the two bottom end rails 12 of the container respectively; obviously, the steel floor 16 may also consist of a plurality of elements 13, the total length of which are substantially equal to the length of bottom side rail 11. The element 13 is configured with ‘Ω’-shaped cross-section such that a middle portion thereof is bulged with respect to the end portions thereof. The bulged middle portion is a flat top extending along the length direction of the bottom side rail 11 so as to form a steel floor surface 131 for supporting the freight, and the bottom ends of the bulged middle portion extend outward to form two supporting feet 132.
  • There is only one element 13 arranged at the width side of the bottom frame 1 and in parallel with the bottom side rail 11. The bottom ends of the two sides of the element 13 extend outward to form two supporting feet 132, and a bottom cross member 14 is provided between each supporting foot 132 and the bottom side rail 11 adjacent the supporting foot 132. The bottom cross member 14 has a ‘L’-shaped cross section along the length direction of the bottom side rail 11; obviously, the cross section may be in any shape such as ‘I’, ‘C’ or ‘U’. The wood floor 15 is provided on the bottom cross member 14, and the surface 141 of the bottom cross member 14 for supporting the wood floor is lower than the steel floor surface 131 on the top of the element 13 by a height difference, which is about the thickness of the wood floor 15. Thus, when the wood floor 15 is fixed onto the bottom cross member 14, the upper surface of the wood floor 15 is flush with the steel floor surface 131 to support the freight steadily. When the wood floor 15 is mounted on the bottom cross member 14, the whole bottom structure is formed in such a way that the wood floor(s) 15 and steel floor surface(s) 131 are alternately arranged. Accordingly, compared with the traditional bottom structure using wood floor entirely, the present invention can save wood materials. Alternatively, a plurality of elements 13 can be fixed at the width sides of the bottom frame 1. In this case, the supporting feet 132 on both sides of the elements 13 cooperate with the two bottom side rails 11 so as to support and fix the bottom cross member 14, and then the wood floor 15 is located on the upper surface of the bottom cross member 14 to be flush with the steel floor surface 131. This also can save wood materials.
  • A reinforcing board 133 extends downwardly from the top of the element 13 into the inner space formed by the bulged portion of the element 13, and thus may effectively enhance the strength of the element 13. Moreover, the reinforcing board 133 has an ‘L’-shaped cross section in parallel with the length direction of the bottom side rail 11. Obviously, the cross section may be in another shape such as ‘I’, ‘C’, or ‘U’.
  • The length of each element 13 may substantively equal to the distance between the two end rails 12; obviously, the element 13 could have a plurality of portions and the total length of the plurality of portions may substantially equal to the distance between the two end rails 12. The bottom cross member 14 can be arranged between two adjacent elements 13. In the case where the bottom cross member 14 are arranged alternately, the wood floors 15 will be also arranged alternately, since the bottom cross member 14 arranged at the supporting foot 132 of the element 13 is used to fix the wood floor 15. Therefore, it can save wood materials compared with that made of the wood floor 15 entirely.
  • Obviously, in an embodiment of the present invention, the wood floor 15 may be arranged at middle portion of the bottom frame and the steel floors 16 may be arranged at both sides of the wood floor 15 so that the wood floor 15 and the steel floors 16 are arranged alternately. Such an arrangement also can have a function of saving wood materials.
  • With reference to FIG. 4, the front end wall 31 of the present invention comprises two front corner posts 311 and a door structure element 312 arranged between the two front corner posts 311 and movably connected with them.
  • Each of the front corner posts 311 is fixed at the corner end of the bottom frame 1 and extends vertically upward to the roof panel 4. The front corner post 311 comprises an inner corner post 313 and an outer corner post 314, which has a reinforcing rib 315 concaved inwardly towards the inner corner post 313. The reinforcing rib 315 extends to the top end of the front corner post 311 from the bottom end of the front corner post 311 and has generally a ‘V’-shape or an arc shape viewing from the cross section of the outer corner post 314.
  • Obviously, the reinforcing rib 315 can be arranged at other appropriate positions of the outer corner post 314 and the number of the reinforcing rib is not limited to only one. In this case, the reinforcing rib 315 can effectively damp external impact force if the external impact force is exerted to the front corner post 311. Therefore, compared with the current corner post structure, the front corner post 311 has advantages such as resistance to impact, high strength, etc.
  • The wall plate of the door structure element 312 is a corrugated plate with more than eight bulges. With so many bulges effective to bear the impact from outside, the strength of the wall plate is increased, so that the thickness of the wall plate and thus the total weight thereof can be reduced.
  • With reference to FIG. 5, the rear end wall 32 of the present invention comprises two back corner posts 321 and a wall plate 322 arranged between the two back corner posts 321.
  • The two back corner posts 321 are arranged at two corner ends opposite to the front corner post 311 shown in FIG. 4 of the bottom frame 1, and vertically extend to the roof panel 4 therefrom. Each back corner post 321 has reinforcing ribs 323 and 324 concaved inwardly at its surface outside the container. The reinforcing ribs 323 and 324 extend to the top end of the rear corner post 321 from the bottom end of the rear corner post 321 and have generally a ‘V’ shape or an arc shape viewing from the cross section of the rear corner post 321.
  • Obviously, the reinforcing ribs 323 and 324 can be arranged at other appropriate positions of the rear corner post 321 and the number of the reinforcing ribs is not limited to only two, for example, the number can be one or more. In this case, the reinforcing ribs 323 and 324 can effectively damp external impact force if the external impact force is exerted to the rear corner post 321. Therefore, compared with the current corner post structure, the rear corner post 321 has advantages such as resistance to impact, high strength, etc.
  • The wall plate 322 is a corrugated plate with more than eight bulges. With so many bulges effective to bear the impact from outside, the strength of the wall plate 322 is increased, so that the thickness of the wall plate 322 and thus the total weight thereof can be reduced.
  • With reference to FIGS. 6 and 7, the roof panel 4 of the present invention is a corrugated plate with more than five bulges 41 and a relatively small wave length. A sloping transition surface 43 is provided on the joining area connecting the roof panel 4 with the two side walls to reduce the thickness of the steel plate for forming the roof panel 4, so that the total weight of the roof panel 4 can be reduced.
  • Several reinforcing bulges 42 protruding upwards are provided on the two end header plates of the roof panel 4 proximate to the two end walls 3 and extend in the same direction as the reinforcing bulges 41. The reinforcing bulges 42 can improve the strength of the roof panel 4 when a force is exerted on the roof panel 4 from outside.
  • Since the strength of the entire roof panel 4 is improved, it is possible to relatively reduce the thickness of the roof panel 4. Therefore, the total weight of the container can be reduced while the strength of the entire roof panel 4 is improved.
  • The structure of the bottom frame 1 as shown in FIGS. 2 and 3, the structure of the end wall 3 as shown in FIGS. 4 and 5 and the structure of the roof panel 4 as shown in FIGS. 6 and 7 can be applied to the construction of one and the same container so that the container has high strength and low weight, and can save wood materials. Obviously, The structure of the bottom frame 1 as shown in FIGS. 2 and 3, the structure of the end wall 3 as shown in FIGS. 4 and 5 and the structure of the roof panel 4 as shown in FIGS. 6 and 7 can applied to the construction of a container individually or in combination, to obtain one or all advantages they can bring about.
  • The steel used in the present invention can have a higher strength than that of the steel (i.e., Corten A (SPA-H)) used in the traditional container. It ensures that the strength of the container can not be lowered due to the thickness thereof being decreasing, and thus the whole weight of the container can be reduced.

Claims (10)

1. A container comprising: a bottom frame including two parallel bottom side rails and two bottom end rails transversally connected to corresponding ends of the two bottom side rails, two side walls, four corner posts, a front end, a rear end, a roof panel and two header plates connected to the roof panel,
wherein one or more wood floors and one or more steel floors extend along a length direction of the bottom side rail, and are alternately arranged in parallel with the bottom side rails and fixed between the two bottom end rails; and wherein an upper surface of the steel floor is flush with an upper surface of the wood floor.
2. The container according to claim 1, wherein the steel floor is an element configured in such a way that a middle portion thereof is bulged to form a flat top acting as a steel floor surface; and
the container further comprises bottom cross members provided between the two sides of the element and the two bottom side rails respectively, wherein the wood floor is fixed on an upper surface of the bottom cross member, and the upper surface of the bottom cross member is lower than the steel floor surface in such a way that a height difference between the upper surface of the bottom cross member and the steel floor surface matches a thickness of the wood floor.
3. The container according to claim 1, wherein each of the corner posts is concaved inwardly at its surface outside the container to form a reinforcing rib, which extends from a bottom end of the corner post to a top end of the corner post and has a ‘V’-shaped or an arc-shaped cross section.
4. The container according to claim 1, wherein each of the two header plates is provided with a reinforcing rib, which extends along a width direction of the container and has a ‘V’-shaped or an arc-shaped cross section.
5. The container according to claim 2, wherein the bottom cross member has a cross section in any shape selected from a group of ‘L’, ‘I’, ‘C’ and ‘U’.
6. The container according to claim 2, wherein the element has a ‘Ω’-shaped cross section.
7. The container according to claim 6, wherein a reinforcing board is provided in a space formed by the bulged portion of the element.
8. The container according to claim 7, wherein the reinforcing board has a cross section in any shape selected from a group of ‘L’, ‘I’, ‘C’ and ‘U’.
9. The container according to claim 1, wherein one steel floor is arranged at a middle portion of the bottom frame and two wood floors are arranged at both sides of the steel floor.
10. The container according to claim 1, wherein one wood floor is arranged at middle portion of the bottom frame and two steel floors are arranged at both sides of the wood floor.
US12/147,765 2007-06-29 2008-06-27 Container Abandoned US20090001075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200721046395 2007-06-29
CN200721046395.1 2007-06-29

Publications (1)

Publication Number Publication Date
US20090001075A1 true US20090001075A1 (en) 2009-01-01

Family

ID=40159130

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/147,765 Abandoned US20090001075A1 (en) 2007-06-29 2008-06-27 Container

Country Status (1)

Country Link
US (1) US20090001075A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001087A1 (en) * 2007-06-29 2009-01-01 China International Marine Containers (Group) Ltd. Bottom Structure of Container
US20100088966A1 (en) * 2007-03-02 2010-04-15 China International Marine Containers (Group) Ltd. Container Door Structure
WO2011030852A1 (en) * 2009-09-11 2011-03-17 新日本製鐵株式会社 Container for cargo

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692032A (en) * 1951-06-29 1954-10-19 Pullman Standard Car Mfg Co Vehicle floor construction
US4212405A (en) * 1972-03-07 1980-07-15 Srick Corporation Aluminum panel container or trailer body
US4349108A (en) * 1979-04-19 1982-09-14 W. H. D. Development Limited Containers
US4506798A (en) * 1981-07-20 1985-03-26 Scc Six-In-One Containers Co., S.A. Container
US4836395A (en) * 1985-02-14 1989-06-06 Weidmann & Pittet S.A. Large disposable convertible packing case
US4844672A (en) * 1988-04-20 1989-07-04 Rosby Corporation Interlocking adapter casting
US4976365A (en) * 1989-08-07 1990-12-11 Seo Dong J Pallet and container integrated with pallet
US5248051A (en) * 1992-02-21 1993-09-28 Rosby Corporation Larger cubic volume cargo container
US5348176A (en) * 1991-11-15 1994-09-20 Rosby Corporation High-cube top lift cargo carrier structure
US5507405A (en) * 1993-12-16 1996-04-16 Great Dane Trailers, Inc. Thermally insulated cargo container
US5509714A (en) * 1993-08-16 1996-04-23 Strick Corporation Frameless container for carrying cargo having overlapped sidewalls and a unitary bottom scuff panel
US5755349A (en) * 1993-07-22 1998-05-26 Cargo Unit Containers Ltd. Freight containers
US6109052A (en) * 1997-06-19 2000-08-29 Austin, Jr.; Albert A. Container, panel and method of forming thereof
US6123213A (en) * 1998-05-05 2000-09-26 Clive-Smith; Martin Beam for a platform container
US6279767B1 (en) * 1997-05-20 2001-08-28 Jindo Co., Limited Container with an increased door opening height
US6619477B2 (en) * 2000-11-20 2003-09-16 Mitsuo Takahashi Pallet and transportation container
US20050029256A1 (en) * 2001-10-10 2005-02-10 Chen Qiao-Feng Shipping container
US6979051B2 (en) * 2001-07-19 2005-12-27 Great Dane Limited Partnership Trailer having improved side wall
US20080179319A1 (en) * 2007-01-26 2008-07-31 Ole Henrik Nielsen Storage container and corner post thereof
US20090001087A1 (en) * 2007-06-29 2009-01-01 China International Marine Containers (Group) Ltd. Bottom Structure of Container

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692032A (en) * 1951-06-29 1954-10-19 Pullman Standard Car Mfg Co Vehicle floor construction
US4212405A (en) * 1972-03-07 1980-07-15 Srick Corporation Aluminum panel container or trailer body
US4349108A (en) * 1979-04-19 1982-09-14 W. H. D. Development Limited Containers
US4506798A (en) * 1981-07-20 1985-03-26 Scc Six-In-One Containers Co., S.A. Container
US4836395A (en) * 1985-02-14 1989-06-06 Weidmann & Pittet S.A. Large disposable convertible packing case
US4844672A (en) * 1988-04-20 1989-07-04 Rosby Corporation Interlocking adapter casting
US4976365A (en) * 1989-08-07 1990-12-11 Seo Dong J Pallet and container integrated with pallet
US5348176A (en) * 1991-11-15 1994-09-20 Rosby Corporation High-cube top lift cargo carrier structure
US5248051A (en) * 1992-02-21 1993-09-28 Rosby Corporation Larger cubic volume cargo container
US5755349A (en) * 1993-07-22 1998-05-26 Cargo Unit Containers Ltd. Freight containers
US5509714A (en) * 1993-08-16 1996-04-23 Strick Corporation Frameless container for carrying cargo having overlapped sidewalls and a unitary bottom scuff panel
US5507405A (en) * 1993-12-16 1996-04-16 Great Dane Trailers, Inc. Thermally insulated cargo container
US6279767B1 (en) * 1997-05-20 2001-08-28 Jindo Co., Limited Container with an increased door opening height
US6109052A (en) * 1997-06-19 2000-08-29 Austin, Jr.; Albert A. Container, panel and method of forming thereof
US6123213A (en) * 1998-05-05 2000-09-26 Clive-Smith; Martin Beam for a platform container
US6619477B2 (en) * 2000-11-20 2003-09-16 Mitsuo Takahashi Pallet and transportation container
US6979051B2 (en) * 2001-07-19 2005-12-27 Great Dane Limited Partnership Trailer having improved side wall
US20050029256A1 (en) * 2001-10-10 2005-02-10 Chen Qiao-Feng Shipping container
US20080179319A1 (en) * 2007-01-26 2008-07-31 Ole Henrik Nielsen Storage container and corner post thereof
US20090001087A1 (en) * 2007-06-29 2009-01-01 China International Marine Containers (Group) Ltd. Bottom Structure of Container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100088966A1 (en) * 2007-03-02 2010-04-15 China International Marine Containers (Group) Ltd. Container Door Structure
US20090001087A1 (en) * 2007-06-29 2009-01-01 China International Marine Containers (Group) Ltd. Bottom Structure of Container
WO2011030852A1 (en) * 2009-09-11 2011-03-17 新日本製鐵株式会社 Container for cargo
CN102482033A (en) * 2009-09-11 2012-05-30 新日本制铁株式会社 Container for cargo

Similar Documents

Publication Publication Date Title
US8622006B2 (en) Pallet
US10342333B2 (en) Double-wide drive-in storage rack assembly with dual-rail truss-beam
KR100967821B1 (en) A assembling type package box for Multi-story loading
CN201816861U (en) Folded pallet box
WO2015098421A1 (en) Pallet
US20090001075A1 (en) Container
KR101378394B1 (en) Pallet for Loading Cargo with Reinforced Assembly Structure
KR200424854Y1 (en) Assembly box
CN102398713A (en) Foldable tray box
US20090001087A1 (en) Bottom Structure of Container
KR200400826Y1 (en) Pallet
KR101221566B1 (en) load dispersion and self-weight reducing functional lower base of container and manufacturing method thereof
KR20130002407U (en) Pallet for transportation
US20180201440A1 (en) Base frame for a shipping container
KR200490368Y1 (en) Safety palate for freight transport
CN201151538Y (en) Container
US20110047890A1 (en) Method of Packaging a Storage Building Kit of Parts
CN210794018U (en) Wooden case with smooth outer side
KR200421857Y1 (en) Box of assembly watertight-type
JP4421496B2 (en) Plastic pallet
AU2004100514A4 (en) Improved freight container
CN209421549U (en) Two-way fork transports the double-deck shelf
KR102593173B1 (en) The postframe reinforcement materials of assembly type pallet
JP6113650B2 (en) palette
KR101363567B1 (en) Pallet for Loading Cargo with Packaging Assembly Structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHINA INTERNATIONAL MARINE CONTAINERS (GROUP) LTD.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HE, SIDONG;REEL/FRAME:021356/0265

Effective date: 20080731

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION