US20080314738A1 - Electrolytic Device Based on a Solution-Processed Electrolyte - Google Patents
Electrolytic Device Based on a Solution-Processed Electrolyte Download PDFInfo
- Publication number
- US20080314738A1 US20080314738A1 US11/765,142 US76514207A US2008314738A1 US 20080314738 A1 US20080314738 A1 US 20080314738A1 US 76514207 A US76514207 A US 76514207A US 2008314738 A1 US2008314738 A1 US 2008314738A1
- Authority
- US
- United States
- Prior art keywords
- solution
- precursor
- chalcogenide
- amorphous
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003792 electrolyte Substances 0.000 title description 3
- 150000004770 chalcogenides Chemical class 0.000 claims abstract description 61
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000002243 precursor Substances 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 16
- 239000005300 metallic glass Substances 0.000 claims abstract description 14
- 238000000137 annealing Methods 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 8
- 238000004528 spin coating Methods 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000002019 doping agent Substances 0.000 claims description 5
- 238000003618 dip coating Methods 0.000 claims description 4
- YIZVROFXIVWAAZ-UHFFFAOYSA-N germanium disulfide Chemical compound S=[Ge]=S YIZVROFXIVWAAZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 4
- 238000010345 tape casting Methods 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 57
- 239000002184 metal Substances 0.000 abstract description 57
- 239000010408 film Substances 0.000 description 71
- 238000000151 deposition Methods 0.000 description 30
- 239000000463 material Substances 0.000 description 25
- 229910005842 GeS2 Inorganic materials 0.000 description 24
- -1 metalloid chalcogenide Chemical class 0.000 description 23
- 229910052752 metalloid Inorganic materials 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 230000008021 deposition Effects 0.000 description 18
- 230000015654 memory Effects 0.000 description 18
- 239000010949 copper Substances 0.000 description 16
- 239000002904 solvent Substances 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 150000002739 metals Chemical class 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 229910052717 sulfur Inorganic materials 0.000 description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 150000002738 metalloids Chemical class 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910052798 chalcogen Inorganic materials 0.000 description 8
- 150000001787 chalcogens Chemical class 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000011295 pitch Substances 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000010129 solution processing Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 229910052714 tellurium Inorganic materials 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 241000252506 Characiformes Species 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000527 sonication Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229910017000 As2Se3 Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-O hydrazinium(1+) Chemical compound [NH3+]N OAKJQQAXSVQMHS-UHFFFAOYSA-O 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910052958 orpiment Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 2
- 210000003429 pore cell Anatomy 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZUMQWHFKAXDURB-UHFFFAOYSA-N 2-(2,3,4,5,6-pentafluorophenyl)ethanamine Chemical compound NCCC1=C(F)C(F)=C(F)C(F)=C1F ZUMQWHFKAXDURB-UHFFFAOYSA-N 0.000 description 1
- ITRNQMJXZUWZQL-UHFFFAOYSA-N 2-(2-bromophenyl)ethanamine Chemical compound NCCC1=CC=CC=C1Br ITRNQMJXZUWZQL-UHFFFAOYSA-N 0.000 description 1
- RZBOMSOHMOVUES-UHFFFAOYSA-N 2-(2-chlorophenyl)ethanamine Chemical compound NCCC1=CC=CC=C1Cl RZBOMSOHMOVUES-UHFFFAOYSA-N 0.000 description 1
- RIKUOLJPJNVTEP-UHFFFAOYSA-N 2-(2-fluorophenyl)ethanamine Chemical compound NCCC1=CC=CC=C1F RIKUOLJPJNVTEP-UHFFFAOYSA-N 0.000 description 1
- ORHRHMLEFQBHND-UHFFFAOYSA-N 2-(3-bromophenyl)ethanamine Chemical compound NCCC1=CC=CC(Br)=C1 ORHRHMLEFQBHND-UHFFFAOYSA-N 0.000 description 1
- NRHVNPYOTNGECT-UHFFFAOYSA-N 2-(3-chlorophenyl)ethanamine Chemical compound NCCC1=CC=CC(Cl)=C1 NRHVNPYOTNGECT-UHFFFAOYSA-N 0.000 description 1
- AUCVZEYHEFAWHO-UHFFFAOYSA-N 2-(3-fluorophenyl)ethanamine Chemical compound NCCC1=CC=CC(F)=C1 AUCVZEYHEFAWHO-UHFFFAOYSA-N 0.000 description 1
- ZSZCXAOQVBEPME-UHFFFAOYSA-N 2-(4-bromophenyl)ethanamine Chemical compound NCCC1=CC=C(Br)C=C1 ZSZCXAOQVBEPME-UHFFFAOYSA-N 0.000 description 1
- WGTASENVNYJZBK-UHFFFAOYSA-N 3,4,5-trimethoxyamphetamine Chemical compound COC1=CC(CC(C)N)=CC(OC)=C1OC WGTASENVNYJZBK-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910005867 GeSe2 Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- WHQSYGRFZMUQGQ-UHFFFAOYSA-N n,n-dimethylformamide;hydrate Chemical compound O.CN(C)C=O WHQSYGRFZMUQGQ-UHFFFAOYSA-N 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- VDNSGQQAZRMTCI-UHFFFAOYSA-N sulfanylidenegermanium Chemical compound [Ge]=S VDNSGQQAZRMTCI-UHFFFAOYSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- VTLHPSMQDDEFRU-UHFFFAOYSA-N tellane Chemical compound [TeH2] VTLHPSMQDDEFRU-UHFFFAOYSA-N 0.000 description 1
- 229910000059 tellane Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8416—Electrodes adapted for supplying ionic species
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8822—Sulfides, e.g. CuS
Definitions
- the present disclosure relates to an improved electrolytic device.
- a high-quality amorphous metal or metalloid chalcogenide film obtained by a relatively high throughput/low-temperature solution-deposition method is used as the active electrolytic layer in the solid-state electrolytic device.
- the present disclosure also relates to a process for fabricating the solid-state electrolytic device
- the solid-state electrolyte material generally consists of a Ag-, Cu-, Zn- or Li-doped amorphous chalcogenide (most typically, GeS 2 , GeSe 2 , As 2 S 3 , As 2 Se 3 ), which acts like an excellent conductor of ions (i.e., Ag + , Cu + , Zn 2+ , Li + , etc).
- the amorphous chalcogenide may be of a binary composition (i.e., GeS 2-x , GeSe 2-x , As 2 S 3 , As 2 Se 3 ) or may contain three or more elements (i.e., Ge 1-x Sn x S 2-y Se y , GeSb x S y , As 2-x Sb x S 3-y Se y , GeSe 2-y Te y , etc.). Doping of the amorphous chalcogenide is obtained by either co-deposition or by electrical/thermal or UV diffusion of the metal or metalloid into the pre-deposited amorphous chalcogenide.
- UV diffusion is normally the preferred technique and results in a system that has a saturated and uniform concentration of the dopant in the material (which depends on the stoichiometry of the starting material).
- Both the undoped and doped chalcogenides have very high resistance (typically>1 gigaohms for a 30 ⁇ 30 ⁇ 30 nm region).
- a doped amorphous chalcogenide material is sandwiched between two metals, one of which is reactive (i.e., containing the dopant Ag, Cu, Zn, Li; henceforth referred to as the anode) and the other one of which is an inert material (e.g., W, TiN, TaN, Al, Ni, etc.; henceforth referred to as the cathode), then the following electrical effects are achieved:
- FIG. 1 illustrates electrolyic device characteristics for an Ag—Ge—S device.
- V a 0.2 V
- V b ⁇ 0.2V
- the OFF resistance is a function of the resistivity of the solid electrolyte and of the double layer at the interface.
- the device turns on by forming a thin metallic bridge between the inert and oxidizable electrode.
- V th is the electrodeposition threshold and I on is the on-current that is used for programming (see Kozicki et al, Programmable Metallization Cell Memory based on Ag—Ge—S and Cu—Ge—S, NVMTS 2005, pp. 83-9).
- the amorphous chalcogenide material is deposited using a vacuum-based technique such as sputtering or thermal evaporation.
- a vacuum-based technique such as sputtering or thermal evaporation.
- Such techniques are relatively costly and time-consuming, since they rely on achieving a high-vacuum environment in a confined space prior to the deposition.
- compositional control may be difficult to achieve due to effects such as preferential sputtering in composite targets, the need to balance evaporation rates for multiple evaporation sources and the added difficulty of vacuum-depositing sulfur compounds because of the high vapor pressure of sulfur.
- deposition on complex surfaces i.e., those containing vias and trenches
- a high-quality amorphous chalcogenide film obtained by a solution-deposition method is used as the active electrolytic layer in a solid-state electrolytic device.
- the solid electrolyte device of the present disclosure comprises an amorphous chalcogenide solid active electrolytic layer; a first metallic layer; and a second metallic layer.
- the amorphous chalcogenide solid active electrolytic layer is located between the first and second metallic layers.
- the amorphous chalcogenide solid active electrolytic layer is prepared by providing a solution such as a hydrazine-based solution of a precursor to a metal chalcogenide or metalloid-based chalcogenide; applying the solution onto a substrate; and thereafter annealing the precursor to convert the precursor to the amorphous metal chalcogenide or amorphous metalloid-based chalcogenide.
- a solution such as a hydrazine-based solution of a precursor to a metal chalcogenide or metalloid-based chalcogenide.
- metal chalcogenide is used in its most general sense, so that it encompasses metals as well as metalloids (e.g., Ge) within the metal position.
- the present disclosure also relates to a process for fabricating the solid electrolyte device.
- the process comprises: providing a solution, such as a hydrazine-based solution, of a precursor to a metal or metalloid chalcogenide; applying the solution onto a substrate; thereafter annealing the precursor to convert the precursor to an amorphous metal or metalloid chalcogenide layer; forming a first metallic layer and forming a second metallic layer; wherein the amorphous metal or metalloid chalcogenide is between the first and second metallic layers.
- a solution such as a hydrazine-based solution
- FIG. 1 illustrates electrolytic device characteristics for an Ag—Ge—S device.
- FIG. 2 is a schematic diagram of a pillar cell employing the solid electrolyte (PMC or programmable metallization cell) of this disclosure.
- FIG. 3 is a schematic diagram of a mushroom cell employing the solid electrolyte (PMC) of this disclosure.
- FIG. 4 is a schematic diagram of a pore cell employing the solid electrolyte of this disclosure.
- FIG. 5 is a schematic diagram of a further device employing the solid electrolyte of this disclosure.
- FIG. 6 represents the powder X-ray diffraction pattern of a GeS x deposit, prepared according to the method of this disclosure.
- FIG. 7 is a cross-sectional SEM of a GeS 2-x film (grey material) prepared on SiO 2 (white material).
- FIG. 8 is a cross-sectional SEM of a GeS 2-x film prepared on SiO 2 .
- FIG. 9 shows RBS spectra for two films that are coated with 20 nm of Ag (no UV treatment).
- FIG. 10 which includes FIGS. 10A and 10B , shows RBS spectra for two films that have been coated with Ag (with UV treatment).
- FIG. 11 is a cross sectional SEM image of a spin-coated GeS 2-x film on Ag.
- FIGS. 12 A and B show device characteristics for two electrolytic memory cells (inverted mushroom-type).
- the present disclosure is concerned with an improved electrolytic memory device employing as the active layer in the solid-state electrolytic device a solution-deposited high-quality amorphous metal or metalloid chalcogenide film.
- metal chalcogenide is used in it's most general sense, so that it encompasses metals as well as metalloids (e.g., Ge) within the metal position.
- the solution-deposition is accomplished employing a hydrazine-based solvent as will be discussed below.
- Important to the present disclosure is depositing amorphous films as contrasted to crystalline films. Amorphous films are required for the successful fabrication of an electrolytic device as described above.
- the solution-based deposition process involves 3 steps:
- a solution of the metal chalcogenide material can be prepared using one of the techniques disclosed in U.S. Pat. Nos. 6,875,661 and 7,094,651; and U.S. patent application Ser. No. 11/0955,976 and Ser. No. 11/432,484, US Patent Publication 2005-0009225 and US Patent Application Publication 2005-0158909.
- the process involves dissolving a metal or metalloid chalcogenide in a solvent such as hydrazine (or a hydrazine-like solvent) at near ambient temperatures, with optionally extra chalcogen added to improve solubility.
- a solvent such as hydrazine (or a hydrazine-like solvent)
- chalcogen added to improve solubility.
- Typical hydrazine compounds are represented by the formula:
- each of R 1 , R 2 , R 3 and R 4 is independently hydrogen, aryl such as phenyl, a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms.
- aryl such as phenyl
- a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms.
- the most typical solvent is hydrazine.
- the present disclosure is not limited to the use of hydrazine, but it can also be used with other solvents including, but not limited to, hydrazine-like solvents, as disclosed above, such as 1,1-dimethylhydrazine and methylhydrazine or mixtures of hydrazine-like solvents with other solvents including, but not limited to, water, methanol, ethanol, acetonitrile and N,N-dimethylformamide.
- hydrazine-like solvents such as 1,1-dimethylhydrazine and methylhydrazine or mixtures of hydrazine-like solvents with other solvents including, but not limited to, water, methanol, ethanol, acetonitrile and N,N-dimethylformamide.
- solvent be anhydrous.
- the solution may also be prepared by directly dissolving the corresponding metal or metalloid of the chalcogenide in hydrazine, with at least enough chalcogen added to effect the formation and dissolution of the metal chalcogenide in solution as described in U.S. patent application Ser. No. 11/432,484.
- the solution may be formed by dissolving a preformed hydrazinium-based precursor in a non-hydrazine-based solvent, such as a mixture of ethanolamine and dimethyl sulfoxide (DMSO), as described in U.S. Pat. No. 7,094,651.
- solvents examples include n-butylamine, n-propylamine, diethanolamine, alcohols, water, dimethyl formamide (DMF) and mixtures thereof. Also see Mitzi et al., Adv. Mater. 17, 1285 (2005) for other solvents.
- a chalcogenide and an amine are first contacted to produce an ammonium-based precursor of the metal chalcogenide, which is then contacted with a hydrazine compound and optionally, an elemental chalcogen.
- This method includes the steps of:
- each of R 5 , R 6 , and R 7 is independently hydrogen, aryl such as phenyl, a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms, to produce an ammonium-based precursor of the metal chalcogenide;
- each of R 1 , R 2 , R 3 and R 4 is independently hydrogen, aryl such as phenyl, a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms, and optionally, an elemental chalcogen, such as S, Se, Te or a combination thereof, to produce a solution of a hydrazinium-based precursor of the metal or metalloid chalcogenide in the hydrazine compound.
- aryl such as phenyl
- a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms
- an elemental chalcogen such as S, Se, Te or a combination thereof
- the amine compound is NH 3 , CH 3 NH 2 , CH 3 CH 2 NH 2 , CH 3 CH 2 CH 2 NH 2 , (CH 3 ) 2 CHNH 2 , CH 3 CH 2 CH 2 CH 2 NH 2 , phenethylamine, 2-fluorophenethylamine, 2-chlorophenethylamine, 2-bromophenethylamine, 3-fluorophenethylamine, 3-chlorophenethylamine, 3-bromophenethylamine, 4-bromophenethylamine, 2,3,4,5,6-pentafluorophenethylamine or a combination thereof.
- suitable metals for the metal chalcogenide are the transition and non-transition metals and metalloids including tin, germanium, lead, indium, antimony, mercury, gallium, thallium, potassium, copper, iron, cobalt, nickel, manganese, tungsten, molybdenum, zirconium, hafnium, titanium, and niobium or a combination thereof.
- the chalcogen is typically S, Se, Te or a combination thereof.
- the concentration of the metal chalcogenide precursor in the hydrazine compound is typically no more than about 10 molar and more typically about 0.01 molar to about 10 molar, even more typically about 0.05 to about 5 molar, or about 0.05 to about 1 molar.
- the metal chalcogenide can be represented by the formula MX, MX 2 or M 2 X 3 , wherein M is a main group or non-transition metal or metalloid, such as potassium, germanium, tin, lead, antimony, bismuth, gallium, and indium, or a transition metal such as copper, iron, cobalt, nickel, manganese, tungsten, molybdenum, zirconium, hafnium, titanium, and niobium or a combination thereof and wherein X is a chalcogen, such as, S, Se, Te or a combination thereof.
- M is a main group or non-transition metal or metalloid, such as potassium, germanium, tin, lead, antimony, bismuth, gallium, and indium, or a transition metal such as copper, iron, cobalt, nickel, manganese, tungsten, molybdenum, zirconium, hafnium, titanium, and niobium or a combination thereof and where
- the metal chalcogenide can be represented by the formula MX or M 2 X 3 , wherein M is lanthanum or a lanthamide-metal, such as lanthanum, yttrium, gadolinium and neodymium or a combination thereof, and wherein X is a chalcogen, such as, S, Se Te or a combination thereof.
- the metal chalcogenide can be represented by the formula M 2 X, wherein M is a metal such as Cu or K, and wherein X is a chalcogen, such, as S, Se, Te or a combination thereof.
- the hydrazine-based precursor may either be an ionic solid comprised of metal or metalloid chalcogenide anions and hydrazinium cations or a more covalent compound comprised of an extended metal chalcogenide framework with covalently-bonded hydrazine molecules.
- An example of a covalent precursor is (N 2 H 4 ) 2 ZnTe.
- the metal or metalloid chalcogenide precursor films are deposited on a substrate using the solutions prepared as disclosed above.
- Suitable substrates for film deposition include: silicon, quartz, glass, sapphire, metal, gallium nitride, gallium arsenide, germanium, silicon-germanium, indium-tin-oxide, alumina (Al 2 O 3 ), and plastic (e.g., Kapton, polycarbonate).
- the substrate may be rigid or flexible.
- high-throughput techniques such as spin-coating, stamping, dip coating, doctor blading, drop casting, or printing, solutions are applied to the substrate and transformed into thin films of the precursor upon evaporation of the solvent.
- Some of the solution processing techniques enable simultaneous film deposition and patterning.
- the key point in this step is to have chosen a solvent that will wet the appropriately prepared substrate (i.e., an oxidized silicon surface can be prepared to be either hydrophilic or hydrophobic to promote solution wetting, depending upon the nature of the solvent used), thereby facilitating the formation of a uniform film upon drying.
- the substrate desirably is typically free of contaminants, and may be prepared for solution deposition by cleaning and/or surface pretreatment.
- Cleaning can be accomplished by sonication in a variety of solvents, such as ethanol, methanol or acetone and/or by heating in various cleaning solutions, such as sulfuric acid/hydrogen peroxide (Piranha) or ammonium hydroxide solutions.
- cleaning can also be carried out using UV-ozone or oxygen plasma treatment.
- a low-temperature thermal treatment is used to decompose the resulting metal chalcogenide precursor film on the substrate, resulting in the formation of a metal chalcogenide amorphous film.
- the substrate coated with the precursor film can be heated by placing it on a hot plate, or in a box or tube furnace under an appropriate inert atmosphere such as nitrogen, forming gas or argon. Alternatively, the heating may take place by laser-based or microwave-based annealing for much more rapid processing. Heating is performed at a temperature high enough and for a time long enough to enable complete decomposition of the hydrazine-based precursor into the targeted metal chalcogenide, but low enough and for a short enough time that substantial crystallization does not occur.
- the heating is carried out at a temperature of about 100 to about 400° C. and more typically about 100 to about 350° C. and for an amount of time from about 0.2 to about 60 minutes.
- the choice of the metal chalcogenide may be used to promote the formation of amorphous films.
- the particular temperatures used to obtain an amorphous film depends upon the chalcogenide precursor, which can be determined by those skilled in the art without undue experimentation in view of this disclosure. For instance, metal or metalloid chalcogenides based on the lighter metals or metalloids have less of a tendency to crystallize and therefore temperatures at the higher end of the range can be used while still maintaining an amorphous film.
- Solution-based techniques are particularly attractive because of the array of available options for high-throughput film deposition, including spin coating, dip coating, doctor blading, ink-jet printing, stamping, etc. These techniques have the advantage of being potentially low-cost, high-throughput techniques and are readily compatible with roll-to-roll processing.
- the active layer was typically deposited using a slower and more costly vacuum-based technique such as sputtering or evaporation.
- solution-processing technique allows for potentially low-cost, very high-throughput deposition of amorphous metal chalcogenide films for use in electrolytic devices, without the requirement of vacuum conditions or specialized CVD reactors.
- the solution-processing technique is also a relatively low-temperature process and is compatible with selected higher-temperature flexible plastic substrate materials, such as Kapton and other polyimide-based plastics. Additionally, solution-processing provides a natural mechanism for filling vias and trenches on a substrate, which can be difficult to achieve using more directional deposition techniques such as sputtering (see U.S. patent application Ser. No. 11/556,385, entitled Method for Filling Holes with Metal Chalcogenides, filed Nov.
- the solution processing mechanism provides a convenient means of doping the amorphous metal chalcogenide layer, since the corresponding dopant metal can be dissolved in the solution with the targeted metal chalcogenide prior to solution processing (i.e., without the need for UV diffusion).
- FIGS. 2-5 Examples of representative electrolytic device structures in which the solution-processed solid electrolyte (SE) layers (deposited as described above) can be employed are schematically shown in FIGS. 2-5 .
- FIG. 2 illustrates a pillar cell. This structure can be fabricated using many sequences, one of which is described below:
- FIG. 3 illustrates a mushroom cell. This structure can be fabricated using many sequences, one of which is illustrated below:
- FIG. 4 illustrates a pore cell. This is very similar to the pillar cell ( FIG. 2 ) except that, although the PMC is planarized, the planarization is not stopped on the oxide but rather earlier. Note the need to fill a via or trench in this structure (as for FIG. 2 ) during the deposition of the SE (or PMC).
- FIG. 5 illustrates a further embodiment.
- the solid electrolyte material 3 is planar and is deposited between 2 layers of metals 1 and 4 (one above and one below that are patterned).
- the bottom layer consists of the ILD 2 (could be oxide, nitride or low-K material; represented in grey), with imbedded metal 1 (could be W, Cu, TiN, for example; represented in black).
- the solid electrolyte 3 may or may not be patterned. Ideally, the solid electrolyte 3 is a continuous layer. But patterning may help reduce interference between adjacent cells.
- a crosspoint design is one desirable option.
- the wordline and bitlines (henceforth referred to as memory lines) run at minimum pitch and in perpendicular directions.
- a storage element is placed at the sandwich of these perpendicularly oriented lines.
- a nano-crossbar design where the memory lines run at sublithographic pitches. This decreases memory cell area from 4F 2 to 4Fs 2 where 2Fs is the nanoscale pitch. Typically Fs ⁇ F where F is the lithographic pitch. Disclosures that refer to how to interface these sublithographic features to lithographically defined wordline and bitline driver/decoder circuits can be found in U.S. patent application Ser. No. 11/679,785 filed Feb. 18, 2007 to Soundararajan and assigned to International Business Machines Corporation, the assignee of this application. The entire disclosure of which is incorporated herein by reference.
- solution-processed solid electrolyte materials described herein may apply to both of these components—i.e., in certain embodiments, it may be used as a memory element and in certain other embodiments, it may be used as a diode:
- a memory element that is used to store data/information. Many options exist here (including Phase-Change Memory, MRAM, Solid Electrolyte Memory and FeRAM for example). In the case of the current disclosure, the use of solid electrolyte materials based on solution-processed amorphous metal chalcogenides is being referenced.
- Amorphous germanium (IV) sulfide, GeS 2-x is one of the prime candidates for use in electrolytic cells, because of the ease with which it forms a glass and the stability of the resulting glass with respect to crystallization.
- metals e.g., Ag, Cu, Li
- films of GeS 2-x are deposited from solution and characterized.
- the metal chalcogenide films will be deposited using spin coating, although they could also be deposited using other solution-based techniques such as stamping, printing, dip coating or doctor blading.
- the formula for germanium(IV) sulfide is written here as GeS 2-x , to reflect the fact that there is some range of sulfur stoichiometry that can be accommodated by this system.
- a solution of GeS 2 is created by dissolving 0.164 g of GeS 2 (1.2 mmol) in 4.8 mL of as-received anhydrous hydrazine (98%). The reaction and resulting solution is maintained in an inert atmosphere (e.g., nitrogen or argon). The dissolution is relatively quick at room temperature, requiring ⁇ 0.5 hr with stirring to produce a clear essentially colorless solution. The solution is filtered through a 0.2 ⁇ m syringe filter, while being dispensed onto a substrate for the spin coating process. Some of the solution is also evaporated on a glass slide and decomposed under nitrogen at 350° C.
- an inert atmosphere e.g., nitrogen or argon
- FIG. 6 represents the powder X-ray diffraction pattern of a GeS x deposit, formed by evaporating the germanium sulfide precursor solution on a glass slide and then decomposing the precursor at a temperature of 350° C. on a hot plate (in an inert atmosphere).
- the amorphous nature of the deposit is indicated by the lack of sharp X-ray peaks in the diffraction pattern.
- a film of the GeS 2 precursor is readily deposited on a clean thermally-oxidized silicon substrate using a spin-coating technique and the solution described above.
- Each substrate is pre-cleaned by first using a soap scrub, followed by sequential sonication in ethanol and dichloromethane, and finally using a Piranha clean (hydrogen peroxide: sulfuric acid) with a deionized (DI) water rinse.
- Thin films of the GeS 2 precursor are formed by depositing 2-3 drops of the above-mentioned GeS 2 solution onto the substrate, allowing the solution to spread on the substrate for about 10 sec and spinning the substrate at 2000 rpm for about 2 min in a nitrogen-filled drybox.
- the resulting precursor films are dried on a hot plate at 100° C. for about 5 minutes in an inert atmosphere, followed by a decomposition heat treatment at 250° C. for about 10 minutes on the same hot plate (gradual heating to this temperature over 1 ⁇ 2 hr).
- the latter decomposition heat treatment yields thin films of amorphous GeS 2 . Thickness of the film can be controlled by choice of solution concentration and spin speed during deposition. Additional control over solution properties and film stoichiometry can be provided by adding extra S to the spin coating solution.
- film thicknesses and compositions are achieved (determined using Rutherford Backscattering Spectroscopy —RBS) as follows:
- FIG. 7 is a cross-sectional SEM of a GeS 2-x film (grey material) prepared on SiO 2 (white material). The bottom surface is Si.
- FIG. 8 is a cross-sectional SEM of a GeS 2-x film (grey material) prepared on SiO 2 (white material). The bottom surface is Si.
- FIG. 9 shows a RBS spectra for two films (A and C) that are coated with 20 nm of Ag.
- the large peak centered around 2.05 MeV corresponds to Ag; the peak centered at ⁇ 1.9 MeV corresponds to Ge; the peak centered at ⁇ 1.6 MeV corresponds to S.
- the Ag-coated film C which was nominally stoichiometric GeS 2 before Ag deposition, exhibits more asymetrical RBS peaks, indicative of interaction between the Ag overlayer and the GeS 2-x underfilm.
- the arrows ( FIG. 9 ) indicate the interaction and it seems more pronounced for Ag and S peaks than for the Ge peaks. This may indicate that the S is reacting only with the Ag cations and that the Ge is more of a “spectator”. This would be consistent with the fact that only film C, with higher [S], is interacting substantially with the Ag overlayer.
- the two films are then subjected to a UV exposure.
- the exposure consists of 7 mW/cm 2 treatment (measured with a 253.7 nm detector head on an OAI power meter) in a nitrogen environment for three consecutive 15 minute intervals.
- the total exposure therefore, is 18,900 mJ/cm 2 .
- film C substantially interacts with the Ag during the UV treatment, whereas film A does not change substantially as a result of exposure.
- UV-treatment resulted in about 30 at. % Ag uniformly spread throughout the GeS 2-x film.
- FIG. 10 shows RBS spectra for two films that have been coated with 20 nm of Ag.
- the black curves correspond to films that have just had the Ag deposition (same as in FIG. 9 ), while the gray curves have been UV-treated.
- the doped and undoped GeS 2 films described in Example 1 could be used in any of the device geometries described above.
- a solution of GeS 2 is created by dissolving 0.055 g of GeS 2 (0.4 mmol) in 1.6 mL of anhydrous hydrazine (same concentration as in Example 1). The solution is stored about 4 weeks before use for this example. The reaction and resulting solution are maintained in an inert atmosphere (e.g., nitrogen or argon). The solution is filtered through a 0.2 ⁇ m syringe filter, while being dispensed onto a substrate for the spin coating process.
- an inert atmosphere e.g., nitrogen or argon
- the resulting precursor films are dried on a hot plate at 120° C. for 5 minutes in an inert atmosphere, followed by a decomposition heat treatment at 260° C. for 10 minutes on the same hot plate (preheated hotplate rather than gradual heating).
- the latter decomposition heat treatment yields thin films of amorphous GeS 2 w/the Ag undercoat (see cross sectional SEM in FIG. 11 ). Thickness of the film can be controlled by choice of solution concentration and spin speed during deposition. Using the conditions described above, a film thickness of about 36 nm and a [S]/[Ge] ratio of ⁇ 1.75 (i.e., slightly S deficient relative to ideal GeS 2 ) is achieved, as determined by RBS.
- the UV-treated GeS 2 film described in Example 1 there is a substantial concentration (>30 at. %) of Ag (more accurate Ag content is difficult to derive from RBS data due to the thick Ag layer underneath the relatively thin metal chalcogenide layer) in the amorphous chalcogenide film. Since these films have not been subjected to a UV diffusion treatment, this means that the Ag diffusion is accomplished in-situ during the decomposition heat treatment used to form the amorphous chalcogenide film from the precursor film (i.e., heating to 260° C. for 10 min).
- the Ag-diffused GeS 2-x film is suitable for use in a variety of electrolytic device structures as shown above.
- FIG. 11 is a cross sectional SEM image of a spin-coated GeS 2-x film on Ag.
- the resulting Ag y Ge x S z film on Ag is probed using a W tip (tip area about 10 ⁇ 10 microns; acts as the cathode), effectively resulting in an inverted mushroom-type structure (see FIG. 3 above; in this case Ag is on the bottom and W on the top).
- Contact to the Ag anode is made through the adjacent p+ silicon substrate.
- functional devices are prepared that exhibited typical solid-electrolye device behavior (compare FIGS. 12A and B with FIG. 1 ). While the endurance of the device is poor with respect to cycling, most likely due to operation in air and a relatively rough surface, these results clearly demonstrate the feasibility of employing a spin-coated amorphous metal chalcogenide film as the active layer in an electrolytic device.
- FIGS. 12 A and B show device characteristics for two electrolytic memory cells (inverted mushroom-type), with Ag (anode) on bottom, spin coated Ag x Ge y S z in the middle (solid electrolyte) and a W tip (cathode) on the top.
- a solution of GeS 2 is created by dissolving 0.055 g of GeS 2 (0.4 mmol) in 1.6 mL of the same anhydrous hydrazine as used in Example 2. The solution is stored 24 hr before use.
- a solution of Cu 2 S is prepared by stirring 0.159 g of Cu 2 S (1 mmol) and 0.064 g of S (2 mmol) in 5 mL of anhydrous hydrazine for a period of approximately two weeks. The resulting yellow solution still had a small quantity of black specks, which were removed by filtration through a 0.2 ⁇ m syringe filter during dispensing of the solution.
- the composite solution for spin coating was prepared by stirring (for two minutes) 0.4 mL of the GeS 2 solution (containing 0.1 mmol GeS 2 ) with 0.25 mL of the filtered Cu 2 S solution (containing 0.05 mmol Cu 2 S). All processing is performed in a nitrogen-filled glove box with oxygen and water levels below 1 ppm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Chemically Coating (AREA)
Abstract
Description
- 1. Technical Field
- The present disclosure relates to an improved electrolytic device. In particular, according to the present disclosure, a high-quality amorphous metal or metalloid chalcogenide film obtained by a relatively high throughput/low-temperature solution-deposition method is used as the active electrolytic layer in the solid-state electrolytic device. The present disclosure also relates to a process for fabricating the solid-state electrolytic device
- 2. Background Art
- In solid-state electrolyte devices, the solid-state electrolyte material generally consists of a Ag-, Cu-, Zn- or Li-doped amorphous chalcogenide (most typically, GeS2, GeSe2, As2S3, As2Se3), which acts like an excellent conductor of ions (i.e., Ag+, Cu+, Zn2+, Li+, etc). The amorphous chalcogenide may be of a binary composition (i.e., GeS2-x, GeSe2-x, As2S3, As2Se3) or may contain three or more elements (i.e., Ge1-xSnxS2-ySey, GeSbxSy, As2-xSbxS3-ySey, GeSe2-yTey, etc.). Doping of the amorphous chalcogenide is obtained by either co-deposition or by electrical/thermal or UV diffusion of the metal or metalloid into the pre-deposited amorphous chalcogenide. UV diffusion is normally the preferred technique and results in a system that has a saturated and uniform concentration of the dopant in the material (which depends on the stoichiometry of the starting material). Both the undoped and doped chalcogenides have very high resistance (typically>1 gigaohms for a 30×30×30 nm region).
- If such a doped amorphous chalcogenide material is sandwiched between two metals, one of which is reactive (i.e., containing the dopant Ag, Cu, Zn, Li; henceforth referred to as the anode) and the other one of which is an inert material (e.g., W, TiN, TaN, Al, Ni, etc.; henceforth referred to as the cathode), then the following electrical effects are achieved:
-
- (a) On the application of a small positive bias (bias being applied to the anode), it is believed that ions diffuse from the anode and the solid electrolyte material towards the cathode and form a conducting “metallic” filament that starts at the cathode and builds up towards the anode. This happens as long as the applied bias is greater than the “threshold” voltage for formation (which depends on the material and the bottom electrode and is generally between 0 and 1.0 V). When the filament is fully formed, it will result in a short between the 2 electrodes. This results in a very low resistance state (typically<1 Mohm). This conducting filament stays for a period even after the applied bias has been removed. The formed filament, though nominally permanent, tends to diffuse back into the electrolyte (with no applied bias), causing the on-state resistivity to increase over time (faster at elevated temperature). Typically the ON resistance is a function of the steady-state current during programming: Ron=Vth/Ion, where Vth is the electrodeposition threshold (typically lower than the threshold voltage for formation). Typical programming times are of the order of 50-100 ns or faster, but may be much slower depending on various factors including the method of deposition of the amorphous chalcogenide.
- (b) When a negative bias is applied to the anode (and a conducting filament already exists), then ions move out of the conducting filament back into the solid electrolyte and eventually into the anode. A break in the metallic filament can result in high resistance. Typically for times<100 ns, the entire metallic filament is erased and an ultra-high resistance is obtained.
- These device characteristics are illustrated in
FIG. 1 .FIG. 1 illustrates electrolyic device characteristics for an Ag—Ge—S device. At a slight positive voltage (Va=0.2 V), the device switches to the low resistance state. At Vb=−0.2V, the device switches to the high resistance state. Va (turn-on voltage) and Vb (turn-off voltage) range from 0 to +/−1 V and depend on the material and the cathode. The ON resistance of the solid electrolyte memory is a function of the program current (i.e., Ron=Vth/Ion). The OFF resistance is a function of the resistivity of the solid electrolyte and of the double layer at the interface. The device turns on by forming a thin metallic bridge between the inert and oxidizable electrode. Vth is the electrodeposition threshold and Ion is the on-current that is used for programming (see Kozicki et al, Programmable Metallization Cell Memory based on Ag—Ge—S and Cu—Ge—S, NVMTS 2005, pp. 83-9). - The following are some potential applications for a solid electrolyte material:
- (a) Use as a memory material—where the low and high resistance states can be labeled as 1 and 0 respectively (see Kozicki et al., IEEE Trans. Nanotech. 4, 331 (2005) and Terabe et al., J, Appl. Phys. 91, 10110 (2002).
- (b) As a diode material-especially for high current density memory elements.
- Typically, the amorphous chalcogenide material (either doped or pre-doped) is deposited using a vacuum-based technique such as sputtering or thermal evaporation. Such techniques are relatively costly and time-consuming, since they rely on achieving a high-vacuum environment in a confined space prior to the deposition. In addition, compositional control may be difficult to achieve due to effects such as preferential sputtering in composite targets, the need to balance evaporation rates for multiple evaporation sources and the added difficulty of vacuum-depositing sulfur compounds because of the high vapor pressure of sulfur. Finally, deposition on complex surfaces (i.e., those containing vias and trenches) can be problematic for directional sputtering techniques.
- Therefore, it would be highly desirable to develop alternative methods for depositing the amorphous chalcogenide active layer for an electrolytic device.
- The present disclosure addresses concerns of the prior art. In particular, according to the present disclosure, a high-quality amorphous chalcogenide film obtained by a solution-deposition method is used as the active electrolytic layer in a solid-state electrolytic device.
- In particular, the solid electrolyte device of the present disclosure comprises an amorphous chalcogenide solid active electrolytic layer; a first metallic layer; and a second metallic layer. The amorphous chalcogenide solid active electrolytic layer is located between the first and second metallic layers.
- The amorphous chalcogenide solid active electrolytic layer is prepared by providing a solution such as a hydrazine-based solution of a precursor to a metal chalcogenide or metalloid-based chalcogenide; applying the solution onto a substrate; and thereafter annealing the precursor to convert the precursor to the amorphous metal chalcogenide or amorphous metalloid-based chalcogenide. For the purpose of this disclosure, the term “metal chalcogenide” is used in its most general sense, so that it encompasses metals as well as metalloids (e.g., Ge) within the metal position.
- The present disclosure also relates to a process for fabricating the solid electrolyte device. The process comprises: providing a solution, such as a hydrazine-based solution, of a precursor to a metal or metalloid chalcogenide; applying the solution onto a substrate; thereafter annealing the precursor to convert the precursor to an amorphous metal or metalloid chalcogenide layer; forming a first metallic layer and forming a second metallic layer; wherein the amorphous metal or metalloid chalcogenide is between the first and second metallic layers.
- Still other objects and advantages of the present disclosure will become readily apparent by those skilled in the art from the following detailed description, wherein it is shown and described only in the preferred embodiments, simply by way of illustration of the best mode. As will be realized, the disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, without departing from the spirit of the disclosure. Accordingly, the description is to be regarded as illustrative in nature and not as restricted.
-
FIG. 1 illustrates electrolytic device characteristics for an Ag—Ge—S device. -
FIG. 2 is a schematic diagram of a pillar cell employing the solid electrolyte (PMC or programmable metallization cell) of this disclosure. -
FIG. 3 is a schematic diagram of a mushroom cell employing the solid electrolyte (PMC) of this disclosure. -
FIG. 4 is a schematic diagram of a pore cell employing the solid electrolyte of this disclosure. -
FIG. 5 is a schematic diagram of a further device employing the solid electrolyte of this disclosure. -
FIG. 6 represents the powder X-ray diffraction pattern of a GeSx deposit, prepared according to the method of this disclosure. -
FIG. 7 is a cross-sectional SEM of a GeS2-x film (grey material) prepared on SiO2 (white material). -
FIG. 8 is a cross-sectional SEM of a GeS2-x film prepared on SiO2. -
FIG. 9 shows RBS spectra for two films that are coated with 20 nm of Ag (no UV treatment). -
FIG. 10 , which includesFIGS. 10A and 10B , shows RBS spectra for two films that have been coated with Ag (with UV treatment). -
FIG. 11 is a cross sectional SEM image of a spin-coated GeS2-x film on Ag. -
FIGS. 12 A and B show device characteristics for two electrolytic memory cells (inverted mushroom-type). - The present disclosure is concerned with an improved electrolytic memory device employing as the active layer in the solid-state electrolytic device a solution-deposited high-quality amorphous metal or metalloid chalcogenide film. For the purpose of this disclosure, as mentioned above, the term “metal chalcogenide” is used in it's most general sense, so that it encompasses metals as well as metalloids (e.g., Ge) within the metal position.
- The solution-deposition is accomplished employing a hydrazine-based solvent as will be discussed below. Important to the present disclosure is depositing amorphous films as contrasted to crystalline films. Amorphous films are required for the successful fabrication of an electrolytic device as described above.
- The solution-based deposition process involves 3 steps:
-
- 1) Preparation of the hydrazine-based precursor solution.
- 2) Applying or depositing the solution onto a substrate.
- 3) Annealing the precursor to convert the precursor to the amorphous chalcogenide film.
- A solution of the metal chalcogenide material can be prepared using one of the techniques disclosed in U.S. Pat. Nos. 6,875,661 and 7,094,651; and U.S. patent application Ser. No. 11/0955,976 and Ser. No. 11/432,484, US Patent Publication 2005-0009225 and US Patent Application Publication 2005-0158909.
- Typically, the process involves dissolving a metal or metalloid chalcogenide in a solvent such as hydrazine (or a hydrazine-like solvent) at near ambient temperatures, with optionally extra chalcogen added to improve solubility. Typical hydrazine compounds are represented by the formula:
-
R1R2N—NR3R4 - wherein each of R1, R2, R3 and R4 is independently hydrogen, aryl such as phenyl, a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms. The most typical solvent is hydrazine. The present disclosure is not limited to the use of hydrazine, but it can also be used with other solvents including, but not limited to, hydrazine-like solvents, as disclosed above, such as 1,1-dimethylhydrazine and methylhydrazine or mixtures of hydrazine-like solvents with other solvents including, but not limited to, water, methanol, ethanol, acetonitrile and N,N-dimethylformamide. However, with certain highly-reactive metals, e.g., sodium and potassium and other alkali metals, it is preferred that the solvent be anhydrous.
- The solution may also be prepared by directly dissolving the corresponding metal or metalloid of the chalcogenide in hydrazine, with at least enough chalcogen added to effect the formation and dissolution of the metal chalcogenide in solution as described in U.S. patent application Ser. No. 11/432,484. Alternatively, the solution may be formed by dissolving a preformed hydrazinium-based precursor in a non-hydrazine-based solvent, such as a mixture of ethanolamine and dimethyl sulfoxide (DMSO), as described in U.S. Pat. No. 7,094,651. Examples of other solvents are n-butylamine, n-propylamine, diethanolamine, alcohols, water, dimethyl formamide (DMF) and mixtures thereof. Also see Mitzi et al., Adv. Mater. 17, 1285 (2005) for other solvents.
- In another method of preparing the solution, a chalcogenide and an amine are first contacted to produce an ammonium-based precursor of the metal chalcogenide, which is then contacted with a hydrazine compound and optionally, an elemental chalcogen. This method includes the steps of:
- contacting at least one metal chalcogenide and a salt of an amine compound with H2S, H2Se or H2Te, wherein the amine compound is represented by the formula:
-
NR5R6R7 - wherein each of R5, R6, and R7 is independently hydrogen, aryl such as phenyl, a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms, to produce an ammonium-based precursor of the metal chalcogenide;
- contacting the ammonium-based precursor of the metal chalcogenide with a hydrazine compound represented by the formula:
-
R1R2N—NR3R4 - wherein each of R1, R2, R3 and R4 is independently hydrogen, aryl such as phenyl, a linear or branched alkyl having 1-6 carbon atoms such as methyl, ethyl or a cyclic alkyl of 3-6 carbon atoms, and optionally, an elemental chalcogen, such as S, Se, Te or a combination thereof, to produce a solution of a hydrazinium-based precursor of the metal or metalloid chalcogenide in the hydrazine compound.
- Typically, the amine compound is NH3, CH3NH2, CH3CH2NH2, CH3CH2CH2NH2, (CH3)2CHNH2, CH3CH2CH2CH2NH2, phenethylamine, 2-fluorophenethylamine, 2-chlorophenethylamine, 2-bromophenethylamine, 3-fluorophenethylamine, 3-chlorophenethylamine, 3-bromophenethylamine, 4-bromophenethylamine, 2,3,4,5,6-pentafluorophenethylamine or a combination thereof.
- Examples of suitable metals for the metal chalcogenide are the transition and non-transition metals and metalloids including tin, germanium, lead, indium, antimony, mercury, gallium, thallium, potassium, copper, iron, cobalt, nickel, manganese, tungsten, molybdenum, zirconium, hafnium, titanium, and niobium or a combination thereof. The chalcogen is typically S, Se, Te or a combination thereof.
- The concentration of the metal chalcogenide precursor in the hydrazine compound is typically no more than about 10 molar and more typically about 0.01 molar to about 10 molar, even more typically about 0.05 to about 5 molar, or about 0.05 to about 1 molar.
- In one embodiment, the metal chalcogenide can be represented by the formula MX, MX2 or M2X3, wherein M is a main group or non-transition metal or metalloid, such as potassium, germanium, tin, lead, antimony, bismuth, gallium, and indium, or a transition metal such as copper, iron, cobalt, nickel, manganese, tungsten, molybdenum, zirconium, hafnium, titanium, and niobium or a combination thereof and wherein X is a chalcogen, such as, S, Se, Te or a combination thereof.
- In another embodiment, the metal chalcogenide can be represented by the formula MX or M2X3, wherein M is lanthanum or a lanthamide-metal, such as lanthanum, yttrium, gadolinium and neodymium or a combination thereof, and wherein X is a chalcogen, such as, S, Se Te or a combination thereof.
- In yet another embodiment, the metal chalcogenide can be represented by the formula M2X, wherein M is a metal such as Cu or K, and wherein X is a chalcogen, such, as S, Se, Te or a combination thereof.
- The hydrazine-based precursor may either be an ionic solid comprised of metal or metalloid chalcogenide anions and hydrazinium cations or a more covalent compound comprised of an extended metal chalcogenide framework with covalently-bonded hydrazine molecules. Examples of ionic precursors include (N2H5)4Sn2S6, (N2H4)3(N2H5)4Sn2Se6 and (N2H5)4Ge2Se6, each of which consists of dimers of edge-sharing MX4 4−(M=Sn or Ge; X=S or Se) tetrahedra, separated by hydrazinium cations. An example of a covalent precursor is (N2H4)2ZnTe.
- The metal or metalloid chalcogenide precursor films are deposited on a substrate using the solutions prepared as disclosed above. Suitable substrates for film deposition include: silicon, quartz, glass, sapphire, metal, gallium nitride, gallium arsenide, germanium, silicon-germanium, indium-tin-oxide, alumina (Al2O3), and plastic (e.g., Kapton, polycarbonate). The substrate may be rigid or flexible. Using high-throughput techniques such as spin-coating, stamping, dip coating, doctor blading, drop casting, or printing, solutions are applied to the substrate and transformed into thin films of the precursor upon evaporation of the solvent. Some of the solution processing techniques (e.g., printing, stamping) enable simultaneous film deposition and patterning. The key point in this step is to have chosen a solvent that will wet the appropriately prepared substrate (i.e., an oxidized silicon surface can be prepared to be either hydrophilic or hydrophobic to promote solution wetting, depending upon the nature of the solvent used), thereby facilitating the formation of a uniform film upon drying.
- The substrate desirably is typically free of contaminants, and may be prepared for solution deposition by cleaning and/or surface pretreatment. Cleaning can be accomplished by sonication in a variety of solvents, such as ethanol, methanol or acetone and/or by heating in various cleaning solutions, such as sulfuric acid/hydrogen peroxide (Piranha) or ammonium hydroxide solutions. The cleaning can also be carried out using UV-ozone or oxygen plasma treatment.
- A low-temperature thermal treatment is used to decompose the resulting metal chalcogenide precursor film on the substrate, resulting in the formation of a metal chalcogenide amorphous film. The substrate coated with the precursor film can be heated by placing it on a hot plate, or in a box or tube furnace under an appropriate inert atmosphere such as nitrogen, forming gas or argon. Alternatively, the heating may take place by laser-based or microwave-based annealing for much more rapid processing. Heating is performed at a temperature high enough and for a time long enough to enable complete decomposition of the hydrazine-based precursor into the targeted metal chalcogenide, but low enough and for a short enough time that substantial crystallization does not occur. Preferably the heating is carried out at a temperature of about 100 to about 400° C. and more typically about 100 to about 350° C. and for an amount of time from about 0.2 to about 60 minutes. Additionally, the choice of the metal chalcogenide may be used to promote the formation of amorphous films. The particular temperatures used to obtain an amorphous film depends upon the chalcogenide precursor, which can be determined by those skilled in the art without undue experimentation in view of this disclosure. For instance, metal or metalloid chalcogenides based on the lighter metals or metalloids have less of a tendency to crystallize and therefore temperatures at the higher end of the range can be used while still maintaining an amorphous film.
- Solution-based techniques are particularly attractive because of the array of available options for high-throughput film deposition, including spin coating, dip coating, doctor blading, ink-jet printing, stamping, etc. These techniques have the advantage of being potentially low-cost, high-throughput techniques and are readily compatible with roll-to-roll processing. Prior to this disclosure, the active layer was typically deposited using a slower and more costly vacuum-based technique such as sputtering or evaporation.
- Advantages of this process are that it allows for potentially low-cost, very high-throughput deposition of amorphous metal chalcogenide films for use in electrolytic devices, without the requirement of vacuum conditions or specialized CVD reactors. The solution-processing technique is also a relatively low-temperature process and is compatible with selected higher-temperature flexible plastic substrate materials, such as Kapton and other polyimide-based plastics. Additionally, solution-processing provides a natural mechanism for filling vias and trenches on a substrate, which can be difficult to achieve using more directional deposition techniques such as sputtering (see U.S. patent application Ser. No. 11/556,385, entitled Method for Filling Holes with Metal Chalcogenides, filed Nov. 3, 2006, the disclosure of which is incorporated herein by reference). Finally, the solution processing mechanism provides a convenient means of doping the amorphous metal chalcogenide layer, since the corresponding dopant metal can be dissolved in the solution with the targeted metal chalcogenide prior to solution processing (i.e., without the need for UV diffusion).
- Examples of representative electrolytic device structures in which the solution-processed solid electrolyte (SE) layers (deposited as described above) can be employed are schematically shown in
FIGS. 2-5 . For instance,FIG. 2 illustrates a pillar cell. This structure can be fabricated using many sequences, one of which is described below: -
- (a) Bottom electrode is deposited and patterned-either directly or via a damascene process. The
bottom electrode 1 is shown as W or TiN, but could alternatively be Cu or Ag or some other metal with a TiN/TaN barrier layer. - (b) The second step is ILD 2 (inter-level dielectric) deposition and via formation, with a stop on the bottom metal.
- (c) Next the solid electrolyte is spin coated onto the substrate (either co-doped during spin coating or UV doped to saturation after deposition). The PMC 3 (programmable metallization cell) in
FIG. 2 represents the solution-processed amorphous metal chalcogenide or solid electrolyte (SE). - (d) The surface is planarized (e.g., by CMP or chemical mechanical polishing) of the material, stopping on the dielectric.
- (e) The
top electrode 4 is deposited and patterned-either using a regular (conventional litho+metal pattern) process or a damascene process (which refers to an inverse process involving creating patterns in the ILD, then filling them up with metal and then polishing the metal). Thetop electrode 4 could be Ag/Cu/W/Al or any other metal with any appropriate barrier layers. In addition, the entire stack could be flipped
- (a) Bottom electrode is deposited and patterned-either directly or via a damascene process. The
-
FIG. 3 illustrates a mushroom cell. This structure can be fabricated using many sequences, one of which is illustrated below: -
- (a)
Bottom electrode 1 patterning and planarization (withILD 2, represented by the grey region). - (b) Spin-on of the solid electrolyte material 3 (either co-doped with Ag/Cu during spin coating or UV doped to saturation after deposition). Note that the solid electrolyte 3 (denoted SE or PMC) need not be patterned in this case.
- (c)
Top electrode 4 deposition and patterning—either using a regular or a damascene process.
- (a)
-
FIG. 4 illustrates a pore cell. This is very similar to the pillar cell (FIG. 2 ) except that, although the PMC is planarized, the planarization is not stopped on the oxide but rather earlier. Note the need to fill a via or trench in this structure (as forFIG. 2 ) during the deposition of the SE (or PMC). -
FIG. 5 illustrates a further embodiment. In this embodiment, thesolid electrolyte material 3 is planar and is deposited between 2 layers ofmetals 1 and 4 (one above and one below that are patterned). The bottom layer consists of the ILD 2 (could be oxide, nitride or low-K material; represented in grey), with imbedded metal 1 (could be W, Cu, TiN, for example; represented in black). Thesolid electrolyte 3 may or may not be patterned. Ideally, thesolid electrolyte 3 is a continuous layer. But patterning may help reduce interference between adjacent cells. - In order to increase the density of memory technologies (both volatile and nonvolatile), a crosspoint design is one desirable option. In such an optimized design, the wordline and bitlines (henceforth referred to as memory lines) run at minimum pitch and in perpendicular directions. A storage element is placed at the sandwich of these perpendicularly oriented lines. Two possible designs exist:
- (a) A nano-crossbar design, where the memory lines run at sublithographic pitches. This decreases memory cell area from 4F2 to 4Fs2 where 2Fs is the nanoscale pitch. Typically Fs<<F where F is the lithographic pitch. Disclosures that refer to how to interface these sublithographic features to lithographically defined wordline and bitline driver/decoder circuits can be found in U.S. patent application Ser. No. 11/679,785 filed Feb. 18, 2007 to Soundararajan and assigned to International Business Machines Corporation, the assignee of this application. The entire disclosure of which is incorporated herein by reference.
(b) A 3D design, where the memory lines run at lithographic pitches, but having multiple layers of these memories. The effective cell size decreases as 4F2/n, where n is the number of 3D layers (n≧1). - In both cases, at the intersection of the memory lines, two device components are needed, a memory element and a diode. The solution-processed solid electrolyte materials described herein may apply to both of these components—i.e., in certain embodiments, it may be used as a memory element and in certain other embodiments, it may be used as a diode:
- (a) A memory element that is used to store data/information. Many options exist here (including Phase-Change Memory, MRAM, Solid Electrolyte Memory and FeRAM for example). In the case of the current disclosure, the use of solid electrolyte materials based on solution-processed amorphous metal chalcogenides is being referenced.
- (b) Since a transistor does not exist at every cross-point, also needed is a device that can rectify (exhibit nonlinearity). This ensures that cells that lie on unselected wordlines and bitlines are not inadvertently programmed or shorted to each other.
- While several representative examples of improved electrolytic device structures that employ the solution-processed amorphous metal chalcogenides as the active layer have been exemplified, many others can be envisioned by those skilled in the art and are also included within the scope of this disclosure.
- The following non-limiting examples are presented to further illustrate the present disclosure.
- Amorphous germanium (IV) sulfide, GeS2-x, is one of the prime candidates for use in electrolytic cells, because of the ease with which it forms a glass and the stability of the resulting glass with respect to crystallization. In addition, metals (e.g., Ag, Cu, Li) can readily be diffused into films of this material. As a first demonstration of the disclosure, films of GeS2-x are deposited from solution and characterized. In this case, the metal chalcogenide films will be deposited using spin coating, although they could also be deposited using other solution-based techniques such as stamping, printing, dip coating or doctor blading. Note that the formula for germanium(IV) sulfide is written here as GeS2-x, to reflect the fact that there is some range of sulfur stoichiometry that can be accommodated by this system.
- A solution of GeS2 is created by dissolving 0.164 g of GeS2 (1.2 mmol) in 4.8 mL of as-received anhydrous hydrazine (98%). The reaction and resulting solution is maintained in an inert atmosphere (e.g., nitrogen or argon). The dissolution is relatively quick at room temperature, requiring<0.5 hr with stirring to produce a clear essentially colorless solution. The solution is filtered through a 0.2 μm syringe filter, while being dispensed onto a substrate for the spin coating process. Some of the solution is also evaporated on a glass slide and decomposed under nitrogen at 350° C. for ˜1/2 hr, yielding an amorphous material, as indicated by X-ray diffraction (
FIG. 6 ). This demonstrates the nominally amorphous nature of GeSx materials prepared from the hydrazine-based precursors, at least for annealing temperatures up to 350° C. -
FIG. 6 represents the powder X-ray diffraction pattern of a GeSx deposit, formed by evaporating the germanium sulfide precursor solution on a glass slide and then decomposing the precursor at a temperature of 350° C. on a hot plate (in an inert atmosphere). The amorphous nature of the deposit is indicated by the lack of sharp X-ray peaks in the diffraction pattern. - A film of the GeS2 precursor is readily deposited on a clean thermally-oxidized silicon substrate using a spin-coating technique and the solution described above. Each substrate is pre-cleaned by first using a soap scrub, followed by sequential sonication in ethanol and dichloromethane, and finally using a Piranha clean (hydrogen peroxide: sulfuric acid) with a deionized (DI) water rinse. Thin films of the GeS2 precursor are formed by depositing 2-3 drops of the above-mentioned GeS2 solution onto the substrate, allowing the solution to spread on the substrate for about 10 sec and spinning the substrate at 2000 rpm for about 2 min in a nitrogen-filled drybox.
- The resulting precursor films are dried on a hot plate at 100° C. for about 5 minutes in an inert atmosphere, followed by a decomposition heat treatment at 250° C. for about 10 minutes on the same hot plate (gradual heating to this temperature over ½ hr). The latter decomposition heat treatment yields thin films of amorphous GeS2. Thickness of the film can be controlled by choice of solution concentration and spin speed during deposition. Additional control over solution properties and film stoichiometry can be provided by adding extra S to the spin coating solution. Using the conditions described above, film thicknesses and compositions are achieved (determined using Rutherford Backscattering Spectroscopy —RBS) as follows:
-
Film [Ge] at. % [S] at. % thickness (Å) A 42.7 ± 0.5 57.3 ± 0.5 261 ± 20 B 34.7 ± 0.5 65.3 ± 0.5 349 ± 20 C 34.2 ± 0.5 65.8 ± 0.5 389 ± 20 D 33.7 ± 0.5 66.3 ± 0.5 400 ± 20 - Several representative cross sectional SEM (scanning electron microscope) images of the resulting films are given below:
-
FIG. 7 is a cross-sectional SEM of a GeS2-x film (grey material) prepared on SiO2 (white material). The bottom surface is Si. -
FIG. 8 is a cross-sectional SEM of a GeS2-x film (grey material) prepared on SiO2 (white material). The bottom surface is Si. - Ag is deposited (˜20 nm) on top of two representative films (Film A and C). RBS of the resulting composite films yields the following RBS spectra:
-
FIG. 9 shows a RBS spectra for two films (A and C) that are coated with 20 nm of Ag. The large peak centered around 2.05 MeV corresponds to Ag; the peak centered at ˜1.9 MeV corresponds to Ge; the peak centered at ˜1.6 MeV corresponds to S. - Note that the Ag-coated film C which was nominally stoichiometric GeS2 before Ag deposition, exhibits more asymetrical RBS peaks, indicative of interaction between the Ag overlayer and the GeS2-x underfilm. The arrows (
FIG. 9 ) indicate the interaction and it seems more pronounced for Ag and S peaks than for the Ge peaks. This may indicate that the S is reacting only with the Ag cations and that the Ge is more of a “spectator”. This would be consistent with the fact that only film C, with higher [S], is interacting substantially with the Ag overlayer. - After RBS analysis, the two films are then subjected to a UV exposure. The exposure consists of 7 mW/cm2 treatment (measured with a 253.7 nm detector head on an OAI power meter) in a nitrogen environment for three consecutive 15 minute intervals. The total exposure, therefore, is 18,900 mJ/cm2. As evident in
FIG. 10 , film C substantially interacts with the Ag during the UV treatment, whereas film A does not change substantially as a result of exposure. For film C, UV-treatment resulted in about 30 at. % Ag uniformly spread throughout the GeS2-x film. These data suggest that the exact film stoichiometry can substantially impact the ability of Ag to diffuse in the solution processed amorphous GeS2-x films. Given that metal diffusion is critical for the operation of electrolytic devices, control over film stoichiometry (as described above) may be important for the formation of operational and optimized devices. -
FIG. 10 shows RBS spectra for two films that have been coated with 20 nm of Ag. The black curves correspond to films that have just had the Ag deposition (same as inFIG. 9 ), while the gray curves have been UV-treated. - The doped and undoped GeS2 films described in Example 1 could be used in any of the device geometries described above.
- A solution of GeS2 is created by dissolving 0.055 g of GeS2 (0.4 mmol) in 1.6 mL of anhydrous hydrazine (same concentration as in Example 1). The solution is stored about 4 weeks before use for this example. The reaction and resulting solution are maintained in an inert atmosphere (e.g., nitrogen or argon). The solution is filtered through a 0.2 μm syringe filter, while being dispensed onto a substrate for the spin coating process.
-
- A film of the GeS2 precursor is readily deposited onto an Ag-coated (about 200 nm; deposited by e-beam evaporation) p+silicon substrate using a spin-coating technique and the solution described above. Each Ag-coated substrate is cleaned in an ammonium hydroxide/water mixture for approximately 10 min, rinsed with DI water and blown dry with compressed air before spin coating. Thin films of GeS2 precursor are formed by depositing 2-3 drops of the above-mentioned GeS2 solution onto the substrate, allowing the solution to spread on the substrate for about 10 seconds and spinning the substrate at 2000 rpm for 2 min in a nitrogen-filled drybox.
- The resulting precursor films are dried on a hot plate at 120° C. for 5 minutes in an inert atmosphere, followed by a decomposition heat treatment at 260° C. for 10 minutes on the same hot plate (preheated hotplate rather than gradual heating). The latter decomposition heat treatment yields thin films of amorphous GeS2 w/the Ag undercoat (see cross sectional SEM in
FIG. 11 ). Thickness of the film can be controlled by choice of solution concentration and spin speed during deposition. Using the conditions described above, a film thickness of about 36 nm and a [S]/[Ge] ratio of ˜1.75 (i.e., slightly S deficient relative to ideal GeS2) is achieved, as determined by RBS. However, as for the UV-treated GeS2 film described in Example 1, there is a substantial concentration (>30 at. %) of Ag (more accurate Ag content is difficult to derive from RBS data due to the thick Ag layer underneath the relatively thin metal chalcogenide layer) in the amorphous chalcogenide film. Since these films have not been subjected to a UV diffusion treatment, this means that the Ag diffusion is accomplished in-situ during the decomposition heat treatment used to form the amorphous chalcogenide film from the precursor film (i.e., heating to 260° C. for 10 min). The Ag-diffused GeS2-x film is suitable for use in a variety of electrolytic device structures as shown above. -
FIG. 11 is a cross sectional SEM image of a spin-coated GeS2-x film on Ag. - To make a simple test structure, the resulting AgyGexSz film on Ag is probed using a W tip (tip area about 10×10 microns; acts as the cathode), effectively resulting in an inverted mushroom-type structure (see
FIG. 3 above; in this case Ag is on the bottom and W on the top). Contact to the Ag anode is made through the adjacent p+ silicon substrate. By probing carefully (so as not to punch through the metal chalcogenide film with the W tip), functional devices are prepared that exhibited typical solid-electrolye device behavior (compareFIGS. 12A and B withFIG. 1 ). While the endurance of the device is poor with respect to cycling, most likely due to operation in air and a relatively rough surface, these results clearly demonstrate the feasibility of employing a spin-coated amorphous metal chalcogenide film as the active layer in an electrolytic device. -
FIGS. 12 A and B show device characteristics for two electrolytic memory cells (inverted mushroom-type), with Ag (anode) on bottom, spin coated AgxGeySz in the middle (solid electrolyte) and a W tip (cathode) on the top. - A solution of GeS2 is created by dissolving 0.055 g of GeS2 (0.4 mmol) in 1.6 mL of the same anhydrous hydrazine as used in Example 2. The solution is stored 24 hr before use. A solution of Cu2S is prepared by stirring 0.159 g of Cu2S (1 mmol) and 0.064 g of S (2 mmol) in 5 mL of anhydrous hydrazine for a period of approximately two weeks. The resulting yellow solution still had a small quantity of black specks, which were removed by filtration through a 0.2 μm syringe filter during dispensing of the solution. The composite solution for spin coating was prepared by stirring (for two minutes) 0.4 mL of the GeS2 solution (containing 0.1 mmol GeS2) with 0.25 mL of the filtered Cu2S solution (containing 0.05 mmol Cu2S). All processing is performed in a nitrogen-filled glove box with oxygen and water levels below 1 ppm.
-
- Each substrate for spin coating was pre-cleaned by first using a soap scrub, followed by sequential sonication in ethanol and dichloromethane, and finally using a Piranha clean (hydrogen peroxide: sulfuric acid) with a DI water rinse. Thin films of Ge—Cu—S precursor are formed by depositing 2-3 drops of the above-mentioned composite solution onto the substrate, allowing the solution to spread on the substrate for ˜10 sec and spinning the substrate at 2000 rpm for 2 min in a nitrogen-filled drybox.
- The resulting precursor films are dried on a hot plate at 100° C. for 5 minutes in an inert atmosphere, followed by a decomposition heat treatment at 300° C. for 20 min on the same hot plate (preheated hot plate). The latter decomposition heat treatment yields metal chalcogenide thin films. Thickness of the film can be controlled by choice of solution concentration and spin speed during deposition. Using the conditions described above, film composition and thickness are achieved (determined using Rutherford Backscattering Spectroscopy —RBS) of 19.1 at. % Ge, 28.8 at. % Cu, 52.1 at. % S and 24(1) nm thickness. Substantial Cu is therefore successfully incorporated with the Ge—S in the resulting films, demonstrating that the doping process can be achieved during spin coating by incorporation of the dopant metal in the solution (no need for UV treatment).
- The term “comprising” (and its grammatical variations) as used herein is used in the inclusive sense of “having” or “including” and not in the exclusive sense of “consisting only of.” The terms “a” and “the” as used herein are understood to encompass the plural as well as the singular.
- The foregoing description illustrates and describes the present disclosure. Additionally, the disclosure shows and describes only the preferred embodiments of the disclosure, but, as mentioned above, it is to be understood that it is capable of changes or modifications within the scope of the concept as expressed herein, commensurate with the above teachings and/or skill or knowledge of the relevant art. The described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the disclosure in such, or other embodiments and with the various modifications required by the particular applications or uses disclosed herein. Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also it is intended that the appended claims be construed to include alternative embodiments.
- All publications, patents and patent applications cited in this specification are herein incorporated by reference, and for any and all purposes, as if each individual publication, patent or patent application were specifically and individually indicates to be incorporated by reference. In this case of inconsistencies, the present disclosure will prevail.
Claims (3)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/765,142 US20080314738A1 (en) | 2007-06-19 | 2007-06-19 | Electrolytic Device Based on a Solution-Processed Electrolyte |
US11/830,213 US7928419B2 (en) | 2007-06-19 | 2007-07-30 | Electrolytic device based on a solution-processed electrolyte |
EP08760731A EP2176896B1 (en) | 2007-06-19 | 2008-06-09 | Solution-processed solid electrolytic layer device and fabrication |
JP2010512635A JP4754033B2 (en) | 2007-06-19 | 2008-06-09 | Manufacturing method of electrolyte device based on electrolyte by solution process |
KR1020097015547A KR20090119837A (en) | 2007-06-19 | 2008-06-09 | Solution-processed solid electrolytic layer device and fabrication |
PCT/EP2008/057167 WO2008155251A1 (en) | 2007-06-19 | 2008-06-09 | Solution-processed solid electrolytic layer device and fabrication |
CN200880014888A CN101681993A (en) | 2007-06-19 | 2008-06-09 | Solution-processed solid electrolytic layer device and fabrication |
JP2010272800A JP5404588B2 (en) | 2007-06-19 | 2010-12-07 | Electrolytic device based on electrolyte by solution process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/765,142 US20080314738A1 (en) | 2007-06-19 | 2007-06-19 | Electrolytic Device Based on a Solution-Processed Electrolyte |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/830,213 Continuation US7928419B2 (en) | 2007-06-19 | 2007-07-30 | Electrolytic device based on a solution-processed electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080314738A1 true US20080314738A1 (en) | 2008-12-25 |
Family
ID=39768654
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/765,142 Abandoned US20080314738A1 (en) | 2007-06-19 | 2007-06-19 | Electrolytic Device Based on a Solution-Processed Electrolyte |
US11/830,213 Expired - Fee Related US7928419B2 (en) | 2007-06-19 | 2007-07-30 | Electrolytic device based on a solution-processed electrolyte |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/830,213 Expired - Fee Related US7928419B2 (en) | 2007-06-19 | 2007-07-30 | Electrolytic device based on a solution-processed electrolyte |
Country Status (6)
Country | Link |
---|---|
US (2) | US20080314738A1 (en) |
EP (1) | EP2176896B1 (en) |
JP (2) | JP4754033B2 (en) |
KR (1) | KR20090119837A (en) |
CN (1) | CN101681993A (en) |
WO (1) | WO2008155251A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100117052A1 (en) * | 2008-11-12 | 2010-05-13 | Seagate Technology Llc | Programmable metallization cells and methods of forming the same |
US20110037014A1 (en) * | 2004-06-18 | 2011-02-17 | Adesto Technology Corporation | Method for producing memory having a solid electrolyte material region |
US8481359B2 (en) * | 2008-08-14 | 2013-07-09 | Micron Technology, Inc. | Methods of forming a phase change material |
GB2485938B (en) * | 2009-08-28 | 2014-02-26 | Ibm | Chemical mechanical polishing stop layer for fully amorphous phase change memory pore cell |
EP2719485A1 (en) | 2012-10-15 | 2014-04-16 | King Saud University | Foam material and method for the preparation thereof |
US8703588B2 (en) | 2008-09-04 | 2014-04-22 | Micron Technology, Inc. | Methods of forming a phase change material |
EP2736088A1 (en) * | 2012-11-27 | 2014-05-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Electronic device such as a memory |
US8981334B1 (en) * | 2013-11-01 | 2015-03-17 | Micron Technology, Inc. | Memory cells having regions containing one or both of carbon and boron |
US9166157B2 (en) | 2011-12-27 | 2015-10-20 | Kabushiki Kaisha Toshiba | Conductive bridging memory device and method for manufacturing same |
US9460919B1 (en) | 2015-10-07 | 2016-10-04 | National Tsing Hua University | Manufacturing method of two-dimensional transition-metal chalcogenide thin film |
CN112267118A (en) * | 2020-10-26 | 2021-01-26 | 万华化学集团股份有限公司 | Vapor phase corrosion inhibitor for protection during maintenance of chemical equipment and preparation method thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101743649B (en) * | 2007-05-01 | 2013-04-24 | 校际微电子中心 | Non-volatile memory device |
US9812638B2 (en) * | 2010-03-19 | 2017-11-07 | Globalfoundries Inc. | Backend of line (BEOL) compatible high current density access device for high density arrays of electronic components |
US8829482B1 (en) * | 2010-09-23 | 2014-09-09 | Adesto Technologies Corporation | Variable impedance memory device structure and method of manufacture including programmable impedance memory cells and methods of forming the same |
US8962460B2 (en) | 2011-04-26 | 2015-02-24 | Micron Technology, Inc. | Methods of selectively forming metal-doped chalcogenide materials, methods of selectively doping chalcogenide materials, and methods of forming semiconductor device structures including same |
US20120313044A1 (en) * | 2011-06-10 | 2012-12-13 | Tokyo Ohka Kogyo Co., Ltd. | Coating solution for forming light-absorbing layer, and method for producing coating solution for forming light-absorbing layer |
US8268270B1 (en) | 2011-06-10 | 2012-09-18 | Tokyo Ohka Kogyo Co., Ltd. | Coating solution for forming a light-absorbing layer of a chalcopyrite solar cell, method of producing a light-absorbing layer of a chalcopyrite solar cell, method of producing a chalcopyrite solar cell and method of producing a coating solution for forming a light-absorbing layer of a chalcopyrite solar cell |
TW201318967A (en) * | 2011-06-10 | 2013-05-16 | Tokyo Ohka Kogyo Co Ltd | Hydrazine-coordinated Cu chalcogenide complex and method of producing the same, coating solution for forming a light-absorbing layer and method of producing the same |
CN103794224B (en) * | 2014-01-27 | 2017-01-11 | 华中科技大学 | Non-volatile logic device and logic operation method based on phase-change magnetic materials |
US10164179B2 (en) * | 2017-01-13 | 2018-12-25 | International Business Machines Corporation | Memristive device based on alkali-doping of transitional metal oxides |
US11158788B2 (en) * | 2018-10-30 | 2021-10-26 | International Business Machines Corporation | Atomic layer deposition and physical vapor deposition bilayer for additive patterning |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6875661B2 (en) * | 2003-07-10 | 2005-04-05 | International Business Machines Corporation | Solution deposition of chalcogenide films |
US20050158909A1 (en) * | 2003-07-10 | 2005-07-21 | International Business Machines Corporation | Solution deposition of chalcogenide films containing transition metals |
US20060109708A1 (en) * | 2004-10-29 | 2006-05-25 | Cay-Uwe Pinnow | Method for improving the thermal characteristics of semiconductor memory cells |
US7303939B2 (en) * | 2001-09-20 | 2007-12-04 | Micron Technology, Inc. | Electro- and electroless plating of metal in the manufacture of PCRAM devices |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010110433A (en) | 1999-02-11 | 2001-12-13 | 알란 엠. 포스칸져 | Programmable microelectronic devices and methods of forming and programming same |
US6784018B2 (en) * | 2001-08-29 | 2004-08-31 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry |
US6858482B2 (en) * | 2002-04-10 | 2005-02-22 | Micron Technology, Inc. | Method of manufacture of programmable switching circuits and memory cells employing a glass layer |
EP1501124B1 (en) | 2002-04-30 | 2011-06-08 | Japan Science and Technology Agency | Solid electrolyte switching devices, fpga and memory devices using the same, and method of manufacturing the same |
CN1639867A (en) * | 2002-07-11 | 2005-07-13 | 松下电器产业株式会社 | Nonvolatile memory and method of manufacturing the same |
JP5281746B2 (en) | 2004-05-14 | 2013-09-04 | ルネサスエレクトロニクス株式会社 | Semiconductor memory device |
JP4830275B2 (en) | 2004-07-22 | 2011-12-07 | ソニー株式会社 | Memory element |
KR100653701B1 (en) | 2004-08-20 | 2006-12-04 | 삼성전자주식회사 | Method of forming a small via structure in a semiconductor device and method of fabricating phase change memory device using the same |
TWI290369B (en) | 2005-07-08 | 2007-11-21 | Ind Tech Res Inst | Phase change memory with adjustable resistance ratio and fabricating method thereof |
KR100687750B1 (en) | 2005-09-07 | 2007-02-27 | 한국전자통신연구원 | Phase change type memory device using sb-se metal alloy and method of manufacturing the same |
US7517718B2 (en) | 2006-01-12 | 2009-04-14 | International Business Machines Corporation | Method for fabricating an inorganic nanocomposite |
-
2007
- 2007-06-19 US US11/765,142 patent/US20080314738A1/en not_active Abandoned
- 2007-07-30 US US11/830,213 patent/US7928419B2/en not_active Expired - Fee Related
-
2008
- 2008-06-09 JP JP2010512635A patent/JP4754033B2/en not_active Expired - Fee Related
- 2008-06-09 WO PCT/EP2008/057167 patent/WO2008155251A1/en active Application Filing
- 2008-06-09 EP EP08760731A patent/EP2176896B1/en not_active Not-in-force
- 2008-06-09 KR KR1020097015547A patent/KR20090119837A/en active IP Right Grant
- 2008-06-09 CN CN200880014888A patent/CN101681993A/en active Pending
-
2010
- 2010-12-07 JP JP2010272800A patent/JP5404588B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7303939B2 (en) * | 2001-09-20 | 2007-12-04 | Micron Technology, Inc. | Electro- and electroless plating of metal in the manufacture of PCRAM devices |
US6875661B2 (en) * | 2003-07-10 | 2005-04-05 | International Business Machines Corporation | Solution deposition of chalcogenide films |
US20050158909A1 (en) * | 2003-07-10 | 2005-07-21 | International Business Machines Corporation | Solution deposition of chalcogenide films containing transition metals |
US20060109708A1 (en) * | 2004-10-29 | 2006-05-25 | Cay-Uwe Pinnow | Method for improving the thermal characteristics of semiconductor memory cells |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110037014A1 (en) * | 2004-06-18 | 2011-02-17 | Adesto Technology Corporation | Method for producing memory having a solid electrolyte material region |
US8062694B2 (en) * | 2004-06-18 | 2011-11-22 | Adesto Technology Corporation | Method for producing memory having a solid electrolyte material region |
US8481359B2 (en) * | 2008-08-14 | 2013-07-09 | Micron Technology, Inc. | Methods of forming a phase change material |
US8703588B2 (en) | 2008-09-04 | 2014-04-22 | Micron Technology, Inc. | Methods of forming a phase change material |
US7842938B2 (en) * | 2008-11-12 | 2010-11-30 | Seagate Technology Llc | Programmable metallization cells and methods of forming the same |
US20100117052A1 (en) * | 2008-11-12 | 2010-05-13 | Seagate Technology Llc | Programmable metallization cells and methods of forming the same |
GB2485938B (en) * | 2009-08-28 | 2014-02-26 | Ibm | Chemical mechanical polishing stop layer for fully amorphous phase change memory pore cell |
US9166157B2 (en) | 2011-12-27 | 2015-10-20 | Kabushiki Kaisha Toshiba | Conductive bridging memory device and method for manufacturing same |
EP2719485A1 (en) | 2012-10-15 | 2014-04-16 | King Saud University | Foam material and method for the preparation thereof |
EP2736088A1 (en) * | 2012-11-27 | 2014-05-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Electronic device such as a memory |
FR2998708A1 (en) * | 2012-11-27 | 2014-05-30 | Commissariat Energie Atomique | ELECTRONIC DEVICE OF MEMORY TYPE |
US9209391B2 (en) | 2012-11-27 | 2015-12-08 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Electronic memory device having an electrode made of a soluble material |
US8981334B1 (en) * | 2013-11-01 | 2015-03-17 | Micron Technology, Inc. | Memory cells having regions containing one or both of carbon and boron |
US20150179936A1 (en) * | 2013-11-01 | 2015-06-25 | Micron Technology, Inc. | Memory Cells and Methods of Forming Memory Cells |
US20160035974A1 (en) * | 2013-11-01 | 2016-02-04 | Micron Technology, Inc. | Memory Cells and Methods of Forming Memory Cells |
US9257646B2 (en) * | 2013-11-01 | 2016-02-09 | Micron Technology, Inc. | Methods of forming memory cells having regions containing one or both of carbon and boron |
US9385317B2 (en) * | 2013-11-01 | 2016-07-05 | Micron Technology, Inc. | Memory cells and methods of forming memory cells |
US9496495B2 (en) * | 2013-11-01 | 2016-11-15 | Micron Technology, Inc. | Memory cells and methods of forming memory cells |
US9460919B1 (en) | 2015-10-07 | 2016-10-04 | National Tsing Hua University | Manufacturing method of two-dimensional transition-metal chalcogenide thin film |
TWI579398B (en) * | 2015-10-07 | 2017-04-21 | 國立清華大學 | Manufacturing method of two-dimensional transition-metal chalcogenide thin film |
CN112267118A (en) * | 2020-10-26 | 2021-01-26 | 万华化学集团股份有限公司 | Vapor phase corrosion inhibitor for protection during maintenance of chemical equipment and preparation method thereof |
CN112267118B (en) * | 2020-10-26 | 2023-03-03 | 万华化学集团股份有限公司 | Vapor phase corrosion inhibitor for protection during maintenance of chemical equipment and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2008155251A1 (en) | 2008-12-24 |
KR20090119837A (en) | 2009-11-20 |
JP5404588B2 (en) | 2014-02-05 |
JP2010530624A (en) | 2010-09-09 |
CN101681993A (en) | 2010-03-24 |
US20080314739A1 (en) | 2008-12-25 |
US7928419B2 (en) | 2011-04-19 |
JP2011086950A (en) | 2011-04-28 |
EP2176896A1 (en) | 2010-04-21 |
EP2176896B1 (en) | 2012-11-21 |
JP4754033B2 (en) | 2011-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7928419B2 (en) | Electrolytic device based on a solution-processed electrolyte | |
US20080124833A1 (en) | Method for filling holes with metal chalcogenide material | |
CN104617135B (en) | Two-dimensional material element and semiconductor devices | |
US20080156651A1 (en) | Method of forming phase change layer, method of manufacturing a storage node using the same, and method of manufacturing phase change memory device using the same | |
KR101333751B1 (en) | Phase Change Material and Phase Change Memory Element | |
KR20140040675A (en) | Multi-level memory arrays with memory cells that employ bipolar storage elements and methods of forming the same | |
US20160276411A1 (en) | Addressable siox memory array with incorporated diodes | |
US7572662B2 (en) | Method of fabricating phase change RAM including a fullerene layer | |
US11283019B2 (en) | Resistance random access memory device and fabricating method of the same | |
WO2011150750A1 (en) | Method for manufacturing memory cell including resistor | |
Noori et al. | Phase-change memory by GeSbTe electrodeposition in crossbar arrays | |
US7807989B2 (en) | Phase-change memory using single element semimetallic layer | |
US20090011577A1 (en) | Method of making phase change materials electrochemical atomic layer deposition | |
US8716060B2 (en) | Confined resistance variable memory cell structures and methods | |
CN114747034A (en) | Drift-free phase change memory | |
Milliron et al. | Novel deposition methods | |
KR100798696B1 (en) | Pmcm element containing solid electrolyte consisted of ag saturated ge-te thin film and preparation method thereof | |
Kim | Improved distribution of threshold switching device by reactive nitrogen and plasma treatment | |
Niazi | Solution Processing of Small Molecule Organic Semiconductors: From In situ Investigation to the Scalable Manufacturing of Field Effect Transistors | |
CN117157262A (en) | Manufacture of organic-inorganic composite halide films | |
Choi et al. | The enhancement of the resistance window of TaN/GeTe/Cu device by controlling GeTe film structure | |
Milliron et al. | 11. Novel Deposition Methods | |
CN115000295A (en) | Superlattice structure, preparation method thereof and phase change memory | |
KR20090060935A (en) | The electrical device using phase change material, the phase change memory device, and the method for fabricating the same | |
Perumal et al. | Desorption kinetics of GeTe deposited on Si (111) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOPALAKRISHNAN, KAILASH;KELLOCK, ANDREW J.;MITZI, DAVID B.;REEL/FRAME:019461/0065;SIGNING DATES FROM 20070613 TO 20070615 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |