US20080296426A1 - Apparatus and method for managing flexible lines - Google Patents

Apparatus and method for managing flexible lines Download PDF

Info

Publication number
US20080296426A1
US20080296426A1 US11/757,023 US75702307A US2008296426A1 US 20080296426 A1 US20080296426 A1 US 20080296426A1 US 75702307 A US75702307 A US 75702307A US 2008296426 A1 US2008296426 A1 US 2008296426A1
Authority
US
United States
Prior art keywords
spool
folded
fiber
winding
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/757,023
Inventor
James L. Cairns
Srikanth Ramasubramanian
Peter Richard Baxter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TELEDYNE ODI Inc
Original Assignee
Ocean Design Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean Design Inc filed Critical Ocean Design Inc
Priority to US11/757,023 priority Critical patent/US20080296426A1/en
Assigned to OCEAN DESIGN, INC. reassignment OCEAN DESIGN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAXTER, PETER RICHARD, RAMASUBRAMANIAN, SRIKANTH, CAIRNS, JAMES L.
Publication of US20080296426A1 publication Critical patent/US20080296426A1/en
Assigned to TELEDYNE ODI, INC. reassignment TELEDYNE ODI, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OCEAN DESIGN, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/04Kinds or types
    • B65H75/06Flat cores, e.g. cards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4457Bobbins; Reels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/32Optical fibres or optical cables

Definitions

  • the present invention relates to an apparatus and method for managing flexible lines or flexible elongate elements such as a wire, tube, individual fiber, ribbon fiber, or cable with fixed ends.
  • Fiber is also susceptible to optical measurement losses or shortened life if it is wound to a radius smaller than the minimum fiber bend radius. It is known to wind fiber in a figure eight pattern, relieving the torque as you wind first in one direction then in the other.
  • One known fiber management system is two spaced, coplanar spools between the fixed fiber ends. Fiber is wound in a figure eight pattern on the spools, while maintaining a radius greater than the minimum fiber bend radius. The two side-by-side spools take up additional space between the optical devices.
  • Embodiments described herein provide for an apparatus and method for managing flexible lines or flexible elongate elements between fixed ends or points in the line to handle any slack in the line between the fixed ends.
  • apparatus for managing flexible lines comprises a folding device having first spool member, a second spool member, and a flexible or foldable joint or hinge connecting the spool members which allows the spool members to be folded between an open condition in which the spool members are in co-planar, side by side positions and a closed, folded condition in which the spool members are folded towards one another about the joint until they are aligned and substantially face-to-face, each spool member having a groove extending in an at least substantially continuous loop which receives successive windings of a line or elongate element as it is wound in a figure eight pattern between the two spool members with the device in an open condition.
  • each spool member has opposite first and second faces and an outwardly facing winding channel or groove extending around at least a major part of the peripheral edge of the spool member, the hinge extending between the first faces of the spool members which are directed inwardly when the spool is folded, whereby the annular channels are located on the outside of the folded spool assembly in the folded condition.
  • the spool members may have central openings which are aligned in the folded condition.
  • each spool member is a flat, ring-shaped member having opposite first and second faces and a winding groove on the first face for receiving windings of a flexible line or flexible elongate element. In the second embodiment, the winding grooves are arranged to face outwardly in the folded flat condition.
  • the apparatus may be used to manage any type of flexible elongate line or element, such as optical fibers, electrical wires, cables, ropes, flexible tubes or hoses, threads, or the like, with suitable adjustment of the winding groove width and diameter on each spool.
  • the material of the spool may also be varied, depending on the material of elongate line to be managed.
  • the flexible elongate elements comprise one or more individual optical fibers or ribbon fibers. Although parts of the following description refer to individual or ribbon fibers as the flexible line or elongate element, other types of flexible elongate element may also be managed in an equivalent manner to that described below.
  • the flexible line is optical fiber
  • the first embodiment above is suitable for managing one or more individual fibers or for managing ribbon fiber.
  • the second embodiment may be used to for managing a thinner elongate element such as an individual optical fiber.
  • a fiber management apparatus in which the hinge comprises two spaced hinge portions connecting the spool members with a gap between the hinge portions providing a cross over area for windings of fiber from one spool member to the other.
  • the annular winding channels or grooves may have cut-outs aligned with the gap.
  • the gap or cross over area provides a clearance for fiber or other flexible line in the cross over area when the fiber is wound in a figure eight pattern with the device in an open condition, allowing the fiber to bend at the cross over area while the device is folded.
  • Fiber is wound first in one direction around the first spool, then extended over the gap onto the second spool, and wound in the opposite direction around the second spool before extending over the gap and crossing over the previous length of fiber in the gap, then back onto the first spool, where it is wound again in the first winding direction. This process is repeated until most of the slack is taken up, at which point the two spool members are folded together about the hinge portions into the folded, closed condition. Any remaining free fiber is then wound into the appropriate spool member.
  • the inner faces of the spool members face one another and the wound fibers are outside the folded faces.
  • the channels in which the fibers are wound are outside the hinge in the folded condition and fibers in the gap or cross over area tend to be held away from the opposing inner faces of the spool member as the devices is folded. If the device were folded with the winding channels on the inside of the fold, there is a greater risk of fibers in the cross over area contacting the spool members during folding.
  • the hinge portions may be formed integrally with the spool members or may be formed separately and then secured to the respective spool members by any suitable fastener mechanism. Holes may be provided in opposite rims of each spool member to receive tie wrap for keeping wound fiber in place on the spool member. The tie wrap can also extend between the spool members so as to secure the spool members in the folded condition.
  • the apparatus further comprises a mounting device for holding one or more folding devices in the folded condition.
  • the folding device has a central opening in the folded condition and the mounting device comprises a mounting base and a hub extending from one face of the base which extends through the opening in at least one folding device in the folded condition.
  • the hub may have flexible fingers which are compressed as the folding device is pushed over the hub, and which have an indent to receive one or more folding devices in a storage position in which the fingers spring back to hold the device on the hub.
  • the mounting base may be mounted on any suitable structure within a dedicated enclosure for the fiber or other flexible lines or flexible elongate elements.
  • the mounting base may be attached to one or more stand off rods between optical devices into which the optical fibers extend.
  • a method of managing excess length of a flexible line or elongate element between fixed points on the line comprises positioning first and second spool members which are connected together by a hinge in a coplanar, open condition, winding a length of the line in a first direction around a groove in the first spool member, extending the line over a cross over area between the spool members, winding a subsequent length of the line in a second direction around a groove in the second spool member, extending the line back over the cross-over area between the spool members to form a figure eight pattern, repeating the preceding winding steps to form successive figure eights until at least a major part of the excess length of line is taken up by the windings on the spool members, and folding the spool members together about the hinge into a folded, closed condition.
  • the spool members are folded before a final winding is made, and the final winding is made about the appropriate groove after the spool members are folded together.
  • FIG. 1 is a perspective view of a prior art fiber management apparatus positioned between two fiber optic devices
  • FIG. 2A is a perspective view of one embodiment of a fiber management apparatus comprising a folding dual spool device, with the device in an open condition;
  • FIG. 2B is a perspective view of the device of FIG. 2A in a partially folded condition
  • FIG. 2C is a perspective view of the device of FIGS. 2A and 2B in a more folded condition
  • FIG. 2D is a perspective view of the device of FIGS. 2A to 2C in a completely folded, closed condition
  • FIG. 3 is a schematic perspective view of the device of FIGS. 2A to 2D in the open condition of FIG. 2A which schematically indicates the winding of fiber on the two spools of the folding device with the fiber shown outside the winding grooves for illustration purposes;
  • FIG. 4A is a front elevation view of the device of FIGS. 2 and 3 in a folded, closed condition with fiber wound on the device;
  • FIG. 4B is a cross-sectional view illustrating a modified dual spool folding device in the position of FIG. 4A , illustrating a modified winding groove or channel shape;
  • FIG. 5 is a perspective view illustrating one embodiment of a fiber management apparatus comprising a folding dual spool device as in FIGS. 2 to 4A and a mounting device for the folding dual spool device of FIGS. 2 to 4A , with the dual spool device in the closed position of FIG. 2D and positioned in alignment with the mounting device.
  • FIG. 6 is a perspective view similar to FIG. 5 illustrating several folding dual spool devices positioned on the mounting device;
  • FIG. 7 is a perspective view illustrating the apparatus of FIGS. 5 and 6 positioned between two optical devices
  • FIG. 8A is a perspective view illustrating another embodiment of a fiber management apparatus comprising a modified folding dual spool device in an open condition
  • FIG. 8B is a perspective view of the device of FIG. 8A in a partially folded condition
  • FIG. 9 is a perspective view of the device of FIGS. 8A and 8B in the open condition illustrating fiber wound on and between the spools in a figure eight pattern;
  • FIG. 10 is a front elevation view of the device of FIGS. 8 and 9 in a folded, closed position with fiber wound on the device;
  • FIG. 11 is a schematic front elevation view of the fiber management apparatus of FIGS. 2 to 7 positioned between two fixed fiber points at two optical devices, illustrating parameters for calculating a desired total spliced fiber length prior to splicing and winding of the fiber.
  • Certain embodiments as disclosed herein provide for an apparatus and method for managing flexible lines or flexible elongate elements having fixed ends.
  • one apparatus and method as disclosed herein allows for managing excess of fiber between fixed ends or points on the fiber produced when terminating various devices to optical fiber cables.
  • an apparatus and method for managing fibers such as optical fibers are described, but the described apparatus and methods may alternatively be used for managing other types of flexible line or flexible elongate elements, such as electrical or other flexible wires, cables, ropes, flexible tubes or hoses, threads, or the like.
  • the fiber may be one or more individual optical fibers or a ribbonized fiber (ribbon fiber). Ribbon fiber contains multiple fibers in a ribbon-like form.
  • the management apparatus and methods for flexible elongate elements or lines other than fibers may be identical to those described in the embodiments below, with appropriate adjustment of the scale and material of the apparatus to accommodate flexible elongate elements of different sizes and materials.
  • spool as used in this application means a device on which a flexible elongate element can be wound or spooled.
  • spools illustrated in the drawings and described below are round, in other embodiments the spools may have other continuous loop shapes such as elliptical, oval, polygonal, or the like.
  • hinge means a flexible or foldable joint or connection that allows the turning or pivoting of a part, and may be a so-called “living hinge” of bendable material which is sufficiently flexible to allow pivoting, or a physical pivot or hinge joint.
  • FIG. 1 illustrates a prior art fiber management apparatus 10 comprising two spools 12 , 13 positioned in a side-by-side, coplanar arrangement and secured to a stand-off rod 14 between two fiber optic devices 16 , 18 such as a connector shell and a cable termination housing.
  • two fiber optic devices 16 , 18 such as a connector shell and a cable termination housing.
  • Excess of fiber, after the fiber pigtails from each device have been spliced, is managed by winding in a figure eight pattern around the two spools 12 , 13 . It can be seen that this arrangement takes up a significant amount of space.
  • FIGS. 2 to 4 illustrate a first embodiment of a fiber management apparatus comprising a folding dual spool device 20 , with FIGS. 2A to 2D illustrating steps in folding the device 20 between an open condition ( FIG. 2A ) and a folded, closed condition ( FIG. 2D ).
  • Device 20 comprises first and second spool members 22 , 24 connected together by a hinge comprising two spaced hinge portions 25 , 26 .
  • the hinge portions are formed integrally with the two spool members and may comprise flexible hinges for folding and unfolding the device.
  • the entire device is formed integrally out of a material which is flexible when sufficiently thin, such as plastic, and the hinges are formed by reduced thickness portions or indents in the material which can bend, i.e.
  • a separate hinge may be provided and suitably fastened or connected between the two spool members.
  • the hinge comprises spaced hinge portions 25 , 26 with a gap or space 28 between the hinge portions.
  • the hinge portions 25 , 26 form a central fold line about which the spool members can be folded.
  • Each spool member is generally ring-shaped or annular with a central opening 30 , a first or inner face 32 , a second or outer face 34 , and a winding channel or groove 35 running around its outer peripheral edge between spaced inner and outer rims 36 , 38 .
  • the inner rim 36 is cut out or eliminated at region 39 in the space 28 between the two hinge portions 25 , 26 , so that the winding channel or groove is open on one side in this space to allow for fiber crossover and bending as the device is folded, as described in more detail below in connection with FIG. 4 .
  • the first face 32 has an annular ledge 41 which extends inwardly beyond the winding groove and has an inner peripheral edge 31 which surrounds opening 30 .
  • Two diametrically opposed keys or projections 40 , 42 are provided in the inner peripheral edge of the annular ledge 41 .
  • a series of spaced openings 44 are provided around ledge 41 of each spool member.
  • the hinge portions or living hinges 25 , 26 allow the dual spool device 20 to be folded between an open condition as illustrated in FIG. 2A in which the spool members 22 , 24 are in spaced, side-by-side and coplanar positions, and a closed, folded condition as illustrated in FIG. 2D , in which the inner faces 32 of each spool member face inwardly and are aligned face-to-face, as indicated in FIG. 2D , with the keys 40 , 42 and openings 44 in each annular ledge 41 aligned.
  • the winding channels or grooves 35 are on the outside of the hinge when the device is folded.
  • the device In order to wind a length of one or more individual fibers or ribbon fibers 45 between points 46 , 47 of the fiber onto device 20 , as illustrated schematically in FIG. 3 , the device is first positioned in the fully open condition.
  • the points 46 and 47 are locations where the fiber or fibers extend out of respective devices to be connected together, and may be fixed or unfixed.
  • the spliced length of fiber 45 between these points is the slack which is to be managed by the fiber management apparatus or device 20 .
  • the windings or turns of fiber are shown outside the winding grooves in FIG. 3 for clarity in understanding the winding method, but in practice these turns will be made in the grooves.
  • a first turn of the fiber 45 is made in a first direction in the direction of arrows A 1 , A 2 , A 3 about the spool member 24 , with the winding direction as indicated by the arrows being anti-clockwise as viewed in FIG. 3 .
  • the fiber is then crossed over from the spool member 24 to the spool member 22 in the gap or cross over area 28 between the two hinge portions 25 , 26 , and enters the winding groove 35 in the other spool member 22 .
  • a second turn of the fiber is then made about the spool member 22 in the direction of arrows B 1 , B 2 , B 3 , which is clockwise as viewed in FIG. 3 .
  • the fiber may cross over the first length of fiber in cross over area 28 at cross over point 50 and another turn may be made in a clockwise direction about the winding groove in spool member 24 followed by another turn around the winding groove in spool member 22 .
  • This figure eight winding pattern results in cancellation of twist in the fiber which would have resulted from one turn on the spool. If an even number of turns is made before the slack is taken up, there is substantially no twist remaining in the fiber. If an odd number of total turns is made, there is approximately one half turn of twist in the fiber.
  • the device is folded into the closed, folded condition before the final winding so as to reduce the risk of accidental damage or fiber breakage on a fixed end during folding.
  • FIG. 4A illustrates the device 20 in the folded, closed condition after the final winding has been made.
  • the gap 28 between the hinge portions and the elimination of the inner rim 36 of each spool along edge 39 between the hinge portions allows for the fiber cross over at point 50 and also allows the fiber to bend freely in the cross over area as the device 20 is folded.
  • FIG. 4B illustrates a modification of the device 20 in which the winding channels or grooves 135 are of a different shape to the winding grooves 35 of the embodiment of FIGS. 2 to 4A .
  • winding grooves 35 are of generally rectangular cross section and uniform width.
  • the winding groove 135 is of generally hourglass or triangular cross-sectional shape from its inner end to its outer end, leaving a small, slit-like opening 136 which helps in locating individual fibers or ribbon fibers as they are fed into the groove, and also helps to hold fibers in the groove.
  • the openings 44 in the two spool members 22 , 24 are aligned when the device is in the folded condition. Tie wraps, clips, or other holding devices may be engaged in each aligned pair of openings in this condition and extend over the winding grooves to hold the wound fiber in place, and also to hold the folding device closed.
  • a folded figure eight is formed. This takes up only around half of the storage space of an extended or flat figure eight as in the prior art apparatus of FIG. 1 .
  • the width and depth of the winding channels or grooves 35 is dependent on the thickness of fiber, fibers, or other elongate flexible elements to be wound on device 20 .
  • the device may be used for managing an individual fiber, multiple individual fiber circuits between optical devices to be connected, or a ribbon fiber.
  • device 20 may be used for managing other types of flexible elongate elements in the manner illustrated in FIGS. 2 to 4B , such as electrical wires or cables, steel wires and ropes as used in the construction and elevator industry, hoses such as hydraulic or pneumatic fluid carrying hoses, threads of wool, nylon, and the like as used in the textile industry, and others.
  • the dimensions and material of device 20 may be suitably adjusted based on the thickness and the likely length of the flexible elongate element to be managed.
  • the winding groove of each spool member has a radius which is equal to or greater than the fiber minimum bend radius.
  • the fiber management apparatus may also comprise a mounting device for holding one or more of the folding dual spool devices 20 of FIGS. 2 to 4B .
  • FIG. 5 illustrates one embodiment of a mounting device 55 for holding one or more of the folding devices 20 in the closed, folded condition with fiber wound onto the spools in a figure eight pattern as in FIGS. 3 and 4A .
  • a folded dual spool device 20 is shown aligned with device 55 prior to mounting on the device.
  • the mounting device in this embodiment comprises a base 56 having a projecting hub 58 for extending through the central opening 30 in the folded device 20 .
  • the mounting hub 58 comprises a four-finger collet having four flexible fingers 60 arranged to grip against the central opening in the spool, with gaps or keyways 62 between each adjacent pair of fingers. A greater or lesser number of fingers may be provided in alternative embodiments.
  • a mounting recess 64 is provided on the outer surface of each finger 60 .
  • the folded spool device 20 is positioned with opening 30 aligned with hub 58 and keys 40 , 42 aligned with keyways 62 , and the central opening 30 is then moved over the hub.
  • the keys 40 , 42 engage in the keyways 62 between adjacent fingers of the hub 58 to restrict rotation of the spool device 20 .
  • the fingers 60 are urged inwardly as the device 20 is forced over the outer regions of the fingers, and then spring outwardly to grip against the inner edge 31 of the opening 30 when the folding device is aligned and seated on the mounting recess 64 .
  • more than one folding device 20 may be mounted on the hub 58 where multiple ribbon fibers or bunches of fibers are to be managed.
  • FIG. 6 illustrates a stack of three folding devices 20 mounted on the mounting device 55 . A greater or lesser number of folding devices may be accommodated with suitable adjustment of the length of hub 58 .
  • the base 56 of the mounting device 58 may have a mounting arrangement for engagement with stand-off rods 14 between two optical devices 16 , 18 , as illustrated in FIG. 7 .
  • the base 56 has one or more through bores 65 for engagement over stand off rods 14 , as seen in FIGS. 5 to 7 .
  • Other types of stand-off rod engagement mechanisms may be used in alternative embodiments, such as grooves in the rear face of base 56 , or an attachment clip or the like. It can be seen by comparison of the prior art fiber management apparatus of FIG. 1 with the fiber management apparatus in FIG. 7 that the amount of space needed to manage the fibers is substantially halved with the folding figure eight storage pattern of this embodiment. In FIG. 7 , each folding device may store spooled fibers of multiple individual circuits or a multiple circuit ribbon fiber.
  • a slimmer version of the folding device 20 may be used for managing a single or individual fiber in a single optical circuit.
  • the winding channel or groove 35 in each spool is much narrower than in FIG. 4 , with the width not much greater than that of a single fiber.
  • troubleshooting of a circuit can be done by removing the fiber for that circuit from the folding device holding that fiber, without unwinding fibers on other folding devices.
  • the first and second rims 36 , 38 of the folding device are of the same outer diameter.
  • the second rim 38 which is outermost in the folded condition may be of smaller diameter than the first rim 36 , since there is only one fiber wound in the groove 35 in this embodiment, and thus the groove does not have to be as deep in order to contain the fiber windings.
  • FIGS. 8A , 8 B, 9 and 10 illustrate another embodiment of a fiber management apparatus comprising a modified folding dual spool device 70 .
  • One or more dual spool devices 70 may also be mounted on mounting device 55 after folding, like the devices 20 of the first embodiment, as discussed in more detail below.
  • Dual spool device 70 has a pair of flat, ring-shaped members or spool members 72 , 74 connected by spaced hinge portions 75 , 76 .
  • a gap or cross over area 78 is located between the hinge portions, as in the previous embodiments.
  • a winding channel or groove 80 is provided in a first or outer face of each spool member, rather than an outwardly facing winding channel or groove at a peripheral edge of a spool, as in the embodiments described above in connection with FIGS. 1 to 7 .
  • Each winding channel or groove 80 is spaced inwardly from the outer peripheral edge of the respective ring or spool member.
  • the grooves 80 are provided in the face of each ring member which is outermost when the device is folded into a closed, folded condition.
  • FIGS. 8A and 9 illustrate the device 70 in an open condition.
  • Each ring member has a cut-out in the gap or cross over area 78 between hinge portions 75 and 76 which extends up to the groove 80 . This means that the groove terminates at each end of the cross over area 78 , so that fiber can enter and exit the grooves 80 when leaving or entering the cross over area or gap 78 .
  • a pair of fiber entry/exit grooves 83 are also provided on the outer face of each ring member, each extending tangentially in opposite directions from the winding groove 80 to the outer peripheral edge 82 of the ring member.
  • Each ring member has a central opening 84 and an inner peripheral edge 85 .
  • a pair of diametrically opposed keys or projections 86 project inwardly towards one another from the inner peripheral edge 85 .
  • These keys have the same purpose as the keys 40 , 42 in the previous embodiment, i.e. for alignment and anti-rotation purposes when the folding device 70 is folded and mounted on a hub 58 of a mounting device 55 .
  • a series of spaced openings 88 are provided around each ring member in the space between the winding groove 80 and the inner peripheral edge 85 .
  • the openings 88 may be used for ties, clips, or the like to hold wound fiber on the device 70 , and also to hold the device in the closed, folded condition of FIG. 10 .
  • FIGS. 8A and 9 illustrated the folding device 70 in the flat, open condition.
  • a length of an individual fiber 90 or other narrow wire or line extending between points 92 , 94 may be wound onto the two spools in the manner generally illustrated in FIG. 9 .
  • a first turn of the fiber may first enter the channel or groove 80 in ring member 72 through a selected entry groove 83 , extend a short distance around that groove, then pass across the gap or cross over area 78 to enter the groove 80 in the second ring member 74 , extending in an anti-clockwise direction for one turn in groove 80 before crossing over the first turn at a cross-over point 95 in gap 78 (see arrows A 1 , A 2 , A 3 and A 4 ).
  • the fiber is then wound in a clockwise direction around groove 80 in ring member 72 (see arrows B 1 , B 2 ), and may either exit the spool via groove 83 , or may continue back onto the ring member 74 in the same path A 1 , A 2 , A 3 , A 4 , dependent on the amount of fiber to be wound onto device 70 .
  • the provision of four entry/exit grooves allows the fiber to enter and exit the device at the most convenient location, dependent on the length of fiber to be wound or spooled onto the device.
  • FIG. 8B illustrates an intermediate, partially folded position of the device during folding.
  • the hinge portions 75 , 76 are designed to fold in the direction illustrated in FIG. 8B , with the face of each ring member 72 , 74 which has no winding groove facing inwardly and the wound fiber on the outside of the folded device.
  • the cross over area or gap 78 between the hinge members allows the fiber to bend easily.
  • any remaining length of the fiber can be wound around the appropriate winding groove to take up substantially all the remaining slack in the fiber.
  • the two ring members can be secured together in the folded condition by passing suitable ties, clips or the like through some or all of the aligned openings 88 .
  • the device 70 has a slimmer profile when folded than the fiber management device of FIGS. 1 to 4 , as can be seen by comparing FIG. 10 with FIG. 4 .
  • One or more of the folding devices 70 of FIGS. 8 to 10 can be engaged on the hub of mounting device 55 in a similar manner to the folding fiber management devices 20 of the first embodiment, with the aligned central openings engaging over the fingers and the keys 86 engaging in the keyways 62 between adjacent fingers.
  • Several of the folding devices 70 may be used to spool individual fibers and then mounted in a stack on the hub 58 of a mounting device 55 after folding into the closed condition of FIG. 10 , and the mounting device can then be mounted in the space between the optical devices from which the fibers extend, as described above in connection with the first embodiment.
  • the folding device 20 of the first embodiment above may be used for handling or spooling lengths of multiple individual fibers, ribbon fibers, or other elongate lines when the ends of the lines are not accessible.
  • a length of one or more individual fibers or ribbon fiber typically projects from an exit end of an optical device to be connected in line with other optical devices, such as an optical or hybrid device housing and an optical or hybrid cable.
  • These lengths of optical fiber are commonly known as pigtails, and the pigtail length is made sufficient to allow for splicing on fusion splicing equipment.
  • the fiber pigtail may be an individual fiber, a bunch of individual fibers, or one or more ribbon fibers which contain multiple fibers in a ribbon-like form.
  • folding device 20 may be used to manage an individual fiber, plural individual fibers, or one or more ribbon fibers.
  • the length of pigtails to be connected together prior to winding on devices 20 or 70 may be adjusted prior to splicing so that the overall length of the spliced fiber or line is equal to substantially a whole number of turns on the device, while still providing a sufficient length for splicing purposes. This adjustment can reduce the amount of slack in the spliced fiber after winding onto the folding fiber management device.
  • a method of adjusting the length of fiber to be managed so that it is close to a whole number of turns on the device 20 is described below, with reference to FIG. I 1 .
  • a similar method is used to adjust the length of fiber when it is to be wound on device 70 .
  • a fiber pigtail of one or more individual fibers or ribbon fiber normally extends from a housing or enclosure for an optical fiber device such as an optical connector shell or a cable termination housing before the device is connected to another such device in an assembly.
  • the length L 1 is the pigtail length from the fixed point or end of one of the fibers or ribbon fibers at a first device
  • the length L 2 is the pigtail length from the fixed point or end of the other fiber or ribbon fiber at a second device
  • d is the diameter of the winding channel or groove on each spool of device 20
  • l 1 and l 2 are the distances on each side of the folding device 20 from the fibers' fixed points to the points where the spliced fiber joins the respective winding channel or groove 35 , typically at the apex or uppermost region of the spool.
  • the installer can calculate total spliced fiber lengths L corresponding to substantially a whole number of turns on the two fiber winding grooves, so that only a small amount of excess fiber is left after winding in the figure eight pattern as described above.
  • the integer n may be an even or odd number.
  • n is an odd number, there is one half turn of twist left after winding on the spools.
  • the pigtails can then be cut to appropriate lengths.
  • the length L 1 and the length L 2 may be different as long as the total of these lengths meets the above relationship, and the installer can appropriately adjust these lengths based on the available pigtail lengths on each side.
  • a section of length q ⁇ d where q is an integer, which spans the damaged portion may be removed or cut out before re-splicing. If possible, depending on the length of the damaged portion, q is equal to one so as to minimize the discarded fiber. This means that the fiber length after splicing is still approximately equal to a whole number of turns on the fiber winding grooves.
  • the above embodiments allow fibers, ribbon fibers, or other flexible elongate elements or lines to be managed in a figure eight pattern on dual spools with windings on each spool being in opposite directions to cancel or reduce twist.
  • the hinge between the spools allows the spools to be folded along a central fold or hinge line into a folded, closed condition, to take up approximately half the space of the fully extended dual spools.
  • the winding grooves are located outside the hinge on folding, reducing the risk of fiber in the cross over area contacting a spool member during folding into the closed condition.

Abstract

An apparatus for managing flexible lines has first and second spool members secured together by a hinge which allows the spool members to be folded between an open condition in which the spool members are in co-planar, side-by-side positions and a folded, closed condition in which the spool members are folded towards one another until they are aligned and substantially face-to-face. Each spool member has a groove extending in an at least substantially continuous loop which receives successive windings of a line or strip as it is wound in a figure eight pattern between the two spool members in an open condition. When winding is complete, the spool members can be folded together into the folded, closed condition.

Description

    BACKGROUND
  • 1. Field of the Invention
  • The present invention relates to an apparatus and method for managing flexible lines or flexible elongate elements such as a wire, tube, individual fiber, ribbon fiber, or cable with fixed ends.
  • 2. Related Art
  • When terminating optical connectors or other devices to optical fiber cables, it is necessary to splice the optical fibers together. Since excess fiber length is needed to perform fusion splicing, an excess of fiber is left between the devices after splicing. The excess fiber length has to be managed. Since both ends of the fiber are fixed or inaccessible, coiling the fiber is difficult and potentially damaging due to the torque which builds up with each loop. Fiber is also susceptible to optical measurement losses or shortened life if it is wound to a radius smaller than the minimum fiber bend radius. It is known to wind fiber in a figure eight pattern, relieving the torque as you wind first in one direction then in the other. One known fiber management system is two spaced, coplanar spools between the fixed fiber ends. Fiber is wound in a figure eight pattern on the spools, while maintaining a radius greater than the minimum fiber bend radius. The two side-by-side spools take up additional space between the optical devices.
  • Similar problems are encountered in managing lengths of other lines such as flexible wires or tubes with fixed ends. Coiling such lines can also be difficult due to torque build up.
  • Therefore, what is needed is an apparatus and method that reduces or overcomes these significant problems found in the known systems as described above.
  • SUMMARY
  • Embodiments described herein provide for an apparatus and method for managing flexible lines or flexible elongate elements between fixed ends or points in the line to handle any slack in the line between the fixed ends.
  • According to one aspect, apparatus for managing flexible lines is provided, which comprises a folding device having first spool member, a second spool member, and a flexible or foldable joint or hinge connecting the spool members which allows the spool members to be folded between an open condition in which the spool members are in co-planar, side by side positions and a closed, folded condition in which the spool members are folded towards one another about the joint until they are aligned and substantially face-to-face, each spool member having a groove extending in an at least substantially continuous loop which receives successive windings of a line or elongate element as it is wound in a figure eight pattern between the two spool members with the device in an open condition.
  • In a first embodiment, each spool member has opposite first and second faces and an outwardly facing winding channel or groove extending around at least a major part of the peripheral edge of the spool member, the hinge extending between the first faces of the spool members which are directed inwardly when the spool is folded, whereby the annular channels are located on the outside of the folded spool assembly in the folded condition. The spool members may have central openings which are aligned in the folded condition. In a second, alternative embodiment, each spool member is a flat, ring-shaped member having opposite first and second faces and a winding groove on the first face for receiving windings of a flexible line or flexible elongate element. In the second embodiment, the winding grooves are arranged to face outwardly in the folded flat condition.
  • The apparatus may be used to manage any type of flexible elongate line or element, such as optical fibers, electrical wires, cables, ropes, flexible tubes or hoses, threads, or the like, with suitable adjustment of the winding groove width and diameter on each spool. The material of the spool may also be varied, depending on the material of elongate line to be managed. In one embodiment, the flexible elongate elements comprise one or more individual optical fibers or ribbon fibers. Although parts of the following description refer to individual or ribbon fibers as the flexible line or elongate element, other types of flexible elongate element may also be managed in an equivalent manner to that described below. Where the flexible line is optical fiber, the first embodiment above is suitable for managing one or more individual fibers or for managing ribbon fiber. The second embodiment may be used to for managing a thinner elongate element such as an individual optical fiber.
  • In one embodiment, a fiber management apparatus is provided in which the hinge comprises two spaced hinge portions connecting the spool members with a gap between the hinge portions providing a cross over area for windings of fiber from one spool member to the other. The annular winding channels or grooves may have cut-outs aligned with the gap. The gap or cross over area provides a clearance for fiber or other flexible line in the cross over area when the fiber is wound in a figure eight pattern with the device in an open condition, allowing the fiber to bend at the cross over area while the device is folded. Fiber is wound first in one direction around the first spool, then extended over the gap onto the second spool, and wound in the opposite direction around the second spool before extending over the gap and crossing over the previous length of fiber in the gap, then back onto the first spool, where it is wound again in the first winding direction. This process is repeated until most of the slack is taken up, at which point the two spool members are folded together about the hinge portions into the folded, closed condition. Any remaining free fiber is then wound into the appropriate spool member. In the first embodiment of the apparatus, the inner faces of the spool members face one another and the wound fibers are outside the folded faces. The channels in which the fibers are wound are outside the hinge in the folded condition and fibers in the gap or cross over area tend to be held away from the opposing inner faces of the spool member as the devices is folded. If the device were folded with the winding channels on the inside of the fold, there is a greater risk of fibers in the cross over area contacting the spool members during folding.
  • In both the first and second embodiments of the apparatus, the hinge portions may be formed integrally with the spool members or may be formed separately and then secured to the respective spool members by any suitable fastener mechanism. Holes may be provided in opposite rims of each spool member to receive tie wrap for keeping wound fiber in place on the spool member. The tie wrap can also extend between the spool members so as to secure the spool members in the folded condition.
  • In another embodiment, the apparatus further comprises a mounting device for holding one or more folding devices in the folded condition. In one embodiment, the folding device has a central opening in the folded condition and the mounting device comprises a mounting base and a hub extending from one face of the base which extends through the opening in at least one folding device in the folded condition. The hub may have flexible fingers which are compressed as the folding device is pushed over the hub, and which have an indent to receive one or more folding devices in a storage position in which the fingers spring back to hold the device on the hub. The mounting base may be mounted on any suitable structure within a dedicated enclosure for the fiber or other flexible lines or flexible elongate elements.
  • In the case of optical fiber management, the mounting base may be attached to one or more stand off rods between optical devices into which the optical fibers extend.
  • According to another aspect, a method of managing excess length of a flexible line or elongate element between fixed points on the line is provided, which comprises positioning first and second spool members which are connected together by a hinge in a coplanar, open condition, winding a length of the line in a first direction around a groove in the first spool member, extending the line over a cross over area between the spool members, winding a subsequent length of the line in a second direction around a groove in the second spool member, extending the line back over the cross-over area between the spool members to form a figure eight pattern, repeating the preceding winding steps to form successive figure eights until at least a major part of the excess length of line is taken up by the windings on the spool members, and folding the spool members together about the hinge into a folded, closed condition. In one embodiment, the spool members are folded before a final winding is made, and the final winding is made about the appropriate groove after the spool members are folded together. In one embodiment, the flexible line may be one or more individual optical fibers or an optical ribbon fiber.
  • Other features and advantages of the present invention will become more readily apparent to those of ordinary skill in the art after reviewing the following detailed description and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The details of the present invention, both as to its structure and operation, may be gleaned in part by study of the accompanying drawings, in which like reference numerals refer to like parts, and in which:
  • FIG. 1 is a perspective view of a prior art fiber management apparatus positioned between two fiber optic devices;
  • FIG. 2A is a perspective view of one embodiment of a fiber management apparatus comprising a folding dual spool device, with the device in an open condition;
  • FIG. 2B is a perspective view of the device of FIG. 2A in a partially folded condition;
  • FIG. 2C is a perspective view of the device of FIGS. 2A and 2B in a more folded condition;
  • FIG. 2D is a perspective view of the device of FIGS. 2A to 2C in a completely folded, closed condition;
  • FIG. 3 is a schematic perspective view of the device of FIGS. 2A to 2D in the open condition of FIG. 2A which schematically indicates the winding of fiber on the two spools of the folding device with the fiber shown outside the winding grooves for illustration purposes;
  • FIG. 4A is a front elevation view of the device of FIGS. 2 and 3 in a folded, closed condition with fiber wound on the device;
  • FIG. 4B is a cross-sectional view illustrating a modified dual spool folding device in the position of FIG. 4A, illustrating a modified winding groove or channel shape;
  • FIG. 5 is a perspective view illustrating one embodiment of a fiber management apparatus comprising a folding dual spool device as in FIGS. 2 to 4A and a mounting device for the folding dual spool device of FIGS. 2 to 4A, with the dual spool device in the closed position of FIG. 2D and positioned in alignment with the mounting device.
  • FIG. 6 is a perspective view similar to FIG. 5 illustrating several folding dual spool devices positioned on the mounting device;
  • FIG. 7 is a perspective view illustrating the apparatus of FIGS. 5 and 6 positioned between two optical devices;
  • FIG. 8A is a perspective view illustrating another embodiment of a fiber management apparatus comprising a modified folding dual spool device in an open condition;
  • FIG. 8B is a perspective view of the device of FIG. 8A in a partially folded condition;
  • FIG. 9 is a perspective view of the device of FIGS. 8A and 8B in the open condition illustrating fiber wound on and between the spools in a figure eight pattern;
  • FIG. 10 is a front elevation view of the device of FIGS. 8 and 9 in a folded, closed position with fiber wound on the device; and
  • FIG. 11 is a schematic front elevation view of the fiber management apparatus of FIGS. 2 to 7 positioned between two fixed fiber points at two optical devices, illustrating parameters for calculating a desired total spliced fiber length prior to splicing and winding of the fiber.
  • DETAILED DESCRIPTION
  • Certain embodiments as disclosed herein provide for an apparatus and method for managing flexible lines or flexible elongate elements having fixed ends. For example, one apparatus and method as disclosed herein allows for managing excess of fiber between fixed ends or points on the fiber produced when terminating various devices to optical fiber cables.
  • After reading this description it will become apparent to one skilled in the art how to implement the invention in various alternative embodiments and alternative applications. However, although various embodiments of the present invention are described herein, it is understood that these embodiments are presented by way of example only, and not limitation. As such, this detailed description of various alternative embodiments should not be construed to limit the scope or breadth of the present invention as set forth in the appended claims.
  • In the following description, embodiments of an apparatus and method for managing fibers such as optical fibers are described, but the described apparatus and methods may alternatively be used for managing other types of flexible line or flexible elongate elements, such as electrical or other flexible wires, cables, ropes, flexible tubes or hoses, threads, or the like. In the case of optical fiber, the fiber may be one or more individual optical fibers or a ribbonized fiber (ribbon fiber). Ribbon fiber contains multiple fibers in a ribbon-like form. The management apparatus and methods for flexible elongate elements or lines other than fibers may be identical to those described in the embodiments below, with appropriate adjustment of the scale and material of the apparatus to accommodate flexible elongate elements of different sizes and materials.
  • The term “spool” as used in this application means a device on which a flexible elongate element can be wound or spooled. Although the spools illustrated in the drawings and described below are round, in other embodiments the spools may have other continuous loop shapes such as elliptical, oval, polygonal, or the like.
  • The term “hinge” as used in this application means a flexible or foldable joint or connection that allows the turning or pivoting of a part, and may be a so-called “living hinge” of bendable material which is sufficiently flexible to allow pivoting, or a physical pivot or hinge joint.
  • FIG. 1 illustrates a prior art fiber management apparatus 10 comprising two spools 12,13 positioned in a side-by-side, coplanar arrangement and secured to a stand-off rod 14 between two fiber optic devices 16,18 such as a connector shell and a cable termination housing. Excess of fiber, after the fiber pigtails from each device have been spliced, is managed by winding in a figure eight pattern around the two spools 12, 13. It can be seen that this arrangement takes up a significant amount of space.
  • FIGS. 2 to 4 illustrate a first embodiment of a fiber management apparatus comprising a folding dual spool device 20, with FIGS. 2A to 2D illustrating steps in folding the device 20 between an open condition (FIG. 2A) and a folded, closed condition (FIG. 2D). Device 20 comprises first and second spool members 22, 24 connected together by a hinge comprising two spaced hinge portions 25, 26. In the illustrated embodiment, the hinge portions are formed integrally with the two spool members and may comprise flexible hinges for folding and unfolding the device. In this case, the entire device is formed integrally out of a material which is flexible when sufficiently thin, such as plastic, and the hinges are formed by reduced thickness portions or indents in the material which can bend, i.e. so-called “living hinges”. However, in alternative embodiments, a separate hinge may be provided and suitably fastened or connected between the two spool members. In either case, the hinge comprises spaced hinge portions 25, 26 with a gap or space 28 between the hinge portions. The hinge portions 25, 26 form a central fold line about which the spool members can be folded.
  • Each spool member is generally ring-shaped or annular with a central opening 30, a first or inner face 32, a second or outer face 34, and a winding channel or groove 35 running around its outer peripheral edge between spaced inner and outer rims 36, 38. As illustrated in FIG. 2C, the inner rim 36 is cut out or eliminated at region 39 in the space 28 between the two hinge portions 25, 26, so that the winding channel or groove is open on one side in this space to allow for fiber crossover and bending as the device is folded, as described in more detail below in connection with FIG. 4. The first face 32 has an annular ledge 41 which extends inwardly beyond the winding groove and has an inner peripheral edge 31 which surrounds opening 30. Two diametrically opposed keys or projections 40, 42 are provided in the inner peripheral edge of the annular ledge 41. A series of spaced openings 44 are provided around ledge 41 of each spool member.
  • The hinge portions or living hinges 25, 26 allow the dual spool device 20 to be folded between an open condition as illustrated in FIG. 2A in which the spool members 22,24 are in spaced, side-by-side and coplanar positions, and a closed, folded condition as illustrated in FIG. 2D, in which the inner faces 32 of each spool member face inwardly and are aligned face-to-face, as indicated in FIG. 2D, with the keys 40,42 and openings 44 in each annular ledge 41 aligned. As can be seen in FIG. 2D, the winding channels or grooves 35 are on the outside of the hinge when the device is folded.
  • In order to wind a length of one or more individual fibers or ribbon fibers 45 between points 46, 47 of the fiber onto device 20, as illustrated schematically in FIG. 3, the device is first positioned in the fully open condition. In practice, when optical fiber is to be managed, the points 46 and 47 are locations where the fiber or fibers extend out of respective devices to be connected together, and may be fixed or unfixed. The spliced length of fiber 45 between these points is the slack which is to be managed by the fiber management apparatus or device 20. The windings or turns of fiber are shown outside the winding grooves in FIG. 3 for clarity in understanding the winding method, but in practice these turns will be made in the grooves. A first turn of the fiber 45 is made in a first direction in the direction of arrows A1, A2, A3 about the spool member 24, with the winding direction as indicated by the arrows being anti-clockwise as viewed in FIG. 3. The fiber is then crossed over from the spool member 24 to the spool member 22 in the gap or cross over area 28 between the two hinge portions 25, 26, and enters the winding groove 35 in the other spool member 22. A second turn of the fiber is then made about the spool member 22 in the direction of arrows B1, B2, B3, which is clockwise as viewed in FIG. 3. At this point, depending on the length of fiber remaining, the fiber may cross over the first length of fiber in cross over area 28 at cross over point 50 and another turn may be made in a clockwise direction about the winding groove in spool member 24 followed by another turn around the winding groove in spool member 22. This figure eight winding pattern results in cancellation of twist in the fiber which would have resulted from one turn on the spool. If an even number of turns is made before the slack is taken up, there is substantially no twist remaining in the fiber. If an odd number of total turns is made, there is approximately one half turn of twist in the fiber. The device is folded into the closed, folded condition before the final winding so as to reduce the risk of accidental damage or fiber breakage on a fixed end during folding.
  • FIG. 4A illustrates the device 20 in the folded, closed condition after the final winding has been made. As illustrated, the gap 28 between the hinge portions and the elimination of the inner rim 36 of each spool along edge 39 between the hinge portions allows for the fiber cross over at point 50 and also allows the fiber to bend freely in the cross over area as the device 20 is folded.
  • FIG. 4B illustrates a modification of the device 20 in which the winding channels or grooves 135 are of a different shape to the winding grooves 35 of the embodiment of FIGS. 2 to 4A. As illustrated in FIG. 4A, winding grooves 35 are of generally rectangular cross section and uniform width. In FIG. 4B, the winding groove 135 is of generally hourglass or triangular cross-sectional shape from its inner end to its outer end, leaving a small, slit-like opening 136 which helps in locating individual fibers or ribbon fibers as they are fed into the groove, and also helps to hold fibers in the groove.
  • As illustrated in FIG. 2D, the openings 44 in the two spool members 22, 24 are aligned when the device is in the folded condition. Tie wraps, clips, or other holding devices may be engaged in each aligned pair of openings in this condition and extend over the winding grooves to hold the wound fiber in place, and also to hold the folding device closed. When fiber has been wound in a figure eight pattern and the device is folded into the closed condition, a folded figure eight is formed. This takes up only around half of the storage space of an extended or flat figure eight as in the prior art apparatus of FIG. 1.
  • The width and depth of the winding channels or grooves 35 is dependent on the thickness of fiber, fibers, or other elongate flexible elements to be wound on device 20. The device may be used for managing an individual fiber, multiple individual fiber circuits between optical devices to be connected, or a ribbon fiber. In alternative embodiments, device 20 may be used for managing other types of flexible elongate elements in the manner illustrated in FIGS. 2 to 4B, such as electrical wires or cables, steel wires and ropes as used in the construction and elevator industry, hoses such as hydraulic or pneumatic fluid carrying hoses, threads of wool, nylon, and the like as used in the textile industry, and others. The dimensions and material of device 20 may be suitably adjusted based on the thickness and the likely length of the flexible elongate element to be managed. In the case of optical fiber, fibers, or ribbon fibers, the winding groove of each spool member has a radius which is equal to or greater than the fiber minimum bend radius.
  • The fiber management apparatus may also comprise a mounting device for holding one or more of the folding dual spool devices 20 of FIGS. 2 to 4B. FIG. 5 illustrates one embodiment of a mounting device 55 for holding one or more of the folding devices 20 in the closed, folded condition with fiber wound onto the spools in a figure eight pattern as in FIGS. 3 and 4A. In FIG. 5, a folded dual spool device 20 is shown aligned with device 55 prior to mounting on the device. The mounting device in this embodiment comprises a base 56 having a projecting hub 58 for extending through the central opening 30 in the folded device 20. The mounting hub 58 comprises a four-finger collet having four flexible fingers 60 arranged to grip against the central opening in the spool, with gaps or keyways 62 between each adjacent pair of fingers. A greater or lesser number of fingers may be provided in alternative embodiments. A mounting recess 64 is provided on the outer surface of each finger 60.
  • As illustrated in FIG. 5, the folded spool device 20 is positioned with opening 30 aligned with hub 58 and keys 40, 42 aligned with keyways 62, and the central opening 30 is then moved over the hub. The keys 40, 42 engage in the keyways 62 between adjacent fingers of the hub 58 to restrict rotation of the spool device 20. The fingers 60 are urged inwardly as the device 20 is forced over the outer regions of the fingers, and then spring outwardly to grip against the inner edge 31 of the opening 30 when the folding device is aligned and seated on the mounting recess 64. As illustrated in FIG. 6, more than one folding device 20 may be mounted on the hub 58 where multiple ribbon fibers or bunches of fibers are to be managed. FIG. 6 illustrates a stack of three folding devices 20 mounted on the mounting device 55. A greater or lesser number of folding devices may be accommodated with suitable adjustment of the length of hub 58.
  • The base 56 of the mounting device 58 may have a mounting arrangement for engagement with stand-off rods 14 between two optical devices 16, 18, as illustrated in FIG. 7. In the illustrated embodiment, the base 56 has one or more through bores 65 for engagement over stand off rods 14, as seen in FIGS. 5 to 7. Other types of stand-off rod engagement mechanisms may be used in alternative embodiments, such as grooves in the rear face of base 56, or an attachment clip or the like. It can be seen by comparison of the prior art fiber management apparatus of FIG. 1 with the fiber management apparatus in FIG. 7 that the amount of space needed to manage the fibers is substantially halved with the folding figure eight storage pattern of this embodiment. In FIG. 7, each folding device may store spooled fibers of multiple individual circuits or a multiple circuit ribbon fiber.
  • A slimmer version of the folding device 20 may be used for managing a single or individual fiber in a single optical circuit. In this alternative, the winding channel or groove 35 in each spool is much narrower than in FIG. 4, with the width not much greater than that of a single fiber. This allows a much greater number of folding devices 20 to be mounted in a stacked arrangement on mounting device 55 or other mounting devices for this purpose. Where each fiber is spooled or managed on its own dedicated folding device, troubleshooting of a circuit can be done by removing the fiber for that circuit from the folding device holding that fiber, without unwinding fibers on other folding devices. In FIGS. 1 to 7, the first and second rims 36, 38 of the folding device are of the same outer diameter. In one embodiment of a slimmer folding device, the second rim 38 which is outermost in the folded condition may be of smaller diameter than the first rim 36, since there is only one fiber wound in the groove 35 in this embodiment, and thus the groove does not have to be as deep in order to contain the fiber windings.
  • FIGS. 8A, 8B, 9 and 10 illustrate another embodiment of a fiber management apparatus comprising a modified folding dual spool device 70. One or more dual spool devices 70 may also be mounted on mounting device 55 after folding, like the devices 20 of the first embodiment, as discussed in more detail below. Dual spool device 70 has a pair of flat, ring-shaped members or spool members 72, 74 connected by spaced hinge portions 75, 76. A gap or cross over area 78 is located between the hinge portions, as in the previous embodiments. In device 70, a winding channel or groove 80 is provided in a first or outer face of each spool member, rather than an outwardly facing winding channel or groove at a peripheral edge of a spool, as in the embodiments described above in connection with FIGS. 1 to 7. Each winding channel or groove 80 is spaced inwardly from the outer peripheral edge of the respective ring or spool member. The grooves 80 are provided in the face of each ring member which is outermost when the device is folded into a closed, folded condition.
  • FIGS. 8A and 9 illustrate the device 70 in an open condition. Each ring member has a cut-out in the gap or cross over area 78 between hinge portions 75 and 76 which extends up to the groove 80. This means that the groove terminates at each end of the cross over area 78, so that fiber can enter and exit the grooves 80 when leaving or entering the cross over area or gap 78. A pair of fiber entry/exit grooves 83 are also provided on the outer face of each ring member, each extending tangentially in opposite directions from the winding groove 80 to the outer peripheral edge 82 of the ring member.
  • Each ring member has a central opening 84 and an inner peripheral edge 85. A pair of diametrically opposed keys or projections 86 project inwardly towards one another from the inner peripheral edge 85. These keys have the same purpose as the keys 40, 42 in the previous embodiment, i.e. for alignment and anti-rotation purposes when the folding device 70 is folded and mounted on a hub 58 of a mounting device 55. A series of spaced openings 88 are provided around each ring member in the space between the winding groove 80 and the inner peripheral edge 85. As in the previous embodiments, the openings 88 may be used for ties, clips, or the like to hold wound fiber on the device 70, and also to hold the device in the closed, folded condition of FIG. 10.
  • As noted above, FIGS. 8A and 9 illustrated the folding device 70 in the flat, open condition. In this condition, a length of an individual fiber 90 or other narrow wire or line extending between points 92, 94 may be wound onto the two spools in the manner generally illustrated in FIG. 9. Starting from end 92, a first turn of the fiber may first enter the channel or groove 80 in ring member 72 through a selected entry groove 83, extend a short distance around that groove, then pass across the gap or cross over area 78 to enter the groove 80 in the second ring member 74, extending in an anti-clockwise direction for one turn in groove 80 before crossing over the first turn at a cross-over point 95 in gap 78 (see arrows A1, A2, A3 and A4). The fiber is then wound in a clockwise direction around groove 80 in ring member 72 (see arrows B1, B2), and may either exit the spool via groove 83, or may continue back onto the ring member 74 in the same path A1, A2, A3, A4, dependent on the amount of fiber to be wound onto device 70. The provision of four entry/exit grooves allows the fiber to enter and exit the device at the most convenient location, dependent on the length of fiber to be wound or spooled onto the device.
  • When a majority of the length of fiber has been wound onto device 70, and there is only a turn or less of fiber left to be wound, device may be folded from the open condition of FIG. 9 to the closed, folded condition of FIG. 10. FIG. 8B illustrates an intermediate, partially folded position of the device during folding. The hinge portions 75, 76 are designed to fold in the direction illustrated in FIG. 8B, with the face of each ring member 72, 74 which has no winding groove facing inwardly and the wound fiber on the outside of the folded device. The cross over area or gap 78 between the hinge members allows the fiber to bend easily. Once the device is folded into a closed, folded condition with the two ring members 72, 74 face to face, any remaining length of the fiber can be wound around the appropriate winding groove to take up substantially all the remaining slack in the fiber. The two ring members can be secured together in the folded condition by passing suitable ties, clips or the like through some or all of the aligned openings 88.
  • The device 70 has a slimmer profile when folded than the fiber management device of FIGS. 1 to 4, as can be seen by comparing FIG. 10 with FIG. 4. One or more of the folding devices 70 of FIGS. 8 to 10 can be engaged on the hub of mounting device 55 in a similar manner to the folding fiber management devices 20 of the first embodiment, with the aligned central openings engaging over the fingers and the keys 86 engaging in the keyways 62 between adjacent fingers. Several of the folding devices 70 may be used to spool individual fibers and then mounted in a stack on the hub 58 of a mounting device 55 after folding into the closed condition of FIG. 10, and the mounting device can then be mounted in the space between the optical devices from which the fibers extend, as described above in connection with the first embodiment.
  • The folding device 20 of the first embodiment above may be used for handling or spooling lengths of multiple individual fibers, ribbon fibers, or other elongate lines when the ends of the lines are not accessible. In the case of optical fibers, a length of one or more individual fibers or ribbon fiber typically projects from an exit end of an optical device to be connected in line with other optical devices, such as an optical or hybrid device housing and an optical or hybrid cable. These lengths of optical fiber are commonly known as pigtails, and the pigtail length is made sufficient to allow for splicing on fusion splicing equipment. The fiber pigtail may be an individual fiber, a bunch of individual fibers, or one or more ribbon fibers which contain multiple fibers in a ribbon-like form. The folding device 70 of FIGS. 8 to 10 is intended for use in managing a single fiber, wire or other thin flexible line, while folding device 20 may be used to manage an individual fiber, plural individual fibers, or one or more ribbon fibers. In either case, the length of pigtails to be connected together prior to winding on devices 20 or 70 may be adjusted prior to splicing so that the overall length of the spliced fiber or line is equal to substantially a whole number of turns on the device, while still providing a sufficient length for splicing purposes. This adjustment can reduce the amount of slack in the spliced fiber after winding onto the folding fiber management device.
  • A method of adjusting the length of fiber to be managed so that it is close to a whole number of turns on the device 20 is described below, with reference to FIG. I 1. A similar method is used to adjust the length of fiber when it is to be wound on device 70. As noted above, a fiber pigtail of one or more individual fibers or ribbon fiber normally extends from a housing or enclosure for an optical fiber device such as an optical connector shell or a cable termination housing before the device is connected to another such device in an assembly.
  • In FIG. 11, the length L1 is the pigtail length from the fixed point or end of one of the fibers or ribbon fibers at a first device, the length L2 is the pigtail length from the fixed point or end of the other fiber or ribbon fiber at a second device, d is the diameter of the winding channel or groove on each spool of device 20, and l1 and l2 are the distances on each side of the folding device 20 from the fibers' fixed points to the points where the spliced fiber joins the respective winding channel or groove 35, typically at the apex or uppermost region of the spool. Prior to splicing, a total spliced fiber length L is calculated as follows: L=L1+L2=l1+l2+nπd+ε, where ε<<<d is a small additional length to compensate for fiber buildup on the winding grooves with successive fiber windings, and n is an integer corresponding to a number of turns on dual spool device 20. Using this relationship, the installer can calculate total spliced fiber lengths L corresponding to substantially a whole number of turns on the two fiber winding grooves, so that only a small amount of excess fiber is left after winding in the figure eight pattern as described above. The integer n may be an even or odd number. Where n is an odd number, there is one half turn of twist left after winding on the spools. After calculating the length L, the pigtails can then be cut to appropriate lengths. The length L1 and the length L2 may be different as long as the total of these lengths meets the above relationship, and the installer can appropriately adjust these lengths based on the available pigtail lengths on each side.
  • In the event of fiber damage after a splice, a section of length qπd, where q is an integer, which spans the damaged portion may be removed or cut out before re-splicing. If possible, depending on the length of the damaged portion, q is equal to one so as to minimize the discarded fiber. This means that the fiber length after splicing is still approximately equal to a whole number of turns on the fiber winding grooves.
  • The above embodiments allow fibers, ribbon fibers, or other flexible elongate elements or lines to be managed in a figure eight pattern on dual spools with windings on each spool being in opposite directions to cancel or reduce twist. At the same time, the hinge between the spools allows the spools to be folded along a central fold or hinge line into a folded, closed condition, to take up approximately half the space of the fully extended dual spools. The winding grooves are located outside the hinge on folding, reducing the risk of fiber in the cross over area contacting a spool member during folding into the closed condition.
  • The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles described herein can be applied to other embodiments without departing from the spirit or scope of the invention. Thus, it is to be understood that the description and drawings presented herein represent a presently preferred embodiment of the invention and are therefore representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.

Claims (25)

1. An apparatus for managing flexible lines, comprising:
a folding device having a first spool member, a second spool member, and a hinge connecting the spool members, each spool member having opposite first and second faces and an outer peripheral edge; the hinge allowing the spool members to be folded between an open condition in which the spool members are in co-planar, side-by-side positions and a closed, folded condition in which the spool members are folded towards one another about the hinge into a substantially aligned, face-to-face position, the first faces of the spool members facing one another in the folded condition; and
each spool member having a winding groove extending in an at least substantially continuous loop which receives successive windings of a line as it is wound in a figure eight pattern between the two spool members with the folding device in an open condition, wherein the windings form a folded figure eight in the folded, closed condition of the device.
2. The apparatus of claim 1, wherein each winding groove extends around at least a major part of the outer peripheral edge of the respective spool member and has first and second spaced rims.
3. The apparatus of claim 2, wherein the hinge comprises a pair of spaced hinge portions with a gap between the hinge portions forming a cross over area for line passing from one spool member to the other spool member.
4. The apparatus of claim 3, wherein the first rim of the groove on each spool member terminates at each end of the gap between the hinge portions to leave the groove open along one side across the gap.
5. The apparatus of claim 1, wherein the hinge connects the first faces of the spool members.
6. The apparatus of claim 1, wherein each spool member is a flat member and each winding groove is located on the second face of the spool member and spaced inwardly from the outer peripheral edge of the spool member.
7. The apparatus of claim 6, wherein each spool member is a flat, ring-shaped member having a central opening.
8. The apparatus of claim 6, wherein the hinge comprises two spaced hinge portions with a gap between the hinge portions providing a cross over area for line wound from one spool member to the other.
9. The apparatus of claim 8, wherein each spool member has a cut out extending from the peripheral edge to the groove in an area between the hinge portions and facing the cross over area, each cut out providing a pathway for line extending between a respective groove and the cross over area.
10. The apparatus of claim 1, wherein the hinge is formed integrally with the spool members.
11. The apparatus of claim 1, wherein the hinge and spool members are separate elements, and a fastener mechanism connects the hinge to each spool member.
12. The apparatus of claim 1, wherein each spool member has at least one opening which is aligned with the opening in the other spool member in the folded, closed condition of the folding device, the openings receiving a holding device which secures windings of line in the respective winding groove.
13. The apparatus of claim 1, further comprising a mounting device which holds at least one folding device in the folded condition.
14. The apparatus as claimed in claim 13, wherein each spool member has a central opening and the central openings are aligned in the folded, closed condition of the folding device, and the mounting device comprises a mounting base and a hub extending from one face of the base which extends through the aligned openings.
15. The apparatus as claimed in claim 14, wherein the hub has resilient fingers which are compressed as the folding device is pushed over the hub, the fingers having a recess which receives the folding device in a storage position.
16. The apparatus as claimed in claim 1, wherein each winding groove is of generally rectangular cross-section.
17. The apparatus as claimed in claim 1, wherein each winding groove has an inner end, opposite side walls, and an outer opening, and is of generally triangular cross-section with the opposite side walls tapering inwardly towards one another from the inner end to the outer opening of the groove.
18. A method for managing slack in a flexible line extending between two points on the line, comprising:
positioning a folding device with first and second spool members which are secured together by a hinge in a side-by-side, coplanar and open condition;
winding a length of a line in a first direction around a first winding groove in the first spool member, extending the line over a cross over area between the spool members, winding a subsequent length of the line in a second direction around a second winding groove in the second spool member, and extending the line over the cross over area between the spool members to form a figure eight;
repeating the preceding winding steps to form successive figure eights until the majority of the slack in the line is taken up by the windings on the spool members; and
folding the spool members together about the hinge into a folded, closed condition, whereby a folded figure eight is formed.
19. The method of claim 18, wherein each winding groove extends around the outer peripheral edge of the respective spool member.
20. The method of claim 18, wherein each winding groove is located on one face of the respective spool member and spaced inwardly from the peripheral edge of the spool member.
21. The method of claim 18, wherein the spool members are folded such that each winding groove is located on the outermost face of the respective spool member in the folded, closed condition.
22. The method of claim 18, wherein the step of winding the line in a first direction about the first winding groove in the first spool member comprises first engaging a portion of the line in part of the second winding groove adjacent the cross over area and extending the line from the second winding groove over the cross over area and into the first winding groove before winding the line in the first direction about the first winding groove.
23. The method of claim 18, wherein the winding steps are repeated until a length of the line corresponding to at least one turn remains unwound, and the spool members are folded together before winding a final turn of the line onto one of the spool members.
24. The method of claim 18, wherein the flexible line comprises one or more optical fibers.
25. The method of claim 24, further comprising adjusting the lengths L1 and L2 of two fiber pigtails so that the total fiber length L=L1+L2=l1+l2+nπd+ε, where d is the diameter of each winding groove, n is an integer, l1 and l2 are the distances from the fiber points on each side of the folded spool members to the point where fiber joins the respective winding groove in the folded, closed position, and E is a compensation factor based on variation in winding diameter as a result of plural turns of the fiber being wound on top of one another, and subsequently splicing the adjusted fiber pigtails together prior to winding onto the first and second spool members in the figure eight pattern.
US11/757,023 2007-06-01 2007-06-01 Apparatus and method for managing flexible lines Abandoned US20080296426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/757,023 US20080296426A1 (en) 2007-06-01 2007-06-01 Apparatus and method for managing flexible lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/757,023 US20080296426A1 (en) 2007-06-01 2007-06-01 Apparatus and method for managing flexible lines

Publications (1)

Publication Number Publication Date
US20080296426A1 true US20080296426A1 (en) 2008-12-04

Family

ID=40087025

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/757,023 Abandoned US20080296426A1 (en) 2007-06-01 2007-06-01 Apparatus and method for managing flexible lines

Country Status (1)

Country Link
US (1) US20080296426A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090003791A1 (en) * 2007-06-28 2009-01-01 Cairns James L Apparatus and method for managing flexible elongate elements
US20100039204A1 (en) * 2008-08-12 2010-02-18 Tdk Corporation Bobbin for coil, coil winding, and coil component
US20100216088A1 (en) * 2009-02-06 2010-08-26 Sirona Dental Systems Gmbh Laser handpiece, exchangeable fiber-optic insert and control unit therefor
WO2012158426A1 (en) * 2011-05-13 2012-11-22 Corning Cable Systems Llc Transformable cable reels and related assemblies and methods
US8731362B2 (en) 2012-02-16 2014-05-20 Teledyne Instruments, Inc. Optical fiber management device
US9042701B2 (en) 2010-10-19 2015-05-26 Corning Cable Systems Llc Collapsible cable reel
US9329352B2 (en) 2012-01-12 2016-05-03 Corning Cable Systems Llc Slack cable storage apparatus
US20160334596A1 (en) * 2015-05-15 2016-11-17 Hubbell Incorporated Cable storage wheels
CN106744006A (en) * 2017-01-06 2017-05-31 珠海优特电力科技股份有限公司 Rod failure ground wire winding device
US20180364435A1 (en) * 2014-09-16 2018-12-20 CommScope Connectivity Belgium BVBA Rotatable patch cable holder
US11131819B2 (en) * 2016-12-02 2021-09-28 CommScope Connectivity Belgium BVBA Optical fiber management systems; and methods
US11320616B2 (en) 2018-05-31 2022-05-03 Hubbell Incorporated Utility enclosures with cable storage systems

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1559133A (en) * 1925-10-27 Folding rekl
US2677510A (en) * 1951-11-02 1954-05-04 Osborne Harold Smith Method of and apparatus for handling and storing strand material
US4842216A (en) * 1988-05-06 1989-06-27 Windings, Inc. Folding cone package design
US5109983A (en) * 1991-01-28 1992-05-05 Minnesota Mining And Manufacturing Company Package for an optical fiber jumper
US5193756A (en) * 1991-06-24 1993-03-16 Hughes Aircraft Company Figure eight linear dispenser
US5363440A (en) * 1993-03-31 1994-11-08 At&T Bell Laboratories Multilayered type network interface unit
US5468252A (en) * 1987-08-26 1995-11-21 United States Surgical Corporation Packaged synthetic absorbable surgical elements
US5467939A (en) * 1993-07-30 1995-11-21 E M S Collapsible drum
US5547147A (en) * 1993-07-30 1996-08-20 E M S Collapsible drum
US5649677A (en) * 1994-09-20 1997-07-22 Culp; Barney L. Collapsible spool
US5781686A (en) * 1996-02-23 1998-07-14 Leviton Manufacturing Co., Inc. Multi-media connection housing
US5790741A (en) * 1995-05-24 1998-08-04 Alcatel Cable Interface Optical fiber splice tray
US6095461A (en) * 1998-03-19 2000-08-01 Lucent Technologies Inc. Apparatus and method for reducing wear on a conductor
US6738554B2 (en) * 2001-05-07 2004-05-18 Lucent Technologies Inc. Double helical-S fiber tray
US20040258385A1 (en) * 2001-11-20 2004-12-23 Helmut Kadrnoska Installation and cover device for cables and methods for installation thereof
US7065282B2 (en) * 2004-08-26 2006-06-20 Fujitsu Limited Holder and structure for organizing excess length
US7072560B1 (en) * 2005-03-10 2006-07-04 The United States Of America As Represented By The Secretary Of The Navy Twist free method of optical fiber stowage and payout
US7116885B2 (en) * 2003-04-30 2006-10-03 Corning Incorporated Spool having a universal flange and method of making same
US20060239628A1 (en) * 2005-02-14 2006-10-26 Sbc Knowledge Ventures, L.P. Apparatuses having spool assembly for absorbing jumper slack
US7330627B2 (en) * 2006-04-07 2008-02-12 Tyco Electronics Corporation Coiled cable products and methods of forming the same
US20080037945A1 (en) * 2006-08-09 2008-02-14 Jeff Gniadek Cable payout systems and methods

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1559133A (en) * 1925-10-27 Folding rekl
US2677510A (en) * 1951-11-02 1954-05-04 Osborne Harold Smith Method of and apparatus for handling and storing strand material
US5468252A (en) * 1987-08-26 1995-11-21 United States Surgical Corporation Packaged synthetic absorbable surgical elements
US4842216A (en) * 1988-05-06 1989-06-27 Windings, Inc. Folding cone package design
US5109983A (en) * 1991-01-28 1992-05-05 Minnesota Mining And Manufacturing Company Package for an optical fiber jumper
US5193756A (en) * 1991-06-24 1993-03-16 Hughes Aircraft Company Figure eight linear dispenser
US5363440A (en) * 1993-03-31 1994-11-08 At&T Bell Laboratories Multilayered type network interface unit
US5467939A (en) * 1993-07-30 1995-11-21 E M S Collapsible drum
US5547147A (en) * 1993-07-30 1996-08-20 E M S Collapsible drum
US5649677A (en) * 1994-09-20 1997-07-22 Culp; Barney L. Collapsible spool
US5790741A (en) * 1995-05-24 1998-08-04 Alcatel Cable Interface Optical fiber splice tray
US5781686A (en) * 1996-02-23 1998-07-14 Leviton Manufacturing Co., Inc. Multi-media connection housing
US6095461A (en) * 1998-03-19 2000-08-01 Lucent Technologies Inc. Apparatus and method for reducing wear on a conductor
US6738554B2 (en) * 2001-05-07 2004-05-18 Lucent Technologies Inc. Double helical-S fiber tray
US20040258385A1 (en) * 2001-11-20 2004-12-23 Helmut Kadrnoska Installation and cover device for cables and methods for installation thereof
US7116885B2 (en) * 2003-04-30 2006-10-03 Corning Incorporated Spool having a universal flange and method of making same
US7065282B2 (en) * 2004-08-26 2006-06-20 Fujitsu Limited Holder and structure for organizing excess length
US20060239628A1 (en) * 2005-02-14 2006-10-26 Sbc Knowledge Ventures, L.P. Apparatuses having spool assembly for absorbing jumper slack
US7072560B1 (en) * 2005-03-10 2006-07-04 The United States Of America As Represented By The Secretary Of The Navy Twist free method of optical fiber stowage and payout
US7330627B2 (en) * 2006-04-07 2008-02-12 Tyco Electronics Corporation Coiled cable products and methods of forming the same
US20080037945A1 (en) * 2006-08-09 2008-02-14 Jeff Gniadek Cable payout systems and methods

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769265B2 (en) 2007-06-28 2010-08-03 Teledyne Odi, Inc. Apparatus and method for managing flexible elongate elements
US20090003791A1 (en) * 2007-06-28 2009-01-01 Cairns James L Apparatus and method for managing flexible elongate elements
US20100039204A1 (en) * 2008-08-12 2010-02-18 Tdk Corporation Bobbin for coil, coil winding, and coil component
US7948344B2 (en) * 2008-08-12 2011-05-24 Tdk Corporation Bobbin for coil, coil winding, and coil component
US20100216088A1 (en) * 2009-02-06 2010-08-26 Sirona Dental Systems Gmbh Laser handpiece, exchangeable fiber-optic insert and control unit therefor
US9433475B2 (en) * 2009-02-06 2016-09-06 Sirona Dental Systems Gmbh Laser handpiece, exchangeable fiber-optic insert and control unit therefor
US9042701B2 (en) 2010-10-19 2015-05-26 Corning Cable Systems Llc Collapsible cable reel
CN103534187A (en) * 2011-05-13 2014-01-22 康宁光缆系统有限责任公司 Transformable cable reels and related assemblies and methods
US10703601B2 (en) 2011-05-13 2020-07-07 Corning Optical Communications LLC Transformable cable reels and related assemblies and methods
US10266367B2 (en) 2011-05-13 2019-04-23 Corning Optical Communications LLC Transformable cable reels and related assemblies and methods
US9309086B2 (en) 2011-05-13 2016-04-12 Corning Cable Systems Llc Transformable cable reels and related assemblies and methods
AU2012256155B2 (en) * 2011-05-13 2017-03-02 Corning Optical Communications LLC Transformable cable reels and related assemblies and methods
WO2012158426A1 (en) * 2011-05-13 2012-11-22 Corning Cable Systems Llc Transformable cable reels and related assemblies and methods
US9329352B2 (en) 2012-01-12 2016-05-03 Corning Cable Systems Llc Slack cable storage apparatus
US8731362B2 (en) 2012-02-16 2014-05-20 Teledyne Instruments, Inc. Optical fiber management device
US8731363B2 (en) * 2012-02-16 2014-05-20 Teledyne Instruments, Inc. Optical fiber management device
US20180364435A1 (en) * 2014-09-16 2018-12-20 CommScope Connectivity Belgium BVBA Rotatable patch cable holder
US10627591B2 (en) * 2014-09-16 2020-04-21 CommScope Connectivity Belgium BVBA Rotatable patch cable holder
US11448843B2 (en) 2014-09-16 2022-09-20 CommScope Connectivity Belgium BVBA Rotatable patch cable holder
US20160334596A1 (en) * 2015-05-15 2016-11-17 Hubbell Incorporated Cable storage wheels
US10197757B2 (en) * 2015-05-15 2019-02-05 Hubbell Incorporated Cable storage wheels
US10942326B2 (en) 2015-05-15 2021-03-09 Hubbell Incorporated Cable storage wheels
US11131819B2 (en) * 2016-12-02 2021-09-28 CommScope Connectivity Belgium BVBA Optical fiber management systems; and methods
CN106744006A (en) * 2017-01-06 2017-05-31 珠海优特电力科技股份有限公司 Rod failure ground wire winding device
US11320616B2 (en) 2018-05-31 2022-05-03 Hubbell Incorporated Utility enclosures with cable storage systems

Similar Documents

Publication Publication Date Title
US20080296426A1 (en) Apparatus and method for managing flexible lines
US7769265B2 (en) Apparatus and method for managing flexible elongate elements
US10183833B2 (en) Cable spool assembly
CA2077591C (en) Redundant length treatment mechanism for optical fiber at terminal of optical cable
US8731362B2 (en) Optical fiber management device
US6424782B1 (en) Fiber optic splice closure and method of routing optical fiber ribbons
US9927591B2 (en) Rapid deployment packaging for optical fiber
US20100080524A1 (en) System for the Distribution of Optical Fibers
US8720810B2 (en) Spool for telecommunications cable and method
US20220212892A1 (en) Spool with multi-position loop keeper
US10073234B2 (en) Tubing for equalizing lengths of fiber optic ribbons of a ribbon stack in distribution frames/cabinets/trays
US20220120991A1 (en) Telecommunications cabling system
WO2021192953A1 (en) Optical fiber cable
JP4312747B2 (en) Optical cable fixing structure and fixing method
JPH066324Y2 (en) Optical fiber cable connection extra length holding device
JP2670377B2 (en) Connection method of multi-core optical fiber with same diameter
JPH06208025A (en) Optical fiber holding structure
JP2004219781A (en) Gathering device for optical fiber cable
JPH11264910A (en) Coated optical fiber for water-immersion detection and optical fiber cable
JPH06160645A (en) Optical fiber cable terminal part
JPH07218733A (en) Movable excessive-length storage part for optical fiber cable traction end
JP2003315644A (en) Apparatus and method for manufacturing slot type cable
JP2002090552A (en) Protective sleeve holder

Legal Events

Date Code Title Description
AS Assignment

Owner name: OCEAN DESIGN, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAIRNS, JAMES L.;RAMASUBRAMANIAN, SRIKANTH;BAXTER, PETER RICHARD;REEL/FRAME:019370/0627;SIGNING DATES FROM 20070421 TO 20070601

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: TELEDYNE ODI, INC., FLORIDA

Free format text: CHANGE OF NAME;ASSIGNOR:OCEAN DESIGN, INC.;REEL/FRAME:023282/0350

Effective date: 20090903