US20080268389A1 - Insert Tube and a System of Insert Tubes - Google Patents

Insert Tube and a System of Insert Tubes Download PDF

Info

Publication number
US20080268389A1
US20080268389A1 US11/911,546 US91154606A US2008268389A1 US 20080268389 A1 US20080268389 A1 US 20080268389A1 US 91154606 A US91154606 A US 91154606A US 2008268389 A1 US2008268389 A1 US 2008268389A1
Authority
US
United States
Prior art keywords
air
tube
insert
insert tube
sealing ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/911,546
Inventor
Lennart Nordh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valmet Power AB
Original Assignee
Metso Power AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metso Power AB filed Critical Metso Power AB
Assigned to METSO POWER AB reassignment METSO POWER AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORDH, LENNART
Publication of US20080268389A1 publication Critical patent/US20080268389A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/165Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using additional preformed parts, e.g. sleeves, gaskets
    • F28F9/167Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using additional preformed parts, e.g. sleeves, gaskets the parts being inserted in the heat-exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/02Joints with sleeve or socket with elastic sealing rings between pipe and sleeve or between pipe and socket, e.g. with rolling or other prefabricated profiled rings
    • F16L21/035Joints with sleeve or socket with elastic sealing rings between pipe and sleeve or between pipe and socket, e.g. with rolling or other prefabricated profiled rings placed around the spigot end before connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/163Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a ring, a band or a sleeve being pressed against the inner surface of the pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/162Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe
    • F16L55/165Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section
    • F16L55/1657Devices for covering leaks in pipes or hoses, e.g. hose-menders from inside the pipe a pipe or flexible liner being inserted in the damaged section lengths of rigid pipe being inserted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F11/00Arrangements for sealing leaky tubes and conduits
    • F28F11/02Arrangements for sealing leaky tubes and conduits using obturating elements, e.g. washers, inserted and operated independently of each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/002Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49352Repairing, converting, servicing or salvaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49732Repairing by attaching repair preform, e.g., remaking, restoring, or patching

Definitions

  • the present invention relates to an insert tube according to the introduction of claim 1 and a system according to the introduction to claim 12 .
  • pre-heating tubes for air are arranged at the exhaust gas pathway of the fuel burner.
  • the purpose of these pre-heating tubes for air is to heat the cold combustion air with the aid of the hot exhaust gases that pass through the exhaust gas pathway. At the same time as the air is heated, the passing exhaust gases reach a lower outlet temperature and this improves the efficiency of the burner. It is advantageous from this viewpoint that the input air has a low temperature.
  • the most exposed site in a pre-heater unit for air is the cold inlet section of the pre-heating tube for air. It is here that the air is coldest, which means that certain substances in the exhaust gas can condense onto these cold sections of the pre-heating tube for air leading to corrosion. This in turn leads to perforation of the pre-heating tube for air.
  • the exhaust gas will be cooler close to the walls of the exhaust gas pathway than further in. This further increases the risk of corrosion at the inlet of the pre-heating tube for air, and at its outlet. It may thus become necessary to repair or prevent damage also to the outlet of the pre-heating tube for air.
  • insert tubes When damage has arisen as a result of such corrosion, the insertion of what are known as insert tubes is known, where the gap between the insert tube and the pre-heating tube for air has been filled with a heat-resistant glue or filler.
  • the aim in this case is thus to seal the leak, although an additional aim has been to create an insulating layer such that the pre-heating tube for air maintains a higher temperature and in this way decrease the risk of corrosion.
  • the insert tube difficult to install; it is also difficult to remove if it is to be exchanged for a longer insert tube. This may be the case if the lowest material temperature now arises close to the outlet of the insert tube.
  • the disadvantages of this method of inserting insert tubes are that the mounting involves handling a messy substance, and that it is difficult to dismount should an exchange to another insert tube become necessary.
  • a second method is that of fixing the insert tube by rolling.
  • the rolling-in thus takes place both at the inlet and at the end of the insert tube.
  • Variants of this method are revealed by U.S. Pat. No. 4,069,573 and U.S. Pat. No. 4,941,512.
  • the disadvantages of rolling are that special tools are required and that it is difficult to exchange an existing insert tube for a longer tube.
  • a first aim of the invention is to achieve an insert tube that fully or partially solves the problems and disadvantages of the prior art described above.
  • a second aim with the insert tube is to prevent the leakage of air through the holes that have arisen through corrosion in the pre-heating tube for air.
  • a third aim is to prevent with the aid of an insert tube holes arising in the pre-heating tube for air as a consequence of corrosion.
  • a fourth aim is that the insert tube is to have a design, and it is to be arranged in the pre-heating tube for air in such a manner, such that it is easy to exchange the pre-heating tube for air for a tube with a different length.
  • a fifth aim is to obtain an insulating air gap between the insert tube and the pre-heating tube for air that protects against corrosion.
  • a sixth aim is to obviate the necessity of using complicated and expensive attachment arrangements of the type of the expander tool that is shown in U.S. Pat. No. 4,581,801.
  • the proposed insert tube has at least two sealing rings. One sealing ring is located at the inlet and one is located at the outlet of the insert tube.
  • the gap between the insert tube and the pre-heating tube for air will be an insulating layer that gives a higher temperature to the pre-heating tube for air, something that means that the rate of corrosion can be reduced.
  • the insert tube can either be inserted once a hole has arisen in the pre-heating tube for air, or it can be inserted as a preventative measure. It is simple to mount and remove the insert tube. The reduced diameter that the insert tube gives rise to in a restricted region causes a higher air velocity and thus a greater reduction in pressure. One way of reducing this effect is to provide the insert tube with an end with the shape of a funnel.
  • the fall in pressure may even be lower than it was previously.
  • the funnel also prevents the insert tube from sliding further in. If the corrosion continues further in into the pre-heating tube for air and makes its presence felt in the form of holes close to the end of the insert tube, the insert tube can be simply exchanged for a longer one.
  • An insert tube and a system of insert tubes for the repair of pre-heating tubes for air are obtained through the invention, where the insert tubes can be mounted more simply and rapidly, and which also allow the exchange of insert tubes for tubes of a different length, in a simple manner with a minimum of time required.
  • FIG. 1 shows an insert tube according to the invention arranged in a pre-heating tube for air, which pre-heating tube for air is arranged across an exhaust gas pathway for a fuel burner.
  • FIG. 1 shows a pre-heating tube for air 200 , which is part of a pre-heater unit for air arranged in an exhaust gas pathway for a fuel burner (not shown in the drawing).
  • the exhaust gas pathway connects to a neighbouring inlet channel through an air inlet wall 201 .
  • the exhaust gas pathway makes contact also with a neighbouring outlet channel through an air outlet wall 202 .
  • Air at a first lower temperature is led in the pre-heating tube for air 200 from an inlet channel on one side of the exhaust gas pathway, which air has been heated during its passage through the pre-heating tube for air in that hot exhaust gases flow externally to the pre-heating tube for air, where the air has a second higher temperature after its passage through the pre-heating tube for air and where the air is led to an outlet channel on the other side of the exhaust gas pathway and onwards to other heat-exchange surfaces of the pre-heating unit for air in order subsequently to be used as combustion air in the combustion chamber of the burner (not shown in the drawing).
  • This first lower temperature corresponds to an ambient temperature of up to 100° C.; this temperature preferably lies in the interval 40-80° C.
  • FIG. 1 shows also an insert tube 100 according to the invention, which insert tube 100 is arranged inside the pre-heating tube for air 200 .
  • the principal aim of the insert tube 100 is to repair a pre-heating tube for air that has been attacked by corrosion as a result of the formation of condensation in the pre-heating unit for air due to the cooling of the hot exhaust gases. The corrosion most often appears close to the inlet of the pre-heating tube for air 200 where the air is coldest.
  • FIG. 1 shows an example of common damage 300 in the form of a hole in the pre-heating tube for air 200 .
  • the secondary purpose of the insert tube is to improve the pre-heating tube for air by the creation of an insulating air gap between the insert tube 100 and the pre-heating tube for air 200 .
  • the insert tube 100 has a pre-determined radial gap ( ⁇ x) between the outer surface of the insert tube and the inner surface of the pre-heating tube for air, such that the insert tube can be slid inwards into the pre-heating tube for air either from the inlet channel or from the outlet channel (only the embodiment in which the insert tube has been inserted from the inlet channel is shown in the drawing).
  • the magnitude of the radial gap ( ⁇ x) between the outer surface of the insert tube and the inner surface of the pre-heating tube for air lies in the interval 0.1-3.0 mm, and preferably in the interval 0.5-2.0 mm.
  • the insert tube 100 is provided in the vicinity of each end with at least one groove 101 that runs around its circumference, in which groove 101 there is arranged at least one sealing ring 102 of an elastic material.
  • the sealing ring 102 mounted in the groove 101 has an external diameter that exceeds the inner diameter of the pre-heating tube for air 200 , whereby the sealing ring 102 forms a seal with the inner surface of the pre-heating tube for air and prevents leakage through the sealing ring 102 .
  • the proposed insert tube has two sealing rings 102 in the normal case. It is appropriate in the embodiment in which the insert tube 100 has been inserted from the inlet channel that one sealing ring 102 is located at the air inlet wall 201 for the exhaust gas pathway and one at the end of the insert tube 100 . It is appropriate in the embodiment in which the insert tube 100 has been inserted from the outlet channel that one sealing ring 102 is located at the air outlet wall 202 for the exhaust gas pathway and one at the end of the insert tube 100 .
  • the gap between the insert tube and the pre-heating tube for air forms an insulating layer of air that gives a higher temperature to the pre-heating tube for air. The rate of corrosion can then be reduced.
  • the insert tube may be inserted either when a hole 300 has arisen in the pre-heating tube for air 200 , or it can be inserted as a preventative measure. It is appropriate that the distance between the sealing rings 102 at the two ends is greater than 20 cm.
  • the sealing ring 102 is of an elastic material.
  • the term “elastic material” is used in the following patent application to denote also sprung material and viscoelastic material.
  • the sealing ring 102 may be constituted by a either an O-ring, a V-ring, a piston ring, or an X-ring. It is appropriate that the groove 101 be cut in a lathe or rolled.
  • the reduction in diameter that the insert tube 100 gives rise to in the pre-heating tube for air 200 causes a higher air velocity in a local region, and thus a greater fall in pressure.
  • One method of reducing this effect is to provide the inlet of the insert tube with a collar 103 .
  • the term “inlet of the insert tube 100 ” is here used to denote that end of the insert tube 100 that faces out into the channel (which may be the inlet channel or the outlet channel) from which the insert tube 100 has been inserted.
  • the collar 103 have the form of a funnel.
  • the inlet will in this case be so beneficial that it may be so that the fall in pressure is less than was previously the case.
  • the collar 103 also prevents the insert tube 100 from sliding further into the pre-heating tube for air 200 in that the collar 103 has a cross-section that is greater than the inner diameter of the pre-heating tube for air.
  • the collar 103 allows the application of tools behind the collar 103 for the withdrawal of the insert tube 100 .
  • the insert tube 100 be manufactured from a metallic material, and it is advantageous in this case from the point of view of costs that the material is carbon steel.
  • Other suitable materials for the insert tube are heat-resistant plastics and ceramics.
  • insert tubes ( 100 ) There may be systems of approximately 10,000 pre-heating tubes for air ( 200 ) arranged across an exhaust gas pathway at large fuel burners, at least half of which may require repair or protection by insert tubes ( 100 ). It is appropriate that the best way of achieving this is to have several different lengths of insert tube ( 100 ) that are available for adaptation of the insert tube ( 100 ) such that it covers the region of the pre-heating tube for air ( 200 ) that it is intended should be protected or that is leaking, or both.
  • the shortest insert tube ( 100 ) has a length of between 10 and 30 centimetres, where the subsequent length or lengths are multiples of two of this length, whereby the longest insert tube ( 100 ) is sufficient for the complete pre-heating tube for air ( 200 ) from the inlet channel to the outlet channel.
  • the insert tube or tubes ( 100 ) is or are easier to mount and easier to exchange for insert tubes ( 100 ) with different lengths.

Abstract

An insert tube is used for the repair or improvement of a pre-heating tube for air arranged in an exhaust gas pathway of a fuel burner. A pre-determined radial gap exists between the outer surface of the insert tube and the inner surface of the pre-heating tube for air such that the insert tube can be slid into the pre-heating tube for air. The insert tube is provided in the vicinity of each end with at least one groove that runs around its circumference. In the groove there is arranged at least one sealing ring of an elastic material. The sealing ring mounted in the groove has an external diameter that exceeds the internal diameter of the preheating tube for air. The sealing ring forms a seal against the inner surface of the pre-heating tube for air and prevents leakage through the sealing ring.

Description

    TECHNICAL AREA
  • The present invention relates to an insert tube according to the introduction of claim 1 and a system according to the introduction to claim 12.
  • THE PRIOR ART
  • It is known in certain fuel burners that pre-heating tubes for air are arranged at the exhaust gas pathway of the fuel burner. The purpose of these pre-heating tubes for air is to heat the cold combustion air with the aid of the hot exhaust gases that pass through the exhaust gas pathway. At the same time as the air is heated, the passing exhaust gases reach a lower outlet temperature and this improves the efficiency of the burner. It is advantageous from this viewpoint that the input air has a low temperature.
  • The most exposed site in a pre-heater unit for air is the cold inlet section of the pre-heating tube for air. It is here that the air is coldest, which means that certain substances in the exhaust gas can condense onto these cold sections of the pre-heating tube for air leading to corrosion. This in turn leads to perforation of the pre-heating tube for air.
  • The exhaust gas will be cooler close to the walls of the exhaust gas pathway than further in. This further increases the risk of corrosion at the inlet of the pre-heating tube for air, and at its outlet. It may thus become necessary to repair or prevent damage also to the outlet of the pre-heating tube for air.
  • When damage has arisen as a result of such corrosion, the insertion of what are known as insert tubes is known, where the gap between the insert tube and the pre-heating tube for air has been filled with a heat-resistant glue or filler. The aim in this case is thus to seal the leak, although an additional aim has been to create an insulating layer such that the pre-heating tube for air maintains a higher temperature and in this way decrease the risk of corrosion. Not only is the insert tube difficult to install; it is also difficult to remove if it is to be exchanged for a longer insert tube. This may be the case if the lowest material temperature now arises close to the outlet of the insert tube. The disadvantages of this method of inserting insert tubes are that the mounting involves handling a messy substance, and that it is difficult to dismount should an exchange to another insert tube become necessary.
  • A second method is that of fixing the insert tube by rolling. The rolling-in thus takes place both at the inlet and at the end of the insert tube. Variants of this method are revealed by U.S. Pat. No. 4,069,573 and U.S. Pat. No. 4,941,512. The disadvantages of rolling are that special tools are required and that it is difficult to exchange an existing insert tube for a longer tube.
  • A variant is revealed in U.S. Pat. No. 4,581,801 in which the outer ends of the insert tube can be expanded with the aid of an expander tool such that the ends are locked attached to the pre-heating tube for air. However, the very design of this variant is very complex, and a special tool is required to insert and remove the insert tube.
  • THE AIM OF THE INVENTION
  • A first aim of the invention is to achieve an insert tube that fully or partially solves the problems and disadvantages of the prior art described above.
  • A second aim with the insert tube is to prevent the leakage of air through the holes that have arisen through corrosion in the pre-heating tube for air.
  • A third aim is to prevent with the aid of an insert tube holes arising in the pre-heating tube for air as a consequence of corrosion.
  • A fourth aim is that the insert tube is to have a design, and it is to be arranged in the pre-heating tube for air in such a manner, such that it is easy to exchange the pre-heating tube for air for a tube with a different length.
  • A fifth aim is to obtain an insulating air gap between the insert tube and the pre-heating tube for air that protects against corrosion.
  • A sixth aim is to obviate the necessity of using complicated and expensive attachment arrangements of the type of the expander tool that is shown in U.S. Pat. No. 4,581,801.
  • The aims described above are achieved with an insert tube according to claim 1 and with a system according to claim 12.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The proposed insert tube has at least two sealing rings. One sealing ring is located at the inlet and one is located at the outlet of the insert tube. The gap between the insert tube and the pre-heating tube for air will be an insulating layer that gives a higher temperature to the pre-heating tube for air, something that means that the rate of corrosion can be reduced. The insert tube can either be inserted once a hole has arisen in the pre-heating tube for air, or it can be inserted as a preventative measure. It is simple to mount and remove the insert tube. The reduced diameter that the insert tube gives rise to in a restricted region causes a higher air velocity and thus a greater reduction in pressure. One way of reducing this effect is to provide the insert tube with an end with the shape of a funnel. The fall in pressure may even be lower than it was previously. The funnel also prevents the insert tube from sliding further in. If the corrosion continues further in into the pre-heating tube for air and makes its presence felt in the form of holes close to the end of the insert tube, the insert tube can be simply exchanged for a longer one.
  • An insert tube and a system of insert tubes for the repair of pre-heating tubes for air are obtained through the invention, where the insert tubes can be mounted more simply and rapidly, and which also allow the exchange of insert tubes for tubes of a different length, in a simple manner with a minimum of time required.
  • DESCRIPTION OF DRAWING
  • FIG. 1 shows an insert tube according to the invention arranged in a pre-heating tube for air, which pre-heating tube for air is arranged across an exhaust gas pathway for a fuel burner.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 shows a pre-heating tube for air 200, which is part of a pre-heater unit for air arranged in an exhaust gas pathway for a fuel burner (not shown in the drawing). The exhaust gas pathway connects to a neighbouring inlet channel through an air inlet wall 201. The exhaust gas pathway makes contact also with a neighbouring outlet channel through an air outlet wall 202.
  • Air at a first lower temperature is led in the pre-heating tube for air 200 from an inlet channel on one side of the exhaust gas pathway, which air has been heated during its passage through the pre-heating tube for air in that hot exhaust gases flow externally to the pre-heating tube for air, where the air has a second higher temperature after its passage through the pre-heating tube for air and where the air is led to an outlet channel on the other side of the exhaust gas pathway and onwards to other heat-exchange surfaces of the pre-heating unit for air in order subsequently to be used as combustion air in the combustion chamber of the burner (not shown in the drawing). This first lower temperature corresponds to an ambient temperature of up to 100° C.; this temperature preferably lies in the interval 40-80° C.
  • FIG. 1 shows also an insert tube 100 according to the invention, which insert tube 100 is arranged inside the pre-heating tube for air 200. The principal aim of the insert tube 100 is to repair a pre-heating tube for air that has been attacked by corrosion as a result of the formation of condensation in the pre-heating unit for air due to the cooling of the hot exhaust gases. The corrosion most often appears close to the inlet of the pre-heating tube for air 200 where the air is coldest. FIG. 1 shows an example of common damage 300 in the form of a hole in the pre-heating tube for air 200. The secondary purpose of the insert tube is to improve the pre-heating tube for air by the creation of an insulating air gap between the insert tube 100 and the pre-heating tube for air 200.
  • The insert tube 100 has a pre-determined radial gap (Δx) between the outer surface of the insert tube and the inner surface of the pre-heating tube for air, such that the insert tube can be slid inwards into the pre-heating tube for air either from the inlet channel or from the outlet channel (only the embodiment in which the insert tube has been inserted from the inlet channel is shown in the drawing). The magnitude of the radial gap (Δx) between the outer surface of the insert tube and the inner surface of the pre-heating tube for air lies in the interval 0.1-3.0 mm, and preferably in the interval 0.5-2.0 mm. The insert tube 100 is provided in the vicinity of each end with at least one groove 101 that runs around its circumference, in which groove 101 there is arranged at least one sealing ring 102 of an elastic material. The sealing ring 102 mounted in the groove 101 has an external diameter that exceeds the inner diameter of the pre-heating tube for air 200, whereby the sealing ring 102 forms a seal with the inner surface of the pre-heating tube for air and prevents leakage through the sealing ring 102.
  • The proposed insert tube has two sealing rings 102 in the normal case. It is appropriate in the embodiment in which the insert tube 100 has been inserted from the inlet channel that one sealing ring 102 is located at the air inlet wall 201 for the exhaust gas pathway and one at the end of the insert tube 100. It is appropriate in the embodiment in which the insert tube 100 has been inserted from the outlet channel that one sealing ring 102 is located at the air outlet wall 202 for the exhaust gas pathway and one at the end of the insert tube 100. The gap between the insert tube and the pre-heating tube for air forms an insulating layer of air that gives a higher temperature to the pre-heating tube for air. The rate of corrosion can then be reduced. The insert tube may be inserted either when a hole 300 has arisen in the pre-heating tube for air 200, or it can be inserted as a preventative measure. It is appropriate that the distance between the sealing rings 102 at the two ends is greater than 20 cm.
  • It has been mentioned above that the sealing ring 102 is of an elastic material. The term “elastic material” is used in the following patent application to denote also sprung material and viscoelastic material. The sealing ring 102 may be constituted by a either an O-ring, a V-ring, a piston ring, or an X-ring. It is appropriate that the groove 101 be cut in a lathe or rolled.
  • The reduction in diameter that the insert tube 100 gives rise to in the pre-heating tube for air 200 causes a higher air velocity in a local region, and thus a greater fall in pressure. One method of reducing this effect is to provide the inlet of the insert tube with a collar 103. The term “inlet of the insert tube 100” is here used to denote that end of the insert tube 100 that faces out into the channel (which may be the inlet channel or the outlet channel) from which the insert tube 100 has been inserted.
  • It is preferable that the collar 103 have the form of a funnel. The inlet will in this case be so beneficial that it may be so that the fall in pressure is less than was previously the case. The collar 103 also prevents the insert tube 100 from sliding further into the pre-heating tube for air 200 in that the collar 103 has a cross-section that is greater than the inner diameter of the pre-heating tube for air. When the insert tube 100 has been fully inserted into the pre-heating tube for air 200, the collar 103 allows the application of tools behind the collar 103 for the withdrawal of the insert tube 100.
  • It is advantageous that the insert tube 100 be manufactured from a metallic material, and it is advantageous in this case from the point of view of costs that the material is carbon steel. Other suitable materials for the insert tube are heat-resistant plastics and ceramics.
  • There may be systems of approximately 10,000 pre-heating tubes for air (200) arranged across an exhaust gas pathway at large fuel burners, at least half of which may require repair or protection by insert tubes (100). It is appropriate that the best way of achieving this is to have several different lengths of insert tube (100) that are available for adaptation of the insert tube (100) such that it covers the region of the pre-heating tube for air (200) that it is intended should be protected or that is leaking, or both. It is appropriate that the shortest insert tube (100) has a length of between 10 and 30 centimetres, where the subsequent length or lengths are multiples of two of this length, whereby the longest insert tube (100) is sufficient for the complete pre-heating tube for air (200) from the inlet channel to the outlet channel.
  • The advantage over the prior art is achieved with the invention that the insert tube or tubes (100) is or are easier to mount and easier to exchange for insert tubes (100) with different lengths.
  • The invention is not limited to the embodiments shown: several variants are possible within the framework of the attached patent claims.

Claims (13)

1. An insert tube for the repair or the improvement of a pre-heating tube for air arranged at an exhaust gas pathway of a fuel burner, comprising: the pre-heating tube for air being adapted to lead air at a first lower temperature from an inlet channel at one side of the exhaust gas pathway and air that is heated during its passage through the pre-heating tube for air through hot exhaust gases flowing externally to the pre-heating tube for air,
the heated air being adapted to be led after its passage through the pre-heating tube for air to an outlet channel on the other side of the exhaust gas pathway and onwards to the combustion chamber of the burner in order to be used as combustion air,
a pre-determined radial gap (Δx) existing between the outer surface of the insert tube and the inner surface of the pre-heating tube for air such that the insert tube can be slid into the pre-heating tube for air, either from the inlet channel or from the outlet channel,
the insert tube being provided in the vicinity of each end with at least one groove that runs around its circumference, in which groove there is arranged at least one sealing ring of an elastic material, such that the sealing ring mounted in the groove has an external diameter that exceeds the internal diameter of the pre-heating tube for air, and
the sealing ring forming a seal against the inner surface of the pre-heating tube for air and prevents leakage through the sealing ring, in such a manner that the gap between the insert tube and the pre-heating tube for air forms an insulating layer of air.
2. The insert tube according to claim 1, wherein the sealing ring is constituted by an O-ring.
3. The insert tube according to claim 1, wherein the sealing ring is constituted by a V-ring.
4. The insert tube according to claim 1, wherein the sealing ring is constituted by a piston ring.
5. The insert tube according to claim 1, wherein the sealing ring is constituted by an X-ring.
6. The insert tube according to claim 1, wherein more than one sealing ring (102) is arranged in each groove.
7. The insert tube according to claim 1, wherein the inlet to the insert tube is in the form of a collar.
8. The insert tube according to claim 7, wherein the collar has the form of a funnel and when in its fully inserted position in the preheating tube for air allows the application of tools behind the collar for the extraction of the insert tube.
9. The insert tube according to claim 1, wherein the insert tube is manufactured from a metallic material.
10. The insert tube according to claim 1, wherein the radial gap (Δx) between the outer surface of the insert tube and the inner surface of the pre-heating tube for air lies in the interval 0.1-3.0 mm.
11. The insert tube according to claim 1, wherein the distance between the sealing rings at the two ends is greater than 20 cm, forming a volume of air in the gap between the insert tube (100) and the pre-heating tube for air.
12. A system in a fuel burner comprising:
several pre-heating tubes for air arranged across an exhaust gas pathway between an inlet channel for cold air and an outlet channel for heated air and where the pre-heating tubes for air is reparable or improved through insert tubes being inserted into each pre-heating tube for air,
several different lengths of insert tube being available for adaptation to cover the region in the pre-heating tube for air
a pre-determined radial gap (Δx) existing between the outer surface of the insert tube and the inner surface of the pre-heating tube for air, such that the insert tube can be slid into the preheating tube for air, either from the inlet channel or from the outlet channel,
the insert tube being provided in the vicinity of each end with at least one groove that runs around its circumference, in which groove there is arranged at least one sealing ring of elastic material, such that the sealing ring mounted in the groove has an external diameter that exceeds the internal diameter of the pre-heating tube for air, and
the sealing ring forming a seal against the inner surface of the preheating tube for air and prevent leakage through the sealing ring (102), in such a manner that the gap between the insert tube and the pre-heating tube for air forms an insulating layer of air.
13. The system in a fuel burner according to claim 12, wherein the shortest insert tube has a length between 10-30 centimeters, where the subsequent length or lengths are multiples of 2 of this length, whereby the longest insert tube is sufficient to cover the complete preheating tube for air from the inlet channel to the outlet channel.
US11/911,546 2005-05-10 2006-05-03 Insert Tube and a System of Insert Tubes Abandoned US20080268389A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0501053A SE0501053L (en) 2005-05-10 2005-05-10 Insert stub and a system of insert stubs
SE0501053-3 2005-05-10
PCT/SE2006/050089 WO2006121400A1 (en) 2005-05-10 2006-05-03 Insert tube and a system of insert tubes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2006/050089 A-371-Of-International WO2006121400A1 (en) 2005-05-10 2006-05-03 Insert tube and a system of insert tubes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/696,860 Division US8747105B2 (en) 2005-05-10 2010-01-29 Insert tube and a system of insert tubes

Publications (1)

Publication Number Publication Date
US20080268389A1 true US20080268389A1 (en) 2008-10-30

Family

ID=36353643

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/911,546 Abandoned US20080268389A1 (en) 2005-05-10 2006-05-03 Insert Tube and a System of Insert Tubes
US12/696,860 Expired - Fee Related US8747105B2 (en) 2005-05-10 2010-01-29 Insert tube and a system of insert tubes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/696,860 Expired - Fee Related US8747105B2 (en) 2005-05-10 2010-01-29 Insert tube and a system of insert tubes

Country Status (3)

Country Link
US (2) US20080268389A1 (en)
SE (1) SE0501053L (en)
WO (1) WO2006121400A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100044470A1 (en) * 2007-03-30 2010-02-25 Faurecia Interieur Industrie Device for positioning a profiled body of an aerator, and an aerator comprising said device
US20110104626A1 (en) * 2008-02-14 2011-05-05 Boettcher Andreas Burning element and burner with a corrosion-resistant insert
US20120073483A1 (en) * 2009-06-04 2012-03-29 Metso Power Oy Method for supplying combustion air to a flue gas air preheater, a preheating apparatus, and an air guide sleeve
US20140050863A1 (en) * 2009-12-31 2014-02-20 Samsung Display Co., Ltd. Evaporator with internal restriction
CN103982746A (en) * 2014-05-16 2014-08-13 江苏唐电建设有限公司 Method and corresponding structure for fast repairing boiler air preheater pipe
JP2016080215A (en) * 2014-10-14 2016-05-16 株式会社プランテック Heat transfer pipe repair method of heat exchanger and insertion pipe for heat transfer pipe repair
CN114278797A (en) * 2021-12-31 2022-04-05 河南黄埔建筑安装有限公司 Heating and ventilation pipeline butt joint device based on BIM technology and butt joint method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168934B (en) * 2011-04-03 2012-09-05 赤峰中色库博红烨锌业有限公司 Repairing method for heat exchanger
EP2881691A1 (en) * 2013-12-09 2015-06-10 Balcke-Dürr GmbH Heat exchanger with tube sheet and inserted sleeve
US20170045309A1 (en) * 2015-08-11 2017-02-16 Hamilton Sundstrand Corporation High temperature flow manifold
JP6907500B2 (en) * 2016-10-13 2021-07-21 株式会社Ihi Heat treatment equipment
US10682684B2 (en) 2016-12-07 2020-06-16 GM Global Technology Operations LLC Hybrid workpiece joining
CN107100711A (en) * 2017-04-14 2017-08-29 重庆长安汽车股份有限公司 A kind of engine exhaust sealing structure and engine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2445273A (en) * 1945-11-08 1948-07-13 William M Kennedy Sealing sleeve for tube units
US2620830A (en) * 1950-02-18 1952-12-09 Schultz Herman Self-sealing tube insert
US3400755A (en) * 1967-02-02 1968-09-10 Ingersoll Rand Co Method and article for protecting condenser tubes
US3592261A (en) * 1968-11-25 1971-07-13 Lummus Co Heat exchanger
US3643701A (en) * 1970-09-14 1972-02-22 Foster Wheeler Corp Emergency monowall tube repair kit
US3781966A (en) * 1972-12-04 1974-01-01 Whittaker Corp Method of explosively expanding sleeves in eroded tubes
US4028789A (en) * 1976-03-29 1977-06-14 Westinghouse Electric Corporation Method of installing a sleeve in one end of a tube
US5060600A (en) * 1990-08-09 1991-10-29 Texas Utilities Electric Company Condenser operation with isolated on-line test loop
US5304219A (en) * 1991-06-14 1994-04-19 Siemens Pacesetter, Inc. Multipolar in-line proximal connector assembly for an implantable stimulation device
US5647681A (en) * 1996-06-18 1997-07-15 Chen; Chi-Fu Stairs rail connector
US5987736A (en) * 1996-03-01 1999-11-23 Copp; John B. Printed circuit board fabrication apparatus

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1714703A (en) * 1927-01-07 1929-05-28 Crane Packing Co Means for packing steam surface condensers
US2225615A (en) * 1940-01-08 1940-12-24 Thomas J Bay Condenser tube protector
US2484904A (en) * 1946-10-03 1949-10-18 Pennella Samuel Leak stopper for condenser tubes
US3305012A (en) * 1965-04-19 1967-02-21 Henry W Allen Heat exchanger bundle
DE3022988C2 (en) * 1980-06-20 1982-08-19 Pampus Vermögensverwaltungs-KG, 4156 Willich Plastic pipe lining for a heat exchanger or the like.
FR2599791B1 (en) * 1986-06-04 1988-10-28 Framatome Sa METHOD FOR RESISTANT AND WATERPROOF FIXING OF A HOLLOW CYLINDRICAL ELEMENT WITHIN A TUBE AND CYLINDRICAL ELEMENT FOR THE IMPLEMENTATION OF THIS PROCESS
JPS63161395A (en) * 1986-12-24 1988-07-05 Sumitomo Metal Ind Ltd Method of repairing heat exchanger
CA1326128C (en) * 1987-09-24 1994-01-18 Robert H. Johnson Method of apparatus for expanding and sealing a sleeve into a surrounding tube
DE8902572U1 (en) * 1989-03-03 1990-07-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US5256158A (en) * 1991-05-17 1993-10-26 Act Medical, Inc. Device having a radiopaque marker for endoscopic accessories and method of making same
HU9200588D0 (en) * 1992-02-24 1992-05-28 Energiagazdalkodasi Intezet Pipe joint consisting of pipe wall and pipe as well as method for producing said joint
US5288114A (en) * 1992-04-07 1994-02-22 The United States Of America As Represented By The Secretary Of The Navy Attachment methodology for composite cylinder assembly
GB9216645D0 (en) * 1992-08-05 1992-09-16 Pierce David B Tubular insert,method and fitted heat exchanger
GB2296560B (en) * 1994-12-30 1999-02-24 Ensign Plastics Ltd Method of lining condenser tubes
GB9625491D0 (en) * 1996-12-07 1997-01-22 Central Research Lab Ltd Fluid connections
NO972019L (en) * 1997-04-30 1998-11-02 Olimb As Kristian End of pipe
CA2258339C (en) * 1998-01-12 2005-04-05 Lamson & Sessions Co Coupling assembly having enhanced axial tension strength andmethod of installation of coupled underground duct
US6964297B1 (en) * 1998-07-14 2005-11-15 L & M Radiator, Inc. Removable tube heat exchanger and header plate
FR2818729B1 (en) * 2000-12-22 2004-11-05 Bonna Sabla PIPE OR THE LIKE; FEMALE END RING AND METHOD OF MANUFACTURING SUCH A PIPE OR THE LIKE
GB0311721D0 (en) * 2003-05-22 2003-06-25 Weatherford Lamb Tubing connector
JP4248386B2 (en) * 2003-12-17 2009-04-02 東京都 Pipe connection structure
BRPI0503134B1 (en) * 2004-08-02 2018-03-20 Rohm And Haas Company Method of Forming a Laminated Tube Sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2445273A (en) * 1945-11-08 1948-07-13 William M Kennedy Sealing sleeve for tube units
US2620830A (en) * 1950-02-18 1952-12-09 Schultz Herman Self-sealing tube insert
US3400755A (en) * 1967-02-02 1968-09-10 Ingersoll Rand Co Method and article for protecting condenser tubes
US3592261A (en) * 1968-11-25 1971-07-13 Lummus Co Heat exchanger
US3643701A (en) * 1970-09-14 1972-02-22 Foster Wheeler Corp Emergency monowall tube repair kit
US3781966A (en) * 1972-12-04 1974-01-01 Whittaker Corp Method of explosively expanding sleeves in eroded tubes
US4028789A (en) * 1976-03-29 1977-06-14 Westinghouse Electric Corporation Method of installing a sleeve in one end of a tube
US5060600A (en) * 1990-08-09 1991-10-29 Texas Utilities Electric Company Condenser operation with isolated on-line test loop
US5304219A (en) * 1991-06-14 1994-04-19 Siemens Pacesetter, Inc. Multipolar in-line proximal connector assembly for an implantable stimulation device
US5987736A (en) * 1996-03-01 1999-11-23 Copp; John B. Printed circuit board fabrication apparatus
US5647681A (en) * 1996-06-18 1997-07-15 Chen; Chi-Fu Stairs rail connector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100044470A1 (en) * 2007-03-30 2010-02-25 Faurecia Interieur Industrie Device for positioning a profiled body of an aerator, and an aerator comprising said device
US20110104626A1 (en) * 2008-02-14 2011-05-05 Boettcher Andreas Burning element and burner with a corrosion-resistant insert
US9140449B2 (en) * 2008-02-14 2015-09-22 Siemens Aktiengesellschaft Burning element and burner with a corrosion-resistant insert
US20120073483A1 (en) * 2009-06-04 2012-03-29 Metso Power Oy Method for supplying combustion air to a flue gas air preheater, a preheating apparatus, and an air guide sleeve
US20140050863A1 (en) * 2009-12-31 2014-02-20 Samsung Display Co., Ltd. Evaporator with internal restriction
US8904819B2 (en) * 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
CN103982746A (en) * 2014-05-16 2014-08-13 江苏唐电建设有限公司 Method and corresponding structure for fast repairing boiler air preheater pipe
JP2016080215A (en) * 2014-10-14 2016-05-16 株式会社プランテック Heat transfer pipe repair method of heat exchanger and insertion pipe for heat transfer pipe repair
CN114278797A (en) * 2021-12-31 2022-04-05 河南黄埔建筑安装有限公司 Heating and ventilation pipeline butt joint device based on BIM technology and butt joint method thereof

Also Published As

Publication number Publication date
US20100132823A1 (en) 2010-06-03
SE527694C2 (en) 2006-05-16
WO2006121400A1 (en) 2006-11-16
SE0501053L (en) 2006-05-16
US8747105B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
US20080268389A1 (en) Insert Tube and a System of Insert Tubes
CA1154371A (en) Plug-in recuperator and method
US7921881B2 (en) Fluid conduit assembly
EP2530280B1 (en) Fuel air heat exchanger
US6948455B2 (en) Finned tube heat exchanger and method
EP2042691A2 (en) Lubricant pipe assembly for a turbine
RU2554679C2 (en) Air heater with flue gas, installation method, air pipe component for air heater with flue gas
KR20150067054A (en) Tube bundle heat exchanger having straight-tube configuration, process gas cooler, cooler for gas turbine cooling air, gas turbine or gas and steam turbine power plant, and method for the cooling of cooling air
CN104105854B (en) Sealing device for an exhaust gas aftertreatment device of an internal combustion engine
US20190078776A1 (en) Combustion Apparatus
US20120118547A1 (en) Tube plug for a heat exchanger tube
AU2009254070A1 (en) Fire tube condensing boiler for generating hot water
KR102196031B1 (en) Heat exchanger for quenching reaction gases
KR20180049688A (en) Double flue
EP3244135B1 (en) Heat exchanger
CA2943963A1 (en) Heat exchanger
WO2019069703A1 (en) Heat exchanger
CN104121444B (en) A kind of expansion joint
CN206725032U (en) For reducing the device and tower of the corrosion of liquid level gauge gas phase flange diaphragm
Design Technical data
US11852418B1 (en) Coolant-filled heat exchanger for an oil treater
CN107701247A (en) A kind of gas turbine guider inner ring impinging cooling structure, gas turbine
JP2012193879A (en) Single end type radiant tube burner for atmospheric treating furnace
KR200332898Y1 (en) Heat exchange pipe corrosion reduction device of air preheater
CN104776447B (en) A kind of combined type end cap for gas-turbine combustion chamber

Legal Events

Date Code Title Description
AS Assignment

Owner name: METSO POWER AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORDH, LENNART;REEL/FRAME:020003/0654

Effective date: 20071012

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION