US20080285963A1 - Drying Device - Google Patents

Drying Device Download PDF

Info

Publication number
US20080285963A1
US20080285963A1 US12/093,966 US9396606A US2008285963A1 US 20080285963 A1 US20080285963 A1 US 20080285963A1 US 9396606 A US9396606 A US 9396606A US 2008285963 A1 US2008285963 A1 US 2008285963A1
Authority
US
United States
Prior art keywords
airflow passage
air
heating element
drying apparatus
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/093,966
Inventor
Errol Stewart Hendrikse
Mark Gregory Marshall
Pierre Van Wyk Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to SMITH, PETER GEOFFREY, SMITH, IRENE SUSAN, HENDRIKSE, ERROL STEWART reassignment SMITH, PETER GEOFFREY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENDRIKSE, ERROL STEWART, MARSHALL, MARK GREGORY, VAN WYK BECKER, PIERRE
Publication of US20080285963A1 publication Critical patent/US20080285963A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/48Drying by means of hot air

Definitions

  • THIS invention relates to a drying device or apparatus which can be used for drying a person's body after bathing or showering, for example.
  • drying apparatus including a housing, the housing defining an air inlet, at least one airflow passage, and at least one air outlet; an impeller arranged to draw air into the inlet, through the airflow passage and to expel it via the outlet; at least one first heating element located in or adjacent to the airflow passage and arranged both to radiate heat directly outwardly from the housing and to heat air in the airflow passage; and a control system including a user interface and arranged to control the operation of the impeller and said at least one first heating element in response to a user input.
  • the drying apparatus may include a heatsink associated with said at least one first heating element and located so that air passing through the airflow passage contacts the heatsink, the control system being arranged, in at least one mode of operation, to pre-heat the heatsink by operating said at least one first heating element prior to operating the impeller.
  • the first heating element comprises an infrared emitting element operable to generate an infrared output with a wavelength in a predetermined range, typically 7 to 14 microns.
  • the apparatus may include a plurality of infrared emitting elements located one above the other and arranged to emit infrared radiation towards a user of the apparatus.
  • the plurality of infrared emitting elements may be located behind a cover defining a part of the airflow passage, the cover being substantially transparent to infrared radiation.
  • the apparatus may include at least one second heating element located in or adjacent to the airflow passage and arranged to be operated selectively to heat air in the airflow passage.
  • Said at least one second heating element may comprise a resistance heating element, for example.
  • the control system is preferably arranged to operate said at least one first heating element, said at least one second heating element and said impeller selectively so as to limit the maximum power consumption of the drying apparatus to below a predetermined value.
  • control system is arranged to receive a user input selecting one of a plurality of pre-programmed operating modes, each operating mode being defined by a different combination of operating conditions for the first and second heating elements and the impeller.
  • the apparatus may include an ultraviolet light source in or adjacent to the airflow passage and arranged to sterilize air passing through the airflow passage.
  • FIG. 1 is a pictorial view of a drying device according to the invention
  • FIG. 2 is a sectional side view on the line 2 - 2 in FIG. 1 ;
  • FIG. 3 is a section on the line 3 - 3 in FIG. 1 ;
  • FIG. 4 is a section on the line 4 - 4 in FIG. 1 ;
  • FIG. 5 is a simplified schematic block diagram of a control system of the drying device
  • FIGS. 6 to 9 are flow diagrams illustrating the functioning of the apparatus in use.
  • FIGS. 10( a ) To 10 ( c ) are waveform diagrams illustrating a power control scheme utilised by the control system of the device.
  • the drying device illustrated in FIGS. 1 to 4 comprises a housing or cabinet 10 which is generally rectangular in front elevation and which is of the same general height as a human, typically in the range of 1.5 to 2 meters tall.
  • the housing is designed to be as shallow as possible and has a typical front to back depth of approximately 20 cm.
  • the drying device On its front surface 12 , the drying device has a central, upright cover panel 14 which covers a plurality of infrared emitters (see below) and which is transparent to infrared radiation.
  • the panel 14 can comprise, for example, suitable glass or a metal mesh.
  • the loudspeakers form part of an optional audio and/or video system that can be included in the device.
  • the system can include a radio or TV tuner, a docking station for an iPodTM or other portable music player, or other conventional audio visual technology.
  • the display panel 20 displays the status of the drying device and serves as part of a user interface in conjunction with a remote control unit 26 .
  • the display panel can comprise a liquid crystal display (LCD) or any other suitable type of display. Low voltage display technologies are preferred due to the fact that the device is likely to be used in a humid environment.
  • LCD liquid crystal display
  • the drying device has a neat and sleek appearance and is designed to be as unobtrusive as possible when installed in a bathroom or another desired location, typically against a wall.
  • the housing 10 may be fixed to a wall or other support, or can be provided with wheels or rollers to permit it to be moved about as required.
  • the housing defines an inlet 28 for air at the lower end of its front surface 12 .
  • a tortuous airflow passage is defined within the interior of the housing. Air entering the inlet 28 is first drawn up a central inlet passage 30 which is defined between the panel 14 and an upright heatsink structure 32 located within the housing. Mounted on the heatsink structure are four infrared emitting panels 34 , one above the other. Air reaching the top of the inlet passage 30 then flows down a further passage 36 defined between a finned rear surface of the heatsink structure and the rear surface 38 of the housing. Vertical fins 40 formed on the rear of the heatsink structure, which is typically an aluminum extrusion, extend into the passage 36 so that air passing downwardly through the passage 36 contacts the fins.
  • An ultraviolet emitting fluorescent tube 42 is mounted vertically in the passage 36 so that air passing through the passage 36 is subjected to UV light.
  • the purpose of the UV lamp is to sterilize air passing through the device, and also to sterilize the interior of the housing 10 .
  • centrifugal fan 46 At the lower end of the passage 36 , near the base 44 of the housing 10 , is a centrally located centrifugal fan 46 which has a forward facing inlet 48 . Other types of fan could be used instead.
  • the lower end of the airflow passage 36 opens into a chamber or plenum 50 below the heatsink structure 32 , directing air to the inlet 48 of the fan 46 .
  • the fan 46 has a pair of opposed outlets 52 . 1 and 52 . 2 which direct air into respective passages 54 and 56 in the base of the device.
  • the passages 54 and 56 have short horizontal portions which turn through 90 degrees to define vertical, tubular air distribution conduits 58 and 60 which distribute air upwardly in the housing adjacent to the respective sets of louvres 16 and 18 .
  • a respective vertically extending slot 62 and 64 releases air from the conduit outwardly in the direction of the arrows in FIG. 3 when the louvres are opened.
  • ambient air enters the device via the inlet 28 at the front of the housing, travels upwardly through the inlet airflow passage 30 past the infrared emitters 34 and the forward facing surface of the heatsink structure 32 , down the airflow passage 36 , past the finned rearward facing surface of the heating structure 32 and the ultraviolet lamp 42 , to the chamber 50 adjacent the inlet of the centrifugal fan 46 . From the fan 46 , air is expelled into the respective passages 54 and 56 , and up the vertical conduits 58 and 60 , from which it is released by the respective slots 62 and 64 and the sets of louvres 16 and 18 from the front of the housing.
  • resistance heating coils 66 and 68 which can be operated to increase the temperature of air passing through the conduits in use.
  • the conduits 58 and 60 are rotatable about their long axes, through about 90 degrees, so that the direction of the airstreams emitted via the sets of louvres 16 and 18 can be continuously swung back and forth from left to right in use, in opposite directions, or adjusted to a preferred static direction.
  • the sets of louvres themselves are also adjustable to allow the device to cater for users of different height, for example. Both the conduits and the louvres are moved by drive mechanisms comprising small electric motors and suitable gearing or drive linkages. When the device is not in use, the louvres are closed, preventing excess dust and moisture from entering the device and presenting a neat appearance.
  • Conventional drying devices using a flow of heated air such as hand dryers used in public toilets, for example, typically comprise a fan and one or more heating coils.
  • the fan When the device is actuated, whether by a switch mounted on the housing of the device or by a sensor detecting the presence of a users' hands, for example, the fan is operated and the heating coils are connected to the AC mains electrical supply, generating the required stream of hot air.
  • Conventional hand drying devices of this kind typically have a power consumption in the range of 1.6 to 3 kW. If a device of this general kind is scaled up sufficiently to be able to provide a strong flow of sufficiently warm air to dry a users' entire body effectively, its power consumption will be substantially greater and could approach or exceed 10 kW. Although this can, in principle, be done, installation of such a device will then require a dedicated electrical feed (and possibly a three-phase supply). If it is desired to make the device usable in existing premises, it is necessary to limit the peak power consumption of the unit to a level that can safely be supplied by a single conventional wall outlet. For example, in South Africa, where the nominal AC mains voltage is 220V and conventional wall outlets are rated at 15 A, the maximum power consumption of the device must be limited to 3.3 kW.
  • the total power consumption of the infrared panels 34 , the heating coils 66 and 68 , the fan 46 , the UV light 42 and the other electrical and electronic components of the prototype drying device of the invention was in the region of 5 kW. It therefore becomes necessary to manage the power consumption of the various components of the device to ensure that a safe maximum predetermined power consumption value of approximately 3 kW is not exceeded at any time.
  • FIG. 5 is an overall schematic block diagram of the control system of the drying device, the control system is seen to comprise a main control module 70 and a user interface 72 .
  • the user interface comprises the remote control unit 26 and the display 20 , as well as a sensor (not shown) responsible to the remote control.
  • the control module 70 is microprocessor-based and will typically comprise a suitable microprocessor with associated read only memory (ROM) in which software controlling the operation of the device is stored, and random access memory (RAM) for storing user preferences and settings, and other temporary data.
  • ROM read only memory
  • RAM random access memory
  • control module receives three user selected inputs as well as a number of feedback signals from sensors in the device.
  • the Inputs to the Control Module are:
  • the control module also generates several outputs, both to the user interface 72 and to various circuits and control modules of the device.
  • the control system of the drying device includes a number of sensor units and a number of power modules for controlling the operation of the various electrically powered components of the device.
  • an infrared (IR) power module 74 is provided to control the power supplied to the infrared emitting panels 34
  • a heating coil power module 76 is provided to control the electrical supply to the heating coils 66 and 68
  • a fan power module 78 is provided to control the operation of the centrifugal fan 46
  • a UV power module 80 is provided to control the operation of the UV lamp 42 .
  • control module receives a number of input and/or feedback signals, including signals from a number of temperature sensors.
  • An outlet air temperature sensor 82 provides an outlet air temperature signal via a measurement circuit 34
  • similar temperature sensors 86 and 88 which measure the temperature of the inlet airstream and the internal temperature within the housing of the device provide respective signals to the control module via measurement circuits 90 and 92 .
  • the entire control system is powered by a mains-derived power supply of a conventonal nature (not shown).
  • the drying device has a number of operating modes which can be selected by a user via the user interface 72 .
  • the following predetermined modes were programmed into the prototype unit:
  • the control module monitors the various inputs, including user settings, and controls the operation of the relevant components of the device via the respective power modules in accordance with an overall controlling algorithm.
  • the overall algorithm includes total power output limiting, infrared wavelength control of the IR panels, correlation of temperature mappings to detect possible dangerous operating regions, failure monitoring (for example, fan speed not following fan speed control signal), determination of infrared panel temperature from timing and power supply data, and profiling of other parameters such as fan speed rate of change of switch-on to avoid uncomfortably high outlet air temperatures.
  • control module contains detailed mappings of the infrared panel warm-up and operating temperatures in terms of time and input power, which are used to determine panel temperature.
  • the infrared panels are operated so as to emit infrared radiation in a preferred spectrum, typically in the range of 7 to 14 microns.
  • Ceramicx FTE 500 infrared emitters were used, which are rated for operation at 500 W.
  • an infrared output in the desired wavelength range is obtained.
  • the power modules 74 , 76 , 78 and 80 are arranged to provide feedback signals to the control modules 70 indicative of fault conditions that may arise.
  • fault conditions include zero current draw by the relevant component, over-temperature of the respective power module or excessive current draw by the component in question.
  • the power module detects zero current draw or excessive current draw by any of the panels, thus enabling failure of one of the four panels to be detected.
  • the power modules control the power to the respective components in response to control signals from the control module. Modulation of the power supplied to the components is achieved by controlling the shape of the AC waveform supplied to the applicable component.
  • the power modules comprise triacs or dual silicon controlled rectifiers (SCRs) and associated circuitry such as snubbers. Where the component is to be operated at full power, the full AC waveform is applied. To reduce the power output of the component, the AC waveform is progressively truncated. In this way, the control module is able to supply accurately the required power to the relevant component.
  • FIGS. 10( a ) and ( b ) show truncated AC waveforms corresponding to 25% and 50% power
  • FIG. 10( c ) shows a full AC waveform corresponding to 100% power.
  • a significant feature of the device is a preheating function which operates the infrared emitters 34 , causing them to heat the heatsink structure 32 .
  • the heatsink structure can store a significant amount of heat. This allows the temperature of the output airflow to be increased, for a given airflow rate, or alternatively allows the airflow rate to be increased for a given output air temperature.
  • the “autoheat” operating mode makes use of this feature, first operating the infrared units 34 to raise the temperature of the heatsink (taking into account a user selected outlet air temperature) and then starting the fan 46 once sufficient preheating has taken place.
  • the heating elements 66 and 68 are then operated to further heat the preheated air, with the power to the infrared panels and the heating coils being modulated to maintain overall power consumption below the predetermined maximum level.
  • the heating device can also be operated in a “sauna” mode in which it relies entirely on the infrared output of the IR emitters 34 , or the other modes referred to above, so that a user can select a preferred mode according to circumstances.
  • drying device is versatile and efficient, and enables effective drying to be achieved notwithstanding a limited maximum input power consumption.

Abstract

Drying apparatus includes a housing defining an air inlet and a tortuous airflow passage leading to at least one air outlet. The outlet comprises two upright sets of louvres. An impeller is arranged to draw air into the inlet, through the airflow passage and to expel it via the outlet. A set of infrared emitting heating elements is located in the airflow passage behind a screen or glass panel and arranged both to radiate heat directly outwardly from the housing and to heat air in the airflow passage. Additional resistance heating elements are located in the airflow passage. The apparatus has a control system including a user interface, and is arranged to control the operation of the impeller and the two different kinds of heating elements in response to user input. The apparatus includes a heatsink associated with the infrared heating elements, which is located so that air passing through the airflow passage contacts the heatsink. The control system is arranged, in at least one mode of operation, to pre-heat the heatsink by operating the infrared heating elements prior to operating the impeller.

Description

    BACKGROUND OF THE INVENTION
  • THIS invention relates to a drying device or apparatus which can be used for drying a person's body after bathing or showering, for example.
  • SUMMARY OF THE INVENTION
  • According to the invention there is provided drying apparatus including a housing, the housing defining an air inlet, at least one airflow passage, and at least one air outlet; an impeller arranged to draw air into the inlet, through the airflow passage and to expel it via the outlet; at least one first heating element located in or adjacent to the airflow passage and arranged both to radiate heat directly outwardly from the housing and to heat air in the airflow passage; and a control system including a user interface and arranged to control the operation of the impeller and said at least one first heating element in response to a user input.
  • The drying apparatus may include a heatsink associated with said at least one first heating element and located so that air passing through the airflow passage contacts the heatsink, the control system being arranged, in at least one mode of operation, to pre-heat the heatsink by operating said at least one first heating element prior to operating the impeller.
  • Preferably, the first heating element comprises an infrared emitting element operable to generate an infrared output with a wavelength in a predetermined range, typically 7 to 14 microns.
  • The apparatus may include a plurality of infrared emitting elements located one above the other and arranged to emit infrared radiation towards a user of the apparatus.
  • The plurality of infrared emitting elements may be located behind a cover defining a part of the airflow passage, the cover being substantially transparent to infrared radiation.
  • The apparatus may include at least one second heating element located in or adjacent to the airflow passage and arranged to be operated selectively to heat air in the airflow passage.
  • Said at least one second heating element may comprise a resistance heating element, for example.
  • The control system is preferably arranged to operate said at least one first heating element, said at least one second heating element and said impeller selectively so as to limit the maximum power consumption of the drying apparatus to below a predetermined value.
  • In an embodiment of the apparatus, the control system is arranged to receive a user input selecting one of a plurality of pre-programmed operating modes, each operating mode being defined by a different combination of operating conditions for the first and second heating elements and the impeller.
  • The apparatus may include an ultraviolet light source in or adjacent to the airflow passage and arranged to sterilize air passing through the airflow passage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a pictorial view of a drying device according to the invention;
  • FIG. 2 is a sectional side view on the line 2-2 in FIG. 1;
  • FIG. 3 is a section on the line 3-3 in FIG. 1;
  • FIG. 4 is a section on the line 4-4 in FIG. 1;
  • FIG. 5 is a simplified schematic block diagram of a control system of the drying device;
  • FIGS. 6 to 9 are flow diagrams illustrating the functioning of the apparatus in use; and
  • FIGS. 10( a) To 10(c) are waveform diagrams illustrating a power control scheme utilised by the control system of the device.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The drying device illustrated in FIGS. 1 to 4 comprises a housing or cabinet 10 which is generally rectangular in front elevation and which is of the same general height as a human, typically in the range of 1.5 to 2 meters tall. The housing is designed to be as shallow as possible and has a typical front to back depth of approximately 20 cm.
  • On its front surface 12, the drying device has a central, upright cover panel 14 which covers a plurality of infrared emitters (see below) and which is transparent to infrared radiation. The panel 14 can comprise, for example, suitable glass or a metal mesh.
  • On either side of the panel 14 are sets of adjustable louvres 16 and 18 which are normally closed, as illustrated, but which are opened in use to emit a flow of heated air towards a user of the device.
  • At the upper end of the housing 10 is a large display panel 20 with loud speakers 22 and 24 on either side of it. The loudspeakers form part of an optional audio and/or video system that can be included in the device. For example, the system can include a radio or TV tuner, a docking station for an iPod™ or other portable music player, or other conventional audio visual technology. The display panel 20 displays the status of the drying device and serves as part of a user interface in conjunction with a remote control unit 26. The display panel can comprise a liquid crystal display (LCD) or any other suitable type of display. Low voltage display technologies are preferred due to the fact that the device is likely to be used in a humid environment.
  • As can be seen from FIG. 1, the drying device has a neat and sleek appearance and is designed to be as unobtrusive as possible when installed in a bathroom or another desired location, typically against a wall.
  • The housing 10 may be fixed to a wall or other support, or can be provided with wheels or rollers to permit it to be moved about as required.
  • As best shown in FIGS. 2 and 3, the housing defines an inlet 28 for air at the lower end of its front surface 12. From the inlet, a tortuous airflow passage is defined within the interior of the housing. Air entering the inlet 28 is first drawn up a central inlet passage 30 which is defined between the panel 14 and an upright heatsink structure 32 located within the housing. Mounted on the heatsink structure are four infrared emitting panels 34, one above the other. Air reaching the top of the inlet passage 30 then flows down a further passage 36 defined between a finned rear surface of the heatsink structure and the rear surface 38 of the housing. Vertical fins 40 formed on the rear of the heatsink structure, which is typically an aluminum extrusion, extend into the passage 36 so that air passing downwardly through the passage 36 contacts the fins.
  • An ultraviolet emitting fluorescent tube 42 is mounted vertically in the passage 36 so that air passing through the passage 36 is subjected to UV light. The purpose of the UV lamp is to sterilize air passing through the device, and also to sterilize the interior of the housing 10.
  • At the lower end of the passage 36, near the base 44 of the housing 10, is a centrally located centrifugal fan 46 which has a forward facing inlet 48. Other types of fan could be used instead. The lower end of the airflow passage 36 opens into a chamber or plenum 50 below the heatsink structure 32, directing air to the inlet 48 of the fan 46.
  • The fan 46 has a pair of opposed outlets 52.1 and 52.2 which direct air into respective passages 54 and 56 in the base of the device. The passages 54 and 56 have short horizontal portions which turn through 90 degrees to define vertical, tubular air distribution conduits 58 and 60 which distribute air upwardly in the housing adjacent to the respective sets of louvres 16 and 18. In each of the conduits 58 and 60, a respective vertically extending slot 62 and 64 releases air from the conduit outwardly in the direction of the arrows in FIG. 3 when the louvres are opened.
  • To sum up airflow in the device, therefore, ambient air enters the device via the inlet 28 at the front of the housing, travels upwardly through the inlet airflow passage 30 past the infrared emitters 34 and the forward facing surface of the heatsink structure 32, down the airflow passage 36, past the finned rearward facing surface of the heating structure 32 and the ultraviolet lamp 42, to the chamber 50 adjacent the inlet of the centrifugal fan 46. From the fan 46, air is expelled into the respective passages 54 and 56, and up the vertical conduits 58 and 60, from which it is released by the respective slots 62 and 64 and the sets of louvres 16 and 18 from the front of the housing.
  • Within the conduits 58 and 60 are located resistance heating coils 66 and 68 which can be operated to increase the temperature of air passing through the conduits in use.
  • The conduits 58 and 60 are rotatable about their long axes, through about 90 degrees, so that the direction of the airstreams emitted via the sets of louvres 16 and 18 can be continuously swung back and forth from left to right in use, in opposite directions, or adjusted to a preferred static direction. The sets of louvres themselves are also adjustable to allow the device to cater for users of different height, for example. Both the conduits and the louvres are moved by drive mechanisms comprising small electric motors and suitable gearing or drive linkages. When the device is not in use, the louvres are closed, preventing excess dust and moisture from entering the device and presenting a neat appearance.
  • The operation of the device and its control system will now be described in greater detail.
  • Conventional drying devices using a flow of heated air, such as hand dryers used in public toilets, for example, typically comprise a fan and one or more heating coils. When the device is actuated, whether by a switch mounted on the housing of the device or by a sensor detecting the presence of a users' hands, for example, the fan is operated and the heating coils are connected to the AC mains electrical supply, generating the required stream of hot air.
  • Conventional hand drying devices of this kind typically have a power consumption in the range of 1.6 to 3 kW. If a device of this general kind is scaled up sufficiently to be able to provide a strong flow of sufficiently warm air to dry a users' entire body effectively, its power consumption will be substantially greater and could approach or exceed 10 kW. Although this can, in principle, be done, installation of such a device will then require a dedicated electrical feed (and possibly a three-phase supply). If it is desired to make the device usable in existing premises, it is necessary to limit the peak power consumption of the unit to a level that can safely be supplied by a single conventional wall outlet. For example, in South Africa, where the nominal AC mains voltage is 220V and conventional wall outlets are rated at 15 A, the maximum power consumption of the device must be limited to 3.3 kW.
  • The total power consumption of the infrared panels 34, the heating coils 66 and 68, the fan 46, the UV light 42 and the other electrical and electronic components of the prototype drying device of the invention was in the region of 5 kW. It therefore becomes necessary to manage the power consumption of the various components of the device to ensure that a safe maximum predetermined power consumption value of approximately 3 kW is not exceeded at any time.
  • In addition, in order to control the wavelength of infrared radiation emitted by the infrared emitting panels 34, it is necessary to control their temperature and thus the power dissipated in these panels.
  • Referring now to FIG. 5, which is an overall schematic block diagram of the control system of the drying device, the control system is seen to comprise a main control module 70 and a user interface 72. The user interface comprises the remote control unit 26 and the display 20, as well as a sensor (not shown) responsible to the remote control. The control module 70 is microprocessor-based and will typically comprise a suitable microprocessor with associated read only memory (ROM) in which software controlling the operation of the device is stored, and random access memory (RAM) for storing user preferences and settings, and other temporary data.
  • As indicated in FIG. 5, the control module receives three user selected inputs as well as a number of feedback signals from sensors in the device.
  • The Inputs to the Control Module are:
      • 1. User selection: Temperature
      • 2. User selection: Mode
      • 3. User selection: Outlet air speed
      • 4. Feedback: Fan speed
      • 5. Feedback: Inlet air temperature
      • 6. Feedback: Outlet air temperature
      • 7. Feedback: Internal casing temperature
      • 8. Feedback: Fault conditions in Air heater coil, IR panel, or UV power modules
  • The control module also generates several outputs, both to the user interface 72 and to various circuits and control modules of the device.
  • Outputs from the Control Module are:
      • 1. Control: IR panel power
      • 2 Control: Air coil power
      • 3. Control: Fan speed
      • 4. Control: UV control
      • 5. User interface: fault
      • 6. User interface: outlet air temperature
      • 7. User interface: IR wavelength parameter
  • Apart from the above mentioned microprocessor based control module, the control system of the drying device includes a number of sensor units and a number of power modules for controlling the operation of the various electrically powered components of the device. Thus, an infrared (IR) power module 74 is provided to control the power supplied to the infrared emitting panels 34, a heating coil power module 76 is provided to control the electrical supply to the heating coils 66 and 68, a fan power module 78 is provided to control the operation of the centrifugal fan 46 and a UV power module 80 is provided to control the operation of the UV lamp 42.
  • In addition, the control module receives a number of input and/or feedback signals, including signals from a number of temperature sensors. An outlet air temperature sensor 82 provides an outlet air temperature signal via a measurement circuit 34, and similar temperature sensors 86 and 88 which measure the temperature of the inlet airstream and the internal temperature within the housing of the device provide respective signals to the control module via measurement circuits 90 and 92.
  • The entire control system is powered by a mains-derived power supply of a conventonal nature (not shown).
  • The drying device has a number of operating modes which can be selected by a user via the user interface 72. The following predetermined modes were programmed into the prototype unit:
      • Immediate air heat: Air heater coils on maximum power, blower fan on to create design air flow rate, power to IR panels modulated.
      • Immediate IR heat: IR panels on maximum power, power to air heater coils modulated, blower fan on low.
      • Auto heat (uses preheat): blower fan will start when sufficient preheat time has elapsed to ensure that outlet air will be at user defined temperature with blower fan operating at user defined speed. Power to air heater coils and IR panels modulated according to user temperature selection.
      • Sauna: Fan speed zero, air coils zero, panels operated at 175 W per panel.
      • Timed: combines fan speed, air heating coils power, and IR panel power in a predetermined profile.
  • It can be seen that the various modes or profiles are determined by different combinations of operating conditions for the infrared emitting panels, the heating coils and the fan. It will be appreciated by those skilled in the art that other predetermined operating modes can be devised and that the described modes are purely exemplary.
  • In each mode, the control module monitors the various inputs, including user settings, and controls the operation of the relevant components of the device via the respective power modules in accordance with an overall controlling algorithm. The overall algorithm includes total power output limiting, infrared wavelength control of the IR panels, correlation of temperature mappings to detect possible dangerous operating regions, failure monitoring (for example, fan speed not following fan speed control signal), determination of infrared panel temperature from timing and power supply data, and profiling of other parameters such as fan speed rate of change of switch-on to avoid uncomfortably high outlet air temperatures.
  • In the prototype device, it is a feature of the control method that no temperature feedback is required from the infrared panels. Instead, the control module contains detailed mappings of the infrared panel warm-up and operating temperatures in terms of time and input power, which are used to determine panel temperature.
  • From this information, it is possible to determine (using data supplied by the infrared panel manufacturers) the wavelength of infrared light emitted by the panels 34 in the different operating modes. Thus, in the “sauna” mode, the infrared panels are operated so as to emit infrared radiation in a preferred spectrum, typically in the range of 7 to 14 microns.
  • In the prototype unit, Ceramicx FTE 500 infrared emitters were used, which are rated for operation at 500 W. A graph published by the manufacturer, showing the output spectral power density against wavelength of the unit, indicates a peak in the region of 6 microns when operating at its rated power. However, by modulating the power fed to the unit, and running it at a power in the range of 175 to 250 W, an infrared output in the desired wavelength range is obtained.
  • Apart from the abovementioned control signals, the power modules 74, 76, 78 and 80 are arranged to provide feedback signals to the control modules 70 indicative of fault conditions that may arise. Such fault conditions include zero current draw by the relevant component, over-temperature of the respective power module or excessive current draw by the component in question. In the case of the infrared power module 74, the power module detects zero current draw or excessive current draw by any of the panels, thus enabling failure of one of the four panels to be detected.
  • The power modules control the power to the respective components in response to control signals from the control module. Modulation of the power supplied to the components is achieved by controlling the shape of the AC waveform supplied to the applicable component. The power modules comprise triacs or dual silicon controlled rectifiers (SCRs) and associated circuitry such as snubbers. Where the component is to be operated at full power, the full AC waveform is applied. To reduce the power output of the component, the AC waveform is progressively truncated. In this way, the control module is able to supply accurately the required power to the relevant component. FIGS. 10( a) and (b) show truncated AC waveforms corresponding to 25% and 50% power, whereas FIG. 10( c) shows a full AC waveform corresponding to 100% power.
  • The operating modes and sequences of the described device are set out diagrammatically in the flowcharts of FIGS. 6 to 9.
  • A significant feature of the device is a preheating function which operates the infrared emitters 34, causing them to heat the heatsink structure 32. Being a substantial aluminum extrusion, the heatsink structure can store a significant amount of heat. This allows the temperature of the output airflow to be increased, for a given airflow rate, or alternatively allows the airflow rate to be increased for a given output air temperature. The “autoheat” operating mode makes use of this feature, first operating the infrared units 34 to raise the temperature of the heatsink (taking into account a user selected outlet air temperature) and then starting the fan 46 once sufficient preheating has taken place. The heating elements 66 and 68 are then operated to further heat the preheated air, with the power to the infrared panels and the heating coils being modulated to maintain overall power consumption below the predetermined maximum level.
  • The heating device can also be operated in a “sauna” mode in which it relies entirely on the infrared output of the IR emitters 34, or the other modes referred to above, so that a user can select a preferred mode according to circumstances.
  • It will be appreciated that the above described drying device is versatile and efficient, and enables effective drying to be achieved notwithstanding a limited maximum input power consumption.

Claims (11)

1-11. (canceled)
12. Drying apparatus including a housing, the housing defining an air inlet, at least one airflow passage, and at least one air outlet; an impeller arranged to draw air into the inlet, through the airflow passage and to expel it via the outlet; at least one first heating element located in or adjacent to the airflow passage and arranged both to radiate heat directly outwardly from the housing and to heat air in the airflow passage; and a control system including a user interface and arranged to control the operation of the impeller and said at least one first heating element in response to a user input, the apparatus including a heatsink associated with said at least one first heating element and located so that air passing through the airflow passage contacts the heatsink, the control system being arranged, in at least one mode of operation, to pre-heat the heatsink by operating said at least one first heating element prior to operating the impeller.
13. Drying apparatus according to claim 12, wherein said at least one first heating element comprises an infrared emitting element operable to generate an infrared output with a wavelength in a predetermined range.
14. Drying apparatus according to claim 12, wherein the predetermined range is 7 to 14 microns.
15. Drying apparatus according to claim 12, including a plurality of infrared emitting elements located one above the other and arranged to emit infrared radiation toward a user of the apparatus.
16. Drying apparatus according to claim 15, wherein the plurality of infrared emitting elements are located behind a cover defining a part of the airflow passage, the cover being substantially transparent to infrared radiation.
17. Drying apparatus according to claim 12, including at least one second heating element located in or adjacent to the airflow passage and arranged to be operated selectively to heat air in the airflow passage.
18. Drying apparatus according to claim 17, wherein said at least one second heating element comprises a resistance heating element.
19. Drying apparatus according to claim 17, wherein the control system is arranged to operate said at least one first heating element, said at least one second heating element and said impeller selectively so as to limit the maximum power consumption of the drying apparatus to below a predetermined value.
20. Drying apparatus according to claim 19, wherein the control system is arranged to receive a user input selecting one of a plurality of pre-programmed operating modes, each operating mode being defined by a different combination of operating conditions for the first and second heating elements and the impeller.
21. Drying apparatus according to claim 12, including an ultraviolet light source in or adjacent to the airflow passage and arranged to sterilize air passing through the airflow passage.
US12/093,966 2005-11-22 2006-11-22 Drying Device Abandoned US20080285963A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA200509404 2005-11-22
ZA2005/09404 2005-11-22
PCT/IB2006/003305 WO2007060519A1 (en) 2005-11-22 2006-11-22 Drying device

Publications (1)

Publication Number Publication Date
US20080285963A1 true US20080285963A1 (en) 2008-11-20

Family

ID=37855856

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/093,966 Abandoned US20080285963A1 (en) 2005-11-22 2006-11-22 Drying Device

Country Status (4)

Country Link
US (1) US20080285963A1 (en)
RU (1) RU2008125302A (en)
WO (1) WO2007060519A1 (en)
ZA (1) ZA200807988B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090185334A1 (en) * 2008-01-17 2009-07-23 Ami Shefet Distribution Box and A Method for Thermographic Scanning Thereof
US10660487B1 (en) 2018-01-23 2020-05-26 Gregory Borja Hair dryer mountable between spaced apart wall panels
US20210290000A1 (en) * 2020-03-19 2021-09-23 Lg Electronics Inc. Drying apparatus and related methods
CN113491464A (en) * 2020-03-19 2021-10-12 Lg电子株式会社 Drying device
US11554078B2 (en) * 2019-11-13 2023-01-17 Sunlighten, Inc. Modular sauna heater and method for constructing a sauna

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444028A (en) * 2006-11-23 2008-05-28 Stephen Ball Personal drying apparatus with heater, fan and infra-red source
ES1067961Y (en) * 2008-05-16 2009-04-16 Moratinos Jorge Goni PERFECTED DRYING APPARATUS
CN103799908A (en) * 2012-11-13 2014-05-21 宜兴市华泰空调有限公司 Novel vertical body dryer
DE202017001279U1 (en) 2017-03-10 2017-08-18 Harun Özsoy drying device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269071A (en) * 1991-05-20 1993-12-14 Matsushita Electric Works, Ltd. Hair and body drying device
US5377424A (en) * 1993-10-18 1995-01-03 Albanes; Leandro R. Body drying system
US5752326A (en) * 1994-04-19 1998-05-19 Trim; Brian Personal dryer
US5873179A (en) * 1996-10-31 1999-02-23 Gregory; Frederick Body drying apparatus
US5875562A (en) * 1997-06-18 1999-03-02 Fogarty; Shaun P. Hand-held hair dryer with vibration and noise control
US5884008A (en) * 1997-12-08 1999-03-16 Goldberg; Sherry P Portable hair dryer for use in a vehicle with handle switch responsive to pivoting and vehicle battery voltage indicator
US20030079367A1 (en) * 2001-10-25 2003-05-01 Adriano Troletti Hair dryer with high handiness
US6718650B2 (en) * 2002-06-20 2004-04-13 Sherry Ross Personal dryer
US20060196075A1 (en) * 2002-11-08 2006-09-07 Daniel Santhouse Hair dryer
US7184655B2 (en) * 2004-07-07 2007-02-27 Interactive Health, Llc. Footrest with integral heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19905985C2 (en) * 1999-02-12 2003-06-18 Advanced Photonics Tech Ag Device for drying people and / or body parts
WO2003009735A1 (en) * 2001-07-26 2003-02-06 Kalotihos, Spiros Body dryer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269071A (en) * 1991-05-20 1993-12-14 Matsushita Electric Works, Ltd. Hair and body drying device
US5377424A (en) * 1993-10-18 1995-01-03 Albanes; Leandro R. Body drying system
US5752326A (en) * 1994-04-19 1998-05-19 Trim; Brian Personal dryer
US5873179A (en) * 1996-10-31 1999-02-23 Gregory; Frederick Body drying apparatus
US5875562A (en) * 1997-06-18 1999-03-02 Fogarty; Shaun P. Hand-held hair dryer with vibration and noise control
US5884008A (en) * 1997-12-08 1999-03-16 Goldberg; Sherry P Portable hair dryer for use in a vehicle with handle switch responsive to pivoting and vehicle battery voltage indicator
US20030079367A1 (en) * 2001-10-25 2003-05-01 Adriano Troletti Hair dryer with high handiness
US6718650B2 (en) * 2002-06-20 2004-04-13 Sherry Ross Personal dryer
US20060196075A1 (en) * 2002-11-08 2006-09-07 Daniel Santhouse Hair dryer
US7184655B2 (en) * 2004-07-07 2007-02-27 Interactive Health, Llc. Footrest with integral heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090185334A1 (en) * 2008-01-17 2009-07-23 Ami Shefet Distribution Box and A Method for Thermographic Scanning Thereof
US10660487B1 (en) 2018-01-23 2020-05-26 Gregory Borja Hair dryer mountable between spaced apart wall panels
US11554078B2 (en) * 2019-11-13 2023-01-17 Sunlighten, Inc. Modular sauna heater and method for constructing a sauna
US20210290000A1 (en) * 2020-03-19 2021-09-23 Lg Electronics Inc. Drying apparatus and related methods
CN113491464A (en) * 2020-03-19 2021-10-12 Lg电子株式会社 Drying device
CN113491466A (en) * 2020-03-19 2021-10-12 Lg电子株式会社 Drying device

Also Published As

Publication number Publication date
RU2008125302A (en) 2009-12-27
ZA200807988B (en) 2009-12-30
WO2007060519A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US20080285963A1 (en) Drying Device
KR101636993B1 (en) Wall-mounted smart dehumidifier
EP2957205B1 (en) Hand-dryer
US10015655B2 (en) Smart patio heater device
US8129662B2 (en) Portable heater
JP2013057474A (en) Bathroom heater/dryer
JP5638715B1 (en) Vertical air conditioner
KR101218727B1 (en) Temperature controlling apparatus for double windows and process for controlling a temperature of space between double windows using the same
JPH05220010A (en) Hair drier
JP2020510984A (en) Ceiling light or wall light incorporating electric heater, fan and controller
JP2019086217A (en) Wall-mounted heating machine
US7845831B2 (en) Light with heater
JP2013057473A (en) Bathroom heater-dryer
JP2010121897A (en) Electric warm air heater
JPH04316939A (en) Cooling and heating apparatus and its control method
JP2009257700A (en) Ceiling heating device
KR100871137B1 (en) Hand Dryer
CN211316315U (en) Electromagnetic air heater
KR200263381Y1 (en) A power saving heater using electric heating hot-water pipe
US20220160190A1 (en) Body dryer apparatus
JP2001082807A (en) Heating instrument
JP2008267670A (en) Toilet facility
JP2005221178A (en) Forced simultaneous air supply and exhaust type ventilating device
JP4448265B2 (en) Heater energization control device for bathroom air heater
JP2002221331A (en) Bathroom heating dryer

Legal Events

Date Code Title Description
AS Assignment

Owner name: HENDRIKSE, ERROL STEWART, SOUTH AFRICA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDRIKSE, ERROL STEWART;MARSHALL, MARK GREGORY;VAN WYK BECKER, PIERRE;REEL/FRAME:020960/0922

Effective date: 20080516

Owner name: SMITH, PETER GEOFFREY, SOUTH AFRICA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDRIKSE, ERROL STEWART;MARSHALL, MARK GREGORY;VAN WYK BECKER, PIERRE;REEL/FRAME:020960/0922

Effective date: 20080516

Owner name: SMITH, IRENE SUSAN, SOUTH AFRICA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENDRIKSE, ERROL STEWART;MARSHALL, MARK GREGORY;VAN WYK BECKER, PIERRE;REEL/FRAME:020960/0922

Effective date: 20080516

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE