New! View global litigation for patent families

US20080314882A1 - Method of making a biosensor - Google Patents

Method of making a biosensor Download PDF

Info

Publication number
US20080314882A1
US20080314882A1 US10976740 US97674004A US2008314882A1 US 20080314882 A1 US20080314882 A1 US 20080314882A1 US 10976740 US10976740 US 10976740 US 97674004 A US97674004 A US 97674004A US 2008314882 A1 US2008314882 A1 US 2008314882A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
pattern
substrate
biosensor
code
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10976740
Other versions
US7476827B1 (en )
Inventor
Raghbir S. Bhullar
Henning Groll
John T. Austera
Douglas P. Walling
Timothy L. Ranney
James L. Pauley, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diabetes Care Inc
Original Assignee
Bhullar Raghbir S
Henning Groll
Austera John T
Walling Douglas P
Ranney Timothy L
Pauley Jr James L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/543Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/4875Details of handling test elements, e.g. dispensing or storage, not specific to a particular test method
    • G01N33/48771Coding of information, e.g. calibration data, lot number
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00792Type of components bearing the codes, other than sample carriers
    • G01N2035/00811Type of components bearing the codes, other than sample carriers consumable or exchangeable components other than sample carriers, e.g. detectors, flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes electrical and mechanical details of in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Abstract

The present invention relates to a method of forming a biosensor. The method includes providing a substrate coated with a electrically conductive material, ablating the electrically conductive material to form electrodes and a code pattern, wherein there is sufficient contrast between the conductive coating and the substrate such that the code pattern is discernible, and applying a reagent to at least one of the electrodes.

Description

    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to a biosensor, more particularly to an electrochemical biosensor with a code pattern thereon.
  • BACKGROUND AND SUMMARY OF THE INVENTION
  • [0002]
    Electrochemical biosensors are known. They have been used to determine the concentration of various analytes from biological samples, particularly from blood. Electrochemical biosensors are described in U.S. Pat. Nos. 5,413,690; 5,762,770; 5,798,031; and 5,997,817 the disclosure of each of which is expressly incorporated herein by reference. It is also known to include a code on a test strip that identifies the manufacturing batch of the strip. See WO 99/22236.
  • [0003]
    According to one aspect of the present invention a biosensor is provided. The biosensor comprises a support substrate, an electrically conductive coating positioned on the support substrate, the coating being formed to define electrodes and a code pattern, wherein there is sufficient contrast between the conductive coating and the substrate such that the code pattern is discernible, and at least one reagent positioned on at least one electrode.
  • [0004]
    According to another aspect of the present invention a biosensor is provided. The biosensor comprises a support substrate, an electrically conductive coating positioned on the support substrate, the coating being formed to define electrodes and a code pattern, wherein there is sufficient contrast between the conductive coating and the substrate such that the code pattern is discernible, and a cover cooperating with the support substrate to define a channel. At least a portion of the electrodes are positioned in the channel.
  • [0005]
    In addition, a method of forming a biosensor is provided in accordance with the present invention. The method comprises the steps of providing a substrate coated with a electrically conductive material, ablating the electrically conductive material to form electrodes and a code pattern, wherein there is sufficient contrast between the conductive coating and the substrate such that the code pattern is discernible, and applying a reagent to at least one of the electrodes.
  • [0006]
    Still further, in accordance with the present invention a biosensor is provided. The biosensor comprises a support substrate and an electrically conductive coating positioned on the support substrate. The coating is formed to define electrodes and means for identifying the biosensor, wherein there is sufficient contrast between the conductive coating and the substrate such that the identifying means is discernible.
  • [0007]
    Additional features of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the preferred embodiment exemplifying the best mode of carrying out the invention as presently perceived.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0008]
    The detailed description particularly refers to the accompanying figures in which:
  • [0009]
    FIG. 1 is a perspective view of a biosensor in accordance with the present invention, showing the biosensor formed to include a code pattern formed thereon.
  • [0010]
    FIG. 2 is an exploded assembly view of the biosensor of FIG. 1, showing the biosensor including an electrode array positioned at one end, a spacer substrate including a notch, and a cover formed to extend over a portion of the notch.
  • [0011]
    FIG. 3 is a view taken along lines 3-3 of FIG. 1.
  • [0012]
    FIG. 4 is a view taken along lines 4-4 of FIG. 1.
  • [0013]
    FIG. 5 is an enlarged top view of an alternative code pattern formed on a biosensor in accordance with the present invention.
  • [0014]
    FIG. 6 is an enlarged top view of an alternative code pattern formed on a biosensor in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0015]
    The present invention relates to a biosensor and a method for manufacturing a biosensor that has a specific code pattern. This code pattern is beneficially formed from the same electrically conductive material and in the same manner as the electrodes of the biosensor, which reduces steps in the manufacturing process. Laser ablation is preferably used in forming the code pattern while generating the electrode pattern. The code pattern can be read in a number of ways, non-limiting examples of which include optically or electrically depending on the structures formed onto the biosensor. The structures could show contrast in their optical reflectivity, their electrical conductivity, or their resistance respectively. The structures could also be high reflectivity areas surrounded by low reflectivity areas or vice versa, or areas of high electrical conductivity surrounded by areas of low conductivity. Aspects of the invention are presented in FIGS. 1-6, which are not drawn to scale and wherein like components in the several views are numbered alike.
  • [0016]
    FIGS. 1-4 illustrate an aspect of the invention in the form of a biosensor 10 having an electrode-support substrate 12, an electrical conductor 13 positioned on the substrate 12 that is disrupted to define electrodes 14, 16, a spacer substrate 18 positioned on substrate 12, and a cover substrate 20 positioned on the spacer substrate 18. Biosensor 10 is preferably rectangular in shape. It is appreciated however, that biosensor 10 can assume any number of shapes in accordance with this disclosure. Biosensor 10 is preferably produced from rolls of material however, it is understood that biosensor 10 can be constructed from individual sheets in accordance with this disclosure. Thus, the selection of materials for the construction of biosensor 10 necessitates the use of materials that are sufficiently flexible for roll processing, but which are still rigid enough to give a useful stiffness to finished biosensor 10.
  • [0017]
    Referring to FIG. 4, the support substrate 12 includes a first surface 22 facing the spacer substrate 18 and a second surface 24. In addition, as shown in FIG. 2, substrate 12 has opposite first and second ends 26, 28 and opposite edges 30, 32 extending between the first and second ends 26, 28. Substrate 12 is generally rectangular in shape, it is appreciated however, that support may be formed in a variety of shapes and sizes in accordance with this disclosure. Substrate 12 is formed of a flexible polymer and preferably from a flexible polymer and preferably from a polymer such as a polyester or polyimide, polyethylene naphthalate (PEN). A non-limiting example of a suitable PEN is 5 mil (125 um) thick KALADEX®, a PEN film commercially available from E.I. DuPont de Nemours, Wilmington, Del., which is coated with gold by ROWO Coating, Henbolzhelm, Germany.
  • [0018]
    Electrodes 14, 16 are created or isolated from conductor 13 on first surface 22 of substrate 12. Non-limiting examples of a suitable electrical conductor 13 include aluminum, carbon (such as graphite), cobalt, copper, gallium, gold, indium, iridium, iron, lead, magnesium, mercury (as an amalgam), nickel, niobium, osmium, palladium, platinum, rhenium, rhodium, selenium, silicon (such as highly doped polycrystalline silicon), silver, tantalum, tin, titanium, tungsten, uranium, vanadium, zinc, zirconium, mixtures thereof, and alloys, oxides, or metallic compounds of these elements. Preferably, electrical conductor 13 is selected from the following materials: gold, platinum, palladium, iridium, or alloys of these metals, since such noble metals and their alloys are unreactive in biological systems. Most preferably, electrical conductor 13 is gold.
  • [0019]
    Electrodes 14, 16 are isolated from the rest of the electrical conductor 13 by laser ablation. See FIG. 4. Techniques for forming electrodes on a surface using laser ablation are known. See, for example, U.S. patent application Ser. No. 09/411,940, filed Oct. 4, 1999, and entitled “LASER DEFINED FEATURES FOR PATTERNED LAMINATES AND ELECTRODE”, the disclosure of which is expressly incorporated herein by reference. Preferably, electrodes 14, 16 are created by removing the electrical conductor 13 from an area extending around the electrodes to form a gap of exposed support substrate 12. Therefore, electrodes 14, 16 are isolated from the rest of the electrically-conductive material on substrate 12 by a gap having a width of about 25 μm to about 500 μm, preferably the gap has a width of about 100 μm to about 200 μm. Alternatively, it is appreciated that electrodes 14, 16 may be created by laser ablation alone on substrate 12. It is appreciated that while laser ablation is the preferred method for forming electrodes 14, 16 given its precision and sensitivity, other techniques such as lamination, screen-printing, or photolithography may be used in accordance with this disclosure.
  • [0020]
    As shown in FIG. 2, electrodes 14, 16 cooperate with one another to define an electrode array 36. In addition, electrodes 14, 16 each include a contact 34 and a lead 38 extending between the contact 34 and the array 36. It is appreciated that the leads 38 extending from the array can be formed to have many lengths and extend to a variety of locations on the electrode-support substrate 12. It is appreciated that the configuration of the electrode array, the number of electrodes, as well as the spacing between the electrodes may vary in accordance with this disclosure and that a greater than one array may be formed as will be appreciated by one of skill in the art.
  • [0021]
    Referring again to FIGS. 2 and 3, a recess 35 is formed from the electrical conductor 13 by laser ablation using techniques as described above. Recess is created by removing the electrical conductor 13 to expose the first surface 22 of the support substrate 12 adjacent to the first end 26. It is appreciated that a portion of the first surface 22 may also be removed to form the recess 35 in accordance with this disclosure.
  • [0022]
    In addition, as shown in FIGS. 1, 2, and 4, the discernible code pattern 40 is formed from the electrical conductor 13 by laser ablation using techniques as described above with reference to electrodes 14, 16. Specifically, the code pattern 40 is created by removing the electrical conductor 13 in a pre-defined pattern to expose the first surface 22 of the support substrate 12. While pattern 40 is illustratively a barcode type pattern, it is appreciated that the pattern 40 can take on any number of shapes and patterns, non-limiting examples of which are shown in FIGS. 5 and 6.
  • [0023]
    It is also appreciated that the pattern 40 can be provided in a human readable, optical readable, or electrical readable form in accordance with this disclosure. The structures could show contrast in their optical reflectivity, their electrical conductivity, or their resistivity respectively. To aid in contrasting the electrical conductivity of the code pattern 40, the electrical conductor 13 of the pattern 40 may be coated with a second conductive material (not shown) that is different from the electrical conductor 13. Non-limiting examples of the second conductive material include carbon and silver. It is appreciated, however, that a wide variety of materials may be coated on the electrical conductor 13 to change the electrical property of the code pattern 40.
  • [0024]
    It is also appreciated; electrodes 14, 16 could be formed from layers of electrically conductive materials having different colors, reflectivity, conductance, etc. Thus, the code pattern can be formed by removing a portion of the electrical conductor layers, leaving behind areas of high reflectivity surrounded by low reflectivity areas or vice versa, areas of high electrical conductivity surrounded by areas of low conductivity or vise versa. It is also possible to laser etch a code pattern that has a known resistance and this area can be read electrochemically to identify or recognize the code pattern. Moreover, it is appreciated that the code pattern can be a combination of any of the above readable forms in accordance with the present invention.
  • [0025]
    As shown in FIG. 4, the code pattern 40 is isolated from the rest of the electrically conductive material 13 on substrate 12 by gaps 42. Gaps 42 can have a wide variety of widths in accordance with this disclosure depending upon the specific use of the code pattern 40. Non-limiting examples of widths of the gaps include from about 1 μm to about 1000 μm. Alternatively, it is appreciated that the code pattern 40 may be created by laser ablation alone on substrate 12. It is appreciated that while laser ablation is the preferred method for forming the code pattern 40 given its precision and sensitivity, other techniques such as lamination, screen-printing, or photolithography may be used in accordance with this disclosure.
  • [0026]
    The manufacturer of biosensor 10 may maintain a central database containing a set of code patterns, each of which uniquely identifies an individual biosensor, or batch of biosensors. There may also be associated with each code pattern a set of calibration data for the biosensor 10. It is appreciated that the code patterns may be associated with any number of identification or data sets in accordance with the present invention.
  • [0027]
    Spacer substrate 18 of biosensor 10 includes an upper surface 44 and a lower surface 46 facing the substrate 12. In addition, the spacer substrate 18 includes opposite first and second ends 48, 50. First end 48 includes a notch 52, which is defined by a border 54. The border illustratively includes three generally linear sides. It is appreciated that the notch can take on a variety of shapes and sizes in accordance with this disclosure. When biosensor 10 is assembled, the border 54 extends about at least a portion of the array 36 so that the array 36 is at least partially exposed in the notch 52.
  • [0028]
    Spacer substrate 18 is formed of a flexible polymer and preferably from a flexible polymer and preferably from a polymer such as an adhesive coated polyethylene terephthalate (PET) polyester. A non-limiting example of a suitable PET is 3 mil (75 um) thick white PET film both sides of which are coated with a pressure-sensitive adhesive (Product # ARcare 8877) commercially available from Adhesives Research, Inc. Glen Rock, Pa. It is appreciated that spacer substrate 18 may be constructed of a variety of materials and may be coupled to the substrate 12 and the cover substrate 20 using a wide variety of commercially available adhesives, or by welding (heat or ultrasonic) when large portions of the surface 22 of the electrode support substrate 12 are exposed and not covered by electrical conductor 13.
  • [0029]
    The cover substrate 20 is coupled to the upper surface 44 of the spacer substrate 18. See FIG. 3. The cover substrate 20 includes opposite first and second ends 56, 58. The cover substrate 20 is coupled to the spacer substrate 18 such that the first end 56 is spaced-apart from the end 48 of the spacer substrate 18 and the second end 58 is spaced-apart from the end 50 of the spacer substrate 18. When biosensor 10 is assembled, cover substrate 20 cooperates with the spacer support 20 and the electrode-support 12 to define a capillary channel 60.
  • [0030]
    Cover substrate 20 is generally rectangular in shape, it is appreciated, however, that the cover substrate may be formed in a variety of shapes and sizes in accordance with this disclosure. Cover substrate 20 is formed from a flexible polymer and preferably from a polymer such as polyester. A non-limiting example of a suitable polymer is 3.9 mil (99 um) thick 3M hydrophilic polyester film (3M Product #9971), commercially available from 3M Healthcare, St. Paul, Minn.
  • [0031]
    Referring now to FIGS. 1 and 3, the capillary channel 60 is generally linear in shape and is defined by the cover substrate 20, the electrode support substrate 12, and the border 54 of the spacer substrate 18. When biosensor 10 is assembled, channel 60 extends across the electrode array 36. Cover substrate 20 does not extend across the entire notch 52, therefore, a portion of the notch serves as an air outlet in accordance with this disclosure.
  • [0032]
    An electrochemical reagent 62 is positioned on the array 36. The reagent 62 provides electrochemical probes for specific analytes. The term analyte, as used herein, refers to the molecule or compound to be quantitatively determined. Non-limiting examples of analytes include carbohydrates, proteins, such as hormones and other secreted proteins, enzymes, and cell surface proteins; glycoproteins; peptides; small molecules; polysaccharides; antibodies (including monoclonal or polyclonal Ab); nucleic acids; drugs; toxins; viruses of virus particles; portions of a cell wall; and other compounds processing epitopes. The analyte of interest is preferably glucose.
  • [0033]
    The choice of the specific reagent 62 depends on the specific analyte or analytes to be measured, and are well known to those of ordinary skill in the art. An example of a reagent that may be used in biosensor 10 of the present invention is a reagent for measuring glucose from a whole blood sample. A non-limiting example of a reagent for measurement of glucose in a human blood sample contains 62.2 mg polyethylene oxide (mean molecular weight of 100-900 kilo Daltons), 3.3 mg NATROSOL 244M, 41.5 mg AVICEL RC-591 F, 89.4 mg monobasic potassium phosphate, 157.9 mg dibasic potassium phosphate, 437.3 mg potassium ferricyanide, 46.0 mg sodium succinate, 148.0 mg trehalose, 2.6 mg TRITON X-100 surfactant, and 2,000 to 9,000 units of enzyme activity per gram of reagent. The enzyme is prepared as an enzyme solution from 12.5 mg coenzyme PQQ and 1.21 million units of the apoenzyme of quinoprotein glucose dehydrogenase. This reagent is further described in U.S. Pat. No. 5,997,817, the disclosure of which is expressly incorporated herein by reference.
  • [0034]
    Non-limiting examples of enzymes and mediators that may be used in measuring particular analytes in biosensor 10 are listed below in Table 1.
  • [0000]
    TABLE 1
    Mediator
    Analyte Enzymes (Oxidized Form) Additional Mediator
    Glucose Glucose Dehydrogenase Ferricyanide
    and Diaphorase
    Glucose Glucose-Dehydrogenase Ferricyanide
    (Quinoprotein)
    Cholesterol Cholesterol Esterase and Ferricyanide 2,6-Dimethyl-1,4-
    Cholesterol Oxidase Benzoquinone
    2,5-Dichloro-1,4-
    Benzoquinone or
    Phenazine Ethosulfate
    HDL Cholesterol Esterase Ferricyanide 2,6-Dimethyl-1,4-
    Cholesterol and Cholesterol Oxidase Benzoquinone
    2,5-Dichloro-1,4-
    Benzoquinone or
    Phenazine Ethosulfate
    Triglycerides Lipoprotein Lipase, Ferricyanide or Phenazine Methosulfate
    Glycerol Kinase, and Phenazine
    Glycerol-3-Phosphate Ethosulfate
    Oxidase
    Lactate Lactate Oxidase Ferricyanide 2,6-Dichloro-1,4-
    Benzoquinone
    Lactate Lactate Dehydrogenase Ferricyanide
    and Diaphorase Phenazine
    Ethosulfate, or
    Phenazine
    Methosulfate
    Lactate Diaphorase Ferricyanide Phenazine Ethosulfate, or
    Dehydrogenase Phenazine Methosulfate
    Pyruvate Pyruvate Oxidase Ferricyanide
    Alcohol Alcohol Oxidase Phenylenediamine
    Bilirubin Bilirubin Oxidase 1-Methoxy-
    Phenazine
    Methosulfate
    Uric Acid Uricase Ferricyanide
  • [0035]
    In some of the examples shown in Table 1, at least one additional enzyme is used as a reaction catalyst. Also, some of the examples shown in Table 1 may utilize an additional mediator, which facilitates electron transfer to the oxidized form of the mediator. The additional mediator may be provided to the reagent in lesser amount than the oxidized form of the mediator. While the above assays are described, it is contemplated that current, charge, impedance, conductance, potential, or other electrochemically indicated property of the sample might be accurately correlated to the concentration of the analyte in the sample with biosensor 10 in accordance with this disclosure.
  • [0036]
    A plurality of biosensors 10 are typically packaged in a vial, usually with a stopper formed to seal the vial. It is appreciated, however, that biosensors 10 may be packaged individually, or biosensors can be folded upon one another, rolled in a coil, stacked in a cassette magazine, or packed in blister packaging.
  • [0037]
    Biosensor 10 is used in conjunction with the following:
  • [0038]
    1. a power source in electrical connection with contacts 34 and capable of supplying an electrical potential difference between electrodes 14, 16 sufficient to cause diffusion limited electro-oxidation of the reduced form of the mediator at the surface of the working electrode; and
  • [0039]
    2. a meter in electrical connection with contacts 34 and capable of measuring the diffusion limited current produced by oxidation of the reduced form of the mediator with the above-stated electrical potential difference is applied.
  • [0040]
    The meter is provided with a pattern reader that is capable of reading the code pattern 40 into a memory of the meter. The reader can be an electrical or optical reader in accordance with the present invention. The reader is formed to read the code pattern 40 when the biosensor 10 is inserted into the meter. When, however, the code pattern is in a human readable form, it is appreciated that the meter may include an interface, which permits the user to input the information from the code pattern manually. There are many ways to optically read code pattern 40 such as laser scanners, pen-like wands, and charge-couple-device (CCD) scanners. A non-limiting example of a suitable optical reader suitable for use with the present invention includes a light emitting diode(s) (LED), a lens, and a photodiode. It is appreciated that the reader may be an independent internal component of the meter.
  • [0041]
    The meter may further be formed to transfer the code pattern from the meter to a memory unit where it is stored. It is appreciated that the memory unit can be formed to store information regarding the specifics of the code pattern as well as patient information including previous meter readings. The meter will normally be adapted to apply an algorithm to the current measurement, whereby an analyte concentration is provided and visually displayed. Improvements in such power source, meter, and biosensor system are the subject of commonly assigned U.S. Pat. No. 4,963,814, issued Oct. 16, 1990; U.S. Pat. No. 4,999,632, issued Mar. 12, 1991; U.S. Pat. No. 4,999,582, issued Mar. 12, 1991; U.S. Pat. No. 5,243,516, issued Sep. 7, 1993; U.S. Pat. No. 5,352,351, issued Oct. 4, 1994; U.S. Pat. No. 5,366,609, issued Nov. 22, 1994; White et al., U.S. Pat. No. 5,405,511, issued Apr. 11, 1995; and White et al., U.S. Pat. No. 5,438,271, issued Aug. 1, 1995, the disclosures of each of which are expressly hereby incorporated by reference.
  • [0042]
    Many fluid samples may be analyzed. For example, human body fluids such as whole blood, plasma, sera, lymph, bile, urine, semen, cerebrospinal fluid, spinal fluid, lacrimal fluid and stool specimens as well as other biological fluids readily apparent to one skilled in the art may be measured. Fluid preparations of tissues can also be assayed, along with foods, fermentation products and environmental substances, which potentially contain environmental contaminants. Preferably, whole blood is assayed with this invention.
  • [0043]
    To manufacture biosensor 10 a roll of metallized electrode support material is fed through guide rolls into an ablation/washing and drying station. A laser system capable of ablating support 12 is known to those of ordinary skill in the art. Non-limiting examples of which include excimer lasers, with the pattern of ablation controlled by mirrors, lenses, and masks. A non-limiting example of such a custom fit system is the LPX-300 or LPX-200 both commercially available from LPKF Laser Electronic GmbH, of Garbsen, Germany.
  • [0044]
    In the laser ablation station, the metallic layer of the metallized film is ablated in a pre-determined pattern, to form a ribbon of isolated electrode sets on the electrode support material, code patterns, and a recess in the film adjacent to each electrode array. To ablate electrodes 14, 16, recess 35, and code patterns 40 in 50 nm thick gold conductor 13, 90 mJ/cm2 energy is applied. It is appreciated, however, that the amount of energy required may vary from material to material, metal to metal, or thickness to thickness. The ribbon is then passed through more guide rolls, with a tension loop and through an optional inspection system where both optical and electrical inspection can be made. The system is used for quality control in order to check for defects.
  • [0045]
    Upon leaving the laser ablation station, the metallized film is fed into a reagent dispensing station. Reagents that have been compounded are fed into a dispensing station where it is applied in a liquid form to the center of respective the array 34. Reagent application techniques are well known to one of ordinary skill in the art as described in U.S. Pat. No. 5,762,770, the disclosure of which is expressly incorporated herein by reference. It is appreciated that reagents may be applied to the array 34 in a liquid or other form and dried or semi-dried onto the array 34 in accordance with this disclosure.
  • [0046]
    In a separate process, a double-sided pressure-sensitive film with dual release liners is fed into a window punch unit where notches are formed. The film is then fed into a lamination & kiss-cutting station. At the same time, a roll of cover substrate material is fed over a guide roll into the lamination & kiss-cutting station, where the release liner is removed from the upper surface 44 and rewound into a roll. The upper surface 33 of the spacer substrate material is applied to the cover substrate material. Next, the film is kiss cut and a portion of the cover substrate material is removed, leaving behind the cover substrate material coupled to the spacer substrate material, extending across a portion of the notch.
  • [0047]
    The cover material/spacer substrate subassembly is fed into a sensor lamination & cut/pack station. The reagent-coated electrode-support substrate material is fed from the dispensing station into the sensor lamination & cut/pack station as well. The remaining release liner is removed from the spacer substrate and the spacer substrate is positioned on the electrode-support substrate material so that at least a portion of the electrode array 36 is aligned with the notch 52. Next, the resulting assembled material is cut to form individual biosensors 10, which are sorted and packed into vials, each closed with a stopper, to give packaged biosensor strips.
  • [0048]
    In use, the meter is turned on and the biosensor is inserted into the meter. It is appreciated that the user may turn on the meter, or it may turn on automatically upon insertion of the biosensor. The LED emits a light that is directed through a lens towards the code pattern of the biosensor. The light is reflected off of the code pattern, through the lens, and toward the photodiode. The photodiode measures the intensity of the light that is reflected back from the code pattern and generates a corresponding voltage waveform. A decoder deciphers this waveform and translates it into a reading of the code pattern. It is appreciated that many commercially available optical readers may be used in accordance with the present invention. Preferably, the optical reader will be custom fit reader.
  • [0049]
    In use, a user of biosensor 10 places a finger having a blood collection incision against the recess 35 in the notch 52. Capillary forces pull a liquid blood sample flowing from the incision through the capillary channel 60 across the reagent 62 and the array 34. The liquid blood sample dissolves the reagent 62 and engages the array 34 where the electrochemical reaction takes place.
  • [0050]
    In use for example, after the reaction is complete, a power source (e.g., a battery) applies a potential difference between the electrodes 14, 16 respectively. When the potential difference is applied, the amount of oxidized form of the mediator at the reference electrode and the potential difference must be sufficient to cause diffusion-limited electro-oxidation of the reduced form of the mediator at the surface of the working electrode. A current measuring meter (not shown) measures the diffusion-limited current generated by the oxidation of the reduced form of the mediator at the surface of the working electrode.
  • [0051]
    The measured current may be accurately correlated to the concentration of the analyte in sample when the following requirements are satisfied:
  • [0052]
    1. The rate of oxidation of the reduced form of the mediator is governed by the rate of diffusion of the reduced form of the mediator to the surface of the working electrode.
  • [0053]
    2. The current produced is limited by the oxidation of reduced form of the mediator at the surface of the working electrode.
  • [0054]
    The processes and products described above include disposable biosensor 10 especially for use in diagnostic devices. Also included, however, are electrochemical sensors for non-diagnostic uses, such as measuring an analyte in any biological, environmental, or other sample. As discussed above, biosensor 10 can be manufactured in a variety of shapes and sizes and be used to perform a variety of assays, non-limiting examples of which include current, charge, impedance conductance, potential or other electrochemical indicative property of the sample applied to biosensor.
  • [0055]
    In accordance with another embodiment of the present invention, biosensor 110 is illustrated in FIG. 5. Biosensor 110 is formed in a similar manner to biosensor 10 except that biosensor 110 includes a code pattern 140. Code pattern 140 includes nine isolated pads 160. It is appreciated that the number of pads can be greater or fewer than nine in accordance with this disclosure. Each pad 160 is separated by from the surrounding electrical conductor by a gap 170.
  • [0056]
    Code pattern 140 is used once biosensor 110 is attached to a meter circuit board (not shown) that includes a connector. Generally, the connector will include two contacts per possible pad location on biosensor 110. Code pattern 140 of the present invention enables the meter to check continuity at each pad 160 location or determine that a pad does not exist in a pre-determined location. If a pad 160 is present, the meter will recognize the presence of a pad 160 by a continuity check. One of ordinary skill in the art will be well aware of methods suitable for performing a continuity check.
  • [0057]
    Code pattern 140 is formed from the electrical conductor by laser ablation using techniques as described above with reference to electrodes 14, 16, shown for example in FIG. 1. Specifically, removing the electrical conductor in a pre-defined pattern to expose the first surface of the support substrate 12 creates the code pattern 140. Code pattern 140 can also be coated with a second electrical conductor (not shown) to modify the electrical resistivity of the pattern 140. While pattern 140 illustratively includes nine spaced-apart generally square-shaped pads, it is appreciated that the pattern 140 can take on any number of shapes and patterns in accordance with this disclosure. In addition, it is appreciated that the pattern 140 can be read optically or electrically in accordance with this disclosure.
  • [0058]
    In use, when the user inserts biosensor 110 into the meter (not shown), the biosensor 1111 makes contact to the connector and the electronics of the meter inquire as to how many pads 160 are showing continuity. Predetermined lot information may be stored in a memory unit of the meter. It is appreciated that the memory unit may also store a variety of patient information including previous meter readings. This memory unit is formed with memory components, a non-limiting example of which is known as RAM, which is well known in the prior art. The results of the continuity query may be used to set the appropriate code information in the meter, which enables the meter to eliminate chemistry or reagent variation.
  • [0059]
    In accordance with another embodiment of the present invention, biosensor 210 is illustrated in FIG. 6. Biosensor 210 is formed in a similar manner to biosensor 10, except that biosensor 210 includes a code pattern 240. Code pattern 240 includes nine pads 260 that are in communication with one another. It is appreciated that the number of pads can vary in accordance with this disclosure. Each pad 260 is separated from the surrounding electrical conductor by gaps 270.
  • [0060]
    Code pattern 240 is formed from the electrical conductor by laser ablation using techniques as described above with reference to electrodes 14, 16, shown for example in FIG. 1. Specifically, removing the electrical conductor in a pre-defined pattern to expose the first surface of the support substrate 12 creates the code pattern 240. Code pattern 240 can also be coated with a second electrical conductor (not shown) to modify the electrical resistivity of the pattern 240.
  • [0061]
    While pattern 240 illustratively includes nine generally square-shaped pads that are interconnected, it is appreciated that the pattern 240 can take on any number of shapes and patterns in accordance with this disclosure, which would give various resistance levels. These differing resistance levels can be correlated to a reagent lot. For example, the pattern 240 can be varied by disconnecting the internal links between the pads 260. This disconnection can be done, for example, by a laser. By changing the number of interconnected pads, the resistance of the remaining interconnected pads 260 will be different. In addition, it is appreciated that the pattern 240 can be read optically or electrically in accordance with this disclosure.
  • [0062]
    In use, when the user inserts biosensor 210 into the meter (not shown), the biosensor 210 makes contact to the connector and the electronics of the meter inquire as to how many pads 260 are showing continuity. Information related to this continuity is similar to that previously described with reference to biosensor 110.
  • [0063]
    In addition, the biosensor 210 will make contact with electronics of the meter, which determines the resistance between the interconnected pads. Thus, in preferred embodiments, the meter will determine which pads exist on the biosensor 210, and the resistance of the interconnected pads 260. The information can be stored in the meter as described above with reference to biosensors 10 and 110.
  • [0064]
    Although the invention has been described in detail with reference to a preferred embodiment, variations and modifications exist within the scope and spirit of the invention, on as described and defined in the following claims.

Claims (4)

  1. 1. A method of forming a biosensor, the method comprising the steps of:
    providing a flexible substrate coated with an electrically conductive material,
    ablating through the electrically conductive material to expose the substrate in a pre-defined pattern so as to form a pattern of electrodes and a code pattern electrically isolated from the electrodes, wherein there is sufficient contrast between the conductive material and the exposed substrate such that the code pattern is discernible, and
    applying a reagent to at least one of the electrodes.
  2. 2. The method of claim 1 wherein the ablating step includes the step of laser ablating the electrically conductive material.
  3. 3. The method of claim 1 wherein the ablating step includes forming a bar code shaped code pattern.
  4. 4. The method of claim 1 wherein the ablating step includes forming a code pattern that includes pads isolated from the surrounding electrically conductive material.
US10976740 2001-08-29 2004-10-29 Method of making a biosensor Active 2024-01-12 US7476827B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09942515 US6814844B2 (en) 2001-08-29 2001-08-29 Biosensor with code pattern
US10976740 US7476827B1 (en) 2001-08-29 2004-10-29 Method of making a biosensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10976740 US7476827B1 (en) 2001-08-29 2004-10-29 Method of making a biosensor
US11158772 US7780827B1 (en) 2001-08-29 2005-06-22 Biosensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09942515 Division US6814844B2 (en) 2001-08-29 2001-08-29 Biosensor with code pattern

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11158772 Division US7780827B1 (en) 2001-08-29 2005-06-22 Biosensor

Publications (2)

Publication Number Publication Date
US20080314882A1 true true US20080314882A1 (en) 2008-12-25
US7476827B1 US7476827B1 (en) 2009-01-13

Family

ID=25478187

Family Applications (3)

Application Number Title Priority Date Filing Date
US09942515 Active 2022-08-21 US6814844B2 (en) 2001-08-29 2001-08-29 Biosensor with code pattern
US10976740 Active 2024-01-12 US7476827B1 (en) 2001-08-29 2004-10-29 Method of making a biosensor
US11158772 Active 2025-03-03 US7780827B1 (en) 2001-08-29 2005-06-22 Biosensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09942515 Active 2022-08-21 US6814844B2 (en) 2001-08-29 2001-08-29 Biosensor with code pattern

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11158772 Active 2025-03-03 US7780827B1 (en) 2001-08-29 2005-06-22 Biosensor

Country Status (5)

Country Link
US (3) US6814844B2 (en)
EP (1) EP1288653B2 (en)
JP (2) JP4098031B2 (en)
CA (1) CA2399887C (en)
ES (1) ES2367102T5 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050023152A1 (en) * 2003-06-20 2005-02-03 Surridge Nigel Anthony Devices and methods relating to electrochemical biosensors
US20090151864A1 (en) * 2003-06-20 2009-06-18 Burke David W Reagent stripe for test strip
US20090205201A1 (en) * 2002-12-20 2009-08-20 Acea Biosciences, Inc. Impedance Based Devices and Methods for Use in Assays
CN101929974A (en) * 2009-06-24 2010-12-29 生命扫描有限公司 Analyte test strip with combination electrode contact and meter identification feature
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
WO2013102448A1 (en) * 2012-01-06 2013-07-11 达尔生技股份有限公司 Biosensor and biomeasurement system
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US9194859B2 (en) 2011-12-23 2015-11-24 Abbott Point Of Care Inc. Reader devices for optical and electrochemical test devices
CN105445447A (en) * 2015-09-28 2016-03-30 腾讯科技(深圳)有限公司 Measuring method based on test paper and device
US9335290B2 (en) 2011-12-23 2016-05-10 Abbott Point Of Care, Inc. Integrated test device for optical and electrochemical assays
US9377475B2 (en) 2011-12-23 2016-06-28 Abbott Point Of Care Inc. Optical assay device with pneumatic sample actuation

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8419650B2 (en) 1999-04-16 2013-04-16 Cariocom, LLC Downloadable datasets for a patient monitoring system
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6841052B2 (en) 1999-08-02 2005-01-11 Bayer Corporation Electrochemical-sensor design
US7073246B2 (en) * 1999-10-04 2006-07-11 Roche Diagnostics Operations, Inc. Method of making a biosensor
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
US20060091006A1 (en) * 1999-11-04 2006-05-04 Yi Wang Analyte sensor with insertion monitor, and methods
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
EP1404235A4 (en) 2001-06-12 2008-08-20 Pelikan Technologies Inc Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
WO2002100460A3 (en) 2001-06-12 2003-05-08 Don Alden Electric lancet actuator
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6814844B2 (en) 2001-08-29 2004-11-09 Roche Diagnostics Corporation Biosensor with code pattern
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US6743635B2 (en) * 2002-04-25 2004-06-01 Home Diagnostics, Inc. System and methods for blood glucose sensing
US7560269B2 (en) 2002-12-20 2009-07-14 Acea Biosciences, Inc. Real time electronic cell sensing system and applications for cytotoxicity profiling and compound assays
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
EP1628567B1 (en) 2003-05-30 2010-08-04 Pelikan Technologies Inc. Method and apparatus for fluid injection
WO2004109263A1 (en) * 2003-06-03 2004-12-16 Bayer Healthcare Llc Readhead for optical inspection apparatus
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7604721B2 (en) * 2003-06-20 2009-10-20 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
WO2004113915A1 (en) * 2003-06-20 2004-12-29 Roche Diagnostics Gmbh System and method for coding information on a biosensor test strip
US8058077B2 (en) * 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US8206565B2 (en) * 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) * 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US7645421B2 (en) * 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
CA2537091A1 (en) * 2003-09-01 2005-03-10 Inverness Medical Switzerland Gmbh Sampling device with capillary action
WO2005033659A3 (en) 2003-09-29 2007-01-18 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
EP1692258A4 (en) 2003-11-12 2007-03-21 Xiao Xu Real time electronic cell sensing systems and applications for cell-based assays
US7577470B2 (en) * 2003-11-13 2009-08-18 Medtronic Minimed, Inc. Long term analyte sensor array
US8394337B2 (en) * 2003-12-31 2013-03-12 Nipro Diagnostics, Inc. Test strip container with integrated meter
US8394328B2 (en) * 2003-12-31 2013-03-12 Nipro Diagnostics, Inc. Test strip container with integrated meter having strip coding capability
WO2005065414A3 (en) 2003-12-31 2005-12-29 Pelikan Technologies Inc Method and apparatus for improving fluidic flow and sample capture
US8147426B2 (en) * 2003-12-31 2012-04-03 Nipro Diagnostics, Inc. Integrated diagnostic test system
US7776559B2 (en) * 2004-01-22 2010-08-17 Hewlett-Packard Development Company, L.P. Disposable blood test device
WO2005078437A1 (en) * 2004-02-06 2005-08-25 Bayer Healthcare Llc Electrochemical biosensor
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US20060182656A1 (en) * 2004-06-18 2006-08-17 Tom Funke Dispenser for flattened articles
US7582262B2 (en) 2004-06-18 2009-09-01 Roche Diagnostics Operations, Inc. Dispenser for flattened articles
US7601299B2 (en) 2004-06-18 2009-10-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
JP2006015068A (en) * 2004-07-05 2006-01-19 Nishitomo Co Ltd Biological information measuring sensor and biological information measuring apparatus
US7418285B2 (en) * 2004-12-29 2008-08-26 Abbott Laboratories Analyte test sensor and method of manufacturing the same
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US7875240B2 (en) 2005-04-19 2011-01-25 Bayer Healthcare Llc Auto-calibration label and method of forming the same
WO2006113721A3 (en) 2005-04-19 2007-02-15 Bayer Healthcare Llc Auto-calibration label and methods of forming the same
US7939019B2 (en) 2005-05-24 2011-05-10 Bayer Healthcare Llc Sensor package with an interim auto-calibration circuit
US8594943B2 (en) 2005-05-27 2013-11-26 Bionime Gmbh Coding module, a bio sensing meter and a system for operating a bio sensing meter
EP1729128A1 (en) * 2005-06-01 2006-12-06 Bionime GmbH A coding module, a bio sensing meter and a system for operating a bio sensing meter
EP1742063B1 (en) * 2005-07-07 2010-09-08 Asulab S.A. System for the differential determination of the amount of a proteolytic enzyme in a body fluid.
US9012232B2 (en) * 2005-07-15 2015-04-21 Nipro Diagnostics, Inc. Diagnostic strip coding system and related methods of use
US8999125B2 (en) 2005-07-15 2015-04-07 Nipro Diagnostics, Inc. Embedded strip lot autocalibration
US7955856B2 (en) * 2005-07-15 2011-06-07 Nipro Diagnostics, Inc. Method of making a diagnostic test strip having a coding system
JP2009505102A (en) * 2005-08-16 2009-02-05 ホーム ダイアグナスティックス,インコーポレーテッド The analysis method of the production method and the test pattern of the test strip
GB0518527D0 (en) * 2005-09-10 2005-10-19 Oxford Biosensors Ltd Scaling factor for an output of an electrochemical cell
KR100680267B1 (en) * 2005-09-16 2007-02-01 주식회사 인포피아 Biosensor had the identification information and reading apparatus for the identification information recorded a biosensor
US7510985B1 (en) 2005-10-26 2009-03-31 Lpkf Laser & Electronics Ag Method to manufacture high-precision RFID straps and RFID antennas using a laser
US7955484B2 (en) * 2005-12-14 2011-06-07 Nova Biomedical Corporation Glucose biosensor and method
JP4670013B2 (en) * 2006-02-03 2011-04-13 独立行政法人産業技術総合研究所 Biosensors and its manufacturing method
US8789756B2 (en) 2006-02-25 2014-07-29 Roche Diagnostics Operations, Inc. Test element coding apparatuses, systems and methods
US8388905B2 (en) * 2006-03-13 2013-03-05 Nipro Diagnostics, Inc. Method and apparatus for coding diagnostic meters
GB0606189D0 (en) * 2006-03-28 2006-05-10 Avantone Oy Machine readable code system
GB0606188D0 (en) * 2006-03-28 2006-05-10 Avantone Oy Machine readable code and devices for reading the same
US8092385B2 (en) 2006-05-23 2012-01-10 Intellidx, Inc. Fluid access interface
EP1870046A1 (en) * 2006-06-22 2007-12-26 Roche Diagnostics GmbH Bendable apparatus to introduce a medical apparatus in the body
US20080020452A1 (en) * 2006-07-18 2008-01-24 Natasha Popovich Diagnostic strip coding system with conductive layers
US20080083618A1 (en) 2006-09-05 2008-04-10 Neel Gary T System and Methods for Determining an Analyte Concentration Incorporating a Hematocrit Correction
US7740801B2 (en) * 2006-10-31 2010-06-22 Lifescan Scotland Limited System for determination of an analyte in a bodily fluid sample that includes an electroluminescent component
US20080105024A1 (en) * 2006-11-07 2008-05-08 Bayer Healthcare Llc Method of making an auto-calibrating test sensor
WO2008076212A1 (en) * 2006-12-13 2008-06-26 Bayer Healthcare Llc Biosensor with coded information and method for manufacturing the same
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US20080199894A1 (en) * 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
KR100854389B1 (en) 2007-02-28 2008-08-26 주식회사 아이센스 Electrochemical biosensor
KR20080080841A (en) 2007-03-02 2008-09-05 주식회사 아이센스 Electrochemical biosensor
KR100874158B1 (en) 2007-03-14 2008-12-15 주식회사 아이센스 Electrochemical Biosensor and its instrument
KR100874159B1 (en) * 2007-03-28 2008-12-15 주식회사 아이센스 Electrochemical Biosensor and its instrument
US9029157B2 (en) * 2007-04-12 2015-05-12 Nipro Diagnostics, Inc. Error detection and rejection for a diagnostic testing system
US20080274552A1 (en) * 2007-05-04 2008-11-06 Brian Guthrie Dynamic Information Transfer
US20080294024A1 (en) * 2007-05-24 2008-11-27 Cosentino Daniel L Glucose meter system and monitor
JP2009008574A (en) * 2007-06-29 2009-01-15 National Institute Of Advanced Industrial & Technology Sensor chip, biosensor cartridge, and biosensor device
US8206564B2 (en) * 2007-07-23 2012-06-26 Bayer Healthcare Llc Biosensor calibration system
RU2010108229A (en) * 2007-08-06 2011-09-20 БАЙЕР ХЕЛТКЭА ЭлЭлСи (US) System and method for automatic calibration
KR100896234B1 (en) * 2007-08-10 2009-05-08 주식회사 아이센스 Electrochemical biosensor and measuring instrument thereof
KR20150108949A (en) 2007-10-10 2015-09-30 아가매트릭스, 인코포레이티드 Identification method for electro chemical test strips
US7625473B2 (en) * 2007-10-19 2009-12-01 Hmd Biomedical Inc Test strip with identification function and test instrument using the same
JP2009115516A (en) * 2007-11-02 2009-05-28 National Institute Of Advanced Industrial & Technology Biosensor
US8241488B2 (en) 2007-11-06 2012-08-14 Bayer Healthcare Llc Auto-calibrating test sensors
US7809512B2 (en) * 2007-11-11 2010-10-05 Bayer Healthcare Llc Biosensor coding system
US20090145753A1 (en) 2007-12-07 2009-06-11 Apex Biotechnology Corp. Biomechanical test system, measurement device, and biochemical test strip
US20090145754A1 (en) * 2007-12-07 2009-06-11 Apex Biotechnology Corp. Biochemical test system, measurement device, biochemical test strip and method of making the same
WO2009076263A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc An auto-calibrating test sensor and method of making the same
JP2011511665A (en) * 2008-02-04 2011-04-14 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Analyte sensor and method for a semiconductor as a material
US20090205399A1 (en) * 2008-02-15 2009-08-20 Bayer Healthcare, Llc Auto-calibrating test sensors
EP2098863A1 (en) 2008-03-04 2009-09-09 Visgeneer, Inc. A bio-monitoring system and methods of use thereof
US20090223287A1 (en) * 2008-03-04 2009-09-10 Visgeneer, Inc. Bio-Monitoring System and Methods of Use Thereof
JP5176612B2 (en) * 2008-03-10 2013-04-03 住友電気工業株式会社 Biosensor measuring device
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
JP5104526B2 (en) * 2008-05-02 2012-12-19 住友電気工業株式会社 Biosensor measuring device and sensor system
JP5104527B2 (en) * 2008-05-02 2012-12-19 住友電気工業株式会社 Biosensor measuring device
JP5218826B2 (en) * 2008-05-07 2013-06-26 住友電気工業株式会社 Biosensor system and a biosensor and a biosensor measuring device
US8124014B2 (en) 2008-06-09 2012-02-28 Bayer Healthcare Llc Auto-calibration circuit or label and method of forming the same
JP5405916B2 (en) * 2008-06-24 2014-02-05 パナソニック株式会社 Detection system comprising the biosensor, a method of manufacturing the same, and it
US8032321B2 (en) * 2008-07-15 2011-10-04 Bayer Healthcare Llc Multi-layered biosensor encoding systems
US20100015006A1 (en) * 2008-07-16 2010-01-21 Tien-Tsai Hsu Test strip with identification openings and test instrument using the same
US8700114B2 (en) * 2008-07-31 2014-04-15 Medtronic Minmed, Inc. Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
US20100025238A1 (en) * 2008-07-31 2010-02-04 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
KR101013184B1 (en) * 2008-08-22 2011-02-10 주식회사 아이센스 Biosensor measuring apparatus and a method thereof
CA2735675C (en) 2008-09-19 2017-02-14 Bayer Healthcare Llc Electrochemical devices with enhanced electrochemical activity and manufacturing methods thereof
EP2341828A4 (en) * 2008-09-19 2012-11-21 Bayer Healthcare Llc Lancet analyte sensors and methods of manufacturing
CN102171823B (en) * 2008-09-19 2014-04-16 拜尔健康护理有限责任公司 Analyte sensors, testing apparatus and manufacturing methods
US9173597B2 (en) * 2008-09-19 2015-11-03 Bayer Healthcare Llc Analyte sensors, systems, testing apparatus and manufacturing methods
US8424763B2 (en) * 2008-10-07 2013-04-23 Bayer Healthcare Llc Method of forming an auto-calibration circuit or label
US8586911B2 (en) * 2008-10-21 2013-11-19 Bayer Healthcare Llc Optical readhead and method of using the same
US8012428B2 (en) 2008-10-30 2011-09-06 Lifescan Scotland, Ltd. Analytical test strip with minimal fill-error sample viewing window
US20100112612A1 (en) * 2008-10-30 2010-05-06 John William Dilleen Method for determining an analyte using an analytical test strip with a minimal fill-error viewing window
EP3043174B1 (en) 2008-11-04 2017-12-06 Panasonic Healthcare Holdings Co., Ltd. Measurement device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
WO2010091793A3 (en) * 2009-01-30 2011-03-24 Pelikan Technologies Gmbh & Co. Kg Analyte measurement device with on-strip coding background
US8696917B2 (en) 2009-02-09 2014-04-15 Edwards Lifesciences Corporation Analyte sensor and fabrication methods
US20100206728A1 (en) * 2009-02-13 2010-08-19 Apex Biotechnology Corp. Biochemical test system, measurement device, and biochemical test strip
KR100903972B1 (en) 2009-02-19 2009-06-25 주식회사 올메디쿠스 Calibration method for bio-sensor
US20100294660A1 (en) * 2009-03-13 2010-11-25 Tyson Bioresearch, Inc. Glucose Testing Device And Strips For Same
EP2228658A1 (en) 2009-03-13 2010-09-15 Roche Diagnostics GmbH Method for producing an analytical consumable
KR101098993B1 (en) * 2009-03-16 2011-12-29 영동전자 주식회사 Biosensor and device for disease diagnosis using electrode
US8753290B2 (en) 2009-03-27 2014-06-17 Intellectual Inspiration, Llc Fluid transfer system and method
US8608937B2 (en) * 2009-03-30 2013-12-17 Roche Diagnostics Operations, Inc. Biosensor with predetermined dose response curve and method of manufacturing
KR101149818B1 (en) * 2009-05-29 2012-05-25 주식회사 아이센스 Electrochemical biosensor and measuring instrument thereof
US8173008B2 (en) 2009-06-24 2012-05-08 Lifescan, Inc. Method for determining an analyte in a bodily fluid sample using an analyte test strip with combination electrode contact and meter identification feature
US20110042211A1 (en) * 2009-08-21 2011-02-24 Apex Biotechnology Corp. Biochemical test strip, measurement device, and biochemical test system
KR101033649B1 (en) * 2009-09-04 2011-05-12 주식회사 필로시스 Bio Sensor for Automatic Code Sensing and Code Sensing Method Using It
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2011146531A9 (en) 2010-05-18 2012-07-12 Acea Biosciences, Inc Data analysis of impedance-based cardiomyocyte-beating signals as detected on real-time cell analysis (rtca) cardio instruments
US8940141B2 (en) 2010-05-19 2015-01-27 Lifescan Scotland Limited Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
KR101703997B1 (en) * 2010-06-08 2017-02-08 엘지전자 주식회사 Test strip and assay device
JP5698085B2 (en) * 2010-07-12 2015-04-08 アークレイ株式会社 Biosensor and the manufacturing method thereof
KR20130075776A (en) * 2010-09-17 2013-07-05 아가매트릭스, 인코포레이티드 Method and apparatus for encoding test strips
JP2012104512A (en) * 2010-11-05 2012-05-31 Sharp Corp Thin film solar cell module and method of manufacturing the same
US20130228266A1 (en) * 2010-12-10 2013-09-05 Wen-Pin Hsieh Manufacturing method of a test strip
US9083862B2 (en) * 2011-08-29 2015-07-14 Bionime Corporation Biosensor with a visually identifiable character pattern, and biosensor measuring system incorporating the same
CN103076441B (en) * 2011-10-25 2015-08-19 华广生技股份有限公司 Bidirectional test strip to check the information biosensing measurement system
KR101299795B1 (en) * 2011-11-18 2013-08-23 주식회사 세라젬메디시스 Biosensor having identification information and decipherment apparatus thereof
US9140693B2 (en) 2011-12-23 2015-09-22 Abbott Point Of Care Inc. Integrated test device for optical detection of microarrays
KR101355883B1 (en) * 2012-02-08 2014-01-28 (주)정원기술 Laser position correction device for making biosensor having width of tiny line and same method
US8894831B2 (en) 2012-06-27 2014-11-25 Roche Diagnostics Operations, Inc. Printed memory on strip
US9395234B2 (en) 2012-12-05 2016-07-19 Cardiocom, Llc Stabilizing base for scale
CN103123357A (en) * 2013-01-08 2013-05-29 镇江博联电子科技有限公司 Multi-type blood glucose test paper recognizing system and method and glucometer
EP2770064A1 (en) * 2013-02-22 2014-08-27 F. Hoffmann-La Roche AG Highly efficient production of blood glucose test strips
CN105247357B (en) 2013-03-15 2017-12-12 豪夫迈·罗氏有限公司 Detection of high levels of antioxidants and methods for analyte concentration from fail-binding substance and its equipment, apparatus and system during the electrochemical measurement
EP2972273A1 (en) 2013-03-15 2016-01-20 Roche Diagnostics GmbH Methods of using information from recovery pulses in electrochemical analyte measurements as well as devices, apparatuses and systems incorporating the same
CA2900883C (en) 2013-03-15 2017-10-24 F. Hoffmann-La Roche Ag Methods of failsafing electrochemical measurements of an analyte as well as devices, apparatuses and systems incorporating the same
CN105164523B (en) 2013-03-15 2017-09-12 豪夫迈·罗氏有限公司 Scaling the data used to construct the biosensor algorithm method and a device combining the method, apparatus and system
WO2014166987A1 (en) * 2013-04-09 2014-10-16 Roche Diagnostics Gmbh Protective covering for a hand-held medical device
KR101526495B1 (en) * 2013-04-29 2015-06-05 주식회사 인포피아 Apparatus for recognizing identification information on a biosensor
WO2015047696A1 (en) * 2013-09-24 2015-04-02 ApolloDX, LLC Systems and methods for diagnostic testing
KR20150073041A (en) * 2013-12-20 2015-06-30 럭스쉐어-아이씨티 컴퍼니 리미티드 Method of forming conductive traces on insulated substrate

Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081653A (en) * 1976-12-27 1978-03-28 Western Electric Co., Inc. Removal of thin films from substrates by laser induced explosion
US4131484A (en) * 1978-02-13 1978-12-26 Western Electric Company, Inc. Frequency adjusting a piezoelectric device by lasering
US4414059A (en) * 1982-12-09 1983-11-08 International Business Machines Corporation Far UV patterning of resist materials
US4476149A (en) * 1981-08-27 1984-10-09 Boehringer Mannheim Gmbh Process for the production of an analysis test strip
US4671661A (en) * 1983-12-19 1987-06-09 Gretag Aktiengesellschaft Process, apparatus and color measuring strip for evaluating print quality
US4707722A (en) * 1984-12-17 1987-11-17 Motorola, Inc. Laser marking method and ablative coating for use therein
US4865973A (en) * 1985-09-13 1989-09-12 Queen's University At Kingston Process for extractive fermentation
US4874500A (en) * 1987-07-15 1989-10-17 Sri International Microelectrochemical sensor and sensor array
US4897173A (en) * 1985-06-21 1990-01-30 Matsushita Electric Industrial Co., Ltd. Biosensor and method for making the same
US4963814A (en) * 1989-12-15 1990-10-16 Boehringer Mannheim Corporation Regulated bifurcated power supply
US4999632A (en) * 1989-12-15 1991-03-12 Boehringer Mannheim Corporation Analog to digital conversion with noise reduction
US4999582A (en) * 1989-12-15 1991-03-12 Boehringer Mannheim Corp. Biosensor electrode excitation circuit
US5018164A (en) * 1989-09-12 1991-05-21 Hughes Aircraft Company Excimer laser ablation method and apparatus for microcircuit fabrication
US5089103A (en) * 1989-12-01 1992-02-18 Hewlett-Packard Company Electrophoresis capillary with agarose
US5104480A (en) * 1990-10-12 1992-04-14 General Electric Company Direct patterning of metals over a thermally inefficient surface using a laser
US5120420A (en) * 1988-03-31 1992-06-09 Matsushita Electric Industrial Co., Ltd. Biosensor and a process for preparation thereof
US5243516A (en) * 1989-12-15 1993-09-07 Boehringer Mannheim Corporation Biosensing instrument and method
US5264103A (en) * 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
US5266179A (en) * 1990-07-20 1993-11-30 Matsushita Electric Industrial Co., Ltd. Quantitative analysis method and its system using a disposable sensor
US5288636A (en) * 1989-12-15 1994-02-22 Boehringer Mannheim Corporation Enzyme electrode system
US5334279A (en) * 1993-04-08 1994-08-02 Gregoire George D Method and apparatus for making printed circuit boards
US5336388A (en) * 1991-12-26 1994-08-09 Ppg Industries, Inc. Analyte and pH measuring sensor assembly and method
US5352351A (en) * 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
US5382346A (en) * 1991-05-17 1995-01-17 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5395504A (en) * 1993-02-04 1995-03-07 Asulab S.A. Electrochemical measuring system with multizone sensors
US5405511A (en) * 1993-06-08 1995-04-11 Boehringer Mannheim Corporation Biosensing meter with ambient temperature estimation method and system
US5413690A (en) * 1993-07-23 1995-05-09 Boehringer Mannheim Corporation Potentiometric biosensor and the method of its use
US5414224A (en) * 1991-04-01 1995-05-09 Filial Vsesojuznogo Nauchno Issledovatelskogo Instituta Multilayer printed circuit board and method of manufacturing same
US5426850A (en) * 1991-11-29 1995-06-27 Hitachi Chemical Company, Ltd. Fabrication process of wiring board
US5438271A (en) * 1993-06-08 1995-08-01 Boehringer Mannheim Corporation Biosensing meter which detects proper electrode engagement and distinguishes sample and check strips
US5437999A (en) * 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
US5465480A (en) * 1993-03-27 1995-11-14 Bruker-Franzen Analytik Gmbh Method of manufacturing a gating grid
US5508171A (en) * 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
US5509410A (en) * 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
US5512489A (en) * 1989-12-04 1996-04-30 Ecossensors Limited Microelectrodes and amperometric assays
US5567302A (en) * 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change
US5576073A (en) * 1994-04-23 1996-11-19 Lpkf Cad/Cam Systeme Gmbh Method for patterned metallization of a substrate surface
US5575930A (en) * 1992-10-07 1996-11-19 Tietje-Girault; Jordis Method of making gas permeable membranes for amperometric gas electrodes
US5589326A (en) * 1993-12-30 1996-12-31 Boehringer Mannheim Corporation Osmium-containing redox mediator
US5593739A (en) * 1995-02-14 1997-01-14 Lpkf Cad/Cam Systeme Gmbh Method of patterned metallization of substrate surfaces
US5628890A (en) * 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5637850A (en) * 1994-05-03 1997-06-10 Honda; Takaharu Method of making and reading engraved and oxidation code marks on surgical instruments
US5682884A (en) * 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
US5708247A (en) * 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US5755953A (en) * 1995-12-18 1998-05-26 Abbott Laboratories Interference free biosensor
US5759364A (en) * 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
US5758398A (en) * 1995-06-27 1998-06-02 U.S. Philips Corporation Method of manufacturing multilayer electronic components
US5762770A (en) * 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
US5773319A (en) * 1996-12-05 1998-06-30 Electronics And Telecommunications Research Institute Method for producing a hydrogenated vertical-cavity surface-emitting laser
US5798031A (en) * 1997-05-12 1998-08-25 Bayer Corporation Electrochemical biosensor
US5945341A (en) * 1996-10-21 1999-08-31 Bayer Corporation System for the optical identification of coding on a diagnostic test strip
US5948289A (en) * 1995-11-29 1999-09-07 Matsushita Electric Industrial Co., Ltd. Laser beam machining method
US5956572A (en) * 1996-08-26 1999-09-21 Sharp Kabushiki Kaisha Method of fabricating integrated thin film solar cells
US5955179A (en) * 1995-09-21 1999-09-21 Lpkf Laser & Electronics Ag Coating for the structured production of conductors on the surface of electrically insulating substrates
US5965001A (en) * 1996-07-03 1999-10-12 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
US5989917A (en) * 1996-02-13 1999-11-23 Selfcare, Inc. Glucose monitor and test strip containers for use in same
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6004441A (en) * 1996-01-10 1999-12-21 Matsushita Electric Industrial Co., Ltd. Biosensor
US6036092A (en) * 1997-04-04 2000-03-14 Lappe; Murray On-site machine readable assaying arrangement
US6103033A (en) * 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6129823A (en) * 1997-09-05 2000-10-10 Abbott Laboratories Low volume electrochemical sensor
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6165594A (en) * 1998-01-15 2000-12-26 3M Innovative Properties Company Multilayer, temperature resistant, composite label
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6203952B1 (en) * 1999-01-14 2001-03-20 3M Innovative Properties Company Imaged article on polymeric substrate
US6258229B1 (en) * 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US6287451B1 (en) * 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6295506B1 (en) * 1997-10-27 2001-09-25 Nokia Mobile Phones Limited Measurement apparatus
US6299757B1 (en) * 1998-10-08 2001-10-09 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6309526B1 (en) * 1997-07-10 2001-10-30 Matsushita Electric Industrial Co., Ltd. Biosensor
US6394952B1 (en) * 1998-02-03 2002-05-28 Adeza Biomedical Corporation Point of care diagnostic systems
US6436256B1 (en) * 1997-06-04 2002-08-20 Cambridge Sensors Limited Electrodes for the measurement of analytes in small sample volumes
US6540890B1 (en) * 2000-11-01 2003-04-01 Roche Diagnostics Corporation Biosensor
US20030100030A1 (en) * 2000-05-29 2003-05-29 Nadaoka Masakata . Biosensor and method for its preparation
US6599406B1 (en) * 1997-07-22 2003-07-29 Kyoto Daiichi Kagaku Co., Ltd. Concentration measuring apparatus, test strip for the concentration measuring apparatus, biosensor system and method for forming terminal on the test strip
US6617541B1 (en) * 1994-02-22 2003-09-09 Koninklijke Philips Electronics N.V. Laser etching method
US20030175946A1 (en) * 2001-04-16 2003-09-18 Hiroyuki Tokunaga Biosensor
US6638772B1 (en) * 1996-06-17 2003-10-28 Amire Medical Electrochemical test device
US6645359B1 (en) * 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
US6662439B1 (en) * 1999-10-04 2003-12-16 Roche Diagnostics Corporation Laser defined features for patterned laminates and electrodes
US20040005721A1 (en) * 2001-05-29 2004-01-08 Yuko Tanike Biosensor
US6696008B2 (en) * 2000-05-25 2004-02-24 Westar Photonics Inc. Maskless laser beam patterning ablation of multilayered structures with continuous monitoring of ablation
US20040262254A1 (en) * 2003-06-24 2004-12-30 Tokyo Electron Limited Processed object processing apparatus, processed object processing method, pressure control method, processed object transfer method, and transfer apparatus
US6875327B1 (en) * 1999-11-15 2005-04-05 Matsushita Electric Industrial Co., Ltd. Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100451A (en) 1980-01-14 1981-08-12 Matsushita Electric Ind Co Ltd Manufacture of electrode of semiconductor device
US4714874A (en) 1985-11-12 1987-12-22 Miles Inc. Test strip identification and instrument calibration
US4865873A (en) 1986-09-15 1989-09-12 General Electric Company Electroless deposition employing laser-patterned masking layer
JPH0761552B2 (en) * 1989-03-17 1995-07-05 富士通株式会社 Writing method of bar code
JPH05315703A (en) 1992-05-13 1993-11-26 Sumitomo Electric Ind Ltd Manufacture of semiconductor laser
EP0622626B1 (en) 1993-04-23 2002-03-06 Boehringer Mannheim Gmbh System for analysing the components of fluid samples
JPH0760464A (en) * 1993-08-23 1995-03-07 Namiki Precision Jewel Co Ltd Laser marking method to transmittable base alloy
JPH0766499A (en) 1993-08-25 1995-03-10 Honda Motor Co Ltd Manufacture of semiconductor laser
JPH07290751A (en) 1994-04-22 1995-11-07 Matsushita Electric Ind Co Ltd Powder flying recording apparatus
JP3100897B2 (en) 1996-03-26 2000-10-23 三洋電機株式会社 Method of manufacturing an integrated solar cell device
GB2311614B (en) 1996-03-29 2000-04-12 Byk Gulden Italia Spa Automatic diagnostic apparatus
US5856195A (en) 1996-10-30 1999-01-05 Bayer Corporation Method and apparatus for calibrating a sensor element
GB9708585D0 (en) 1997-04-29 1997-06-18 Eastman Kodak Co Apparatus, magazine and method for electrochemical detection or measurement
JP3702582B2 (en) * 1997-06-03 2005-10-05 Nok株式会社 Measuring method using a biosensor
JP2000019147A (en) * 1998-07-01 2000-01-21 Nok Corp Reaction product measuring device
DE29814997U1 (en) 1998-08-20 1998-12-03 Lre Technology Partner Gmbh Teststreifenmeßsystem
EP2230513B1 (en) * 1998-11-30 2016-04-13 Abbott Laboratories Multichemistry measuring device
EP1135678A2 (en) 1998-11-30 2001-09-26 Abbott Laboratories Analyte test instrument having improved calibration and communications processes
JP2000212760A (en) * 1999-01-19 2000-08-02 Hitachi Cable Ltd Production of partially plated plastic molding
JP2001087874A (en) * 1999-09-22 2001-04-03 Miyachi Technos Corp Method and device for laser beam marking
US6413213B1 (en) 2000-04-18 2002-07-02 Roche Diagnostics Corporation Subscription based monitoring system and method
EP1191127B1 (en) 2000-09-26 2004-10-13 Enthone-OMI (Deutschland) GmbH Process for selective metallization of dielectric materials
EP2096435B1 (en) 2000-11-30 2014-11-12 Panasonic Healthcare Co., Ltd. Method of quantifying substrate
CN100374851C (en) 2001-08-01 2008-03-12 爱科来株式会社 Analyzing implements, analyzing device, and method of manufacturing analyzing implement
US6814844B2 (en) 2001-08-29 2004-11-09 Roche Diagnostics Corporation Biosensor with code pattern
US7491303B2 (en) 2001-09-28 2009-02-17 Arkray, Inc. Measuring instrument and concentration measuring device

Patent Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081653A (en) * 1976-12-27 1978-03-28 Western Electric Co., Inc. Removal of thin films from substrates by laser induced explosion
US4131484A (en) * 1978-02-13 1978-12-26 Western Electric Company, Inc. Frequency adjusting a piezoelectric device by lasering
US4476149A (en) * 1981-08-27 1984-10-09 Boehringer Mannheim Gmbh Process for the production of an analysis test strip
US4592893A (en) * 1981-08-27 1986-06-03 Boehringer Mannheim Gmbh Analysis test strip
US4414059A (en) * 1982-12-09 1983-11-08 International Business Machines Corporation Far UV patterning of resist materials
US5682884A (en) * 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
US5509410A (en) * 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
US4671661A (en) * 1983-12-19 1987-06-09 Gretag Aktiengesellschaft Process, apparatus and color measuring strip for evaluating print quality
US4707722A (en) * 1984-12-17 1987-11-17 Motorola, Inc. Laser marking method and ablative coating for use therein
US4897173A (en) * 1985-06-21 1990-01-30 Matsushita Electric Industrial Co., Ltd. Biosensor and method for making the same
US4865973A (en) * 1985-09-13 1989-09-12 Queen's University At Kingston Process for extractive fermentation
US4874500A (en) * 1987-07-15 1989-10-17 Sri International Microelectrochemical sensor and sensor array
US5120420B1 (en) * 1988-03-31 1999-11-09 Matsushita Electric Ind Co Ltd Biosensor and a process for preparation thereof
US5120420A (en) * 1988-03-31 1992-06-09 Matsushita Electric Industrial Co., Ltd. Biosensor and a process for preparation thereof
US5018164A (en) * 1989-09-12 1991-05-21 Hughes Aircraft Company Excimer laser ablation method and apparatus for microcircuit fabrication
US5089103A (en) * 1989-12-01 1992-02-18 Hewlett-Packard Company Electrophoresis capillary with agarose
US5635054A (en) * 1989-12-04 1997-06-03 Ecossensors Limited Microelectrodes and amperometric assays
US5512489A (en) * 1989-12-04 1996-04-30 Ecossensors Limited Microelectrodes and amperometric assays
US5739039A (en) * 1989-12-04 1998-04-14 Ecossensors Limited Microelectrodes and amperometric assays
US5243516A (en) * 1989-12-15 1993-09-07 Boehringer Mannheim Corporation Biosensing instrument and method
US4963814A (en) * 1989-12-15 1990-10-16 Boehringer Mannheim Corporation Regulated bifurcated power supply
US5288636A (en) * 1989-12-15 1994-02-22 Boehringer Mannheim Corporation Enzyme electrode system
US4999632A (en) * 1989-12-15 1991-03-12 Boehringer Mannheim Corporation Analog to digital conversion with noise reduction
US4999582A (en) * 1989-12-15 1991-03-12 Boehringer Mannheim Corp. Biosensor electrode excitation circuit
US5508171A (en) * 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
US5266179A (en) * 1990-07-20 1993-11-30 Matsushita Electric Industrial Co., Ltd. Quantitative analysis method and its system using a disposable sensor
US5104480A (en) * 1990-10-12 1992-04-14 General Electric Company Direct patterning of metals over a thermally inefficient surface using a laser
US5414224A (en) * 1991-04-01 1995-05-09 Filial Vsesojuznogo Nauchno Issledovatelskogo Instituta Multilayer printed circuit board and method of manufacturing same
US5382346A (en) * 1991-05-17 1995-01-17 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
US5496453A (en) * 1991-05-17 1996-03-05 Kyoto Daiichi Kagaku Co., Ltd. Biosensor and method of quantitative analysis using the same
US5264103A (en) * 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
US5426850A (en) * 1991-11-29 1995-06-27 Hitachi Chemical Company, Ltd. Fabrication process of wiring board
US5336388A (en) * 1991-12-26 1994-08-09 Ppg Industries, Inc. Analyte and pH measuring sensor assembly and method
US5575930A (en) * 1992-10-07 1996-11-19 Tietje-Girault; Jordis Method of making gas permeable membranes for amperometric gas electrodes
US5395504A (en) * 1993-02-04 1995-03-07 Asulab S.A. Electrochemical measuring system with multizone sensors
US5465480A (en) * 1993-03-27 1995-11-14 Bruker-Franzen Analytik Gmbh Method of manufacturing a gating grid
US5451722A (en) * 1993-04-08 1995-09-19 Gregoire; George D. Printed circuit board with metallized grooves
US5334279A (en) * 1993-04-08 1994-08-02 Gregoire George D Method and apparatus for making printed circuit boards
US5390412A (en) * 1993-04-08 1995-02-21 Gregoire; George D. Method for making printed circuit boards
US5438271A (en) * 1993-06-08 1995-08-01 Boehringer Mannheim Corporation Biosensing meter which detects proper electrode engagement and distinguishes sample and check strips
US5366609A (en) * 1993-06-08 1994-11-22 Boehringer Mannheim Corporation Biosensing meter with pluggable memory key
US5405511A (en) * 1993-06-08 1995-04-11 Boehringer Mannheim Corporation Biosensing meter with ambient temperature estimation method and system
US5352351A (en) * 1993-06-08 1994-10-04 Boehringer Mannheim Corporation Biosensing meter with fail/safe procedures to prevent erroneous indications
US5413690A (en) * 1993-07-23 1995-05-09 Boehringer Mannheim Corporation Potentiometric biosensor and the method of its use
US5589326A (en) * 1993-12-30 1996-12-31 Boehringer Mannheim Corporation Osmium-containing redox mediator
US5762770A (en) * 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
US6617541B1 (en) * 1994-02-22 2003-09-09 Koninklijke Philips Electronics N.V. Laser etching method
US5437999A (en) * 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5576073A (en) * 1994-04-23 1996-11-19 Lpkf Cad/Cam Systeme Gmbh Method for patterned metallization of a substrate surface
US5637850A (en) * 1994-05-03 1997-06-10 Honda; Takaharu Method of making and reading engraved and oxidation code marks on surgical instruments
US5593739A (en) * 1995-02-14 1997-01-14 Lpkf Cad/Cam Systeme Gmbh Method of patterned metallization of substrate surfaces
US5567302A (en) * 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change
US5758398A (en) * 1995-06-27 1998-06-02 U.S. Philips Corporation Method of manufacturing multilayer electronic components
US5955179A (en) * 1995-09-21 1999-09-21 Lpkf Laser & Electronics Ag Coating for the structured production of conductors on the surface of electrically insulating substrates
US5628890A (en) * 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5948289A (en) * 1995-11-29 1999-09-07 Matsushita Electric Industrial Co., Ltd. Laser beam machining method
US5755953A (en) * 1995-12-18 1998-05-26 Abbott Laboratories Interference free biosensor
US6004441A (en) * 1996-01-10 1999-12-21 Matsushita Electric Industrial Co., Ltd. Biosensor
US5989917A (en) * 1996-02-13 1999-11-23 Selfcare, Inc. Glucose monitor and test strip containers for use in same
US5708247A (en) * 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US6638772B1 (en) * 1996-06-17 2003-10-28 Amire Medical Electrochemical test device
US5965001A (en) * 1996-07-03 1999-10-12 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
US5956572A (en) * 1996-08-26 1999-09-21 Sharp Kabushiki Kaisha Method of fabricating integrated thin film solar cells
US5945341A (en) * 1996-10-21 1999-08-31 Bayer Corporation System for the optical identification of coding on a diagnostic test strip
US5773319A (en) * 1996-12-05 1998-06-30 Electronics And Telecommunications Research Institute Method for producing a hydrogenated vertical-cavity surface-emitting laser
US6036092A (en) * 1997-04-04 2000-03-14 Lappe; Murray On-site machine readable assaying arrangement
US5759364A (en) * 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
US5798031A (en) * 1997-05-12 1998-08-25 Bayer Corporation Electrochemical biosensor
US6436256B1 (en) * 1997-06-04 2002-08-20 Cambridge Sensors Limited Electrodes for the measurement of analytes in small sample volumes
US6309526B1 (en) * 1997-07-10 2001-10-30 Matsushita Electric Industrial Co., Ltd. Biosensor
US6599406B1 (en) * 1997-07-22 2003-07-29 Kyoto Daiichi Kagaku Co., Ltd. Concentration measuring apparatus, test strip for the concentration measuring apparatus, biosensor system and method for forming terminal on the test strip
US6129823A (en) * 1997-09-05 2000-10-10 Abbott Laboratories Low volume electrochemical sensor
US6295506B1 (en) * 1997-10-27 2001-09-25 Nokia Mobile Phones Limited Measurement apparatus
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6165594A (en) * 1998-01-15 2000-12-26 3M Innovative Properties Company Multilayer, temperature resistant, composite label
US6394952B1 (en) * 1998-02-03 2002-05-28 Adeza Biomedical Corporation Point of care diagnostic systems
US20030088166A1 (en) * 1998-03-04 2003-05-08 Therasense, Inc. Electrochemical analyte sensor
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6103033A (en) * 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6299757B1 (en) * 1998-10-08 2001-10-09 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6399258B2 (en) * 1999-01-14 2002-06-04 3M Innovative Properties Company Method for patterning thin films
US6203952B1 (en) * 1999-01-14 2001-03-20 3M Innovative Properties Company Imaged article on polymeric substrate
US6258229B1 (en) * 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US6287451B1 (en) * 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6662439B1 (en) * 1999-10-04 2003-12-16 Roche Diagnostics Corporation Laser defined features for patterned laminates and electrodes
US6875327B1 (en) * 1999-11-15 2005-04-05 Matsushita Electric Industrial Co., Ltd. Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination
US6696008B2 (en) * 2000-05-25 2004-02-24 Westar Photonics Inc. Maskless laser beam patterning ablation of multilayered structures with continuous monitoring of ablation
US20030100030A1 (en) * 2000-05-29 2003-05-29 Nadaoka Masakata . Biosensor and method for its preparation
US6645359B1 (en) * 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
US6540890B1 (en) * 2000-11-01 2003-04-01 Roche Diagnostics Corporation Biosensor
US20030175946A1 (en) * 2001-04-16 2003-09-18 Hiroyuki Tokunaga Biosensor
US20040005721A1 (en) * 2001-05-29 2004-01-08 Yuko Tanike Biosensor
US20040262254A1 (en) * 2003-06-24 2004-12-30 Tokyo Electron Limited Processed object processing apparatus, processed object processing method, pressure control method, processed object transfer method, and transfer apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090205201A1 (en) * 2002-12-20 2009-08-20 Acea Biosciences, Inc. Impedance Based Devices and Methods for Use in Assays
US8420363B2 (en) * 2002-12-20 2013-04-16 Acea Biosciences, Inc. Impedance based devices and methods for use in assays
US8506775B2 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. Devices and methods relating to electrochemical biosensors
US20050023137A1 (en) * 2003-06-20 2005-02-03 Bhullar Raghbir S. Biosensor with multiple electrical functionalities
US20090151864A1 (en) * 2003-06-20 2009-06-18 Burke David W Reagent stripe for test strip
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
US7867369B2 (en) 2003-06-20 2011-01-11 Roche Diagnostics Operations, Inc. Biosensor with multiple electrical functionalities
US7892849B2 (en) 2003-06-20 2011-02-22 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US7749437B2 (en) 2003-06-20 2010-07-06 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent stripes
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US20050023152A1 (en) * 2003-06-20 2005-02-03 Surridge Nigel Anthony Devices and methods relating to electrochemical biosensors
CN101929974A (en) * 2009-06-24 2010-12-29 生命扫描有限公司 Analyte test strip with combination electrode contact and meter identification feature
US9488585B2 (en) 2011-12-23 2016-11-08 Abbott Point Of Care Inc. Reader devices for optical and electrochemical test devices
US9194859B2 (en) 2011-12-23 2015-11-24 Abbott Point Of Care Inc. Reader devices for optical and electrochemical test devices
US9335290B2 (en) 2011-12-23 2016-05-10 Abbott Point Of Care, Inc. Integrated test device for optical and electrochemical assays
US9377475B2 (en) 2011-12-23 2016-06-28 Abbott Point Of Care Inc. Optical assay device with pneumatic sample actuation
WO2013102448A1 (en) * 2012-01-06 2013-07-11 达尔生技股份有限公司 Biosensor and biomeasurement system
CN105445447A (en) * 2015-09-28 2016-03-30 腾讯科技(深圳)有限公司 Measuring method based on test paper and device

Also Published As

Publication number Publication date Type
JP2003149192A (en) 2003-05-21 application
US20040200721A1 (en) 2004-10-14 application
ES2367102T5 (en) 2018-03-01 grant
US7780827B1 (en) 2010-08-24 grant
EP1288653B1 (en) 2011-06-01 grant
EP1288653A1 (en) 2003-03-05 application
US20100219071A1 (en) 2010-09-02 application
US6814844B2 (en) 2004-11-09 grant
US7476827B1 (en) 2009-01-13 grant
CA2399887A1 (en) 2003-02-28 application
JP4098031B2 (en) 2008-06-11 grant
CA2399887C (en) 2006-08-08 grant
EP1288653B2 (en) 2017-11-29 grant
JP2007309947A (en) 2007-11-29 application
ES2367102T3 (en) 2011-10-28 grant

Similar Documents

Publication Publication Date Title
US7276147B2 (en) Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times
US5672256A (en) Multi-electrode biosensor and system and method for manufacturing same
US6413411B1 (en) Method and apparatus for amperometric diagnostic analysis
US6488828B1 (en) Recloseable biosensor
US20080267823A1 (en) Identification Of A Strip Type By The Meter Using Conductive Patterns On The Strip
US20030146110A1 (en) Electrochemical biosensor strip for analysis of liquid samples
US20090011449A1 (en) No calibration analyte sensors and methods
US20070108048A1 (en) Sensors
US6129823A (en) Low volume electrochemical sensor
US20050103624A1 (en) Biosensor and method of making
US6627057B1 (en) Microsphere containing sensor
US20070287191A1 (en) Analyte Test System for Determining the Concentration of an Analyte in a Physiological or Aqueous Fluid
US20050258050A1 (en) Connector configuration for electrochemical cells and meters for use in combination therewith
US20070056858A1 (en) In vitro analyte sensor, and methods
US6662439B1 (en) Laser defined features for patterned laminates and electrodes
US6562210B1 (en) Cell for electrochemical anaylsis of a sample
US20070193882A1 (en) Electrochemical test strip for multi-functional biosensor
WO2004113910A1 (en) Devices and methods relating to electrochemical biosensors
US7386937B2 (en) Method of making a biosensor
US20120181184A1 (en) Microfluidic, electrochemical devices
US20080083618A1 (en) System and Methods for Determining an Analyte Concentration Incorporating a Hematocrit Correction
US6780296B1 (en) Thermally conductive sensor
US20070281321A1 (en) Biosensor for measurement of species in a body fluid
US20080149480A1 (en) Gel formation to reduce hematocrit sensitivity in electrochemical test
US6447657B1 (en) Biosensor

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ROCHE DIABETES CARE, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:036008/0670

Effective date: 20150302

FPAY Fee payment

Year of fee payment: 8