US20080267929A1 - Use of stem cells to generate inner ear cells - Google Patents

Use of stem cells to generate inner ear cells Download PDF

Info

Publication number
US20080267929A1
US20080267929A1 US11/953,797 US95379707A US2008267929A1 US 20080267929 A1 US20080267929 A1 US 20080267929A1 US 95379707 A US95379707 A US 95379707A US 2008267929 A1 US2008267929 A1 US 2008267929A1
Authority
US
United States
Prior art keywords
cells
cell
inner ear
population
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/953,797
Inventor
Huawei Li
Albert Edge
Stefan Heller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Eye and Ear Infirmary
Original Assignee
Massachusetts Eye and Ear Infirmary
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Eye and Ear Infirmary filed Critical Massachusetts Eye and Ear Infirmary
Priority to US11/953,797 priority Critical patent/US20080267929A1/en
Priority to US12/187,543 priority patent/US8617810B2/en
Assigned to MASSACHUSETTS EYE & EAR INFIRMARY reassignment MASSACHUSETTS EYE & EAR INFIRMARY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EDGE, ALBERT, HELLER, STEFAN
Assigned to MASSACHUSETTS EYE & EAR INFIRMARY reassignment MASSACHUSETTS EYE & EAR INFIRMARY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, HUAWEI
Publication of US20080267929A1 publication Critical patent/US20080267929A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/55Glands not provided for in groups A61K35/22 - A61K35/545, e.g. thyroids, parathyroids or pineal glands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0046Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/062Sensory transducers, e.g. photoreceptors; Sensory neurons, e.g. for hearing, taste, smell, pH, touch, temperature, pain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Definitions

  • This invention generally relates to compositions and methods for inducing cellular differentiation (e.g., complete or partial differentiation of stem cells into cells capable of functioning as sensory cells of the ear) and to assays and methods of treatment that employ the stem cells or the more fully differentiated cells into which they develop.
  • cellular differentiation e.g., complete or partial differentiation of stem cells into cells capable of functioning as sensory cells of the ear
  • assays and methods of treatment that employ the stem cells or the more fully differentiated cells into which they develop.
  • Hearing loss is age-related, as about 4% of people under 45 years old and about 34% of those over 65 years old have debilitating hearing loss. In most cases, the cause is related to degeneration and death of hair cells and their associated spiral ganglion neurons.
  • the ear is composed of four main sections: the external ear, middle ear, inner ear, and the transmission pathway to the hearing center in the brain.
  • the inner ear is a capsule of very dense bone containing a fluid that communicates with the middle ear.
  • Small bones within the middle ear (the malleus, incus, and stapes) transmit sound energy from the tympanic membrane to the oval window at the entrance to the cochlea of the inner ear.
  • the action of the stapes at the oval window exerts pressure on the fluid within the cochlea. The pressure is transmitted through the cochlea, ultimately causing a second window, the round window to oscillate.
  • a basilar membrane that defines the fluid-filled chambers of the cochlea then transmits the oscillations to the organ of Corti, which contains about 13,000 mechanosensory cells called hair cells. Hair cells are located in the epithelial lining of the inner ear (in the cochlear organ of Corti, as mentioned), as well as in the vestibular sensory epithelia of the saccular macula, the utricular macula, and the cristae of the three semicircular canals of the labyrinth.
  • the cochlear hair cells send signals to the cochlear spiral ganglion, and the clustered neuronal cell bodies convey those signals to the cochlear nucleus of the brain stem (see FIGS. 5A , 5 B, and 5 C).
  • the present invention features compositions and methods related to stem cells and cells of the inner ear.
  • the methods include those for producing (e.g., isolating or obtaining) stem cells or progenitor cells from a tissue (e.g., a tissue within the inner ear) and for identifying agents that mediate complete or partial differentiation of those cells to or toward a mature cell type of the inner ear (e.g., a hair cell or spiral ganglion neuron).
  • a tissue e.g., a tissue within the inner ear
  • agents that mediate complete or partial differentiation of those cells to or toward a mature cell type of the inner ear (e.g., a hair cell or spiral ganglion neuron).
  • a hair cell or spiral ganglion neuron e.g., a hair cell or spiral ganglion neuron
  • Other methods provide treatment for patients who have, or who are at risk for developing, an auditory disorder.
  • the methods of treatment include steps whereby one administers a differentiation agent (e.g., an agent identified by a screening method described herein), a stem cell or progenitor cell (e.g., a cell isolated by the methods described herein), or both (i.e., both a differentiation agent and a stem cell and/or progenitor cell) to the inner ear of the patient.
  • a differentiation agent e.g., an agent identified by a screening method described herein
  • a stem cell or progenitor cell e.g., a cell isolated by the methods described herein
  • both i.e., both a differentiation agent and a stem cell and/or progenitor cell
  • the invention features screening methods for identifying agents that can increase or decrease the expression of one or more auditory proteins within a cell (regardless of the extent to which that cell has differentiated).
  • the change in expression can be, but is not necessarily, a robust change.
  • a candidate agent may increase the expression of an auditory protein from an essentially undetectable level to a readily detectable level. It may also increase expression to a certain degree (e.g., there may be about a 1-, 2-, or 5-fold increase in expression).
  • the protein analyzed can be any protein that is ordinarily expressed in a mature cell of the inner ear (e.g., a hair cell or spiral ganglion cell of an adult who has normal hearing), but expression is not necessarily specific for an inner ear cell.
  • the protein can be one that is expressed in other cell types, and it may be expressed at varying levels as a stem cell differentiates into a progenitor cell and finally into a completely differentiated cell. Proteins that are expressed in inner ear cells (e.g., in hair cells and spiral ganglion cells) are well known in the art.
  • the screening methods include providing a cell or a population of cells, which may contain a single cell type or a variety of cell types, including cells that may be undifferentiated (i.e., pluripotent stem cells) less than fully differentiated (i.e., progenitor cells) or fully differentiated (e.g., recognizable as hair cells or spiral ganglion cells). Where a population of test cells is used, the proportion of stem cells within the test population can vary.
  • the population can contain few stem cells (e.g., about 1-10%) a moderate proportion of stem cells (e.g., about 10-90% (e.g., about 20, 25, 30, 40, 50, 60, 70, 75, 80, or 85% stem cells)) or many stem cells (e.g., at least 90% of the population (e.g., 92, 94, 96, 97, 98, or 99%) can be stem cells).
  • the cells will have the potential to differentiate into a completely or partially differentiated cell of the inner ear (e.g., the cell can be a pluripotent stem cell that differentiates into a cell that expresses one or more auditory proteins).
  • Partially differentiated cells are useful in the treatment methods (whether therapeutic or prophylactic) so long as they express a sufficient number and type of auditory-specific proteins to confer a benefit on the patient (e.g., improved hearing).
  • the cells employed in the screening or treatment methods can be obtained from a mammal, such as a human, from any developmental stage.
  • the cells can be derived from an embryo, fetus or post-natal mammal (e.g., an infant, child, adolescent, or adult (e.g., an adult human)).
  • the stem cell or the progenitor cell can be obtained from the cochlear organ of Corti, the modiolus (center) of the cochlea, the spiral ganglion of the cochlea, the vestibular sensory epithelia of the saccular macula, the utricular macula, or the cristae of the semicircular canals (see FIGS.
  • the stem cell or progenitor cell can also be obtained, however, from other tissues such as bone marrow, blood, skin, or an eye.
  • the cells employed can be obtained from a single source (e.g., the ear or a structure or tissue within the ear) or a combination of sources (e.g., the ear and one or more peripheral tissues (e.g., bone marrow, blood, skin, or an eye)).
  • the cells can also be obtained from a patient to whom they will subsequently be readministered.
  • an essentially pure population of cells e.g., an essentially pure population of stem cells (e.g., a population in which about 90% or more of the cells are stem cells).
  • Individual cells e.g., a single cell placed within the well of a tissue culture plate
  • an amplification technique such as “single-cell” PCR.
  • the cell(s) can be contacted with a candidate agent or exposed to certain environmental conditions (e.g., conditions that vary from physiologic conditions (e.g., increased or decreased temperature, abnormal levels of CO 2 or other gases (e.g., oxygen), or non-physiological pH)).
  • an auditory protein is more (or less) than the level prior to exposure to the agent (or relative to a reference standard). More than one auditory protein can be assessed, at the same time or sequentially.
  • To assess expression one can examine protein levels per se or the level of RNA transcription. Numerous methods are known in the art that can be suitably employed to assess either protein or RNA expression.
  • An increase in expression of the auditory protein indicates that the agent can promote the expression of the auditory protein within the cell, thereby promoting at least partial differentiation of a cell (e.g., a stem cell) into a more mature cell of the inner ear.
  • the ultimate goal of the screening methods is to identify an agent or group of agents or conditions that increase the expression of auditory proteins that mediate the sense of hearing and can, therefore, be used to generate cells that improve a patient's ability to hear or maintain their balance. No particular mechanism of action is required or implied.
  • the agent(s) and/or condition(s) may act directly or indirectly on the transcriptional machinery for the auditory protein in question.
  • the candidate agents can be essentially any nucleic acid (e.g., a gene or gene fragment that encodes a polypeptide (e.g., a functional protein) such as a growth factor or other cytokine (e.g., an interleukin)), any polypeptide per se (which may be a full-length protein or a biologically active fragment or other mutant thereof), or any small molecule.
  • a polypeptide e.g., a functional protein
  • cytokine e.g., an interleukin
  • the small molecules can include those contained within commercially available compound libraries (suppliers include ChemBridge Corp (San Diego, Calif.) and ChemDiv (San Diego, Calif.)).
  • the screening assays can be configured as “high throughput” assays to screen many such agents at once. For example, the agents and/or cells to be assessed can be presented in an array.
  • the candidate agent can be, for example, a nucleic acid that encodes, or a polypeptide that is, a polypeptide active in the cellular biochemical pathway of which Notch, WNT, or Sonic hedgehog are a part (e.g., WNT1, WNT10B, WNT11, WNT13, WNT14, WNT15, WNT2, WNT2B, WNT5a, WNT7a, or WNT8B); a homolog of Notch, WNT, or Sonic hedgehog; or a biologically active fragment or other variant of Notch, WNT, or Sonic hedgehog.
  • a nucleic acid that encodes e.g., WNT1, WNT10B, WNT11, WNT13, WNT14, WNT15, WNT2, WNT2B, WNT5a, WNT7a, or WNT8B
  • the nucleic acid can encode a fragment of Sonic hedgehog, such as SHH-N or a variant thereof (e.g., an SHH-N fragment that contains a limited number (e.g., 1-10) of conservative amino acid substitutions), or a homolog of Sonic hedgehog, such as Indian hedgehog or Desert hedgehog or fragments or other mutants thereof (e.g., a fragment of Indian hedgehog or Desert hedgehog that corresponds to SHH-N).
  • a homolog is a nucleic acid or polypeptide that is substantially identical to, for example, a Notch, WNT, or Sonic hedgehog nucleic acid or polypeptide and, preferably, functions in the pathways in which Notch, WNT, and Sonic hedgehog are active.
  • Notch, WNT, or Sonic hedgehog from different species may also be described as homologs (e.g., a human sequence may be described as the homolog of a Notch protein from Drosophila or mouse).
  • a first nucleic acid (whether genomic DNA, cDNA, RNA or a nucleic acid containing non-naturally occurring nucleotides) or polypeptide is substantially identical to a second nucleic acid or polypeptide, respectively, when the two are exhibit sequence similarity and at least one shared activity.
  • Nucleic acids and polypeptides useful in the screening and therapeutic methods of the present invention can be substantially identical to a human Sonic hedgehog cDNA (SEQ ID NO:2; FIG. 2 ) or amino acid sequence (SEQ ID NO:8; FIG. 1 ).
  • a nucleic acid sequence substantially identical to human Sonic hedgehog cDNA is at least 80% identical (e.g., 85%, 90%, 95%, 98%, or 99%) to SEQ ID NO:2, and a substantially identical amino acid sequence is at least 80% identical (e.g., 85%, 90%, 95%, 98%, or 99%) to SEQ ID NO:1.
  • the nucleic acid can encode, or the polypeptide can be: Math1, parvalbumin 3, Brn3.1, Brn3.2, Hes1, Hes5, neurogenin-1, NeuroD, Jagged1, Jagged2, Delta1, Notch1, Lunatic fringe, Numb, Wnt7a, p27Kip1, Shh, Bmp4, Fgfr3, Fgfr1, Fgfr2, Fgf10, Fgf2, Fgf3, GATA3, Pax2, neurotrophin-3, BDNF, or a fragment or other mutant thereof (e.g., a fragment or other mutant that retains sufficient biological activity to function in a screening method or therapeutic method described herein).
  • the screening methods can be carried out by assessing a reporter gene that has been placed under the control of a sequence that regulates the expression of an auditory protein (e.g., a promoter and/or enhancer that directs expression of an auditory protein in vivo).
  • a reporter gene that has been placed under the control of a sequence that regulates the expression of an auditory protein (e.g., a promoter and/or enhancer that directs expression of an auditory protein in vivo).
  • the invention features methods of identifying differentiation agents that promote the expression of an auditory protein within a cell by providing a cell (any of the cells or populations of cells described above would be appropriate) containing a reporter gene operably linked to a promoter or promoter element (e.g., an enhancer region) of an auditory protein gene.
  • the cell(s) can be contacted with the candidate agent in vivo or in cell culture, and the level of expression of the reporter gene within the cell can be assessed.
  • An increase in expression following exposure to the candidate agent indicates that the agent promotes the expression of the auditory protein within the cell.
  • a decrease in reporter gene expression identifies the agent as a candidate inhibitor of auditory protein expression (proteins that inhibit the expression of an auditory protein are potential targets for inhibition; by inhibiting a protein that inhibits the expression of an auditory protein, one can promote expression of the auditory protein).
  • Cells e.g., stem cells, progenitor cells, or differentiated cells from the inner ear or another tissue
  • the reporter constructs described herein e.g., a plasmid bearing an auditory protein regulatory region operably linked to a reporter gene
  • the reporter constructs per se e.g., the invention features nucleic acids, which may be further contained within a vector such as a plasmid, in which a regulatory region of an auditory protein (e.g., a Math1 regulatory region of a sonic hedgehog regulatory region) is operably linked to a reporter gene).
  • the reporter gene can encode any detectable polypeptide.
  • the reporter gene can be a gene that encodes a fluorescent protein, an enzymatically active protein (e.g., ⁇ -galactosidase and chloramphenicol acetyltransferase), or a protein detectable in an antibody-based assay.
  • an enzymatically active protein e.g., ⁇ -galactosidase and chloramphenicol acetyltransferase
  • Other markers are known in the art and additional exemplary markers are described further below.
  • the screening methods described herein can be performed on a cell in cell culture under ex vivo conditions of pH and temperature suitable to maintain viability (such conditions are generally known in the art and exemplary conditions are provided below). Cells can also be treated in cell culture prior to administration to a patient.
  • the invention also features methods of isolating a stem cell or progenitor cell from the inner ear of an animal (e.g., a mammal such as a human, non-human primate, or other mammal such as a pig, cow, sheep, goat, horse, dog, cat, or rodent).
  • animal e.g., a mammal such as a human, non-human primate, or other mammal such as a pig, cow, sheep, goat, horse, dog, cat, or rodent.
  • tissue from the inner ear e.g., a piece of tissue that includes hair cells or the membrane with which they are associated, or spiral ganglion cells.
  • the tissue can include at least a portion of the utricular maculae.
  • the tissue can be disrupted by exposure to a chemical or mechanical force (or both).
  • the tissue can be exposed to a tissue-digesting enzyme, such as trypsin, and/or to a mechanical (e.g., physical) force such as trituration to break the tissue into smaller pieces.
  • a tissue-digesting enzyme such as trypsin
  • a mechanical force such as trituration to break the tissue into smaller pieces.
  • the treated tissue e.g., enzyme-treated tissue (e.g., the enzyme-treated utricular maculae)
  • the cells obtained may constitute an enriched population of stem cells and/or progenitor cells; isolation from all (or essentially all) differentiated cells or other cellular material within the tissue may be achieved but is not required to meet the definition of “isolated.” Absolute purity is not required.
  • the invention encompasses cells obtained by the isolation procedures described herein. The cells may be mixed with a cryoprotectant and stored or packaged into kits. Once obtained, the stem cells and/or progenitor cells can be expanded in culture.
  • Methods for treating patients are also described and are within the scope of the present invention. These methods include administering a cell or population of cells (as described above; e.g. a stem cell and/or progenitor cell obtained from a tissue such as the ear) to the ear of the patient.
  • the administered cells may be obtained by the methods described herein, and the starting material may be tissue obtained from the patient to be treated.
  • the methods include the step of administering a therapeutic agent that promotes the expression of an auditory protein within a cell within the inner ear (e.g., a differentiation agent as described herein or as identified by the screening methods described herein).
  • the differentiation agent can be administered to cells in culture or can be administered to the patient either alone (to stimulate the differentiation of stem cells or progenitor cells within the patient's inner ear) or together with undifferentiated cells (e.g., undifferentiated cells isolated by the methods described herein).
  • the differentiation agent can be, for example, an agonist of the hedgehog pathway, such as an agonist of Sonic hedgehog (e.g., Hh-Ag1.3).
  • the invention also features a stem cell or progenitor cell (either of which may cluster into cellular spheres) isolated by the methods described herein, compositions containing them, and kits that include them (with, for example, instructions for inducing differentiation; for expanding the cells in culture; and/or for administering the cells to a patient or to a cell (e.g., a cell in culture) to promote its differentiation).
  • the instructions can be printed or in another form (e.g., provided on audio- or videotape).
  • stem cells are readily expandable and can be expanded to generate a desired tissue or cell type (e.g., hair cells or spiral ganglion cells) for application to a patient.
  • the stem cells can be obtained from humans for clinical applications. Because the stem cells can be harvested from a human, and in particular can be harvested from the human in need of treatment, the immunological hurdles common in xeno- and allotransplantation experiments can be largely avoided.
  • FIG. 1 is the amino acid sequence of an SHH polypeptide from human (GenBank Accession No. AY422195; SEQ ID NO:1). The amino acids of the SHH-N polypeptide are underlined.
  • FIG. 2 is a protein-coding nucleic acid sequence of SHH from human (GenBank Accession No. AY422195; SEQ ID NO:2).
  • FIG. 3 is the amino acid sequence of an Indian hedgehog (Ihh) polypeptide from human (GenBank Accession No. XM — 050846; SEQ ID NO:3).
  • FIG. 4 is the amino acid sequence of a Desert hedgehog (Dhh) polypeptide from human (GenBank Accession No. NM — 021044; SEQ ID NO:4).
  • Dhh Desert hedgehog
  • FIG. 5A is a diagram of the inner ear (from Clinical Neuroanatomy and Related Neuroscience , Fourth ed., Fitzgerald and Folan, eds., Saunders publishing, 2001).
  • FIG. 5B is a diagram of the semicircular canals and the saccular macula of the inner ear (from Clinical Neuroanatomy and Related Neuroscience , Fourth ed., Fitzgerald and Folan, eds., Saunders publishing, 2001).
  • FIG. 5C is a diagram of the cochlea, in section, of the inner ear.
  • FIG. 6 is a gel indicating the expression of marker genes in embryonic stem (ES) cells, progenitor cells, and differentiated cells. Expression was detected by reverse transcription followed by polymerase chain reaction (RT-PCR), and examination of the amplified products by gel electrophoresis.
  • ES embryonic stem
  • RT-PCR polymerase chain reaction
  • FIG. 7A is a graph illustrating the compound action potential (CAP) threshold elevation in de-afferented and control cat ears. The auditory nerve was cut 10 weeks prior to taking the measurements.
  • CAP compound action potential
  • FIG. 7B is a graph illustrating the distortion product otoacoustic emissions (DPOAEs) in the de-afferented and control cat ears. The auditory nerve was cut 10 weeks prior to taking these measurements.
  • DPOAEs distortion product otoacoustic emissions
  • FIG. 8A is a graph illustrating a quantitative analysis of the promoting effect of SHH on the number of hair cells generated in otic vesicles after 3 days in culture.
  • the basic serum-free culture conditions (“no GF”) include serum-free knockout DMEM medium with N2 supplement.
  • FIG. 8B is a graph illustrating a quantitative analysis of the promoting effect of SHH on the number of hair cells generated in otic vesicles after seven days in culture. Serum conditions are as described in FIG. 8A .
  • the methods are amenable for use in identifying genes that, when expressed or silenced, can promote or inhibit the differentiation of stem cells into inner ear cells.
  • the methods and agents are useful for treating any disorder that arises as a consequence of cell loss in the ear, such as hearing impairments, deafness, and vestibular disorders.
  • Stem cells are unspecialized cells capable of extensive proliferation. Stem cells are pluripotent and are believed to have the capacity to differentiate into most cell types in the body (Pedersen, Scientif. Am. 280:68, 1999), including neural cells, muscle cells, blood cells, epithelial cells, skin cells, and cells of the inner ear (e.g., hair cells and cells of the spiral ganglion). Stem cells are capable of ongoing proliferation in vitro without differentiating. As they divide, they retain a normal karyotype, and they retain the capacity to differentiate to produce adult cell types. Stem cells can differentiate to varying degrees. For example, stem cells can form cell aggregates called embryoid bodies in hanging drop cultures.
  • the embryoid bodies contain neural progenitor cells that can be selected by their expression of an early marker gene such as Sox1 and the nestin gene, which encodes an intermediate filament protein (Lee et al., Nat. Biotech. 18:675-9, 2000).
  • an early marker gene such as Sox1
  • the nestin gene which encodes an intermediate filament protein
  • Stem cells useful for generating cells of the inner ear can be derived from a mammal, such as a human, mouse, rat, pig, sheep, goat, or non-human primate.
  • stem cells can be derived from any number of tissues including, but not limited to, an ear, eye, bone marrow, blood, or skin.
  • stem cells have been identified and isolated from the mouse utricular macula (Li et al., Nature Medicine 9:1293-1299, 2003).
  • Stem cells useful for generating cells of the inner ear can be adult stem cells, and therefore derived from differentiated tissue, or the cells can be from embryonic tissue.
  • the changes that induce a cell to differentiate involve altered biochemical pathways that lead to a specific phenotype. These alterations are a result of the expression of specific genes, and this expression pattern is influenced by signals from the environment of the cell including cell-cell contact, oxygen content, nutrient availability, ligands that bind to receptors on the cells, temperature, and other factors. Stem cells are adaptive in nature, and their response to changes in these signals triggers the differentiation process.
  • Proteins that influence (e.g., promote or inhibit differentiation) the phenotype of inner ear cells include developmental regulators, cell cycle inhibitors, transcription factors and other regulatory proteins that act on stem cells.
  • the phenotype of the cell includes the characteristics that distinguish it from other cell types. For example, the phenotype of a hair cell is distinct from the phenotype of a spiral ganglion cell.
  • Differentiation agents can be, for example, small molecules, antibodies, peptides (e.g., peptide aptamers), antisense RNAs, small inhibitory RNAs (siRNA), or ribozymes.
  • Differentiation agents such as small molecules, can modulate the activity of one or more of the proteins that influence cell phenotype by altering the activity of a growth factor or receptor, an enzyme, a transcription factor, or a cell-specific inhibitor. These molecules can change the binding affinity of a protein for another protein, or can bind in an active site of an enzyme or act as an agonist or antagonist of a ligand binding to a receptor.
  • Some types of differentiation agents such as small inhibitory RNAs (siRNAs), antisense RNAs, or ribozymes, can modify the expression pattern of genes that encode these proteins. Furthermore, the agents can be useful as therapeutic agents for treating hearing disorders or vestibular dysfunction.
  • genes are required for the development of the structure and different cell types of the ear.
  • the methods featured in the invention are useful for identifying these genes.
  • the identified genes and gene products can be targets for therapeutic agents and methods for treating hearing disorders and vestibular dysfunction. Indications suited for the methods and therapeutic agents featured in the invention are discussed in greater detail below.
  • a differentiation agent can be a polypeptide, such as an aptamer or antibody; a nucleic acid, such as DNA or RNA; or a compound, such as a small molecule.
  • an agent is contacted with a stem cell, and the stem cell is determined to differentiate, at least partially, into a cell of the inner ear, such as a hair cell or cell of the spiral ganglion.
  • the agent can be naturally occurring or synthetic.
  • the agent can be obtained from a library, or the agent can be a candidate molecule identified by other methods.
  • the candidate agent can have been previously identified as a modulator of a gene or protein known to be active in cells of the inner ear.
  • a variety of methods can be utilized to determine that a stem cell has differentiated at least partially into a cell of the inner ear.
  • the cell can be examined for the expression of a cell marker gene.
  • Hair cell marker genes include myosin VIIa (myoVIIa), Math1, ⁇ 9 acetylcholine receptor, espin, parvalbumin 3, and Brn3.1.
  • a pluripotent stem cell does not express these genes.
  • a stem cell that propagates and produces a cell expressing one or more of these genes, has produced a hair cell, i.e., the stem cell has differentiated at least partially into a hair cell.
  • a stem cell that has differentiated into a progenitor cell expresses early ear marker genes such as Sox1, Nestin, Pax2, Bmp7, Jagged1, or p27 Kip1 .
  • a progenitor cell can express one or more of these genes.
  • the progenitor cells can be propagated in serum-free medium in the presence of growth factors. Removal of growth factors will induce the cells to differentiate further, such as into hair cells.
  • a hair cell or hair cell progenitor e.g., a hair cell or progenitor cell that differentiated from a stem cell
  • Detection of gene expression can be by immunocytochemistry. Immunocytochemistry techniques involve the staining of cells or tissues using antibodies against the appropriate antigen.
  • the appropriate antigen is the protein product of the tissue-specific gene expression.
  • a first antibody i.e., the antibody that binds the antigen
  • a second antibody directed against the first e.g., an anti-IgG
  • This second antibody is conjugated either with fluorochromes, or appropriate enzymes for calorimetric reactions, or gold beads (for electron microscopy), or with the biotin-avidin system, so that the location of the primary antibody, and thus the antigen, can be recognized.
  • the protein marker can also be detected by flow cytometry using antibodies against these antigens, or by Western blot analysis of cell extracts.
  • RNA detection methods include reverse transcription coupled to polymerase chain reaction (RT-PCR), Northern blot analysis, and RNAse protection assays.
  • Identification of a differentiated hair cell or spiral ganglion cell can also be assayed by physiological testing to determine if the cells generate conductance channels characteristic of mature hair or spiral ganglion cells.
  • a candidate differentiation agent can be tested against stem cells that have been engineered to express a reporter gene that facilitates detection of cells converted into inner ear cells. These engineered stem cells make up a reporter cell line.
  • a reporter gene is any gene whose expression may be assayed; such genes include, without limitation, green fluorescent protein (GFP), ⁇ -glucuronidase (GUS), luciferase, chloramphenicol transacetylase (CAT), horseradish peroxidase (HRP), alkaline phosphatase, acetylcholinesterase and ⁇ -galactosidase.
  • GFP green fluorescent protein
  • GUS ⁇ -glucuronidase
  • CAT chloramphenicol transacetylase
  • HRP horseradish peroxidase
  • alkaline phosphatase alkaline phosphatase
  • acetylcholinesterase ⁇ -galactosidase
  • Other optional fluorescent reporter genes include but are not limited to red fluorescent protein
  • a reporter gene can be under control of a promoter that is active in cells of the inner ear, including progenitor cells and cells at varying degrees of differentiation, but not in stem cells.
  • the promoter is stably upregulated in the differentiated cells or progenitors cells to allow assessment of the partially or fully differentiated phenotype (e.g., expression of the reporter gene and further identification of genes known to be expressed in the inner ear).
  • the luciferase gene is the reporter gene, which is under control of a promoter active in hair cells, such as a myoVIIa promoter.
  • myoVIIa is primarily expressed in hair cells and in only a few other cell types, the partial or full conversion of the stem cells to hair cells will result in increased luminescent signal, whereas conversion of stem cells to most other cell types will not increase luciferase expression.
  • Other promoters appropriate for use with a reporter gene for identifying differentiated hair cells include myoVIIa, Math1, ⁇ 9 acetylcholine receptor, espin, parvalbumin 3, and Brn3.1. In some cases it may be necessary to optimize the expression system by performing initial control experiments with various promoters to determine which will work best in the given culture conditions with the particular stem cells (e.g., origin of stem cells) and reporter gene used.
  • stem cells can be used for the screening assays, including mouse and human adult stem cells from the ear, bone marrow, or other tissue sources, and embryonic stem cells from mouse or human. Stem cells isolated from other mammalian species are also acceptable for the screening methods described herein.
  • a differentiation agent can induce stem cells to differentiate at least partially into a cell of the spiral ganglion, rather than a hair cell
  • methods are provided for determining the expression of genes known to be expressed in such cells in vivo.
  • Genes expressed in the spiral ganglion, and useful as cell marker genes include ephrinB2, ephrinB3, trkB, trkC, GATA3, BF1, FGF10, FGF3, CSP, GFAP, and Islet1.
  • Secondary assays can be used to confirm, or provide more definitive evidence, that a cell has differentiated into a cell of the inner ear.
  • a gene useful as a marker for identifying a cell of the inner ear can be expressed exclusively in a particular cell type (e.g., exclusively in a hair cell or exclusively in cells of the spiral ganglion), or the cell may also be expressed in a few other cell types (preferably not more than one, two, three, four, or five other cell types).
  • ephrinB1 and ephrinB2 are expressed in spiral ganglion cells, and also in retinal cells.
  • ephrinB1 or ephrinB2 expression is not definitive proof that a stem cell has differentiated into a cell of the spiral ganglion.
  • Secondary assays can be used to confirm that a cell has developed into a cell of the spiral ganglion. Such assays include detection of multiple genes known to be expressed in the suspected cell type. For example, a cell that expresses ephrinB1 and/or ephrinB2, can also be assayed for expression of one or more of GATA3, trkB, trkC, BF1, FGF10, FGF3, CSP, GFAP, and Islet1. A determination that these additional genes are expressed is additional evidence that a stem cell has differentiated into a spiral ganglion cell.
  • a secondary assay can include detection of the endogenous protein expressed from the endogenous promoter.
  • the secondary screen can include an immunocytochemistry assay to detect endogenous ephrinB1 protein, which is expressed from the endogenous ephrinB1 promoter.
  • Secondary assays also include detection of the absence of gene expression or the absence of proteins that are not typically expressed in hair cells.
  • negative markers include the pan-cytokeratin gene, which is not expressed in mature hair cells but is expressed in supporting cells of the inner ear (Li et al., Nature Medicine 9:1293-1299, 2003).
  • the agents identified as being capable of causing stem cells to differentiate into cells of the inner ear can function by activating a gene or protein necessary for differentiation of a stem cell.
  • a differentiation agent can activate or increase expression or activity of a gene of the hedgehog pathway, such as Sonic hedgehog (Shh).
  • an identified agent can function by inhibiting activity of a gene or protein that prevents differentiation of a stem cell into a cell of the inner ear.
  • the agent can inhibit the gene expression or protein activity of hes1, hes5, p19 Ink4d , or proteins of the Notch family. Many different proteins have been identified as being important for establishing and maintaining the phenotype of the inner ear.
  • a stem cell that is partially differentiated may continue to express some genes that typically inhibit stem cell differentiation (although expression may be weaker). If the agent triggers the cell to differentiate at least partially into a cell of the inner ear, the agent may be useful as a therapeutic agent or as an agent for generating cells having therapeutic value for treatment of hearing disorders by the methods described herein.
  • Small molecule libraries can be screened against proteins known to be required for preventing the conversion of stem cells to hair cells or spiral ganglion cells.
  • Transcription factors for example, are required for proper timing of the differentiation of an embryo, and they can prevent the formation of inner ear cells, such as by preventing mitosis. Inhibition of these factors in a stem cell can increase the number of cells that will eventually be converted to the inner ear phenotype. Screening for molecules that can interact with such factors will lead to the discovery of agents that have high affinity for the polypeptide factors.
  • Protein/protein interaction assays are known in the art and include co-immunoprecipitation-based assays; binding assays, such as bead-based binding assays; or cell-based assays such as the yeast two-hybrid assay, or a related method.
  • the ability of the differentiation agents to inhibit or enhance the biological activity of the proteins can be assessed using assays that measure the conversion of the stem cells to inner ear cells.
  • assays include the detection of inner ear cell-specific markers, or reporter gene assays, wherein expression of a reporter gene indicates conversion of a stem cell to an inner ear cell.
  • the screens featured in the invention can also be used to identify agents that increase the yield or rate of differentiation of stem cells.
  • Retinoic acid for example, can induce stem cells to differentiate into a variety of cell types including, but not specific for, hair cells.
  • Agents can be identified that are more specific for inducing differentiation of cells to hair or spiral ganglion cells.
  • a candidate differentiation agent e.g., a polypeptide, nucleic acid, or small molecule
  • a candidate differentiation agent e.g., a polypeptide, nucleic acid, or small molecule
  • an effect of the agent can be examined in the presence of growth factors, and the concentration of growth factors can be lowered to increase the likelihood of triggering the cells to differentiate.
  • Concentrations of growth factors can range from about 100 ng/mL to about 0.5 ng/mL (e.g., from about 80 ng/mL to about 3 ng/mL, such as about 60 ng/mL, about 50 ng/mL, about 40 ng/mL, about 30 ng/mL, about 20 ng/mL, about 10 ng/mL, or about 5 ng/mL).
  • supplementary growth factors include, but are not limited to basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF).
  • bFGF basic fibroblast growth factor
  • IGF insulin-like growth factor
  • EGF epidermal growth factor
  • Screens provided herein include screens to identify genes that can influence development of cells of the inner ear.
  • the identified genes can be targets of the agents discovered by the screens described above.
  • Genes that can influence development of cells of the inner ear can promote differentiation or inhibit differentiation.
  • the reporter stem cells described above can be utilized. These cells express a reporter gene, such as luciferase, under control of a cell specific promoter, or promoter fragment.
  • the promoter can be specific for hair cells (e.g., a myoVIIa, Math1, ⁇ 9 acetylcholine receptor, espin, parvalbumin 3, or Brn3.1 promoter) or auditory neural cells, such as spiral ganglion cells (e.g., an ephrinB2, ephrinB3, trkB, trkC, GATA3, BF1, FGF10, FGF3, CSP, GFAP, or Islet1 promoter), for example.
  • hair cells e.g., a myoVIIa, Math1, ⁇ 9 acetylcholine receptor, espin, parvalbumin 3, or Brn3.1 promoter
  • auditory neural cells such as spiral ganglion cells (e.g., an ephrinB2, ephrin
  • the candidate genes of the library are cloned into plasmids (standard library screening protocols such as those described in Brent et al. ( Current Protocols in Molecular Biology , New York: John Wiley & Sons Inc, 2003) can be followed).
  • the plasmid used in the library can contain a constitutive promoter, such as a CMV promoter, that drives expression of the candidate gene.
  • the plasmids of the library are introduced into a reporter stem cell line that is cultured in medium containing supplemental growth factors. The transfection of the plasmids into the reporter cell line is performed such that only one plasmid is introduced into any one cell.
  • the cell is examined for an increase in luminescence, by comparison to a reporter cell that has been transfected with a plasmid lacking the candidate gene.
  • An increase in luminescence indicates that the gene promotes the differentiation of the stem cell into a cell of the inner ear.
  • the specific promoter driving expression of the luciferase gene dictates the cell type for which the reporter assay is useful for monitoring differentiation. For example, if the luciferase gene is under control of a hair cell specific promoter, an increase in luminescence indicates that the candidate gene promotes differentiation of hair cells. If the luciferase gene is under control of a spiral ganglion-specific promoter, an increase in luminescence indicates that the candidate gene promotes differentiation of spiral ganglion cells.
  • the increase in luminescence can be observed while the cells remain cultured in the presence of growth factors, or the cells can be transferred to lower concentrations of growth factors, or to other modified conditions that may sensitize the cells for differentiation.
  • the cells can be completely removed from the supplemental growth factors, to compare the luminescence in the presence and absence of the candidate gene.
  • the screening method can be modified to identify genes that inhibit differentiation.
  • an inhibitory agent such as a small interfering RNA (siRNA), antisense RNA, ribozyme, antibody, or small molecule
  • a reporter stem cell e.g., an endogenous candidate gene
  • a candidate gene e.g., an endogenous candidate gene
  • an siRNA or antisense RNA can block translation of a target RNA, or an antibody or small molecule compound can block the activity of a target protein.
  • the reporter stem cells are cultured in the presence of growth factors, and they can remain in the presence of growth factors, when the cell is contacted with the inhibitory agent.
  • the cells can be transferred to a lower concentration of growth factors to sensitize the cells for differentiation.
  • the cells can be completely removed from the supplemental growth factors, to compare the luminescence in the presence and absence of the candidate gene.
  • the cell is examined for an increase in luminescence, and the signal intensity is compared to a control cell.
  • the control cell can be contacted with an agent that does not target any gene in the cell, or an agent that targets a gene known not to influence (promote or inhibit) differentiation of stem cells into cells of the inner ear, or the control cell may not be contacted with any agent.
  • An increase in luminescence indicates that the gene can inhibit the differentiation of the stem cell into a cell of the inner ear.
  • the specific promoter driving expression of the luciferase gene dictates the cell type for which the reporter assay is useful for monitoring differentiation.
  • the luciferase gene is under control of a hair cell specific promoter, an increase in luminescence indicates that the candidate gene inhibits differentiation of hair cells. If the luciferase gene is under control of a spiral ganglion-specific promoter, an increase in luminescence indicates that the candidate gene inhibits differentiation of spiral ganglion cells.
  • the agent can be tested against different reporter cell lines (e.g., lines for testing differentiation of hair cells, and lines for testing differentiation of spiral ganglion cells). Some candidate genes may be found to inhibit differentiation of stem cells to multiple different tissue cell types.
  • the screens are useful for determining whether a candidate gene can influence stem cell differentiation.
  • Known candidate genes have previously been implicated in ear development or in disorders related to the ear, and many of these genes are listed in Table 1.
  • the screens are also useful for identifying genes not previously recognized as being involved in ear cell differentiation or function.
  • libraries can be assayed with the described screens.
  • Libraries can be commercially obtained or can be constructed from nucleic acids isolated from specific desired tissues.
  • the libraries can be cDNA libraries constructed from RNA isolated from a mammal, such as a mouse or a human.
  • the RNA can be isolated from a specific tissue of a mammal, such as the brain (e.g., mouse brain or human striatum).
  • the described screens can be modified for high throughput, such as for use in 96-well plates.
  • An agent identified in a screen as being capable of influencing the differentiation of a stem cell into an ear cell can be used to generate ear cells in the laboratory for further research or for treatment of a hearing disorder or other ear-related disorders.
  • a plasmid can drive overexpression or low-level expression of a candidate gene or inhibitory agent in a reporter stem cell line.
  • the plasmid can be an adenoviral vector.
  • an adenoviral vector can drive expression of a candidate gene or an inhibitory agent, such as an siRNA, antisense RNA, or ribozyme.
  • the adenoviral vector can drive expression of the candidate gene or inhibitory agent from a promoter, such as a constitutive promoter (e.g., a CMV or human U6 promoter).
  • Libraries, including overexpression or knockdown libraries, are also suitable for use in the methods described herein.
  • Treatment methods can be used to generate cells for therapeutic use.
  • Treatment methods include generating cells of the inner ear (e.g., hair cells or cells of the spiral ganglion) from stem cells for transplantation into an ear of a human in need thereof.
  • Methods of culturing cells of the inner ear include culturing stem cells under conditions that cause the stem cell to differentiate into a cell of the inner ear. Transplantation of the cells into the inner ear of a subject can be useful for restoring or improving the ability of the subject to hear, or for decreasing the symptoms of vestibular dysfunction.
  • Inner ear cells derived from stem cells according to the methods described herein need not be fully differentiated to be therapeutically useful.
  • a partially differentiated cell that improves any symptom of a hearing disorder in a subject is useful for the therapeutic compositions and methods described herein.
  • Ear cells or ear cell progenitors can be generated from stem cells isolated from a mammal, such as a mouse or human, and the cells can be embryonic stem cells or stem cells derived from mature (e.g., adult) tissue, such as the inner ear, central nervous system, blood, skin, eye or bone marrow. Any of the methods described above for culturing stem cells and inducing differentiation into ear cells (e.g., hair cells or cells of the spiral ganglion) can be used.
  • Methods of isolating a stem cell or progenitor cell from the inner ear of an animal are also featured in the invention. These methods include providing tissue from the inner ear of the animal, where the tissue includes at least a portion of the utricular maculae.
  • the animal can be a mammal, such as a mouse, rat, pig, rabbit, goat, horse, cow, dog, cat, primate, or human.
  • the isolated tissue can be suspended in a neutral buffer, such as phosphate buffered saline (PBS), and subsequently exposed to a tissue-digesting enzyme (e.g., trypsin, leupeptin, chymotrypsin, and the like) or a combination of enzymes, or a mechanical (e.g., physical) force, such as trituration, to break the tissue into smaller pieces.
  • a tissue-digesting enzyme e.g., trypsin, leupeptin, chymotrypsin, and the like
  • a mechanical force such as trituration
  • both mechanisms of tissue disruption are used.
  • the tissue can be incubated in about 0.05% enzyme (e.g., about 0.001%, 0.01%, 0.03%, 0.07%, or 1.0% of enzyme) for about 5, 10, 15, 20, or 30 minutes, and following incubation, the cells can be mechanically disrupted.
  • the disrupted tissue can be passed through a device, such as a filter or bore pipette, that separates a stem cell or progenitor cell from a differentiated cell or cellular debris.
  • the separation of the cells can include the passage of cells through a series of filters having progressively smaller pore size.
  • the filter pore size can range from about 80 ⁇ m or less, about 70 ⁇ m or less, about 60 ⁇ m or less, about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 35 ⁇ m or less, or about 20 ⁇ m or less.
  • the cells can be frozen for future use or placed in culture for differentiation.
  • the separated cells can be placed in individual wells of a culture dish at a low dilution, and cultured to differentiate and into cells of the inner ear, or to differentiate into inner-ear like cells to various stages of the differentiation process.
  • partially or fully differentiated cells are useful for the methods described herein.
  • the cells can be separated into one cell per well. Formation of spheres (clonal floating colonies) from the isolated cells can be monitored, and the spheres can be amplified by disrupting them (e.g., by physically means) to separate the cells, and the cells can be cultured again to form additional spheres. Further culturing of the cells in the absence of or in lower amounts of growth factors will induce the spheres (and the cells of the spheres) to differentiate further into more highly developed cells of the inner ear.
  • stem cells can be cultured in serum free DMEM/high-glucose and F12 media (mixed 1:1), and supplemented with N2 and B27 solutions and growth factors. Growth factors such as EGF, IGF-1, and bFGF have been demonstrated to augment sphere formation in culture. In vitro, stem cells often show a distinct proliferation potential for forming spheres. Thus, the identification and isolation of spheres can aid in the process of isolating stem cells from mature tissue for use in making differentiated cells of the inner ear.
  • the growth medium for cultured stem cells can contain one or more or any combination of growth factors, provided that the stem cells do not differentiate.
  • the medium can be exchanged for medium lacking growth factors.
  • the medium can be serum-free DMEM/high glucose and F12 media (mixed 1:1) supplemented with N2 and B27 solutions. Equivalent alternative media and nutrients can also be used. Culture conditions can be optimized using methods known in the art.
  • the cells can be monitored for expression of cell-specific markers.
  • hair cells can be identified by the expression of myoVIIa, Math1, ⁇ 9 acetylcholine receptor, espin, parvalbumin 3, or Brn3.1.
  • Cells of the spiral ganglion can be identified by the expression of ephrinB2, ephrinB3, trkB, trkC, GATA3, BF1, FGF10, FGF3, CSP, GFAP, and Islet1.
  • An agent capable of causing differentiation of a stem cell into a cell of the inner ear can be administered directly to the ear of a human requiring such treatment, and the administration of the agent can generate hair cell growth in the ear (e.g., in the inner, middle, and/or outer ear).
  • the number of hair cells in the ear can be increased about 2-, 3-, 4-, 6-, 8-, or 10-fold or more as compared to the number of hair cells before treatment with the agent.
  • This new hair cell growth can effectively restore or establish at least a partial improvement in the subject's ability to hear.
  • administration of an agent can improve hearing loss by about 5, 10, 15, 20, 40, 60, 80, 100% or more.
  • compositions can include one or more ear cell differentiation agents identified as being capable of causing a pluripotent stem cell to differentiate into a cell of the inner ear.
  • the pharmaceutical compositions provided herein can generate hair cell growth in any region of the ear, such as in the inner, middle, and/or outer regions of the ear.
  • a differentiation agent can generate hair cell growth in the cochlea or the vestibular system of the inner ear.
  • Pharmaceutical compositions can also include any of the secondary factors discussed above, including factors to enhance cell engraftment or neurite extension. Exemplary formulations are described in greater detail below.
  • a composition as described herein can be packaged and labeled for use as a treatment for a hearing disorder.
  • a human having a disorder of the inner ear, or at risk for developing such a disorder can be treated with inner ear cells (hair cells or spiral ganglion cells) generated from stem cells.
  • inner ear cells hair cells or spiral ganglion cells
  • at least some transplanted spiral ganglion neurons will form synaptic contacts with hair cells and with targets in the cochlear nucleus.
  • the stem cells can be modified prior to differentiation.
  • the cells can be engineered to overexpress one or more anti-apoptotic genes in the progenitor or differentiated cells.
  • Fak tyrosine kinase or Akt genes are candidate anti-apoptotic genes that can be useful for this purpose; overexpression of FAK or Akt can prevent cell death in spiral ganglion cells and encourage engraftment when transplanted into another tissue, such as an explanted organ of Corti (see for example, Mangi et al., Nat. Med. 9:1195-201, 2003).
  • Neural progenitor cells overexpressing ⁇ v ⁇ 3 integrin may have an enhanced ability to extend neurites into a tissue explant, as the integrin has been shown to mediate neurite extension from spiral ganglion neurons on laminin substrates (Aletsee et al., Audiol. Neurootol.
  • ephrinB2 and ephrinB3 expression can be altered, such as by silencing with RNAi or overexpression with an exogenously expressed cDNA, to modify EphA4 signaling events.
  • Spiral ganglion neurons have been shown to be guided by signals from EphA4 that are mediated by cell surface expression of ephrin-B2 and -B3 (Brors et al., J. Comp. Neurol. 462:90-100, 2003). Inactivation of this guidance signal may enhance the number of neurons that reach their target in an adult inner ear.
  • Exogenous factors such as the neurotrophins BDNF and NT3, and LIF can be added to tissue transplants to enhance the extension of neurites and their growth towards a target tissue in vivo and in ex vivo tissue cultures.
  • Neurite extension of sensory neurons can be enhanced by the addition of neurotrophins (BDNF, NT3) and LIF (Gillespie et al., NeuroReport 12:275-279, 2001).
  • a Sonic hedgehog (Shh) polypeptide or polypeptide fragment e.g., SHH-N
  • Shh is a developmental modulator for the inner ear and a chemoattractant for axons (Charron et al., Cell 113:11 23, 2003).
  • any human experiencing or at risk for developing a hearing loss is a candidate for the treatment methods described herein.
  • the human can receive a transplant of inner ear hair cells or spiral ganglion cells generated by exposure to a differentiation agent, or the human can be administered an agent identified as being capable of causing a stem cell to differentiate into a cell of the inner ear.
  • a human having or at risk for developing a hearing loss can hear less well than the average human being, or less well than a human before experiencing the hearing loss. For example, hearing can be diminished by at least 5, 10, 30, 50% or more.
  • the human can have sensorineural hearing loss, which results from damage or malfunction of the sensory part (the cochlea) or the neural part (the auditory nerve) of the ear, or conductive hearing loss, which is caused by blockage or damage in the outer and/or middle ear, or the human can have mixed hearing loss, which is caused by a problem in both the conductive pathway (in the outer or middle ear) and in the nerve pathway (the inner ear).
  • a mixed hearing loss is a conductive loss due to a middle-ear infection combined with a sensorineural loss due to damage associated with aging.
  • the subject can be deaf or have a hearing loss for any reason or as a result of any type of event.
  • a human can be deaf because of a genetic or congenital defect; for example, a human can have been deaf since birth, or can be deaf or hard-of-hearing as a result of a gradual loss of hearing due to a genetic or congenital defect.
  • a human can be deaf or hard-of-hearing as a result of a traumatic event, such as a physical trauma to a structure of the ear, or a sudden loud noise, or a prolonged exposure to loud noises. For example, prolonged exposures to concert venues, airport runways, and construction areas can cause inner ear damage and subsequent hearing loss.
  • a human can experience chemical-induced ototoxicity, wherein ototoxins include therapeutic drugs including antineoplastic agents, salicylates, quinines, and aminoglycoside antibiotics, contaminants in foods or medicinals, and environmental or industrial pollutants.
  • ototoxins include therapeutic drugs including antineoplastic agents, salicylates, quinines, and aminoglycoside antibiotics, contaminants in foods or medicinals, and environmental or industrial pollutants.
  • a human can have a hearing disorder that results from aging, or the human can have tinnitus (characterized by ringing in the ears).
  • a human suitable for the therapeutic compositions and methods featured in the invention can include a human having a vestibular dysfunction, including bilateral and unilateral vestibular dysfunction.
  • Vestibular dysfunction is an inner ear dysfunction characterized by symptoms that include dizziness, imbalance, vertigo, nausea, and fuzzy vision and may be accompanied by hearing problems, fatigue and changes in cognitive functioning.
  • Vestibular dysfunction can be the result of a genetic or congenital defect; an infection, such as a viral or bacterial infection; or an injury, such as a traumatic or nontraumatic injury.
  • Vestibular dysfunction is most commonly tested by measuring individual symptoms of the disorder (e.g., vertigo, nausea, and fuzzy vision).
  • the human can be tested for an improvement in hearing or in other symptoms related to inner ear disorders.
  • Methods for measuring hearing are well-known and include pure tone audiometry, air conduction, and bone conduction tests. These exams measure the limits of loudness (intensity) and pitch (frequency) that a human can hear.
  • Hearing tests in humans include behavioral observation audiometry (for infants to seven months), visual reinforcement orientation audiometry (for children 7 months to 3 years) and play audiometry for children older than 3 years.
  • Oto-acoustic emission testing can be used to test the functioning of the cochlear hair cells, and electro-cochleography provides information about the functioning of the cochlea and the first part of the nerve pathway to the brain.
  • compositions and methods featured in the invention can be used prophylactically, such as to prevent hearing loss, deafness, or other auditory disorder associated with loss of inner ear function.
  • a composition containing a differentiation agent can be administered with a second therapeutic, such as a therapeutic that may effect a hearing disorder.
  • Such ototoxic drugs include the antibiotics neomycin, kanamycin, amikacin, viomycin, gentamycin, tobramycin, erythromycin, vancomycin, and streptomycin; chemotherapeutics such as cisplatin; nonsteroidal anti-inflammatory drugs (NSAIDs) such as choline magnesium trisalicylate, diclofenac, diflunisal, fenoprofen, flurbiprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, salsalate, sulindac, and tolmetin; diuretics; salicylates such as aspirin; and certain malaria treatments such as quinine and chloroquine.
  • NSAIDs nonsteroidal anti-inflammatory drugs
  • a human undergoing chemotherapy can also be administered a differentiation agent described herein or an agent identified by a method described herein.
  • the chemotherapeutic agent cisplatin for example, is known to cause hearing loss. Therefore, a composition containing a differentiation agent can be administered with cisplatin therapy to prevent or lessen the severity of the cisplatin side effect.
  • a composition containing a differentiation agent can be administered before, after and/or simultaneously with the second therapeutic agent. The two agents may be administered by different routes of administration.
  • compositions and methods featured in the invention are appropriate for the treatment of hearing disorders resulting from sensorineural hair cell loss or auditory neuropathy.
  • Patients suffering from auditory neuropathy experience a loss of cochlear sensory neurons while the hair cells of the inner ear remain intact.
  • Such patients will benefit particularly from treatment that causes cells (stem cells or progenitor cells) to differentiate into spiral ganglion cells, or from administration of spiral ganglion cells into the inner ear.
  • Patients with sensorineural hair cell loss experience the degeneration of cochlear hair cells, which frequently results in the loss of spiral ganglion neurons in regions of hair cell loss.
  • Such patients may also experience loss of supporting cells in the organ of Corti, and degeneration of the limbus, spiral ligament, and stria vascularis in the temporal bone material.
  • These patients can receive treatment with an agent that causes cells to differentiate into hair cells, or a tissue transplant containing hair cells grafted or injected into the inner ear.
  • the patients may additionally benefit from treatment that causes cells to differentiate into spiral ganglion cells, or from administration of spiral ganglion cells into the inner ear.
  • Differentiation agents identified by the methods described above can be formulated for administration to a subject diagnosed as having or at risk for developing a hearing loss or vestibular disorder.
  • Pharmaceutical compositions containing a differentiation agent can be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients.
  • a differentiation agent can be formulated for administration by drops into the ear, insufflation (such as into the ear), topical, or oral administration.
  • the differentiation agent in another mode of administration, can be directly administered in situ to the cochlea of the inner ear, such as via a catheter or pump.
  • a catheter or pump can, for example, direct a differentiation agent into the cochlear luminae or the round window of the ear.
  • a differentiation agent can be injected into the ear, such as into the luminae of the cochlea (e.g., the Scala media, Sc vestibulae, and Sc tympani). Injection can be, for example, through the round window of the ear or through the cochlear capsule.
  • the luminae of the cochlea e.g., the Scala media, Sc vestibulae, and Sc tympani. Injection can be, for example, through the round window of the ear or through the cochlear capsule.
  • Ear cells generated by the methods described above can be transplanted, such as in the form of a cell suspension, into the ear by injection, such as into the luminae of the cochlea. Injection can be, for example, through the round window of the ear or through the bony capsule surrounding the cochlea. The cells can be injected through the round window into the auditory nerve trunk in the internal auditory meatus or into the scala tympani.
  • the nature of the pharmaceutical compositions for administration is dependent on the mode of administration and can readily be determined by one of ordinary skill in the art.
  • the therapeutic compositions feature in the invention can contain carriers or excipients, many of which are known to skilled artisans. Excipients that can be used include buffers (for example, citrate buffer, phosphate buffer, acetate buffer, and bicarbonate buffer), amino acids, urea, alcohols, ascorbic acid, phospholipids, polypeptides (for example, serum albumin), EDTA, sodium chloride, liposomes, mannitol, sorbitol, and glycerol.
  • the nucleic acids, polypeptides, small molecules, and other modulatory compounds featured in the invention can be administered by any standard route of administration.
  • administration can be parenteral, intravenous, subcutaneous, or oral.
  • a modulatory compound can be formulated in various ways, according to the corresponding route of administration.
  • liquid solutions can be made for administration by drops into the ear, for injection, or for ingestion; gels or powders can be made for ingestion or topical application. Methods for making such formulations are well known and can be found in, for example, “Remington's Pharmaceutical Sciences.”
  • the differentiation agents described herein or identified by a method described herein can be administered directly to the inner ear (e.g., by injection or through surgical placement).
  • Other compositions e.g., pharmaceutically acceptable compositions containing stem cells, progenitor cells, or auditory cells differentiated by a method described herein
  • the amount of the differentiation agent or the amount of a cell-based composition may be described as a therapeutically effective amount.
  • the compositions of the invention can be placed in sustained released formulations or implantable devices (e.g., a pump).
  • compositions can be formulated for parenteral administration by injection, for example, by bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dosage form, for example, in ampoules or in multi-dose containers, with an added preservative.
  • the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, for example, sterile pyrogen-free water, before use.
  • compositions can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (e.g., subcutaneously).
  • the compositions can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • compositions formulated for oral administration can take the form of tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (for example, pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (for example, lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (for example, magnesium stearate, talc or silica); disintegrants (for example, potato starch or sodium starch glycolate); or wetting agents (for example, sodium lauryl sulphate).
  • binding agents for example, pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose
  • fillers for example, lactose, microcrystalline cellulose or calcium hydrogen phosphate
  • lubricants for example, magnesium stearate, talc or silica
  • disintegrants for example, potato starch or sodium starch glycolate
  • wetting agents for example, sodium lauryl sulphate
  • Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
  • Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (for example, sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (for example, lecithin or acacia); non-aqueous vehicles (for example, almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (for example, methyl or propyl-p-hydroxybenzoates or sorbic acid).
  • the preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.
  • Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
  • compositions may, if desired, be presented in a pack or dispenser device that may contain one or more unit dosage forms containing the active ingredient.
  • the pack may for example comprise metal or plastic foil, such as a blister pack.
  • the dispenser device may include a liquid dropper for administration of a therapeutic agent dropwise into the ear.
  • the pack or dispenser device can be accompanied by instructions for administration.
  • efficacy of the treatment methods described herein can be assayed by determining an improvement in the subject's ability to hear, or by an improvement in other symptoms such as balance.
  • efficacy can be assayed by measuring distortion product otoacoustic emissions (DPOAEs) or compound action potential (CAP).
  • DPOAEs distortion product otoacoustic emissions
  • CAP compound action potential
  • compositions and methods described herein can be used independently or in combination with one another. That is, subjects can be administered one or more of the pharmaceutical compositions, for example, pharmaceutical compositions containing a differentiation agent subjected to one or more of the therapeutic methods described herein, or both, in temporally overlapping or non-overlapping regimens.
  • the subject can also be administered a solution or tissue containing the differentiated cells generated from stem cells as described above.
  • One or both of these therapies can be administered in addition to a mechanical device such as a cochlear implant or a hearing aid, which is worn in the outer ear.
  • the therapies may generally occur in any order and can be simultaneous or interspersed.
  • the differentiation agents for use in the methods featured in the invention can be packaged as pharmaceutical compositions and labeled for any use as described herein.
  • the package can be labeled for use to treat a hearing disorder.
  • Toxicity and therapeutic efficacy of the compositions disclosed in the invention can be determined by standard pharmaceutical procedures, using either cells in culture or experimental animals to determine the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed as the ratio LD 50 /ED 50 .
  • Polypeptides or other compounds that exhibit large therapeutic indices are preferred.
  • the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity, and with little or no adverse effect on a human's ability to hear.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC 50 (that is, the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans.
  • Exemplary dosage amounts of a differentiation agent are at least from about 0.01 to 3000 mg per day, e.g., at least about 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 2, 5, 10, 25, 50, 100, 200, 500, 1000, 2000, or 3000 mg per kg per day, or more.
  • the formulations and routes of administration can be tailored to the specific hearing disorder being treated, and for the specific human being treated.
  • the human can have been deaf from birth due to a genetic or environmental event, or a child or adult human can be losing hearing due to environmental factors such as prolonged exposure to loud noises, or a human can be experiencing a hearing loss due to aging. Therefore the human can be any age (e.g., an infant or an elderly person), and formulation and route of administration can be adjusted accordingly.
  • a subject can receive a dose of the agent once or twice or more daily for one week, one month, six months, one year, or more.
  • the treatment can continue indefinitely, such as throughout the lifetime of the human.
  • Treatment can be administered at regular or irregular intervals (once every other day or twice per week), and the dosage and timing of the administration can be adjusted throughout the course of the treatment.
  • the dosage can remain constant over the course of the treatment regimen, or it can be decreased or increased over the course of the treatment.
  • the dosage facilitates an intended purpose for both prophylaxis and treatment without undesirable side effects, such as toxicity, irritation or allergic response.
  • side effects such as toxicity, irritation or allergic response.
  • human doses can readily be extrapolated from animal studies (Katocs et al., Chapter 27 In: “ Remington's Pharmaceutical Sciences”, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990).
  • the dosage required to provide an effective amount of a formulation will vary depending on several factors, including the age, health, physical condition, weight, type and extent of the disease or disorder of the recipient, frequency of treatment, the nature of concurrent therapy, if required, and the nature and scope of the desired effect(s) (Nies et al., Chapter 3, In: Goodman & Gilman's “The Pharmacological Basis of Therapeutics”, 9th Ed., Hardman et al., eds., McGraw-Hill, New York, N.Y, 1996).
  • Kits A differentiation agent described herein or identified by a method described herein can be provided in a kit, as can cells that have been induced to differentiate (e.g., stem cells or progenitor cells that have differentiated into, for example, hair cells or hair-like cells).
  • the kit can include (a) the agent, such as in a composition that includes the agent, and (b) informational material.
  • the informational material can be descriptive, instructional, marketing or other material that relates to the methods described herein and/or to the use of the agent for the methods described herein.
  • the informational material relates to the use of a differentiation agent to treat a subject who has, or who is at risk for developing, a hearing disorder.
  • the kits can also include paraphernalia for administering a differentiation agent to a cell (in culture or in vivo) and/or for administering a cell to a patient.
  • the informational material can include instructions for administering the differentiation agent and/or cell(s) in a suitable manner to treat a human, e.g., in a suitable dose, dosage form, or mode of administration (e.g., a dose, dosage form, or mode of administration described herein).
  • a suitable dose, dosage form, or mode of administration e.g., a dose, dosage form, or mode of administration described herein.
  • doses, dosage forms, or modes of administration can be by liquid drops into the ear, such as from a dropper bottle, or the composition can be administered directly to the ear such as through a catheter or pump.
  • the informational material can include instructions to administer the differentiation agent to a suitable subject, e.g., a human, e.g., a human having, or at risk for developing, a hearing disorder.
  • the material can include instructions to administer the agonist to a subject who has experienced a hearing loss due to a traumatic event, or to a subject who has received a separate therapeutic agent that causes hearing loss, such as the antibiotics and chemotherapeutic agents discussed herein.
  • the informational material of the kits is not limited in its form.
  • the informational material e.g., instructions
  • the informational material is provided in printed matter, such as in a printed text, drawing, and/or photograph, such as a label or printed sheet.
  • the informational material can also be provided in other formats, such as Braille, computer readable material, video recording, or audio recording.
  • the informational material of the kit is contact information, such as a physical address, email address, website, or telephone number, where a user of the kit can obtain substantive information about the hedgehog pathway agonist and/or its use in the methods described herein.
  • the informational material can also be provided in any combination of formats.
  • the composition of the kit can include other ingredients, such as a solvent or buffer, a stabilizer, a preservative, a fragrance or other cosmetic ingredient, and/or a second agent for treating a condition or disorder described herein (e.g., a hearing disorder).
  • the other ingredients can be included in the kit, but in different compositions or containers than the agent.
  • the kit can include instructions for admixing the agent and the other ingredients, or for using the agent together with the other ingredients.
  • the differentiation agent (e.g., a hedgehog agonist) can be provided in any form, including a liquid, dried or lyophilized form.
  • the agent is preferably substantially pure and/or sterile.
  • the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being preferred.
  • reconstitution generally is by the addition of a suitable solvent.
  • the solvent e.g., sterile water or buffer, can optionally be provided in the kit.
  • the kit can include one or more containers for the composition containing the differentiation agent.
  • the kit contains separate containers, dividers or compartments for the composition and informational material.
  • the composition can be contained in a bottle (e.g., a dropper bottle, such as for administering drops into the ear), vial, or syringe, and the informational material can be contained in a plastic sleeve or packet.
  • the separate elements of the kit are contained within a single, undivided container.
  • the composition is contained in a bottle, vial or syringe that has attached thereto the informational material in the form of a label.
  • the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms (e.g., a dosage form described herein) of the hedgehog pathway agonist.
  • the kit can include a plurality of syringes, ampoules, foil packets, or blister packs, each containing a single unit dose of the hedgehog pathway agonist.
  • the containers of the kits can be air tight and/or waterproof, and the containers can be labeled for a particular use. For example, a container can be labeled for use to treat a hearing disorder.
  • kits optionally include a device suitable for administration of the composition (e.g., a syringe, pipette, forceps, dropper (e.g., ear dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device).
  • a device suitable for administration of the composition e.g., a syringe, pipette, forceps, dropper (e.g., ear dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device).
  • the device can be a dropper for administration to the ear.
  • Hedgehog Pathway Agonists as Differentiation Agents.
  • Exemplary candidates for use in the treatment methods and pharmaceutical compositions featured in the invention include hedgehog pathway agonists.
  • a hedgehog pathway agonist is a molecule, such as a polypeptide, drug, or nucleic acid that stimulates a hedgehog signaling pathway.
  • One exemplary hedgehog pathway agonist is a Sonic hedgehog (SHH) polypeptide (SEQ ID NO:1), or fragment of an SHH polypeptide, particularly an N-terminal fragment ( FIG. 1 ).
  • SHH Sonic hedgehog
  • SEQ ID NO:1 fragment of an SHH polypeptide, particularly an N-terminal fragment
  • N an 18K amino-terminal fragment
  • C 25K carboxy-terminal fragment
  • SHH-N polypeptides can perform the signaling functions of SHH, and are suitable for use in the compositions and treatment methods described herein.
  • a SHH polypeptide ( FIG. 1 ; SEQ ID NO:1) can be any spliced isoform of SHH, or fragment or modified polypeptide thereof.
  • a “modified” polypeptide can be ubiquitinated, phosphorylated, methylated, or conjugated to any natural or synthetic molecule, such as a fluorescent tag or heterologous polypeptide tag.
  • a hedgehog pathway agonist can be a known homolog of Sonic hedgehog, such as an Indian or Desert hedgehog polypeptide, or any spliced isoform, or fragment or modified polypeptide thereof.
  • a hedgehog pathway agonist can also be a polypeptide having a sequence that is substantially identical to the amino acid sequence of SHH (SEQ ID NO:1).
  • a “substantially identical” gene or polypeptide is similar in sequence to the human Shh cDNA (SEQ ID NO:2; FIG. 2 ) or amino acid sequence (SEQ ID NO:8; FIG. 1 ), respectively.
  • a substantially identical nucleic acid sequence is at least 80% identical to SEQ ID NO:2, and a substantially identical amino acid sequence is at least 80% identical to SEQ ID NO:1.
  • a target DNA or RNA sequence can be 80%, 85%, 95%, or 100% identical.
  • a fragment of a target nucleic acid sequence e.g., a sequence that encodes an exon
  • a target nucleic acid sequence can be at least 80% identical to a fragment of SEQ ID NO:2.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes).
  • the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, or 100% of the length of the reference sequence (e.g., when aligning a second sequence to the SHH amino acid sequence of SEQ ID NO:1, having 462 amino acid residues, at least 139, preferably at least 185, more preferably at least 231, even more preferably at least 277, and even more preferably at least 323, 370, or 416 amino acid residues are aligned).
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
  • SHH polypeptide or polypeptide fragment such as SHH-N, or substantially identical polypeptide, such as Dhh or Ihh, can have up to about 20 (e.g., up to about 10, 5, or 3) amino acid deletions, additions, or substitutions, such as conservative substitutions, to be useful for the compositions and methods described herein.
  • a hedgehog agonist in another aspect, can be a polypeptide that is substantially identical to the amino acid sequence of Indian hedgehog (Ihh; see FIG. 3 ), or Desert hedgehog (Dhh; see FIG. 4 ).
  • a hedgehog pathway agonist can also be a polypeptide fragment (e.g., an N-terminal peptide fragment) of Ihh or Dhh.
  • a hedgehog pathway agonist can act on a nucleic acid of a second (or the same) hedgehog pathway agonist.
  • an agonist can increase gene expression of a hedgehog polypeptide, such as by acting as a transcription factor or an enhancer of transcription (e.g., of a Sonic hedgehog gene), or the agonist can stabilize (e.g., protect from degradation) a RNA transcript of a hedgehog pathway agonist.
  • the hedgehog pathway agonist can also (or alternatively) act on a nucleic acid of a gene that is not a hedgehog pathway agonist, but which otherwise influences differentiation of a stem cell or progenitor cell into a cell of the inner ear.
  • Nucleic acids such as DNA plasmids, can be used in the methods and compositions described herein, such as for gene therapy.
  • nucleic acids and nucleic acid vectors
  • polypeptides that act as hedgehog pathway agonists such as by any method described herein.
  • a hedgehog pathway agonist can be a small molecule, such as Hh-Ag1.3.
  • a small molecule is a chemical compound that affects the phenotype of a cell or organism by, for example, modulating the activity of a specific polypeptide or nucleic acid, such as a hedgehog polypeptide or nucleic acid, within a cell.
  • a small molecule can, for example, affect a cell by directly interacting with a polypeptide or by interacting with a molecule that acts upstream or downstream of the biochemical cascade that results in polypeptide expression or activity.
  • hedgehog signaling pathway besides hedgehog polypeptides themselves (e.g., SHH, Ihh, Dhh), can be used for the treatment methods and compositions described herein.
  • overexpression or modification of a transcription factor that regulates expression of a hedgehog pathway agonist can stimulate hair cell growth.
  • a Gli transcription factor polypeptide or a nucleic acid expressing a Gli polypeptide
  • a polypeptide, a small molecule, drug, or other modulatory compound that stimulates Gli activity can function as a hedgehog pathway agonist.
  • the Gli family of transcription factors is known to stimulate transcription of Sonic hedgehog in vivo.
  • the methods and compositions can include an activator of a hedgehog pathway agonist receptor.
  • a polypeptide, small molecule, or other modulatory compound can activate a Patched and/or Smoothened receptor, both of which are recognized by Sonic hedgehog in vivo.
  • cells can be induced to overexpress one or more of the hedgehog pathway agonist receptors, or nucleic acids can be administered (e.g., by gene therapy) and induced to express exogenous receptors.
  • the receptors are expressed on a cell surface to facilitate interaction with a hedgehog polypeptide and activation of a hedgehog signaling pathway that ultimately leads to the development of a hair cell.
  • a hedgehog pathway agonist can stimulate endogenous hedgehog proteins.
  • the methods and compositions can include morphogens, growth factors, hormones, and the like, that stimulate hedgehog protein activity (e.g., upregulate gene expression, stimulate protein modification, or otherwise activate protein activity).
  • a hedgehog pathway agonist can inhibit an inhibitor of a hedgehog signaling pathway.
  • An inhibitor can be, for example, a polypeptide (such as an antibody), small molecule, or other modulatory compound that binds, sequesters, or otherwise downregulates a component of the hedgehog signaling pathway or inhibits an inhibitor of a hedgehog signaling pathway.
  • a hedgehog pathway agonist can also be applied to a tissue ex vivo to induce and/or expand the number of hair cells (or hair-like cells) or the hair cell density of the tissue, such as in culture conditions.
  • the resulting tissue can be administered, such as by grafting to the ear (e.g., to the inner ear) of a subject, thereby treating the subject for a hearing disorder.
  • a hedgehog pathway agonist e.g., a polypeptide or small molecule agonist
  • the hair cells of the mammalian inner ear are located in the cochlear organ of Corti, as well as in the vestibular sensory epithelia of the saccular macula, the utricular macula, and the cristae of the three semicircular canals.
  • a hedgehog pathway agonist e.g., a polypeptide or small molecule agonist
  • Neurons were Isolated from the Inner Ear of a Pig Fetus for Use in Transplantation Studies
  • YC5/EYFP a derivative of the totipotent cell line R1 (Nagy et al., Proc Natl Acad Sci USA 90:8424-8, 1993); R1; ROSA26-6; and Sox1-GFP (Aubert et al., Nat. Biotechnol. 20:1240-5, 2002).
  • YC5/EYFP cells carry the gene for enhanced yellow fluorescent protein (EYFP) under control of a promoter composed of a cytomegalovirus immediate early enhancer coupled to the ⁇ -actin promoter (Hadjantonakis et al., Mech. Dev. 76:79-90, 1998).
  • ROSA26-6 cells and their derivatives express the lacZ gene encoding the bacterial beta-galactosidase enzyme (Pirity et al., Methods Cell Biol. 57:279-93, 1998).
  • the Sox1-GFP cells express GFP controlled by the promoter for the early neural marker Sox1.
  • ES cells are maintained on a feeder layer of mitotically inactivated primary mouse embryonic fibroblasts (Pirity et al., Methods Cell Biol. 57:279-93, 1998). Undifferentiated ES cells proliferate actively and form compact clusters of small cells.
  • leukemia inhibitory factor a cytokine that promotes the pluripotency of ES cells.
  • cell aggregates of uniform size termed embryoid bodies form in the hanging drops.
  • marker genes for the developing sensory epithelia for example Math1 (Bermingham et al., Science 284:1837-41, 1999), delta1, jagged1 and jagged2 (Lanford et al., Nat. Genet. 21:289-92, 1999; Morrison et al., Mech. Dev. 84:169-72, 1999).
  • Gene expression was detected by reverse transcription followed by polymerase chain reaction (RT-PCR).
  • RT-PCR polymerase chain reaction
  • the differentiated cells were analyzed 14 days after the removal of bFGF from the culture.
  • the expression of the marker genes correlated with the developmental stage of the progenitor or mature cells as nestin and Pax2 and BMP7 expression decreased upon differentiation of the cells and appearance of hair cell markers ( FIG. 6 ).
  • Hair cell markers in differentiated cells were also detected by immunohistochemistry.
  • the hair cells produced in this system co-expressed markers important for hair cell differentiation (Math1) and survival (Brn3.1) and markers present in the more fully differentiated cells (myosin VIIa).
  • embryonic stem cells differentiated to become presumptive auditory sensory neurons. The cells adopted neuronal morphology and acquired negative resting potentials and the ability to fire action potentials.
  • luciferase assay system in which the conversion of the progenitors to the desired cell types is readily detected by a reporter construct.
  • the aim was to have the reporter construct under the control of a promoter that is activated in the differentiated cell but is inactive in the progenitor cells, so that a luciferase signal is generated by differentiation of the cells.
  • the assay can be performed using conditions known to be useful for generating neurons from ES cells. Cells that are grown in the presence of growth factors are cultured in medium without growth factors, and this induces their differentiation to neurons based on the expression of markers.
  • the reporter cells will differentiate and generate a signal.
  • mouse ES cells ROSA 26
  • the neural progenitors were used for construction of the reporter cell lines.
  • the progenitor cells were positive for nestin expression and were kept in culture in the presence of bFGF.
  • neural progenitors were co-transfected with the firefly luciferase gene controlled by a GFAP promoter and a vector that contains the Renilla luciferase gene under control of a CMV promoter.
  • the firefly luciferase construct was made in the pGL3 basic vector (Promega, Madison, Wis.) that contains the firefly luciferase gene and a multiple cloning site for the promoter.
  • the GFAP promoter inserted into this site allowed us to measure the activity of this promoter relative to the constitutively active control promoter in a separate vector driving the Renilla luciferase.
  • ES cell-derived progenitors For injection of ES cell-derived progenitors, we used beveled glass-capillary micropipettes for injections into the otic pits or vesicles of stage 10-16 chicken embryos (1.5-2.5 days of embryonic development, (Hamburger and Hamilton, J. Morphol. 88:49-92, 1951)). Genetically labeled ES cell-derived inner ear progenitors were implanted into the inner ear of chicken embryos and their fate was followed through early otic development. The cells were observed to be engrafted into a preexisting epithelium and certain criteria were identified as being necessary for the cells to engraft. Progenitor cells only survived when implanted as cell aggregates.
  • Progenitor cells that were injected into the otic vesicle in the form of suspensions were not traceable. Integration of cells from the progenitor cell aggregates into the epithelial layers that form the otic vesicle occurred preferentially at sites of epithelial damage.
  • the progenitor-derived cells were incorporated throughout the inner ear, but in our study, we only focused on hair cell development. Murine cells only upregulated hair cell markers when situated in a developing sensory epithelium and only when they were located on the luminal site of the epithelium—in the correct orientation for hair cells. Progenitor-derived cells that we found elsewhere in the inner ear did not display expression of hair cell markers.
  • the organ of Corti from C57BL6 mice at P0-P3 was removed from the cochlea and placed in culture in a collagen matrix or on a collagen coated plate. The morphology of the explants remained intact for up to two weeks. The progenitor cells and differentiated neurons can be tested for their ability to engraft into an explant of the organ of Corti.
  • a unilaterally de-afferented cat is a useful animal model for the study of sensorineural hearing loss with either primary neuronal degeneration or primary hair cell damage followed by secondary neuronal degeneration.
  • This animal model was used as a platform for neuronal transplantation studies. As shown in FIGS. 7A and 7B , the distortion product otoacoustic emissions (DPOAEs) remained normal in the de-afferented ear, while there was a dramatic elevation of compound action potential (CAP) thresholds in the de-afferented ear. These results indicated that all the processes underlying transduction and amplification in the cochlea were normal in the de-afferented ear. Therefore, this model system is ideally suited to a neuronal transplantation experiment.
  • DPOAEs distortion product otoacoustic emissions
  • CAP compound action potential
  • the progenitor cells injected have included 1) immature spiral ganglion neurons isolated from fetal pigs and 2) mouse ES cells, expressing ⁇ -galactosidase reporters. In some cases, the exogenous cells were transplanted into the round window and in other cases into the auditory nerve, just peripheral to the site of the surgical section.
  • ES cells were transplanted into the auditory nerve 4 weeks after surgery.
  • ⁇ -galactosidase positive cells were seen only in the vicinity of the electrode track (none were seen anywhere else in the nerve or cochlear nucleus). Some of these cells had neuronal morphology. In one case, a total of 150 ⁇ -gal positive cells were seen near the electrode track.
  • SHH-N Sonic Hedgehog
  • Explants of the organ of Corti from postnatal day 1 mice were cultured in basic serum-free medium (no growth factor), consisting of serum-free knockout DMEM medium with N2 supplement.
  • Experimental explants were treated with the soluble reagent SHH-N.
  • in situ analysis was performed to examine hair cells through the detection of the hair cell markers myosin VIIA (Myo7a) and Math1. In situ staining revealed that more inner and outer hair cells were present in cultures supplemented with 25 nM SHH-N than in control cultures (N2).
  • inner ear progenitor cells derived from adult murine inner ear stem cells were cultured in serum-free medium (see Li et al., Nature Medicine 9:1293-1299, 2003), and explants were treated with the soluble reagent SHH-N as described above.
  • the number of cells expressing hair cell markers was greater in cultures supplemented with 25 nM SHH-N as compared to control (N2+b27) cultures, and typically the number of cells expressing hair cell markers was about 3-fold greater. Hair cells were identified by in situ staining with an antibody against Myo7a.
  • SHH-N Sonic Hedgehog
  • Chicken otic vesicles were cultured in basic serum-free medium (no growth factor), consisting of serum-free knockout DMEM medium with N2 supplement. Explants were treated with the soluble reagent SHH-N as described above. After 7 days in culture, more hair cells were present in cultures supplemented with 50 nM SHH-N than in control cultures (N2). Hair cell markers were identified by in situ staining with antibodies against myosin VIIA (Myo7a) and hair cell antigen (HCA).
  • Myo7a myosin VIIA
  • HCA hair cell antigen
  • luciferase gene can be cloned downstream of a myoVIIa promoter. This promoter will activate expression of a reporter gene in any cells that have been converted to hair cells.
  • the Math1 promoter is well characterized and can be used to drive expression of reporter genes in hair cells.
  • Other alternative promoters include the ⁇ 9 acetylcholine receptor promoter and the espin promoter.
  • the myoVIIa (or Math1) promoter can be obtained by PCR of mouse genomic DNA. PCR can be performed using primers with specific restriction sites for cloning the DNA into the pGL3-Basic Vector (Promega, Madison, Wis.). The PCR product can be purified by agarose gel electrophoresis, gel purified, and cleaved with restriction enzymes.
  • the pGL3-Basic Vector contains the firefly luciferase gene and a multiple cloning site upstream of the open reading frame. The purified and cleaved PCR product can be cloned into the multiple cloning site in the proper orientation for directing expression of the luciferase gene.
  • the myoVIIa promoter-luciferase construct can be transformed into bacteria for plasmid amplification, and plasmids purified from the resulting clones can be transfected into derivatives of the mouse stem cell lines ROSA26 or R1.
  • ROSA26 and R1 cell lines are maintained and propagated in medium containing the growth factors EGF (20 ng/mL), IGF-1 (50 ng/mL), and bFGF (10 ng/mL) (Li et al., Proc. Natl. Acad. Sci. USA 100:13495-13500). These cells have the characteristics of progenitor cells and have the ability to differentiate into hair cells, but the myoVIIa gene is not activated.
  • a baseline level of luciferase expression can be measured while the cells are in this progenitor state. Removal of the cells to medium lacking growth factors will induce the cells to differentiate into hair cells, which can be detected by an increase in luciferase expression.
  • the cells can be lysed and incubated with substrate and the luminescence measured with a device, such as luminescence spectrometer.
  • the assay can be performed in other cell types, such as neural stem cells and bone marrow derived stem cells.
  • the assay can be performed using a clonal population of cells.
  • a clonal cell line cells transfected with myoVIIa-luciferase are selected by growth on G418.
  • the myoVIIa-luciferase reporter cells can be grown in a 10 cm dish until colonies are apparent. The individual colonies can be then be ring-cloned.
  • the cells can be grown in 96 well plates at dilutions of up to 1 cell per well, and wells that have apparent cell growth will be harvested.
  • the cells can be propagated to obtain large numbers and can then be subjected to the luciferase assay to determine the effect of candidate genes on the conversion to the hair cell phenotype.
  • the myoVIIa-luciferase reporter cells described in Example 10 can be grown in medium containing EGF, IGF-1, and bFGF.
  • the cells can be transfected with a candidate gene (or a biologically active fragment thereof) expressed from a vector such as a plasmid. Expression can be regulated by an inducible promoter or by a constitutively active promoter such as a CMV promoter.
  • Exemplary candidate genes are described in Table 1, and any of the genes or types of genes described in Table 1 can be used in the screening methods of the invention, regardless of the exact manner in which the screen is configured (e.g., regardless of whether the screen is conducted with a single cell; a population of cells; a stem cell or progenitor cell; a pure or impure population of stem cells or progenitor cells; or in culture or in vivo).
  • the cDNAs for the candidate genes can be obtained from RNA prepared from various sources include mouse brain or human striatum (Stratagene, La Jolla, Calif.).
  • the RNA can be reverse-transcribed using the Superscript First Strand Synthesis System (Invitrogen, Carlsbad, Calif.) with an oligo(dT) primer and Superscript II reverse transcriptase.
  • the cDNA for each can be cloned into an expression vector containing a hygromycin resistance gene, and transformed into bacterial cells for amplification (pcDNA3.1/hygromycin).
  • the purified vector can be transfected into luciferase expressing cells, such as those described in Example 10, and the cells cultured in medium containing hygromycin.
  • Clonal cell lines can be obtained and expanded in medium containing hygromycin and the growth factor bFGF, EGF, and IGF, as described in Example 10.
  • the expanded cell culture can then be diluted into 96 well plates.
  • the cells can be cultured overnight for initial growth and spreading to take place, and then the cells can be grown in medium without growth factors to induce differentiation.
  • the individual wells can be subjected to the luciferase assay at various times. A method to measure luciferase activity is described above.
  • a plasmid expressing a gene that is known to bias the cells to development of a phenotype other than hair cells or spiral ganglion cells can be transfected into luciferase gene-expressing cells.
  • a myoD gene can be transfected into the luciferase-reporter cells to induce differentiation of the cells into muscle cells, or a GFAP gene can be transfected to induce differentiation into ganglion cells.
  • RNAs small interfering RNAs that target candidate genes will be introduced into the cells to inhibit the expression of genes whose expression is necessary to maintain the cells in a progenitor state, and thus inhibit the differentiation of the cells into hair cells. Down-regulation of these inhibitory genes will be detected by an increase in luminescence.
  • siRNA molecules short sequences of nucleotides (e.g., sequences of about 21-23 nucleotides) will be selected from the coding sequence of the same group of candidate genes listed above.
  • Synthetic RNAs can be incubated at 90° C. for 1 minute followed by 37° C. for 1 hour to allow the two 21-23 nucleotide strands to anneal.
  • Cationic liposomes can be formed by mixing the siRNAs with oligofectamine (Invitrogen, Carlsbad, Calif.), and this mixture can be used to introduce the siRNA into the luciferase reporter stem cells.
  • the expression of the target gene can be assessed by flow cytometry (for the proteins for which antibodies are available) and by RT-PCR. If a reduction in expression of the targeted protein (or RNA) correlates with an increase in luminescence, it can be concluded that the target gene is an inhibitor of hair cell development. If a decrease in luminescence is detected upon introduction of the siRNA into the cell culture, it can be concluded that the target gene may promote differentiation of stem cells to hair cells. The results of this assay can be compared to the results of the gene overexpression assays described above.
  • the inner ear cell development assays described above are amenable to screening large numbers of genes that can be introduced from an expression library.
  • a library can be constructed that includes the luciferase reporter cells described above, transformed with expression vectors containing the test cDNAs.
  • the library can be constructed from inner ear mRNA.
  • the screening assay can be performed in 96-well plates as described above. Detection of luminescence can be performed after various time periods, following the course of differentiation in response to cDNA expression.
  • a commercial library of genes cloned into adenoviral vectors can be used to express human genes in the luciferase reporter cell line described above. These assays take advantage of the efficient transduction and long-term expression of the adenoviral delivery system.
  • genes identified by the methods described above can be used to induce the differentiation of embryonic stem cells into hair cells or neural cells of the spiral ganglion. These newly generated cells are suitable for transplantation.
  • the differentiated ear cells Before the cells can be used for transplantation, the differentiated ear cells must be separated from remaining pluripotent cells, and from cells that are otherwise not hair cells or neural cells.
  • the promoters described above for tissue specific expression in hair cells or spiral ganglion cells can be cloned upstream of a selectable marker, such as the hygromycin resistance gene.
  • Other selectable markers, such as a GFP gene are appropriate.
  • the methods can be applied to human or mouse embryonic stem cells.
  • a myoVIIa promoter can be cloned upstream of a hygromycin resistance gene.
  • the fusion product can be constructed in a plasmid containing a second selectable marker, such as neomycin, under control of a constitutive promoter, such as CMV.
  • a constitutive promoter such as CMV.
  • Another plasmid can be constructed, wherein a gene identified by the methods of Examples 10-12 is placed under control of a constitutive promoter, such as CMV.
  • the two plasmids can be transfected into a pluripotent human embryonic stem cell. Cells containing the plasmids are selected by growth in medium containing neomycin.
  • Cells that grow in neomycin are expressing the gene of interest, and the neomycin resistance gene.
  • the stem cells are cultured in growth factors such as EGF, IGF-1, and bFGF to maintain the cell in a progenitor state.
  • the cells containing the engineered plasmid are cultured on hygromycin.
  • the hygromycin media can also include supplemental growth factors. The concentration of growth factors can be reduced to sensitize the cells for differentiation. Some cells may be induced to differentiate by plating on hygromycin in the absence of supplemental growth factors. Cells cultured in hygromycin are newly formed hair cells and can be isolated for use in transplantation.

Abstract

This invention relates generally to methods and compositions for inducing stem cell or progenitor cell differentiation, and more particularly to methods and compositions for inducing differentiation of stem cells and/or progenitor cells into cells that function within the inner ear.

Description

  • This application is a continuation of U.S. patent application Ser. No. 10/989,649, filed Nov. 15, 2004, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/519,712, filed on Nov. 13, 2003, and U.S. Provisional Patent Application Ser. No. 60/605,746, filed on Aug. 31, 2004. The contents of the prior applications are hereby incorporated in the present application in their entirety.
  • TECHNICAL FIELD
  • This invention generally relates to compositions and methods for inducing cellular differentiation (e.g., complete or partial differentiation of stem cells into cells capable of functioning as sensory cells of the ear) and to assays and methods of treatment that employ the stem cells or the more fully differentiated cells into which they develop.
  • BACKGROUND
  • More than 5% of the people in industrialized nations have significant hearing problems that range in severity from modest difficulty with speech comprehension to profound deafness. Hearing loss is age-related, as about 4% of people under 45 years old and about 34% of those over 65 years old have debilitating hearing loss. In most cases, the cause is related to degeneration and death of hair cells and their associated spiral ganglion neurons.
  • The ear is composed of four main sections: the external ear, middle ear, inner ear, and the transmission pathway to the hearing center in the brain. The inner ear is a capsule of very dense bone containing a fluid that communicates with the middle ear. Small bones within the middle ear (the malleus, incus, and stapes) transmit sound energy from the tympanic membrane to the oval window at the entrance to the cochlea of the inner ear. The action of the stapes at the oval window exerts pressure on the fluid within the cochlea. The pressure is transmitted through the cochlea, ultimately causing a second window, the round window to oscillate. A basilar membrane that defines the fluid-filled chambers of the cochlea then transmits the oscillations to the organ of Corti, which contains about 13,000 mechanosensory cells called hair cells. Hair cells are located in the epithelial lining of the inner ear (in the cochlear organ of Corti, as mentioned), as well as in the vestibular sensory epithelia of the saccular macula, the utricular macula, and the cristae of the three semicircular canals of the labyrinth. The cochlear hair cells send signals to the cochlear spiral ganglion, and the clustered neuronal cell bodies convey those signals to the cochlear nucleus of the brain stem (see FIGS. 5A, 5B, and 5C).
  • SUMMARY
  • The present invention features compositions and methods related to stem cells and cells of the inner ear. The methods include those for producing (e.g., isolating or obtaining) stem cells or progenitor cells from a tissue (e.g., a tissue within the inner ear) and for identifying agents that mediate complete or partial differentiation of those cells to or toward a mature cell type of the inner ear (e.g., a hair cell or spiral ganglion neuron). We may refer to these agents as “differentiation” agents or compounds. Other methods provide treatment for patients who have, or who are at risk for developing, an auditory disorder. The methods of treatment include steps whereby one administers a differentiation agent (e.g., an agent identified by a screening method described herein), a stem cell or progenitor cell (e.g., a cell isolated by the methods described herein), or both (i.e., both a differentiation agent and a stem cell and/or progenitor cell) to the inner ear of the patient. The compositions include stem cells and progenitor cells isolated by the methods described herein as well as pharmaceutical compositions and kits containing them. The methods of the invention can be practiced using either stem cells or cells that are partially differentiated (progenitor cells).
  • In one aspect, the invention features screening methods for identifying agents that can increase or decrease the expression of one or more auditory proteins within a cell (regardless of the extent to which that cell has differentiated). The change in expression can be, but is not necessarily, a robust change. For example, a candidate agent may increase the expression of an auditory protein from an essentially undetectable level to a readily detectable level. It may also increase expression to a certain degree (e.g., there may be about a 1-, 2-, or 5-fold increase in expression). The protein analyzed (i.e., the auditory protein) can be any protein that is ordinarily expressed in a mature cell of the inner ear (e.g., a hair cell or spiral ganglion cell of an adult who has normal hearing), but expression is not necessarily specific for an inner ear cell. For example, the protein can be one that is expressed in other cell types, and it may be expressed at varying levels as a stem cell differentiates into a progenitor cell and finally into a completely differentiated cell. Proteins that are expressed in inner ear cells (e.g., in hair cells and spiral ganglion cells) are well known in the art.
  • The screening methods include providing a cell or a population of cells, which may contain a single cell type or a variety of cell types, including cells that may be undifferentiated (i.e., pluripotent stem cells) less than fully differentiated (i.e., progenitor cells) or fully differentiated (e.g., recognizable as hair cells or spiral ganglion cells). Where a population of test cells is used, the proportion of stem cells within the test population can vary. For example, the population can contain few stem cells (e.g., about 1-10%) a moderate proportion of stem cells (e.g., about 10-90% (e.g., about 20, 25, 30, 40, 50, 60, 70, 75, 80, or 85% stem cells)) or many stem cells (e.g., at least 90% of the population (e.g., 92, 94, 96, 97, 98, or 99%) can be stem cells). The cells will have the potential to differentiate into a completely or partially differentiated cell of the inner ear (e.g., the cell can be a pluripotent stem cell that differentiates into a cell that expresses one or more auditory proteins). Partially differentiated cells are useful in the treatment methods (whether therapeutic or prophylactic) so long as they express a sufficient number and type of auditory-specific proteins to confer a benefit on the patient (e.g., improved hearing).
  • With respect to their source, the cells employed in the screening or treatment methods can be obtained from a mammal, such as a human, from any developmental stage. For example, the cells can be derived from an embryo, fetus or post-natal mammal (e.g., an infant, child, adolescent, or adult (e.g., an adult human)). More specifically, the stem cell or the progenitor cell can be obtained from the cochlear organ of Corti, the modiolus (center) of the cochlea, the spiral ganglion of the cochlea, the vestibular sensory epithelia of the saccular macula, the utricular macula, or the cristae of the semicircular canals (see FIGS. 5A, 5B, and 5C). The stem cell or progenitor cell can also be obtained, however, from other tissues such as bone marrow, blood, skin, or an eye. The cells employed can be obtained from a single source (e.g., the ear or a structure or tissue within the ear) or a combination of sources (e.g., the ear and one or more peripheral tissues (e.g., bone marrow, blood, skin, or an eye)). The cells can also be obtained from a patient to whom they will subsequently be readministered.
  • Where the methods are carried out in cell culture, one can use an essentially pure population of cells (e.g., an essentially pure population of stem cells (e.g., a population in which about 90% or more of the cells are stem cells). Individual cells (e.g., a single cell placed within the well of a tissue culture plate) can also be analyzed (by, for example, an amplification technique such as “single-cell” PCR). Once the cell or cell population is selected, the cell(s) can be contacted with a candidate agent or exposed to certain environmental conditions (e.g., conditions that vary from physiologic conditions (e.g., increased or decreased temperature, abnormal levels of CO2 or other gases (e.g., oxygen), or non-physiological pH)). Following exposure to the candidate agent or environmental change, one can determine whether the level of expression of an auditory protein is more (or less) than the level prior to exposure to the agent (or relative to a reference standard). More than one auditory protein can be assessed, at the same time or sequentially. To assess expression, one can examine protein levels per se or the level of RNA transcription. Numerous methods are known in the art that can be suitably employed to assess either protein or RNA expression. An increase in expression of the auditory protein indicates that the agent can promote the expression of the auditory protein within the cell, thereby promoting at least partial differentiation of a cell (e.g., a stem cell) into a more mature cell of the inner ear. The ultimate goal of the screening methods is to identify an agent or group of agents or conditions that increase the expression of auditory proteins that mediate the sense of hearing and can, therefore, be used to generate cells that improve a patient's ability to hear or maintain their balance. No particular mechanism of action is required or implied. The agent(s) and/or condition(s) may act directly or indirectly on the transcriptional machinery for the auditory protein in question.
  • The candidate agents can be essentially any nucleic acid (e.g., a gene or gene fragment that encodes a polypeptide (e.g., a functional protein) such as a growth factor or other cytokine (e.g., an interleukin)), any polypeptide per se (which may be a full-length protein or a biologically active fragment or other mutant thereof), or any small molecule. The small molecules can include those contained within commercially available compound libraries (suppliers include ChemBridge Corp (San Diego, Calif.) and ChemDiv (San Diego, Calif.)). The screening assays can be configured as “high throughput” assays to screen many such agents at once. For example, the agents and/or cells to be assessed can be presented in an array. More specifically, the candidate agent can be, for example, a nucleic acid that encodes, or a polypeptide that is, a polypeptide active in the cellular biochemical pathway of which Notch, WNT, or Sonic hedgehog are a part (e.g., WNT1, WNT10B, WNT11, WNT13, WNT14, WNT15, WNT2, WNT2B, WNT5a, WNT7a, or WNT8B); a homolog of Notch, WNT, or Sonic hedgehog; or a biologically active fragment or other variant of Notch, WNT, or Sonic hedgehog. For example, the nucleic acid can encode a fragment of Sonic hedgehog, such as SHH-N or a variant thereof (e.g., an SHH-N fragment that contains a limited number (e.g., 1-10) of conservative amino acid substitutions), or a homolog of Sonic hedgehog, such as Indian hedgehog or Desert hedgehog or fragments or other mutants thereof (e.g., a fragment of Indian hedgehog or Desert hedgehog that corresponds to SHH-N). A homolog is a nucleic acid or polypeptide that is substantially identical to, for example, a Notch, WNT, or Sonic hedgehog nucleic acid or polypeptide and, preferably, functions in the pathways in which Notch, WNT, and Sonic hedgehog are active. Notch, WNT, or Sonic hedgehog from different species may also be described as homologs (e.g., a human sequence may be described as the homolog of a Notch protein from Drosophila or mouse). A first nucleic acid (whether genomic DNA, cDNA, RNA or a nucleic acid containing non-naturally occurring nucleotides) or polypeptide is substantially identical to a second nucleic acid or polypeptide, respectively, when the two are exhibit sequence similarity and at least one shared activity. Nucleic acids and polypeptides useful in the screening and therapeutic methods of the present invention can be substantially identical to a human Sonic hedgehog cDNA (SEQ ID NO:2; FIG. 2) or amino acid sequence (SEQ ID NO:8; FIG. 1). For example, a nucleic acid sequence substantially identical to human Sonic hedgehog cDNA is at least 80% identical (e.g., 85%, 90%, 95%, 98%, or 99%) to SEQ ID NO:2, and a substantially identical amino acid sequence is at least 80% identical (e.g., 85%, 90%, 95%, 98%, or 99%) to SEQ ID NO:1.
  • In particular embodiments, the nucleic acid can encode, or the polypeptide can be: Math1, parvalbumin 3, Brn3.1, Brn3.2, Hes1, Hes5, neurogenin-1, NeuroD, Jagged1, Jagged2, Delta1, Notch1, Lunatic fringe, Numb, Wnt7a, p27Kip1, Shh, Bmp4, Fgfr3, Fgfr1, Fgfr2, Fgf10, Fgf2, Fgf3, GATA3, Pax2, neurotrophin-3, BDNF, or a fragment or other mutant thereof (e.g., a fragment or other mutant that retains sufficient biological activity to function in a screening method or therapeutic method described herein).
  • Rather than, or in addition to, assessing the expression of one or more auditory proteins, the screening methods can be carried out by assessing a reporter gene that has been placed under the control of a sequence that regulates the expression of an auditory protein (e.g., a promoter and/or enhancer that directs expression of an auditory protein in vivo). Accordingly, in another aspect, the invention features methods of identifying differentiation agents that promote the expression of an auditory protein within a cell by providing a cell (any of the cells or populations of cells described above would be appropriate) containing a reporter gene operably linked to a promoter or promoter element (e.g., an enhancer region) of an auditory protein gene. As with the screening method described above, the cell(s) can be contacted with the candidate agent in vivo or in cell culture, and the level of expression of the reporter gene within the cell can be assessed. An increase in expression following exposure to the candidate agent indicates that the agent promotes the expression of the auditory protein within the cell. A decrease in reporter gene expression identifies the agent as a candidate inhibitor of auditory protein expression (proteins that inhibit the expression of an auditory protein are potential targets for inhibition; by inhibiting a protein that inhibits the expression of an auditory protein, one can promote expression of the auditory protein). Cells (e.g., stem cells, progenitor cells, or differentiated cells from the inner ear or another tissue) that contain the reporter constructs described herein (e.g., a plasmid bearing an auditory protein regulatory region operably linked to a reporter gene) are also within the scope of the present invention, as are the reporter constructs per se (e.g., the invention features nucleic acids, which may be further contained within a vector such as a plasmid, in which a regulatory region of an auditory protein (e.g., a Math1 regulatory region of a sonic hedgehog regulatory region) is operably linked to a reporter gene). The reporter gene can encode any detectable polypeptide. For example, the reporter gene can be a gene that encodes a fluorescent protein, an enzymatically active protein (e.g., β-galactosidase and chloramphenicol acetyltransferase), or a protein detectable in an antibody-based assay. Other markers are known in the art and additional exemplary markers are described further below.
  • The screening methods described herein can be performed on a cell in cell culture under ex vivo conditions of pH and temperature suitable to maintain viability (such conditions are generally known in the art and exemplary conditions are provided below). Cells can also be treated in cell culture prior to administration to a patient.
  • The invention also features methods of isolating a stem cell or progenitor cell from the inner ear of an animal (e.g., a mammal such as a human, non-human primate, or other mammal such as a pig, cow, sheep, goat, horse, dog, cat, or rodent). These methods include providing tissue from the inner ear (e.g., a piece of tissue that includes hair cells or the membrane with which they are associated, or spiral ganglion cells). For example, the tissue can include at least a portion of the utricular maculae. The tissue can be disrupted by exposure to a chemical or mechanical force (or both). For example, the tissue can be exposed to a tissue-digesting enzyme, such as trypsin, and/or to a mechanical (e.g., physical) force such as trituration to break the tissue into smaller pieces. The treated tissue (e.g., enzyme-treated tissue (e.g., the enzyme-treated utricular maculae)) can optionally be soaked in fetal calf serum or other protein solution to neutralize or exhaust the enzyme (fully or partially); washed; and the disrupted tissue can be passed through a device such as a cell strainer that separates the stem cells or progenitor cells within the disrupted tissue from differentiated cells or cellular debris. The cells obtained may constitute an enriched population of stem cells and/or progenitor cells; isolation from all (or essentially all) differentiated cells or other cellular material within the tissue may be achieved but is not required to meet the definition of “isolated.” Absolute purity is not required. The invention encompasses cells obtained by the isolation procedures described herein. The cells may be mixed with a cryoprotectant and stored or packaged into kits. Once obtained, the stem cells and/or progenitor cells can be expanded in culture.
  • Methods for treating patients (e.g., humans) who have, or who are at risk for developing, an auditory disorder, are also described and are within the scope of the present invention. These methods include administering a cell or population of cells (as described above; e.g. a stem cell and/or progenitor cell obtained from a tissue such as the ear) to the ear of the patient. The administered cells may be obtained by the methods described herein, and the starting material may be tissue obtained from the patient to be treated. In other embodiments, the methods include the step of administering a therapeutic agent that promotes the expression of an auditory protein within a cell within the inner ear (e.g., a differentiation agent as described herein or as identified by the screening methods described herein). When used, the differentiation agent can be administered to cells in culture or can be administered to the patient either alone (to stimulate the differentiation of stem cells or progenitor cells within the patient's inner ear) or together with undifferentiated cells (e.g., undifferentiated cells isolated by the methods described herein). The differentiation agent can be, for example, an agonist of the hedgehog pathway, such as an agonist of Sonic hedgehog (e.g., Hh-Ag1.3).
  • As noted, the invention also features a stem cell or progenitor cell (either of which may cluster into cellular spheres) isolated by the methods described herein, compositions containing them, and kits that include them (with, for example, instructions for inducing differentiation; for expanding the cells in culture; and/or for administering the cells to a patient or to a cell (e.g., a cell in culture) to promote its differentiation). The instructions can be printed or in another form (e.g., provided on audio- or videotape).
  • There may be certain advantages to the use of stem cells and/or progenitor cells for the treatment of hearing disorders. For example, stem cells are readily expandable and can be expanded to generate a desired tissue or cell type (e.g., hair cells or spiral ganglion cells) for application to a patient. The stem cells can be obtained from humans for clinical applications. Because the stem cells can be harvested from a human, and in particular can be harvested from the human in need of treatment, the immunological hurdles common in xeno- and allotransplantation experiments can be largely avoided.
  • Other features and advantages of the invention will be apparent from the accompanying description and the claims. The contents of all references, pending patent applications and published patents, cited throughout this application are hereby expressly incorporated by reference. In case of conflict, the present specification, including definitions, will control.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is the amino acid sequence of an SHH polypeptide from human (GenBank Accession No. AY422195; SEQ ID NO:1). The amino acids of the SHH-N polypeptide are underlined.
  • FIG. 2 is a protein-coding nucleic acid sequence of SHH from human (GenBank Accession No. AY422195; SEQ ID NO:2).
  • FIG. 3 is the amino acid sequence of an Indian hedgehog (Ihh) polypeptide from human (GenBank Accession No. XM050846; SEQ ID NO:3).
  • FIG. 4 is the amino acid sequence of a Desert hedgehog (Dhh) polypeptide from human (GenBank Accession No. NM021044; SEQ ID NO:4).
  • FIG. 5A is a diagram of the inner ear (from Clinical Neuroanatomy and Related Neuroscience, Fourth ed., Fitzgerald and Folan, eds., Saunders publishing, 2001).
  • FIG. 5B is a diagram of the semicircular canals and the saccular macula of the inner ear (from Clinical Neuroanatomy and Related Neuroscience, Fourth ed., Fitzgerald and Folan, eds., Saunders publishing, 2001).
  • FIG. 5C is a diagram of the cochlea, in section, of the inner ear.
  • FIG. 6 is a gel indicating the expression of marker genes in embryonic stem (ES) cells, progenitor cells, and differentiated cells. Expression was detected by reverse transcription followed by polymerase chain reaction (RT-PCR), and examination of the amplified products by gel electrophoresis.
  • FIG. 7A is a graph illustrating the compound action potential (CAP) threshold elevation in de-afferented and control cat ears. The auditory nerve was cut 10 weeks prior to taking the measurements.
  • FIG. 7B is a graph illustrating the distortion product otoacoustic emissions (DPOAEs) in the de-afferented and control cat ears. The auditory nerve was cut 10 weeks prior to taking these measurements.
  • FIG. 8A is a graph illustrating a quantitative analysis of the promoting effect of SHH on the number of hair cells generated in otic vesicles after 3 days in culture. The basic serum-free culture conditions (“no GF”) include serum-free knockout DMEM medium with N2 supplement.
  • FIG. 8B is a graph illustrating a quantitative analysis of the promoting effect of SHH on the number of hair cells generated in otic vesicles after seven days in culture. Serum conditions are as described in FIG. 8A.
  • DETAILED DESCRIPTION
  • We have developed, inter alia, methods for identifying agents that cause stem cells or progenitor cells to differentiate (fully or partially) into cells of the inner ear. The methods are amenable for use in identifying genes that, when expressed or silenced, can promote or inhibit the differentiation of stem cells into inner ear cells. The methods and agents are useful for treating any disorder that arises as a consequence of cell loss in the ear, such as hearing impairments, deafness, and vestibular disorders.
  • Stem cells are unspecialized cells capable of extensive proliferation. Stem cells are pluripotent and are believed to have the capacity to differentiate into most cell types in the body (Pedersen, Scientif. Am. 280:68, 1999), including neural cells, muscle cells, blood cells, epithelial cells, skin cells, and cells of the inner ear (e.g., hair cells and cells of the spiral ganglion). Stem cells are capable of ongoing proliferation in vitro without differentiating. As they divide, they retain a normal karyotype, and they retain the capacity to differentiate to produce adult cell types. Stem cells can differentiate to varying degrees. For example, stem cells can form cell aggregates called embryoid bodies in hanging drop cultures. The embryoid bodies contain neural progenitor cells that can be selected by their expression of an early marker gene such as Sox1 and the nestin gene, which encodes an intermediate filament protein (Lee et al., Nat. Biotech. 18:675-9, 2000).
  • Stem cells useful for generating cells of the inner ear can be derived from a mammal, such as a human, mouse, rat, pig, sheep, goat, or non-human primate. Furthermore, stem cells can be derived from any number of tissues including, but not limited to, an ear, eye, bone marrow, blood, or skin. For example, stem cells have been identified and isolated from the mouse utricular macula (Li et al., Nature Medicine 9:1293-1299, 2003). Stem cells useful for generating cells of the inner ear can be adult stem cells, and therefore derived from differentiated tissue, or the cells can be from embryonic tissue.
  • The changes that induce a cell to differentiate, such as into a hair cell or a spiral ganglion neuron, involve altered biochemical pathways that lead to a specific phenotype. These alterations are a result of the expression of specific genes, and this expression pattern is influenced by signals from the environment of the cell including cell-cell contact, oxygen content, nutrient availability, ligands that bind to receptors on the cells, temperature, and other factors. Stem cells are adaptive in nature, and their response to changes in these signals triggers the differentiation process.
  • Proteins that influence (e.g., promote or inhibit differentiation) the phenotype of inner ear cells include developmental regulators, cell cycle inhibitors, transcription factors and other regulatory proteins that act on stem cells. The phenotype of the cell includes the characteristics that distinguish it from other cell types. For example, the phenotype of a hair cell is distinct from the phenotype of a spiral ganglion cell.
  • Agents capable of causing stem cells to differentiate are referred to as differentiation agents. Differentiation agents can be, for example, small molecules, antibodies, peptides (e.g., peptide aptamers), antisense RNAs, small inhibitory RNAs (siRNA), or ribozymes. Differentiation agents, such as small molecules, can modulate the activity of one or more of the proteins that influence cell phenotype by altering the activity of a growth factor or receptor, an enzyme, a transcription factor, or a cell-specific inhibitor. These molecules can change the binding affinity of a protein for another protein, or can bind in an active site of an enzyme or act as an agonist or antagonist of a ligand binding to a receptor. Some types of differentiation agents, such as small inhibitory RNAs (siRNAs), antisense RNAs, or ribozymes, can modify the expression pattern of genes that encode these proteins. Furthermore, the agents can be useful as therapeutic agents for treating hearing disorders or vestibular dysfunction.
  • Many different genes are required for the development of the structure and different cell types of the ear. The methods featured in the invention are useful for identifying these genes. The identified genes and gene products can be targets for therapeutic agents and methods for treating hearing disorders and vestibular dysfunction. Indications suited for the methods and therapeutic agents featured in the invention are discussed in greater detail below.
  • Screening Methods. Screening methods are provided. For example, methods of identifying a differentiation agent that can cause a stem cell to differentiate, at least partially, into a cell of the inner ear or a precursor of the inner ear are features of the invention. A differentiation agent can be a polypeptide, such as an aptamer or antibody; a nucleic acid, such as DNA or RNA; or a compound, such as a small molecule. According to one exemplary method, an agent is contacted with a stem cell, and the stem cell is determined to differentiate, at least partially, into a cell of the inner ear, such as a hair cell or cell of the spiral ganglion. The agent can be naturally occurring or synthetic. The agent can be obtained from a library, or the agent can be a candidate molecule identified by other methods. The candidate agent can have been previously identified as a modulator of a gene or protein known to be active in cells of the inner ear.
  • A variety of methods can be utilized to determine that a stem cell has differentiated at least partially into a cell of the inner ear. For example, the cell can be examined for the expression of a cell marker gene. Hair cell marker genes include myosin VIIa (myoVIIa), Math1, α9 acetylcholine receptor, espin, parvalbumin 3, and Brn3.1. A pluripotent stem cell does not express these genes. A stem cell that propagates and produces a cell expressing one or more of these genes, has produced a hair cell, i.e., the stem cell has differentiated at least partially into a hair cell. A stem cell that has differentiated into a progenitor cell (a precursor of hair cells) expresses early ear marker genes such as Sox1, Nestin, Pax2, Bmp7, Jagged1, or p27Kip1. A progenitor cell can express one or more of these genes. The progenitor cells can be propagated in serum-free medium in the presence of growth factors. Removal of growth factors will induce the cells to differentiate further, such as into hair cells.
  • Identification of a hair cell or hair cell progenitor (e.g., a hair cell or progenitor cell that differentiated from a stem cell) can be facilitated by the detection of expression of tissue-specific genes. Detection of gene expression can be by immunocytochemistry. Immunocytochemistry techniques involve the staining of cells or tissues using antibodies against the appropriate antigen. In this case, the appropriate antigen is the protein product of the tissue-specific gene expression. Although, in principle, a first antibody (i.e., the antibody that binds the antigen) can be labeled, it is more common (and improves the visualization) to use a second antibody directed against the first (e.g., an anti-IgG). This second antibody is conjugated either with fluorochromes, or appropriate enzymes for calorimetric reactions, or gold beads (for electron microscopy), or with the biotin-avidin system, so that the location of the primary antibody, and thus the antigen, can be recognized. The protein marker can also be detected by flow cytometry using antibodies against these antigens, or by Western blot analysis of cell extracts.
  • Tissue-specific gene expression can also be assayed by detection of RNA transcribed from the gene. RNA detection methods include reverse transcription coupled to polymerase chain reaction (RT-PCR), Northern blot analysis, and RNAse protection assays.
  • Identification of a differentiated hair cell or spiral ganglion cell can also be assayed by physiological testing to determine if the cells generate conductance channels characteristic of mature hair or spiral ganglion cells.
  • In some embodiments, a candidate differentiation agent can be tested against stem cells that have been engineered to express a reporter gene that facilitates detection of cells converted into inner ear cells. These engineered stem cells make up a reporter cell line. A reporter gene is any gene whose expression may be assayed; such genes include, without limitation, green fluorescent protein (GFP), α-glucuronidase (GUS), luciferase, chloramphenicol transacetylase (CAT), horseradish peroxidase (HRP), alkaline phosphatase, acetylcholinesterase and β-galactosidase. Other optional fluorescent reporter genes include but are not limited to red fluorescent protein (RFP), cyan fluorescent protein (CFP) and blue fluorescent protein (BFP), or any paired combination thereof, provided the paired proteins fluoresce at distinguishable wavelengths.
  • A reporter gene can be under control of a promoter that is active in cells of the inner ear, including progenitor cells and cells at varying degrees of differentiation, but not in stem cells. Ideally, the promoter is stably upregulated in the differentiated cells or progenitors cells to allow assessment of the partially or fully differentiated phenotype (e.g., expression of the reporter gene and further identification of genes known to be expressed in the inner ear). In one exemplary embodiment, the luciferase gene is the reporter gene, which is under control of a promoter active in hair cells, such as a myoVIIa promoter. Since myoVIIa is primarily expressed in hair cells and in only a few other cell types, the partial or full conversion of the stem cells to hair cells will result in increased luminescent signal, whereas conversion of stem cells to most other cell types will not increase luciferase expression. Other promoters appropriate for use with a reporter gene for identifying differentiated hair cells include myoVIIa, Math1, α9 acetylcholine receptor, espin, parvalbumin 3, and Brn3.1. In some cases it may be necessary to optimize the expression system by performing initial control experiments with various promoters to determine which will work best in the given culture conditions with the particular stem cells (e.g., origin of stem cells) and reporter gene used.
  • Different types of stem cells can be used for the screening assays, including mouse and human adult stem cells from the ear, bone marrow, or other tissue sources, and embryonic stem cells from mouse or human. Stem cells isolated from other mammalian species are also acceptable for the screening methods described herein.
  • To determine whether a differentiation agent can induce stem cells to differentiate at least partially into a cell of the spiral ganglion, rather than a hair cell, methods are provided for determining the expression of genes known to be expressed in such cells in vivo. Genes expressed in the spiral ganglion, and useful as cell marker genes, include ephrinB2, ephrinB3, trkB, trkC, GATA3, BF1, FGF10, FGF3, CSP, GFAP, and Islet1.
  • Secondary assays can be used to confirm, or provide more definitive evidence, that a cell has differentiated into a cell of the inner ear. For example, a gene useful as a marker for identifying a cell of the inner ear can be expressed exclusively in a particular cell type (e.g., exclusively in a hair cell or exclusively in cells of the spiral ganglion), or the cell may also be expressed in a few other cell types (preferably not more than one, two, three, four, or five other cell types). For example, ephrinB1 and ephrinB2 are expressed in spiral ganglion cells, and also in retinal cells. Thus detection of ephrinB1 or ephrinB2 expression is not definitive proof that a stem cell has differentiated into a cell of the spiral ganglion. Secondary assays can be used to confirm that a cell has developed into a cell of the spiral ganglion. Such assays include detection of multiple genes known to be expressed in the suspected cell type. For example, a cell that expresses ephrinB1 and/or ephrinB2, can also be assayed for expression of one or more of GATA3, trkB, trkC, BF1, FGF10, FGF3, CSP, GFAP, and Islet1. A determination that these additional genes are expressed is additional evidence that a stem cell has differentiated into a spiral ganglion cell.
  • In embodiments where a primary assay includes the use of a reporter gene under control of a tissue-specific promoter, a secondary assay can include detection of the endogenous protein expressed from the endogenous promoter. For example, in a primary screen that assays for expression of luciferase fused to an ephrinB1 promoter in a plasmid, the secondary screen can include an immunocytochemistry assay to detect endogenous ephrinB1 protein, which is expressed from the endogenous ephrinB1 promoter.
  • Secondary assays also include detection of the absence of gene expression or the absence of proteins that are not typically expressed in hair cells. Such negative markers include the pan-cytokeratin gene, which is not expressed in mature hair cells but is expressed in supporting cells of the inner ear (Li et al., Nature Medicine 9:1293-1299, 2003).
  • The agents identified as being capable of causing stem cells to differentiate into cells of the inner ear can function by activating a gene or protein necessary for differentiation of a stem cell. For example, a differentiation agent can activate or increase expression or activity of a gene of the hedgehog pathway, such as Sonic hedgehog (Shh). Alternatively, an identified agent can function by inhibiting activity of a gene or protein that prevents differentiation of a stem cell into a cell of the inner ear. For example, the agent can inhibit the gene expression or protein activity of hes1, hes5, p19Ink4d, or proteins of the Notch family. Many different proteins have been identified as being important for establishing and maintaining the phenotype of the inner ear. These include developmental regulators, cell cycle inhibitors, transcription factors, and other regulatory proteins known to influence the activity of stem cells. It is not necessary that the effect of an agent on a cell be the complete differentiation of the stem cell. A stem cell that is partially differentiated may continue to express some genes that typically inhibit stem cell differentiation (although expression may be weaker). If the agent triggers the cell to differentiate at least partially into a cell of the inner ear, the agent may be useful as a therapeutic agent or as an agent for generating cells having therapeutic value for treatment of hearing disorders by the methods described herein.
  • Small molecule libraries can be screened against proteins known to be required for preventing the conversion of stem cells to hair cells or spiral ganglion cells. Transcription factors, for example, are required for proper timing of the differentiation of an embryo, and they can prevent the formation of inner ear cells, such as by preventing mitosis. Inhibition of these factors in a stem cell can increase the number of cells that will eventually be converted to the inner ear phenotype. Screening for molecules that can interact with such factors will lead to the discovery of agents that have high affinity for the polypeptide factors. Protein/protein interaction assays are known in the art and include co-immunoprecipitation-based assays; binding assays, such as bead-based binding assays; or cell-based assays such as the yeast two-hybrid assay, or a related method.
  • The ability of the differentiation agents to inhibit or enhance the biological activity of the proteins can be assessed using assays that measure the conversion of the stem cells to inner ear cells. Such assays are described herein and include the detection of inner ear cell-specific markers, or reporter gene assays, wherein expression of a reporter gene indicates conversion of a stem cell to an inner ear cell.
  • The screens featured in the invention can also be used to identify agents that increase the yield or rate of differentiation of stem cells. Retinoic acid, for example, can induce stem cells to differentiate into a variety of cell types including, but not specific for, hair cells. Agents can be identified that are more specific for inducing differentiation of cells to hair or spiral ganglion cells.
  • Stem cells that are grown in the presence of supplemental growth factors, and then transferred to growth medium lacking supplemental growth factors will be induced to differentiate into hair cells. Supplemental growth factors are added to the culture medium. They are not required for cell survival, but the type and concentration of the supplementary growth factors can be adjusted to modulate the growth characteristics of the cells (e.g., to stimulate or sensitize the cells to differentiate). Thus a candidate differentiation agent (e.g., a polypeptide, nucleic acid, or small molecule) can be tested for an effect on the differentiation of the stem cell when the cell is transferred to a medium lacking growth factors and contacted with the agent, as compared to the differentiation of a stem cell that is not contacted with a test agent. Alternatively, or additionally, an effect of the agent can be examined in the presence of growth factors, and the concentration of growth factors can be lowered to increase the likelihood of triggering the cells to differentiate. Concentrations of growth factors can range from about 100 ng/mL to about 0.5 ng/mL (e.g., from about 80 ng/mL to about 3 ng/mL, such as about 60 ng/mL, about 50 ng/mL, about 40 ng/mL, about 30 ng/mL, about 20 ng/mL, about 10 ng/mL, or about 5 ng/mL).
  • Exemplary supplementary growth factors are discussed in detail below, and include, but are not limited to basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF).
  • Screens provided herein include screens to identify genes that can influence development of cells of the inner ear. The identified genes can be targets of the agents discovered by the screens described above. Genes that can influence development of cells of the inner ear can promote differentiation or inhibit differentiation.
  • To identify genes that promote differentiation, the reporter stem cells described above can be utilized. These cells express a reporter gene, such as luciferase, under control of a cell specific promoter, or promoter fragment. The promoter can be specific for hair cells (e.g., a myoVIIa, Math1, α9 acetylcholine receptor, espin, parvalbumin 3, or Brn3.1 promoter) or auditory neural cells, such as spiral ganglion cells (e.g., an ephrinB2, ephrinB3, trkB, trkC, GATA3, BF1, FGF10, FGF3, CSP, GFAP, or Islet1 promoter), for example.
  • According to one exemplary screen, such as a library (e.g., a cDNA library) screen, the candidate genes of the library are cloned into plasmids (standard library screening protocols such as those described in Brent et al. (Current Protocols in Molecular Biology, New York: John Wiley & Sons Inc, 2003) can be followed). The plasmid used in the library can contain a constitutive promoter, such as a CMV promoter, that drives expression of the candidate gene. The plasmids of the library are introduced into a reporter stem cell line that is cultured in medium containing supplemental growth factors. The transfection of the plasmids into the reporter cell line is performed such that only one plasmid is introduced into any one cell. The cell is examined for an increase in luminescence, by comparison to a reporter cell that has been transfected with a plasmid lacking the candidate gene. An increase in luminescence indicates that the gene promotes the differentiation of the stem cell into a cell of the inner ear. The specific promoter driving expression of the luciferase gene dictates the cell type for which the reporter assay is useful for monitoring differentiation. For example, if the luciferase gene is under control of a hair cell specific promoter, an increase in luminescence indicates that the candidate gene promotes differentiation of hair cells. If the luciferase gene is under control of a spiral ganglion-specific promoter, an increase in luminescence indicates that the candidate gene promotes differentiation of spiral ganglion cells.
  • The increase in luminescence can be observed while the cells remain cultured in the presence of growth factors, or the cells can be transferred to lower concentrations of growth factors, or to other modified conditions that may sensitize the cells for differentiation. In yet another alternative, the cells can be completely removed from the supplemental growth factors, to compare the luminescence in the presence and absence of the candidate gene.
  • The screening method can be modified to identify genes that inhibit differentiation. According to one such modified screen, an inhibitory agent, such as a small interfering RNA (siRNA), antisense RNA, ribozyme, antibody, or small molecule, is contacted with a reporter stem cell. The inhibitory agent targets a candidate gene (e.g., an endogenous candidate gene) for down regulation. For example, an siRNA or antisense RNA can block translation of a target RNA, or an antibody or small molecule compound can block the activity of a target protein.
  • The reporter stem cells are cultured in the presence of growth factors, and they can remain in the presence of growth factors, when the cell is contacted with the inhibitory agent. Alternatively, the cells can be transferred to a lower concentration of growth factors to sensitize the cells for differentiation. In yet another alternative, the cells can be completely removed from the supplemental growth factors, to compare the luminescence in the presence and absence of the candidate gene.
  • Following contact with the inhibitory agent, the cell is examined for an increase in luminescence, and the signal intensity is compared to a control cell. The control cell can be contacted with an agent that does not target any gene in the cell, or an agent that targets a gene known not to influence (promote or inhibit) differentiation of stem cells into cells of the inner ear, or the control cell may not be contacted with any agent. An increase in luminescence indicates that the gene can inhibit the differentiation of the stem cell into a cell of the inner ear. As described above, the specific promoter driving expression of the luciferase gene dictates the cell type for which the reporter assay is useful for monitoring differentiation. For example, if the luciferase gene is under control of a hair cell specific promoter, an increase in luminescence indicates that the candidate gene inhibits differentiation of hair cells. If the luciferase gene is under control of a spiral ganglion-specific promoter, an increase in luminescence indicates that the candidate gene inhibits differentiation of spiral ganglion cells. The agent can be tested against different reporter cell lines (e.g., lines for testing differentiation of hair cells, and lines for testing differentiation of spiral ganglion cells). Some candidate genes may be found to inhibit differentiation of stem cells to multiple different tissue cell types.
  • The screens are useful for determining whether a candidate gene can influence stem cell differentiation. Known candidate genes have previously been implicated in ear development or in disorders related to the ear, and many of these genes are listed in Table 1. The screens are also useful for identifying genes not previously recognized as being involved in ear cell differentiation or function. To identify such genes, libraries can be assayed with the described screens. Libraries can be commercially obtained or can be constructed from nucleic acids isolated from specific desired tissues. The libraries can be cDNA libraries constructed from RNA isolated from a mammal, such as a mouse or a human. The RNA can be isolated from a specific tissue of a mammal, such as the brain (e.g., mouse brain or human striatum). The described screens can be modified for high throughput, such as for use in 96-well plates. An agent identified in a screen as being capable of influencing the differentiation of a stem cell into an ear cell can be used to generate ear cells in the laboratory for further research or for treatment of a hearing disorder or other ear-related disorders.
  • A plasmid can drive overexpression or low-level expression of a candidate gene or inhibitory agent in a reporter stem cell line. In one embodiment, the plasmid can be an adenoviral vector. For example, an adenoviral vector can drive expression of a candidate gene or an inhibitory agent, such as an siRNA, antisense RNA, or ribozyme. The adenoviral vector can drive expression of the candidate gene or inhibitory agent from a promoter, such as a constitutive promoter (e.g., a CMV or human U6 promoter). Libraries, including overexpression or knockdown libraries, are also suitable for use in the methods described herein.
  • Treatment methods. The agents (e.g., polypeptides, nucleic acids, small molecules, and the like) identified by the screening methods described above can be used to generate cells for therapeutic use. Treatment methods include generating cells of the inner ear (e.g., hair cells or cells of the spiral ganglion) from stem cells for transplantation into an ear of a human in need thereof. Methods of culturing cells of the inner ear include culturing stem cells under conditions that cause the stem cell to differentiate into a cell of the inner ear. Transplantation of the cells into the inner ear of a subject can be useful for restoring or improving the ability of the subject to hear, or for decreasing the symptoms of vestibular dysfunction. Inner ear cells derived from stem cells according to the methods described herein need not be fully differentiated to be therapeutically useful. A partially differentiated cell that improves any symptom of a hearing disorder in a subject is useful for the therapeutic compositions and methods described herein.
  • Methods of generating cells of the inner ear are provided. Ear cells or ear cell progenitors can be generated from stem cells isolated from a mammal, such as a mouse or human, and the cells can be embryonic stem cells or stem cells derived from mature (e.g., adult) tissue, such as the inner ear, central nervous system, blood, skin, eye or bone marrow. Any of the methods described above for culturing stem cells and inducing differentiation into ear cells (e.g., hair cells or cells of the spiral ganglion) can be used.
  • Methods of isolating a stem cell or progenitor cell from the inner ear of an animal are also featured in the invention. These methods include providing tissue from the inner ear of the animal, where the tissue includes at least a portion of the utricular maculae. The animal can be a mammal, such as a mouse, rat, pig, rabbit, goat, horse, cow, dog, cat, primate, or human. The isolated tissue can be suspended in a neutral buffer, such as phosphate buffered saline (PBS), and subsequently exposed to a tissue-digesting enzyme (e.g., trypsin, leupeptin, chymotrypsin, and the like) or a combination of enzymes, or a mechanical (e.g., physical) force, such as trituration, to break the tissue into smaller pieces. In one alternative, both mechanisms of tissue disruption are used. For example, the tissue can be incubated in about 0.05% enzyme (e.g., about 0.001%, 0.01%, 0.03%, 0.07%, or 1.0% of enzyme) for about 5, 10, 15, 20, or 30 minutes, and following incubation, the cells can be mechanically disrupted. The disrupted tissue can be passed through a device, such as a filter or bore pipette, that separates a stem cell or progenitor cell from a differentiated cell or cellular debris. The separation of the cells can include the passage of cells through a series of filters having progressively smaller pore size. For example, the filter pore size can range from about 80 μm or less, about 70 μm or less, about 60 μm or less, about 50 μm or less, about 40 μm or less, about 30 μm or less, about 35 μm or less, or about 20 μm or less. The cells can be frozen for future use or placed in culture for differentiation.
  • The separated cells can be placed in individual wells of a culture dish at a low dilution, and cultured to differentiate and into cells of the inner ear, or to differentiate into inner-ear like cells to various stages of the differentiation process. Thus, partially or fully differentiated cells are useful for the methods described herein. The cells can be separated into one cell per well. Formation of spheres (clonal floating colonies) from the isolated cells can be monitored, and the spheres can be amplified by disrupting them (e.g., by physically means) to separate the cells, and the cells can be cultured again to form additional spheres. Further culturing of the cells in the absence of or in lower amounts of growth factors will induce the spheres (and the cells of the spheres) to differentiate further into more highly developed cells of the inner ear.
  • Appropriate culture medium is described in the art, such as in Li et al (supra). For example, stem cells can be cultured in serum free DMEM/high-glucose and F12 media (mixed 1:1), and supplemented with N2 and B27 solutions and growth factors. Growth factors such as EGF, IGF-1, and bFGF have been demonstrated to augment sphere formation in culture. In vitro, stem cells often show a distinct proliferation potential for forming spheres. Thus, the identification and isolation of spheres can aid in the process of isolating stem cells from mature tissue for use in making differentiated cells of the inner ear. The growth medium for cultured stem cells can contain one or more or any combination of growth factors, provided that the stem cells do not differentiate. To induce the cells (and the cells of the spheres) to differentiate, the medium can be exchanged for medium lacking growth factors. For example, the medium can be serum-free DMEM/high glucose and F12 media (mixed 1:1) supplemented with N2 and B27 solutions. Equivalent alternative media and nutrients can also be used. Culture conditions can be optimized using methods known in the art.
  • The cells can be monitored for expression of cell-specific markers. For example, hair cells can be identified by the expression of myoVIIa, Math1, α9 acetylcholine receptor, espin, parvalbumin 3, or Brn3.1. Cells of the spiral ganglion can be identified by the expression of ephrinB2, ephrinB3, trkB, trkC, GATA3, BF1, FGF10, FGF3, CSP, GFAP, and Islet1.
  • An agent capable of causing differentiation of a stem cell into a cell of the inner ear can be administered directly to the ear of a human requiring such treatment, and the administration of the agent can generate hair cell growth in the ear (e.g., in the inner, middle, and/or outer ear). The number of hair cells in the ear can be increased about 2-, 3-, 4-, 6-, 8-, or 10-fold or more as compared to the number of hair cells before treatment with the agent. This new hair cell growth can effectively restore or establish at least a partial improvement in the subject's ability to hear. For example, administration of an agent can improve hearing loss by about 5, 10, 15, 20, 40, 60, 80, 100% or more.
  • Pharmaceutical compositions can include one or more ear cell differentiation agents identified as being capable of causing a pluripotent stem cell to differentiate into a cell of the inner ear. The pharmaceutical compositions provided herein can generate hair cell growth in any region of the ear, such as in the inner, middle, and/or outer regions of the ear. For example, a differentiation agent can generate hair cell growth in the cochlea or the vestibular system of the inner ear. Pharmaceutical compositions can also include any of the secondary factors discussed above, including factors to enhance cell engraftment or neurite extension. Exemplary formulations are described in greater detail below. A composition as described herein can be packaged and labeled for use as a treatment for a hearing disorder.
  • A human having a disorder of the inner ear, or at risk for developing such a disorder, can be treated with inner ear cells (hair cells or spiral ganglion cells) generated from stem cells. In a successful engraftment, at least some transplanted spiral ganglion neurons, for example, will form synaptic contacts with hair cells and with targets in the cochlear nucleus. To improve the ability of the cells to engraft, the stem cells can be modified prior to differentiation. For example, the cells can be engineered to overexpress one or more anti-apoptotic genes in the progenitor or differentiated cells. The Fak tyrosine kinase or Akt genes are candidate anti-apoptotic genes that can be useful for this purpose; overexpression of FAK or Akt can prevent cell death in spiral ganglion cells and encourage engraftment when transplanted into another tissue, such as an explanted organ of Corti (see for example, Mangi et al., Nat. Med. 9:1195-201, 2003). Neural progenitor cells overexpressing αvβ3 integrin may have an enhanced ability to extend neurites into a tissue explant, as the integrin has been shown to mediate neurite extension from spiral ganglion neurons on laminin substrates (Aletsee et al., Audiol. Neurootol. 6:57-65, 2001). In another example, ephrinB2 and ephrinB3 expression can be altered, such as by silencing with RNAi or overexpression with an exogenously expressed cDNA, to modify EphA4 signaling events. Spiral ganglion neurons have been shown to be guided by signals from EphA4 that are mediated by cell surface expression of ephrin-B2 and -B3 (Brors et al., J. Comp. Neurol. 462:90-100, 2003). Inactivation of this guidance signal may enhance the number of neurons that reach their target in an adult inner ear. Exogenous factors such as the neurotrophins BDNF and NT3, and LIF can be added to tissue transplants to enhance the extension of neurites and their growth towards a target tissue in vivo and in ex vivo tissue cultures. Neurite extension of sensory neurons can be enhanced by the addition of neurotrophins (BDNF, NT3) and LIF (Gillespie et al., NeuroReport 12:275-279, 2001). A Sonic hedgehog (Shh) polypeptide or polypeptide fragment (e.g., SHH-N), can also be useful as an endogenous factor to enhance neurite extension. Shh is a developmental modulator for the inner ear and a chemoattractant for axons (Charron et al., Cell 113:11 23, 2003).
  • Any human experiencing or at risk for developing a hearing loss is a candidate for the treatment methods described herein. For example, the human can receive a transplant of inner ear hair cells or spiral ganglion cells generated by exposure to a differentiation agent, or the human can be administered an agent identified as being capable of causing a stem cell to differentiate into a cell of the inner ear. A human having or at risk for developing a hearing loss can hear less well than the average human being, or less well than a human before experiencing the hearing loss. For example, hearing can be diminished by at least 5, 10, 30, 50% or more. The human can have sensorineural hearing loss, which results from damage or malfunction of the sensory part (the cochlea) or the neural part (the auditory nerve) of the ear, or conductive hearing loss, which is caused by blockage or damage in the outer and/or middle ear, or the human can have mixed hearing loss, which is caused by a problem in both the conductive pathway (in the outer or middle ear) and in the nerve pathway (the inner ear). An example of a mixed hearing loss is a conductive loss due to a middle-ear infection combined with a sensorineural loss due to damage associated with aging.
  • The subject can be deaf or have a hearing loss for any reason or as a result of any type of event. For example, a human can be deaf because of a genetic or congenital defect; for example, a human can have been deaf since birth, or can be deaf or hard-of-hearing as a result of a gradual loss of hearing due to a genetic or congenital defect. In another example, a human can be deaf or hard-of-hearing as a result of a traumatic event, such as a physical trauma to a structure of the ear, or a sudden loud noise, or a prolonged exposure to loud noises. For example, prolonged exposures to concert venues, airport runways, and construction areas can cause inner ear damage and subsequent hearing loss. A human can experience chemical-induced ototoxicity, wherein ototoxins include therapeutic drugs including antineoplastic agents, salicylates, quinines, and aminoglycoside antibiotics, contaminants in foods or medicinals, and environmental or industrial pollutants. A human can have a hearing disorder that results from aging, or the human can have tinnitus (characterized by ringing in the ears).
  • A human suitable for the therapeutic compositions and methods featured in the invention can include a human having a vestibular dysfunction, including bilateral and unilateral vestibular dysfunction. Vestibular dysfunction is an inner ear dysfunction characterized by symptoms that include dizziness, imbalance, vertigo, nausea, and fuzzy vision and may be accompanied by hearing problems, fatigue and changes in cognitive functioning. Vestibular dysfunction can be the result of a genetic or congenital defect; an infection, such as a viral or bacterial infection; or an injury, such as a traumatic or nontraumatic injury. Vestibular dysfunction is most commonly tested by measuring individual symptoms of the disorder (e.g., vertigo, nausea, and fuzzy vision).
  • Following treatment with an agent or inner ear cell or inner ear cell progenitor described herein, the human can be tested for an improvement in hearing or in other symptoms related to inner ear disorders. Methods for measuring hearing are well-known and include pure tone audiometry, air conduction, and bone conduction tests. These exams measure the limits of loudness (intensity) and pitch (frequency) that a human can hear. Hearing tests in humans include behavioral observation audiometry (for infants to seven months), visual reinforcement orientation audiometry (for children 7 months to 3 years) and play audiometry for children older than 3 years. Oto-acoustic emission testing can be used to test the functioning of the cochlear hair cells, and electro-cochleography provides information about the functioning of the cochlea and the first part of the nerve pathway to the brain.
  • The therapeutic compositions and methods featured in the invention can be used prophylactically, such as to prevent hearing loss, deafness, or other auditory disorder associated with loss of inner ear function. For example, a composition containing a differentiation agent can be administered with a second therapeutic, such as a therapeutic that may effect a hearing disorder. Such ototoxic drugs include the antibiotics neomycin, kanamycin, amikacin, viomycin, gentamycin, tobramycin, erythromycin, vancomycin, and streptomycin; chemotherapeutics such as cisplatin; nonsteroidal anti-inflammatory drugs (NSAIDs) such as choline magnesium trisalicylate, diclofenac, diflunisal, fenoprofen, flurbiprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, salsalate, sulindac, and tolmetin; diuretics; salicylates such as aspirin; and certain malaria treatments such as quinine and chloroquine.
  • For example, a human undergoing chemotherapy can also be administered a differentiation agent described herein or an agent identified by a method described herein. The chemotherapeutic agent cisplatin, for example, is known to cause hearing loss. Therefore, a composition containing a differentiation agent can be administered with cisplatin therapy to prevent or lessen the severity of the cisplatin side effect. A composition containing a differentiation agent can be administered before, after and/or simultaneously with the second therapeutic agent. The two agents may be administered by different routes of administration.
  • The compositions and methods featured in the invention are appropriate for the treatment of hearing disorders resulting from sensorineural hair cell loss or auditory neuropathy. Patients suffering from auditory neuropathy experience a loss of cochlear sensory neurons while the hair cells of the inner ear remain intact. Such patients will benefit particularly from treatment that causes cells (stem cells or progenitor cells) to differentiate into spiral ganglion cells, or from administration of spiral ganglion cells into the inner ear. Patients with sensorineural hair cell loss experience the degeneration of cochlear hair cells, which frequently results in the loss of spiral ganglion neurons in regions of hair cell loss. Such patients may also experience loss of supporting cells in the organ of Corti, and degeneration of the limbus, spiral ligament, and stria vascularis in the temporal bone material. These patients can receive treatment with an agent that causes cells to differentiate into hair cells, or a tissue transplant containing hair cells grafted or injected into the inner ear. The patients may additionally benefit from treatment that causes cells to differentiate into spiral ganglion cells, or from administration of spiral ganglion cells into the inner ear.
  • Formulations and Routes of Administration. Differentiation agents identified by the methods described above can be formulated for administration to a subject diagnosed as having or at risk for developing a hearing loss or vestibular disorder. Pharmaceutical compositions containing a differentiation agent can be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients. For example, a differentiation agent can be formulated for administration by drops into the ear, insufflation (such as into the ear), topical, or oral administration.
  • In another mode of administration, the differentiation agent can be directly administered in situ to the cochlea of the inner ear, such as via a catheter or pump. A catheter or pump can, for example, direct a differentiation agent into the cochlear luminae or the round window of the ear.
  • In another route of administration, a differentiation agent can be injected into the ear, such as into the luminae of the cochlea (e.g., the Scala media, Sc vestibulae, and Sc tympani). Injection can be, for example, through the round window of the ear or through the cochlear capsule.
  • Ear cells generated by the methods described above can be transplanted, such as in the form of a cell suspension, into the ear by injection, such as into the luminae of the cochlea. Injection can be, for example, through the round window of the ear or through the bony capsule surrounding the cochlea. The cells can be injected through the round window into the auditory nerve trunk in the internal auditory meatus or into the scala tympani.
  • The nature of the pharmaceutical compositions for administration is dependent on the mode of administration and can readily be determined by one of ordinary skill in the art. The therapeutic compositions feature in the invention can contain carriers or excipients, many of which are known to skilled artisans. Excipients that can be used include buffers (for example, citrate buffer, phosphate buffer, acetate buffer, and bicarbonate buffer), amino acids, urea, alcohols, ascorbic acid, phospholipids, polypeptides (for example, serum albumin), EDTA, sodium chloride, liposomes, mannitol, sorbitol, and glycerol. The nucleic acids, polypeptides, small molecules, and other modulatory compounds featured in the invention can be administered by any standard route of administration. For example, administration can be parenteral, intravenous, subcutaneous, or oral. A modulatory compound can be formulated in various ways, according to the corresponding route of administration. For example, liquid solutions can be made for administration by drops into the ear, for injection, or for ingestion; gels or powders can be made for ingestion or topical application. Methods for making such formulations are well known and can be found in, for example, “Remington's Pharmaceutical Sciences.”
  • The differentiation agents described herein or identified by a method described herein, can be administered directly to the inner ear (e.g., by injection or through surgical placement). Other compositions (e.g., pharmaceutically acceptable compositions containing stem cells, progenitor cells, or auditory cells differentiated by a method described herein) can also be administered directly to the inner ear. The amount of the differentiation agent or the amount of a cell-based composition may be described as a therapeutically effective amount. Where application over a period of time is advisable or desirable, the compositions of the invention can be placed in sustained released formulations or implantable devices (e.g., a pump).
  • The pharmaceutical compositions can be formulated for parenteral administration by injection, for example, by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, for example, in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, for example, sterile pyrogen-free water, before use.
  • In addition to the formulations described previously, the compositions can also be formulated as a depot preparation. Such long acting formulations can be administered by implantation (e.g., subcutaneously). Thus, for example, the compositions can be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • Pharmaceutical compositions formulated for oral administration can take the form of tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (for example, pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (for example, lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (for example, magnesium stearate, talc or silica); disintegrants (for example, potato starch or sodium starch glycolate); or wetting agents (for example, sodium lauryl sulphate). The tablets can be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (for example, sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (for example, lecithin or acacia); non-aqueous vehicles (for example, almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (for example, methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate. Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
  • The compositions may, if desired, be presented in a pack or dispenser device that may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The dispenser device may include a liquid dropper for administration of a therapeutic agent dropwise into the ear. The pack or dispenser device can be accompanied by instructions for administration.
  • The efficacy of the treatment methods described herein can be assayed by determining an improvement in the subject's ability to hear, or by an improvement in other symptoms such as balance. Alternatively, efficacy can be assayed by measuring distortion product otoacoustic emissions (DPOAEs) or compound action potential (CAP).
  • The pharmaceutical compositions and methods described herein can be used independently or in combination with one another. That is, subjects can be administered one or more of the pharmaceutical compositions, for example, pharmaceutical compositions containing a differentiation agent subjected to one or more of the therapeutic methods described herein, or both, in temporally overlapping or non-overlapping regimens. The subject can also be administered a solution or tissue containing the differentiated cells generated from stem cells as described above. One or both of these therapies can be administered in addition to a mechanical device such as a cochlear implant or a hearing aid, which is worn in the outer ear. When therapies overlap temporally, the therapies may generally occur in any order and can be simultaneous or interspersed.
  • The differentiation agents for use in the methods featured in the invention can be packaged as pharmaceutical compositions and labeled for any use as described herein. For example, the package can be labeled for use to treat a hearing disorder.
  • Effective Dose. Toxicity and therapeutic efficacy of the compositions disclosed in the invention (e.g., pharmaceutical compositions including the differentiation agents), can be determined by standard pharmaceutical procedures, using either cells in culture or experimental animals to determine the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed as the ratio LD50/ED50. Polypeptides or other compounds that exhibit large therapeutic indices are preferred.
  • Data obtained from cell culture assays and further animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity, and with little or no adverse effect on a human's ability to hear. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (that is, the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Exemplary dosage amounts of a differentiation agent are at least from about 0.01 to 3000 mg per day, e.g., at least about 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 2, 5, 10, 25, 50, 100, 200, 500, 1000, 2000, or 3000 mg per kg per day, or more.
  • The formulations and routes of administration can be tailored to the specific hearing disorder being treated, and for the specific human being treated. For example, the human can have been deaf from birth due to a genetic or environmental event, or a child or adult human can be losing hearing due to environmental factors such as prolonged exposure to loud noises, or a human can be experiencing a hearing loss due to aging. Therefore the human can be any age (e.g., an infant or an elderly person), and formulation and route of administration can be adjusted accordingly. A subject can receive a dose of the agent once or twice or more daily for one week, one month, six months, one year, or more. The treatment can continue indefinitely, such as throughout the lifetime of the human. Treatment can be administered at regular or irregular intervals (once every other day or twice per week), and the dosage and timing of the administration can be adjusted throughout the course of the treatment. The dosage can remain constant over the course of the treatment regimen, or it can be decreased or increased over the course of the treatment.
  • Generally the dosage facilitates an intended purpose for both prophylaxis and treatment without undesirable side effects, such as toxicity, irritation or allergic response. Although individual needs may vary, the determination of optimal ranges for effective amounts of formulations is within the skill of the art. Human doses can readily be extrapolated from animal studies (Katocs et al., Chapter 27 In: “Remington's Pharmaceutical Sciences”, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, Pa., 1990). Generally, the dosage required to provide an effective amount of a formulation, which can be adjusted by one skilled in the art, will vary depending on several factors, including the age, health, physical condition, weight, type and extent of the disease or disorder of the recipient, frequency of treatment, the nature of concurrent therapy, if required, and the nature and scope of the desired effect(s) (Nies et al., Chapter 3, In: Goodman & Gilman's “The Pharmacological Basis of Therapeutics”, 9th Ed., Hardman et al., eds., McGraw-Hill, New York, N.Y, 1996).
  • Kits. A differentiation agent described herein or identified by a method described herein can be provided in a kit, as can cells that have been induced to differentiate (e.g., stem cells or progenitor cells that have differentiated into, for example, hair cells or hair-like cells). The kit can include (a) the agent, such as in a composition that includes the agent, and (b) informational material. The informational material can be descriptive, instructional, marketing or other material that relates to the methods described herein and/or to the use of the agent for the methods described herein. For example, the informational material relates to the use of a differentiation agent to treat a subject who has, or who is at risk for developing, a hearing disorder. The kits can also include paraphernalia for administering a differentiation agent to a cell (in culture or in vivo) and/or for administering a cell to a patient.
  • In one embodiment, the informational material can include instructions for administering the differentiation agent and/or cell(s) in a suitable manner to treat a human, e.g., in a suitable dose, dosage form, or mode of administration (e.g., a dose, dosage form, or mode of administration described herein). For example, doses, dosage forms, or modes of administration can be by liquid drops into the ear, such as from a dropper bottle, or the composition can be administered directly to the ear such as through a catheter or pump. In another embodiment, the informational material can include instructions to administer the differentiation agent to a suitable subject, e.g., a human, e.g., a human having, or at risk for developing, a hearing disorder. For example, the material can include instructions to administer the agonist to a subject who has experienced a hearing loss due to a traumatic event, or to a subject who has received a separate therapeutic agent that causes hearing loss, such as the antibiotics and chemotherapeutic agents discussed herein.
  • The informational material of the kits is not limited in its form. In many cases, the informational material (e.g., instructions) is provided in printed matter, such as in a printed text, drawing, and/or photograph, such as a label or printed sheet. However, the informational material can also be provided in other formats, such as Braille, computer readable material, video recording, or audio recording. In another embodiment, the informational material of the kit is contact information, such as a physical address, email address, website, or telephone number, where a user of the kit can obtain substantive information about the hedgehog pathway agonist and/or its use in the methods described herein. Of course, the informational material can also be provided in any combination of formats.
  • In addition to the differentiation agent, the composition of the kit can include other ingredients, such as a solvent or buffer, a stabilizer, a preservative, a fragrance or other cosmetic ingredient, and/or a second agent for treating a condition or disorder described herein (e.g., a hearing disorder). Alternatively, the other ingredients can be included in the kit, but in different compositions or containers than the agent. In such embodiments, the kit can include instructions for admixing the agent and the other ingredients, or for using the agent together with the other ingredients.
  • The differentiation agent (e.g., a hedgehog agonist) can be provided in any form, including a liquid, dried or lyophilized form. The agent is preferably substantially pure and/or sterile. When the agent is provided in a liquid solution, the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being preferred. When the agent is provided as a dried form, reconstitution generally is by the addition of a suitable solvent. The solvent, e.g., sterile water or buffer, can optionally be provided in the kit.
  • The kit can include one or more containers for the composition containing the differentiation agent. In some embodiments, the kit contains separate containers, dividers or compartments for the composition and informational material. For example, the composition can be contained in a bottle (e.g., a dropper bottle, such as for administering drops into the ear), vial, or syringe, and the informational material can be contained in a plastic sleeve or packet. In other embodiments, the separate elements of the kit are contained within a single, undivided container. For example, the composition is contained in a bottle, vial or syringe that has attached thereto the informational material in the form of a label. In some embodiments, the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms (e.g., a dosage form described herein) of the hedgehog pathway agonist. For example, the kit can include a plurality of syringes, ampoules, foil packets, or blister packs, each containing a single unit dose of the hedgehog pathway agonist. The containers of the kits can be air tight and/or waterproof, and the containers can be labeled for a particular use. For example, a container can be labeled for use to treat a hearing disorder.
  • As noted above, the kits optionally include a device suitable for administration of the composition (e.g., a syringe, pipette, forceps, dropper (e.g., ear dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device). The device can be a dropper for administration to the ear.
  • Hedgehog Pathway Agonists as Differentiation Agents. Exemplary candidates for use in the treatment methods and pharmaceutical compositions featured in the invention include hedgehog pathway agonists. A hedgehog pathway agonist is a molecule, such as a polypeptide, drug, or nucleic acid that stimulates a hedgehog signaling pathway.
  • One exemplary hedgehog pathway agonist is a Sonic hedgehog (SHH) polypeptide (SEQ ID NO:1), or fragment of an SHH polypeptide, particularly an N-terminal fragment (FIG. 1). In vivo, SHH undergoes an autoproteolysis event to generate two biochemically distinct products, an 18K amino-terminal fragment, “N,” and a 25K carboxy-terminal fragment, “C” (Lee et al., Science 266:1528-1537, 1994). In Drosophila, cleavage occurs between residues Gly257 and Cys258 (of a conserved Gly-Cys-Phe tripeptide), and the cleavage at this site is conserved in other organisms, including at the site of the corresponding conserved Gly-Cys-Phe tripeptide in mouse and human SHH proteins Cys197 (Porter et al., Nature 374:363-366). For example, the cleavage of human SHH occurs between Gly196 and Cys197. The N-terminal cleavage product is referred to as SHH-N. SHH-N polypeptides can perform the signaling functions of SHH, and are suitable for use in the compositions and treatment methods described herein. An SHH-N polypeptide from any species, preferably a mammal, more preferably a human, can be used for the compositions and treatment methods.
  • A SHH polypeptide (FIG. 1; SEQ ID NO:1) can be any spliced isoform of SHH, or fragment or modified polypeptide thereof. For example, a “modified” polypeptide can be ubiquitinated, phosphorylated, methylated, or conjugated to any natural or synthetic molecule, such as a fluorescent tag or heterologous polypeptide tag. A hedgehog pathway agonist can be a known homolog of Sonic hedgehog, such as an Indian or Desert hedgehog polypeptide, or any spliced isoform, or fragment or modified polypeptide thereof.
  • A hedgehog pathway agonist can also be a polypeptide having a sequence that is substantially identical to the amino acid sequence of SHH (SEQ ID NO:1). A “substantially identical” gene or polypeptide is similar in sequence to the human Shh cDNA (SEQ ID NO:2; FIG. 2) or amino acid sequence (SEQ ID NO:8; FIG. 1), respectively. A substantially identical nucleic acid sequence is at least 80% identical to SEQ ID NO:2, and a substantially identical amino acid sequence is at least 80% identical to SEQ ID NO:1. For example, a target DNA or RNA sequence can be 80%, 85%, 95%, or 100% identical. A fragment of a target nucleic acid sequence, e.g., a sequence that encodes an exon, can be at least 80% identical to a fragment of SEQ ID NO:2. To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, or 100% of the length of the reference sequence (e.g., when aligning a second sequence to the SHH amino acid sequence of SEQ ID NO:1, having 462 amino acid residues, at least 139, preferably at least 185, more preferably at least 231, even more preferably at least 277, and even more preferably at least 323, 370, or 416 amino acid residues are aligned). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The determination of percent identity between two amino acid sequences is accomplished using the BLAST 2.0 program. Sequence comparison is performed using an ungapped alignment and using the default parameters (Blossom 62 matrix, gap existence cost of 11, per residue gapped cost of 1, and a lambda ratio of 0.85). The mathematical algorithm used in BLAST programs is described in Altschul et al. (Nucleic Acids Res. 25:3389-3402, 1997). An SHH polypeptide or polypeptide fragment, such as SHH-N, or substantially identical polypeptide, such as Dhh or Ihh, can have up to about 20 (e.g., up to about 10, 5, or 3) amino acid deletions, additions, or substitutions, such as conservative substitutions, to be useful for the compositions and methods described herein.
  • In another aspect, a hedgehog agonist can be a polypeptide that is substantially identical to the amino acid sequence of Indian hedgehog (Ihh; see FIG. 3), or Desert hedgehog (Dhh; see FIG. 4). A hedgehog pathway agonist can also be a polypeptide fragment (e.g., an N-terminal peptide fragment) of Ihh or Dhh.
  • A hedgehog pathway agonist can act on a nucleic acid of a second (or the same) hedgehog pathway agonist. For example, an agonist can increase gene expression of a hedgehog polypeptide, such as by acting as a transcription factor or an enhancer of transcription (e.g., of a Sonic hedgehog gene), or the agonist can stabilize (e.g., protect from degradation) a RNA transcript of a hedgehog pathway agonist. The hedgehog pathway agonist can also (or alternatively) act on a nucleic acid of a gene that is not a hedgehog pathway agonist, but which otherwise influences differentiation of a stem cell or progenitor cell into a cell of the inner ear.
  • Nucleic acids, such as DNA plasmids, can be used in the methods and compositions described herein, such as for gene therapy. For example, nucleic acids (and nucleic acid vectors) can encode polypeptides that act as hedgehog pathway agonists, such as by any method described herein.
  • A hedgehog pathway agonist can be a small molecule, such as Hh-Ag1.3. A small molecule is a chemical compound that affects the phenotype of a cell or organism by, for example, modulating the activity of a specific polypeptide or nucleic acid, such as a hedgehog polypeptide or nucleic acid, within a cell. A small molecule can, for example, affect a cell by directly interacting with a polypeptide or by interacting with a molecule that acts upstream or downstream of the biochemical cascade that results in polypeptide expression or activity.
  • Other members of the hedgehog signaling pathway, besides hedgehog polypeptides themselves (e.g., SHH, Ihh, Dhh), can be used for the treatment methods and compositions described herein. For example, overexpression or modification of a transcription factor that regulates expression of a hedgehog pathway agonist can stimulate hair cell growth. For example, a Gli transcription factor polypeptide (or a nucleic acid expressing a Gli polypeptide) can be administered. Alternatively, a polypeptide, a small molecule, drug, or other modulatory compound that stimulates Gli activity can function as a hedgehog pathway agonist. The Gli family of transcription factors is known to stimulate transcription of Sonic hedgehog in vivo.
  • In one alternative, the methods and compositions can include an activator of a hedgehog pathway agonist receptor. For example, a polypeptide, small molecule, or other modulatory compound can activate a Patched and/or Smoothened receptor, both of which are recognized by Sonic hedgehog in vivo. In another alternative, cells can be induced to overexpress one or more of the hedgehog pathway agonist receptors, or nucleic acids can be administered (e.g., by gene therapy) and induced to express exogenous receptors. For example, the receptors are expressed on a cell surface to facilitate interaction with a hedgehog polypeptide and activation of a hedgehog signaling pathway that ultimately leads to the development of a hair cell.
  • In some embodiments, a hedgehog pathway agonist can stimulate endogenous hedgehog proteins. For example, the methods and compositions can include morphogens, growth factors, hormones, and the like, that stimulate hedgehog protein activity (e.g., upregulate gene expression, stimulate protein modification, or otherwise activate protein activity).
  • In some embodiments, a hedgehog pathway agonist can inhibit an inhibitor of a hedgehog signaling pathway. An inhibitor can be, for example, a polypeptide (such as an antibody), small molecule, or other modulatory compound that binds, sequesters, or otherwise downregulates a component of the hedgehog signaling pathway or inhibits an inhibitor of a hedgehog signaling pathway.
  • A hedgehog pathway agonist can also be applied to a tissue ex vivo to induce and/or expand the number of hair cells (or hair-like cells) or the hair cell density of the tissue, such as in culture conditions. The resulting tissue can be administered, such as by grafting to the ear (e.g., to the inner ear) of a subject, thereby treating the subject for a hearing disorder.
  • While not being bound by theory, a hedgehog pathway agonist (e.g., a polypeptide or small molecule agonist) can stimulate hair cell growth by acting on non-hair cells of the ear and instructing these cells to differentiate into hair cells. The hair cells of the mammalian inner ear, for example, are located in the cochlear organ of Corti, as well as in the vestibular sensory epithelia of the saccular macula, the utricular macula, and the cristae of the three semicircular canals. A hedgehog pathway agonist (e.g., a polypeptide or small molecule agonist) can therefore stimulate hair cell growth, for example, by acting on non-hair cells of the cochlear organ of Corti (supporting cells and other cells) and instructing these cells to differentiate into hair cells.
  • The invention is further illustrated by the following examples, which should not be construed as further limiting.
  • EXAMPLES Example 1 Neurons were Isolated from the Inner Ear of a Pig Fetus for Use in Transplantation Studies
  • We isolated pig fetal spiral ganglion cells from the inner ear after timed pregnancies and placed the cells in culture for periods up to two weeks. Gestational ages of E36, E41, E49, E60 and E63 were compared. Following isolation of whole cochlea, the tissues containing spiral ganglion cells were separated from other tissues and incubated with trypsin-EDTA at 37° C. for 10 minutes. After three washes with PBS plus DNAse, tissues were triturated with three pre-calibrated flame polished Pasteur pipettes with progressively smaller apertures. Cells were resuspended in PBS plus glucose solution at approximately 100×106/ml. The viability of the cells was determined by trypan blue exclusion assay prior to transplantation. Some cells were plated on poly-D lysine coated 12-well culture plate in complete neurobasal medium.
  • Immunohistochemical staining revealed that the E36 neurons did not express neurofilament but did express neuron specific enolase. At days E49 and later, the neurons expressed neuron specific enolase and neurofilament as well as galactocerebrosidase. The later time points yielded an increased ratio of connective tissue components relative to neurons. The best yield of cells was at E41 and these cells could be stained with all of these markers. This time point was therefore selected for the isolation of cells for transplantation.
  • Example 2 Embryonic Stem Cell Cultures were Established and Controlled Differentiation of Different Cell Types was Observed
  • We established cultures of the murine ES cell lines YC5/EYFP, a derivative of the totipotent cell line R1 (Nagy et al., Proc Natl Acad Sci USA 90:8424-8, 1993); R1; ROSA26-6; and Sox1-GFP (Aubert et al., Nat. Biotechnol. 20:1240-5, 2002). YC5/EYFP cells carry the gene for enhanced yellow fluorescent protein (EYFP) under control of a promoter composed of a cytomegalovirus immediate early enhancer coupled to the β-actin promoter (Hadjantonakis et al., Mech. Dev. 76:79-90, 1998). ROSA26-6 cells and their derivatives express the lacZ gene encoding the bacterial beta-galactosidase enzyme (Pirity et al., Methods Cell Biol. 57:279-93, 1998). The Sox1-GFP cells express GFP controlled by the promoter for the early neural marker Sox1.
  • Low passage ES cells are maintained on a feeder layer of mitotically inactivated primary mouse embryonic fibroblasts (Pirity et al., Methods Cell Biol. 57:279-93, 1998). Undifferentiated ES cells proliferate actively and form compact clusters of small cells. We initiated in vitro differentiation of ES cells in hanging drop cultures in the absence of embryonic fibroblast feeder cells and of leukemia inhibitory factor, a cytokine that promotes the pluripotency of ES cells. Within two days, cell aggregates of uniform size termed embryoid bodies form in the hanging drops.
  • Using a published protocol (Lee et al., Nat. Biotechnol. 18:675-9, 2000), we were able to select neuronal progenitor cell populations that express the defining marker protein nestin. Nestin-positive progenitors were subjected to in vitro differentiation conditions (see Lee et al., Nat. Biotechnol. 18:675-9, 2000) that led to differentiation of astrocytes and neurons.
  • Using protocols for the selection of progenitor cells, we were able to select inner ear progenitor cells that express a variety of marker genes indicative of the developing inner ear. In particular, we found after selection from embryoid body-derived cells, cell populations that expressed genes indicative of the otic placode, such as Pax2, BMP4, and BMP7 (Morsli et al., J. Neurosci. 18:3327-35, 1998; Groves and Bronner-Fraser, Development 127:3489-99, 2000). In addition, we found expression of marker genes for the developing sensory epithelia—for example Math1 (Bermingham et al., Science 284:1837-41, 1999), delta1, jagged1 and jagged2 (Lanford et al., Nat. Genet. 21:289-92, 1999; Morrison et al., Mech. Dev. 84:169-72, 1999). Gene expression was detected by reverse transcription followed by polymerase chain reaction (RT-PCR). The differentiated cells were analyzed 14 days after the removal of bFGF from the culture. The expression of the marker genes correlated with the developmental stage of the progenitor or mature cells as nestin and Pax2 and BMP7 expression decreased upon differentiation of the cells and appearance of hair cell markers (FIG. 6).
  • Hair cell markers in differentiated cells were also detected by immunohistochemistry. The hair cells produced in this system co-expressed markers important for hair cell differentiation (Math1) and survival (Brn3.1) and markers present in the more fully differentiated cells (myosin VIIa).
  • In preliminary experiments we explored whether it was feasible to isolate from embryoid bodies clonal lines that represent hair cell and neural progenitors. We were able to generate spheres that contained progenitors, which we identified by expression of the early neural marker Sox1 and the intermediate filament protein nestin. We were able to propagate these progenitor cells in serum-free conditions for more than three months either in form of spheres or as adherent cultures in the presence of mitogenic growth factors. We routinely observed differentiation of the progenitor cells after removal of growth factors in adherent cultures.
  • Example 3 Different Neuronal Progenitor Cells were Generated from ES Cells
  • We explored whether it was feasible to use embryoid bodies to isolate clonal lines that represent neural progenitors. One goal of the project was to generate neurons with different features that could be used to generate neural populations that are very similar to spiral ganglion neurons. The principal idea of this technique was to use the sphere-forming capacity of neural stem cells to clone different cell lines. Our initial results indicated that we were able, for example, to generate spheres that contain neural progenitors, which we identified by expression of the early neural marker Sox1 and the intermediate filament protein nestin.
  • We were able to propagate these neural progenitor cells in serum-free conditions for more than three months either as spheres or as adherent cultures in the presence of mitogenic growth factors. We routinely observed neural differentiation of the progenitor cells either in aging spheres or after removal of growth factors in adherent cultures. In experiments done with Sox1-GFP ES cells, we were able to generate proliferating neural progenitor lines that expressed nestin and Sox1, visible in real-time by green fluorescence. These cells readily differentiated into morphologically and immunologically distinct neurons after removal of mitogenic growth factors.
  • We examined the electrophysiological properties of neurons generated from embryonic stem cells and from stem cells harvested from adult ears. Using the strategy outlined above we examined embryonic stem cells differentiated to become presumptive auditory sensory neurons. The cells adopted neuronal morphology and acquired negative resting potentials and the ability to fire action potentials.
  • Example 4 Development of an Assay for Differentiation of ES Cells
  • In order to more systematically test the effects of different genes or compounds on the conversion of ES cells to spiral ganglion neurons, we developed a luciferase assay system in which the conversion of the progenitors to the desired cell types is readily detected by a reporter construct. The aim was to have the reporter construct under the control of a promoter that is activated in the differentiated cell but is inactive in the progenitor cells, so that a luciferase signal is generated by differentiation of the cells. The assay can be performed using conditions known to be useful for generating neurons from ES cells. Cells that are grown in the presence of growth factors are cultured in medium without growth factors, and this induces their differentiation to neurons based on the expression of markers. Under these conditions, the reporter cells will differentiate and generate a signal. We used mouse ES cells (ROSA 26) to generate neural progenitors in the presence of EGF, IGF-1 and bFGF. The neural progenitors were used for construction of the reporter cell lines. The progenitor cells were positive for nestin expression and were kept in culture in the presence of bFGF.
  • To determine whether a cell specific promoter could be measured in this assay, neural progenitors were co-transfected with the firefly luciferase gene controlled by a GFAP promoter and a vector that contains the Renilla luciferase gene under control of a CMV promoter. The firefly luciferase construct was made in the pGL3 basic vector (Promega, Madison, Wis.) that contains the firefly luciferase gene and a multiple cloning site for the promoter. The GFAP promoter inserted into this site allowed us to measure the activity of this promoter relative to the constitutively active control promoter in a separate vector driving the Renilla luciferase. Co-transfection of the vectors into the neural progenitors followed by lysis of the cells and measurement of luciferase activity (using two substrates for measurement of firefly and Renilla luciferase) allowed us to demonstrate that the neural progenitors were initially negative for GFAP expression but after removing bFGF from the culture medium, had increasing amounts of luciferase activity (at 24, 48 and 72 hours). Furthermore, the neural progenitor cells expressed the Renilla and firefly luciferases at levels that were proportional to the amount of vector used for transfection. These results indicate that the assay is useful for determining quantitative effects relating to the differentiation of the cells in response to individual genes or factors.
  • Example 5 ES Cell-Derived Progenitors were Grafted into a Developing Chicken Inner Ear
  • We established microsurgical techniques to manipulate developing chicken ears. For injection of ES cell-derived progenitors, we used beveled glass-capillary micropipettes for injections into the otic pits or vesicles of stage 10-16 chicken embryos (1.5-2.5 days of embryonic development, (Hamburger and Hamilton, J. Morphol. 88:49-92, 1951)). Genetically labeled ES cell-derived inner ear progenitors were implanted into the inner ear of chicken embryos and their fate was followed through early otic development. The cells were observed to be engrafted into a preexisting epithelium and certain criteria were identified as being necessary for the cells to engraft. Progenitor cells only survived when implanted as cell aggregates. Progenitor cells that were injected into the otic vesicle in the form of suspensions were not traceable. Integration of cells from the progenitor cell aggregates into the epithelial layers that form the otic vesicle occurred preferentially at sites of epithelial damage. The progenitor-derived cells were incorporated throughout the inner ear, but in our study, we only focused on hair cell development. Murine cells only upregulated hair cell markers when situated in a developing sensory epithelium and only when they were located on the luminal site of the epithelium—in the correct orientation for hair cells. Progenitor-derived cells that we found elsewhere in the inner ear did not display expression of hair cell markers.
  • In addition to the repopulation of the sensory epithelium (Li et al., Proc. Natl. Acad. Sci. USA 100: 13495-500, 2003), we also found progenitor cell derivatives outside of the sensory epithelia in the auditory ganglion. In fact, we initially observed more efficient integration of cells into the auditory ganglion than into the cochlear sensory epithelium.
  • Example 6 An Explant of the Organ of Corti was Established
  • The organ of Corti from C57BL6 mice at P0-P3 was removed from the cochlea and placed in culture in a collagen matrix or on a collagen coated plate. The morphology of the explants remained intact for up to two weeks. The progenitor cells and differentiated neurons can be tested for their ability to engraft into an explant of the organ of Corti.
  • Example 7 Transplantation-Repair Studies in the De-Afferented Cat
  • A unilaterally de-afferented cat is a useful animal model for the study of sensorineural hearing loss with either primary neuronal degeneration or primary hair cell damage followed by secondary neuronal degeneration. We cut the auditory nerve in cats and allowed them to survive for up to 1 yr post surgery. Such surgery can result in near complete loss of the auditory nerve, yet all other structures of the cochlea remain normal. Months after nerve section, there appeared to be a reinnervation of the organ of Corti by branches of the facial nerve, which can be seen, in serial sections, streaming through the ganglion without a soma. Within the organ of Corti, this reinnervation appeared as spiraling fibers lining either side of the inner hair cell. These results suggested 1) that hair cells can survive in the adult ear without their afferent innervation, and 2) that the surviving hair cells are likely expressing signals that remain capable of attracting new neuronal contacts.
  • This animal model was used as a platform for neuronal transplantation studies. As shown in FIGS. 7A and 7B, the distortion product otoacoustic emissions (DPOAEs) remained normal in the de-afferented ear, while there was a dramatic elevation of compound action potential (CAP) thresholds in the de-afferented ear. These results indicated that all the processes underlying transduction and amplification in the cochlea were normal in the de-afferented ear. Therefore, this model system is ideally suited to a neuronal transplantation experiment.
  • We have performed a number of xenotransplantation experiments in the unilaterally de-afferented cat and assessed the extent of incorporation and differentiation of progenitor cells up to 8 weeks post transplantation. The basic approach in the eight animals studied to date has been to 1) cut the auditory nerve bundle near the Schwann glial border, 2) put the animals on cyclosporin immunosuppression therapy, 3) inject neural progenitor cells after a variable recovery interval from 0 to 12 weeks, 4) allow a post-implantation survival of 1-8 weeks, 5) assess functional recovery via a terminal electrophysiological session, and 6) harvest the cochlea and the brain for histological verification of the extent of the primary neural degeneration and the survival and differentiation of transplanted cells.
  • The progenitor cells injected have included 1) immature spiral ganglion neurons isolated from fetal pigs and 2) mouse ES cells, expressing β-galactosidase reporters. In some cases, the exogenous cells were transplanted into the round window and in other cases into the auditory nerve, just peripheral to the site of the surgical section.
  • In one study, ES cells were transplanted into the auditory nerve 4 weeks after surgery. When the animal was sacrificed 6 weeks after transplantation, β-galactosidase positive cells were seen only in the vicinity of the electrode track (none were seen anywhere else in the nerve or cochlear nucleus). Some of these cells had neuronal morphology. In one case, a total of 150 β-gal positive cells were seen near the electrode track.
  • Example 8 An Amino-Terminal Polypeptide of Sonic Hedgehog (SHH-N) Stimulates Growth of Hair Cells in Murine Cochlear Explants
  • Explants of the organ of Corti from postnatal day 1 mice were cultured in basic serum-free medium (no growth factor), consisting of serum-free knockout DMEM medium with N2 supplement. Experimental explants were treated with the soluble reagent SHH-N. After 7 days in culture, in situ analysis was performed to examine hair cells through the detection of the hair cell markers myosin VIIA (Myo7a) and Math1. In situ staining revealed that more inner and outer hair cells were present in cultures supplemented with 25 nM SHH-N than in control cultures (N2).
  • In another experiment, inner ear progenitor cells derived from adult murine inner ear stem cells were cultured in serum-free medium (see Li et al., Nature Medicine 9:1293-1299, 2003), and explants were treated with the soluble reagent SHH-N as described above. The number of cells expressing hair cell markers was greater in cultures supplemented with 25 nM SHH-N as compared to control (N2+b27) cultures, and typically the number of cells expressing hair cell markers was about 3-fold greater. Hair cells were identified by in situ staining with an antibody against Myo7a.
  • Example 9 An Amino-Terminal Polypeptide of Sonic Hedgehog (SHH-N) Stimulates Growth of Hair Cells in Murine Cochlear Explants
  • Chicken otic vesicles were cultured in basic serum-free medium (no growth factor), consisting of serum-free knockout DMEM medium with N2 supplement. Explants were treated with the soluble reagent SHH-N as described above. After 7 days in culture, more hair cells were present in cultures supplemented with 50 nM SHH-N than in control cultures (N2). Hair cell markers were identified by in situ staining with antibodies against myosin VIIA (Myo7a) and hair cell antigen (HCA).
  • Dosage studies examined the effect of varying concentrations of SHH on hair cell growth in the otic vesicles after three and seven days in culture. After three days in culture, the greatest number of hair cells was observed in cultures containing 12.5 nM SHH-N (FIG. 8A). After seven days in culture, the greatest number of hair cells was observed in cultures containing 50 nM SHH-N (FIG. 8B).
  • Example 10 Assays to Monitor Differentiation of a Stem Cell into a Hair Cell of the Inner Ear
  • We have developed assays to monitor the differentiation of a pluripotent stem cell into a hair cell of the inner ear. According to one assay, a luciferase gene can be cloned downstream of a myoVIIa promoter. This promoter will activate expression of a reporter gene in any cells that have been converted to hair cells. As an alternative, the Math1 promoter is well characterized and can be used to drive expression of reporter genes in hair cells. Other alternative promoters include the α9 acetylcholine receptor promoter and the espin promoter.
  • The myoVIIa (or Math1) promoter can be obtained by PCR of mouse genomic DNA. PCR can be performed using primers with specific restriction sites for cloning the DNA into the pGL3-Basic Vector (Promega, Madison, Wis.). The PCR product can be purified by agarose gel electrophoresis, gel purified, and cleaved with restriction enzymes. The pGL3-Basic Vector contains the firefly luciferase gene and a multiple cloning site upstream of the open reading frame. The purified and cleaved PCR product can be cloned into the multiple cloning site in the proper orientation for directing expression of the luciferase gene.
  • The myoVIIa promoter-luciferase construct can be transformed into bacteria for plasmid amplification, and plasmids purified from the resulting clones can be transfected into derivatives of the mouse stem cell lines ROSA26 or R1. ROSA26 and R1 cell lines are maintained and propagated in medium containing the growth factors EGF (20 ng/mL), IGF-1 (50 ng/mL), and bFGF (10 ng/mL) (Li et al., Proc. Natl. Acad. Sci. USA 100:13495-13500). These cells have the characteristics of progenitor cells and have the ability to differentiate into hair cells, but the myoVIIa gene is not activated. A baseline level of luciferase expression can be measured while the cells are in this progenitor state. Removal of the cells to medium lacking growth factors will induce the cells to differentiate into hair cells, which can be detected by an increase in luciferase expression. To detect luminescence, the cells can be lysed and incubated with substrate and the luminescence measured with a device, such as luminescence spectrometer.
  • Following the initial assay in mouse embryonic stem cells for transfection and conversion of stem cells to hair cells, the assay can be performed in other cell types, such as neural stem cells and bone marrow derived stem cells.
  • The assay can be performed using a clonal population of cells. To obtain a clonal cell line, cells transfected with myoVIIa-luciferase are selected by growth on G418. The myoVIIa-luciferase reporter cells can be grown in a 10 cm dish until colonies are apparent. The individual colonies can be then be ring-cloned. Alternatively, if the cells are capable of growth at low density, the cells can be grown in 96 well plates at dilutions of up to 1 cell per well, and wells that have apparent cell growth will be harvested. The cells can be propagated to obtain large numbers and can then be subjected to the luciferase assay to determine the effect of candidate genes on the conversion to the hair cell phenotype.
  • Example 11 Assays to Identify Genes Involved in the Differentiation of Cells of the Inner Ear
  • We have developed assays to identify genes that influence the differentiation of pluripotent stem cells or progenitor cells into hair cells or spiral ganglion cells (or cells that have differentiated to a point sufficient to act as hair cells or spiral ganglion cells; we may refer to these cells herein as “hair-like” cells or “ganglion-like” cells). These genes can have a positive influence, in which case expression of the gene promotes cell differentiation (whether through a positive action or by inhibiting an inhibitor), or a negative influence, in which case expression of the gene inhibits cell differentiation. According to one assay, the myoVIIa-luciferase reporter cells described in Example 10 can be grown in medium containing EGF, IGF-1, and bFGF. The cells can be transfected with a candidate gene (or a biologically active fragment thereof) expressed from a vector such as a plasmid. Expression can be regulated by an inducible promoter or by a constitutively active promoter such as a CMV promoter. Exemplary candidate genes are described in Table 1, and any of the genes or types of genes described in Table 1 can be used in the screening methods of the invention, regardless of the exact manner in which the screen is configured (e.g., regardless of whether the screen is conducted with a single cell; a population of cells; a stem cell or progenitor cell; a pure or impure population of stem cells or progenitor cells; or in culture or in vivo).
  • TABLE 1
    Genes that may influence differentiation of pluripotent stem cells to hair
    cells or spiral ganglion cells.
    Gene family Exemplary Candidate Genes
    Basic helix-loop-helix Math1, Brn3.1, Brn3.2, Hes1, Hes5,
    transcription factors neurogenin-1, NeuroD
    Notch Pathway factors Jagged1, Jagged2, Delta1, Notch1,
    Lunatic fringe, Numb
    WNT pathway genes Wnt7a
    Cell Cycle regulators p27Kip1
    Sonic hedgehog pathway genes Shh, Bmp4
    Growth factors and growth Fgfr3, Fgfr1, Fgfr2, Fgf10, Fgf2, Fgf3
    factor receptors
    Zinc finger and homeobox GATA3, Pax2
    transcription factors
    Neurotrophins Neurotrophin-3, BDNF
  • The cDNAs for the candidate genes can be obtained from RNA prepared from various sources include mouse brain or human striatum (Stratagene, La Jolla, Calif.). The RNA can be reverse-transcribed using the Superscript First Strand Synthesis System (Invitrogen, Carlsbad, Calif.) with an oligo(dT) primer and Superscript II reverse transcriptase. The cDNA for each can be cloned into an expression vector containing a hygromycin resistance gene, and transformed into bacterial cells for amplification (pcDNA3.1/hygromycin). The purified vector can be transfected into luciferase expressing cells, such as those described in Example 10, and the cells cultured in medium containing hygromycin. Clonal cell lines can be obtained and expanded in medium containing hygromycin and the growth factor bFGF, EGF, and IGF, as described in Example 10. The expanded cell culture can then be diluted into 96 well plates. The cells can be cultured overnight for initial growth and spreading to take place, and then the cells can be grown in medium without growth factors to induce differentiation. The individual wells can be subjected to the luciferase assay at various times. A method to measure luciferase activity is described above.
  • As a control experiment, a plasmid expressing a gene that is known to bias the cells to development of a phenotype other than hair cells or spiral ganglion cells can be transfected into luciferase gene-expressing cells. For example, a myoD gene can be transfected into the luciferase-reporter cells to induce differentiation of the cells into muscle cells, or a GFAP gene can be transfected to induce differentiation into ganglion cells.
  • An alternative assay can be appropriate for identifying genes that inhibit differentiation of stem cells to hair cells. According to this assay, the luciferase reporter stem cells are cultured in low concentrations of growth factors, which will maintain the cells in the precursor state. Small interfering RNAs (siRNAs) that target candidate genes will be introduced into the cells to inhibit the expression of genes whose expression is necessary to maintain the cells in a progenitor state, and thus inhibit the differentiation of the cells into hair cells. Down-regulation of these inhibitory genes will be detected by an increase in luminescence.
  • To construct the siRNA molecules, short sequences of nucleotides (e.g., sequences of about 21-23 nucleotides) will be selected from the coding sequence of the same group of candidate genes listed above. Synthetic RNAs can be incubated at 90° C. for 1 minute followed by 37° C. for 1 hour to allow the two 21-23 nucleotide strands to anneal. Cationic liposomes can be formed by mixing the siRNAs with oligofectamine (Invitrogen, Carlsbad, Calif.), and this mixture can be used to introduce the siRNA into the luciferase reporter stem cells. Following transfection, the expression of the target gene can be assessed by flow cytometry (for the proteins for which antibodies are available) and by RT-PCR. If a reduction in expression of the targeted protein (or RNA) correlates with an increase in luminescence, it can be concluded that the target gene is an inhibitor of hair cell development. If a decrease in luminescence is detected upon introduction of the siRNA into the cell culture, it can be concluded that the target gene may promote differentiation of stem cells to hair cells. The results of this assay can be compared to the results of the gene overexpression assays described above.
  • Example 12 Library Screens to Identify Genes Involved in the Differentiation of Stem Cells to Cells of the Inner Ear
  • The inner ear cell development assays described above are amenable to screening large numbers of genes that can be introduced from an expression library.
  • According to one screening approach, a library can be constructed that includes the luciferase reporter cells described above, transformed with expression vectors containing the test cDNAs. The library can be constructed from inner ear mRNA. The screening assay can be performed in 96-well plates as described above. Detection of luminescence can be performed after various time periods, following the course of differentiation in response to cDNA expression.
  • In another screening approach, a commercial library of genes cloned into adenoviral vectors can be used to express human genes in the luciferase reporter cell line described above. These assays take advantage of the efficient transduction and long-term expression of the adenoviral delivery system.
  • Example 13 Purification of Inner Ear Cells Obtained from Stem Cells
  • The genes identified by the methods described above can be used to induce the differentiation of embryonic stem cells into hair cells or neural cells of the spiral ganglion. These newly generated cells are suitable for transplantation.
  • Before the cells can be used for transplantation, the differentiated ear cells must be separated from remaining pluripotent cells, and from cells that are otherwise not hair cells or neural cells. To purify the cells, the promoters described above for tissue specific expression in hair cells or spiral ganglion cells can be cloned upstream of a selectable marker, such as the hygromycin resistance gene. Other selectable markers, such as a GFP gene, are appropriate. The methods can be applied to human or mouse embryonic stem cells.
  • Thus, according to the purification method, a myoVIIa promoter can be cloned upstream of a hygromycin resistance gene. The fusion product can be constructed in a plasmid containing a second selectable marker, such as neomycin, under control of a constitutive promoter, such as CMV. Another plasmid can be constructed, wherein a gene identified by the methods of Examples 10-12 is placed under control of a constitutive promoter, such as CMV. The two plasmids can be transfected into a pluripotent human embryonic stem cell. Cells containing the plasmids are selected by growth in medium containing neomycin. Cells that grow in neomycin are expressing the gene of interest, and the neomycin resistance gene. The stem cells are cultured in growth factors such as EGF, IGF-1, and bFGF to maintain the cell in a progenitor state.
  • To induce differentiation of the cells to form hair cells, the cells containing the engineered plasmid are cultured on hygromycin. The hygromycin media can also include supplemental growth factors. The concentration of growth factors can be reduced to sensitize the cells for differentiation. Some cells may be induced to differentiate by plating on hygromycin in the absence of supplemental growth factors. Cells cultured in hygromycin are newly formed hair cells and can be isolated for use in transplantation.
  • OTHER EMBODIMENTS
  • A number of embodiments featured in the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims (49)

1. A method of producing a population of neural progenitor cells, the method comprising:
providing a first population of cells comprising stem cells that have undetectable levels of Sox1 expression;
culturing the first population of cells in suspension in the absence of serum and feeder cells, under conditions and for a time period sufficient to induce differentiation of said first population of cells into neural progenitor cells, thereby obtaining a second population of cells comprising neural progenitor cells.
2. The method of claim 1, further comprising assaying the levels of Sox1 in the first and second population of cells, wherein a higher level of Sox1 expression in the second population of cells as compared to the first population of cells indicates that the second population of cells comprises neural progenitor cells.
3. The method of claim 1, further comprising assaying expression of one or more of nestin, Pax2, Math1, NeuroD, and GFAP in the second population of cells, wherein expression one or more of nestin, Pax2, Math1, NeuroD, and GFAP indicates that the second population of cells comprises neural progenitor cells.
4. The method of claim 1, wherein the second population of cells express one or more of nestin, Pax2, Math1, NeuroD, GFAP, BMP4, BMP7, Notch1, Jag1, and Jag2.
5. The method of claim 1, wherein the stem cells comprise embryonic stem cells.
6. The method of claim 5, wherein the embryonic stem cells comprise murine embryonic stem cells.
7. The method of claim 5, wherein the embryonic stem cells comprise human embryonic stem cells.
8. The method of claim 1, wherein the first and second populations of cells comprise one or more of a reporter under the control of a beta-actin promoter or a reporter under the control of a Sox1 promoter.
9. The method of claim 8, wherein the reporter is a fluorescent protein.
10. The method of claim 1, wherein following differentiation of the first population of cells, the method further comprises:
disrupting clusters of two or more neural progenitor cells to yield individual neural progenitor cells;
culturing the individual neural progenitor cells for a time and under conditions sufficient to promote attachment of the cells to a surface; and
maintaining the attached cells in the presence of one or more growth factors for a time and under conditions sufficient to promote cell proliferation, thereby increasing the number of neural progenitor cells.
11. The method of claim 10, wherein the attached cells are cultured in the presence of 10% serum.
12. The method of claim 10, wherein the second and third population of cells express one or more of Sox1, nestin, Pax2, and Math1.
13. The method of claim 10, wherein the growth factor is basic fibroblast growth factor.
14. The method of claim 10, further comprising culturing the neural progenitor cells in the absence of growth factor for a time sufficient to promote differentiation of the neural progenitor cells into sensory neural cells.
15. The method of claim 1, further comprising culturing the neural progenitor cells in the absence of growth factor for a time sufficient to promote differentiation of the neural progenitor cells into sensory neural cells.
16. The method of claim 14, wherein the sensory neural cells comprise one or more of neurons, glial cells, and oligodendrocytes.
17. The method of claim 14, wherein the sensory neural cells express one or both of (i) less Sox1 than the neural progenitor cells and (ii) higher levels of one or more of TrkC and Map2 than the neural progenitor cells.
18. The method of claim 14, wherein one or more of β-III tubulin and GFAP is detectable in the sensory neural cells.
19. The method of claim 1, further comprising culturing the neural progenitor cells in the presence of an effective amount of bone morphogenetic protein 4 (BMP4) for a time period sufficient to promote differentiation of the cells into sensory neural cells.
20. The method of claim 19, wherein the sensory neural cells express elevated levels of GATA3, TrkB, and TrkC when compared to the neural progenitor cells.
21. A method of producing a population of sensory neural cells, the method comprising:
providing a population of stem cells having undetectable levels of Sox1 expression;
culturing the stem cells in the absence of serum for a time period sufficient to promote differentiation of the stem cells into a population of cells comprising neural progenitor cells;
contacting the neural progenitor cells with an effective amount of one or both of (i) bone morphogenetic protein 4 (BMP4) or (ii) retinoic acid for a time period sufficient to promote differentiation of the neural progenitor cells into sensory neural cells, thereby producing a population of sensory neural cells.
22. The method of claim 21, wherein the neural progenitor cells express detectable levels of Sox1.
23. The method of claim 21, wherein the stem cells comprise embryonic stem cells.
24. The method of claim 21, wherein the stem cells are human stem cells or murine stem cells.
25. The method of claim 21, wherein the stem cells are cultured in the presence of human leukemia inhibitory factor (LIF).
26. The method of claim 21, wherein one or both of the stem cells and neural progenitor cells are cultured in the presence of one or more growth factors.
27. The method of claim 21, wherein the sensory neural cells have elevated levels of GATA3, TrkB, and TrkC as compared to the stem cells.
28. The method of claim 1, further comprising culturing the neural progenitor cells in the presence of an effective amount of retinoic acid for a time period sufficient to promote differentiation of the cells into sensory neural cells.
29. A method of producing a population of sensory neural cells, the method comprising:
providing a population of cells comprising inner ear stem cells;
culturing the inner ear stem cells in the absence of serum and in the presence of one or more of (i) an effective amount of retinoic acid or (ii) bone morphogenetic protein 4 (BMP4) for a time sufficient to promote differentiation of the inner ear stem cells into sensory neural cells.
30. The method of claim 29, wherein the inner ear stem cells are cultured in the presence of one or more growth factors.
31. The method of claim 29, wherein the inner ear stem cells express detectable levels of Sox1.
32. The method of claim 29, wherein the inner ear stem cells express undetectable levels of β-III tubulin, GFAP, and myosin VIIa.
33. The method of claim 29, wherein the sensory neural cells express higher levels of Pax2 as compared to the inner ear stem cells.
34. The method of claim 33, further comprising, prior to culturing the inner ear cells in the presence of retinoic acid or BMP4:
(a) culturing the inner ear stem cells in suspension in the absence of serum for a time period sufficient for the cells to form clusters of cells comprising two or more cells;
(b) disrupting the cluster of cells to yield a population of individual cells;
(c) culturing the individual cells in suspension in the absence of serum suspension for a time period sufficient for the cells to form clusters of cells comprising two or more cells; and
optionally repeating steps (a) to (c) until a desired number of inner ear stem cells is obtained, and then
culturing the inner ear stem cells in the presence of serum for a time sufficient to promote attachment of the cells to a surface.
35. A method of treating, or preventing the progression of, sensorineural hearing loss in a subject, the method comprising:
providing a population of neural progenitor cells obtained using the method of claim 1, and
administering said population of cells into the inner ear of a subject, thereby treating or preventing the development or progression of sensorineural hearing loss in the subject.
36. The method of claim 35, wherein the cells are administered by injection into the luminae of the cochlea, into the auditory nerve trunk in the internal auditory meatus, or into the scala tympani.
37. A method of treating, or preventing the development or progression of, sensorineural hearing loss in a subject, the method comprising:
providing a population of sensory neural cells obtained using the method of claim 14, and
administering said population of sensory neural cells into the inner ear of a subject, thereby treating or preventing the progression of sensorineural hearing loss in the subject.
38. The method of claim 37, wherein the cells are administered by injection into the luminae of the cochlea, into the auditory nerve trunk in the internal auditory meatus, or into the scala tympani.
39. A method of treating, or preventing the progression of, sensorineural hearing loss in a subject, the method comprising:
providing a population of sensory neural cells obtained using the method of claim 15, and
administering said population of sensory neural cells into the inner ear of a subject, thereby treating or preventing the progression of sensorineural hearing loss in the subject.
40. The method of claim 39, wherein the cells are administered by injection into the luminae of the cochlea, into the auditory nerve trunk in the internal auditory meatus, or into the scala tympani.
41. A method of treating, or preventing the development or progression of, sensorineural hearing loss in a subject, the method comprising:
providing a population of cells obtained using the method of claim 21, and
administering said population of cells into the inner ear of a subject, thereby treating or preventing the progression of sensorineural hearing loss in the subject.
42. The method of claim 41, wherein the cells are administered by injection into the luminae of the cochlea, into the auditory nerve trunk in the internal auditory meatus, or into the scala tympani.
43. A method of treating, or preventing the development or progression of, sensorineural hearing loss in a subject, the method comprising:
providing a population of cells obtained using the method of claim 29, and
administering said population of cells into the inner ear of a subject, thereby treating or preventing the progression of sensorineural hearing loss in the subject.
44. The method of claim 43, wherein the cells are administered by injection into the luminae of the cochlea, into the auditory nerve trunk in the internal auditory meatus, or into the scala tympani.
45. A method of identifying a candidate compound that promotes differentiation of cells into mature cells of the inner ear, the methods comprising:
providing a cell expressing a reporter construct comprising a Math-1 regulatory region operably linked to a reporter gene;
contacting the cell with a test compound; and
detecting expression of the reporter gene;
wherein an increase in expression of the reporter gene in that presence of the test compound as compared to expression of the reporter gene in the absence of the test compound indicates that the test compound is a candidate compound that promotes differentiation of cells into mature cells of the inner ear.
46. The method of claim 45, further comprising contacting a stem cell, inner ear stem cell, or neural progenitor cell with the candidate compound and evaluating the ability of the candidate compound to promote differentiation into a mature cell of the inner ear, and selecting a candidate compound that promotes differentiation into a mature cell of the inner ear.
47. The method of claim 45, wherein the reporter gene is selected from the group consisting of a fluorescent protein, an enzymatically active protein, or a protein detectable in an antibody-based assay.
48. The method of claim 45, wherein the mature cell of the inner ear is a hair cell or spiral ganglion neuron.
49. The method of claim 46, further comprising administering the candidate compound to the inner ear of an animal model of sensorineural hearing loss, and evaluating the ability of the candidate compound to promote differentiation of inner ear stem cells into mature cells of the inner ear.
US11/953,797 2003-11-13 2007-12-10 Use of stem cells to generate inner ear cells Abandoned US20080267929A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/953,797 US20080267929A1 (en) 2003-11-13 2007-12-10 Use of stem cells to generate inner ear cells
US12/187,543 US8617810B2 (en) 2003-11-13 2008-08-07 Screening method for compounds that promote differentiation of inner ear progenitor cells

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US51971203P 2003-11-13 2003-11-13
US60574604P 2004-08-31 2004-08-31
US10/989,649 US8673634B2 (en) 2003-11-13 2004-11-15 Method for the treatment of hearing loss
US11/953,797 US20080267929A1 (en) 2003-11-13 2007-12-10 Use of stem cells to generate inner ear cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/989,649 Continuation US8673634B2 (en) 2003-11-13 2004-11-15 Method for the treatment of hearing loss

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/187,543 Continuation US8617810B2 (en) 2003-11-13 2008-08-07 Screening method for compounds that promote differentiation of inner ear progenitor cells

Publications (1)

Publication Number Publication Date
US20080267929A1 true US20080267929A1 (en) 2008-10-30

Family

ID=36000669

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/989,649 Active US8673634B2 (en) 2003-11-13 2004-11-15 Method for the treatment of hearing loss
US11/953,797 Abandoned US20080267929A1 (en) 2003-11-13 2007-12-10 Use of stem cells to generate inner ear cells
US12/187,543 Active US8617810B2 (en) 2003-11-13 2008-08-07 Screening method for compounds that promote differentiation of inner ear progenitor cells
US14/208,284 Active 2025-01-05 US9375452B2 (en) 2003-11-13 2014-03-13 Use of stem cells to generate inner ear cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/989,649 Active US8673634B2 (en) 2003-11-13 2004-11-15 Method for the treatment of hearing loss

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/187,543 Active US8617810B2 (en) 2003-11-13 2008-08-07 Screening method for compounds that promote differentiation of inner ear progenitor cells
US14/208,284 Active 2025-01-05 US9375452B2 (en) 2003-11-13 2014-03-13 Use of stem cells to generate inner ear cells

Country Status (2)

Country Link
US (4) US8673634B2 (en)
WO (1) WO2006026570A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129327A1 (en) * 2006-10-11 2010-05-27 Sharon Oleskevich Method of treating hearing loss
WO2012103012A1 (en) 2011-01-24 2012-08-02 The Board Of Trustees Of The Leland Stanford Junior University Methods for generating inner ear cells in vitro
US9375452B2 (en) 2003-11-13 2016-06-28 Massachusetts Eye & Ear Infirmary Use of stem cells to generate inner ear cells
US9896658B2 (en) 2006-11-15 2018-02-20 Massachusetts Eye & Eat Infirmary Generation of inner ear auditory hair cell
US10143711B2 (en) 2008-11-24 2018-12-04 Massachusetts Eye & Ear Infirmary Pathways to generate hair cells
US10898492B2 (en) 2012-09-07 2021-01-26 Massachusetts Eye And Ear Infirmary Treating hearing loss
US11180751B2 (en) 2015-06-18 2021-11-23 The Broad Institute, Inc. CRISPR enzymes and systems
US11185536B2 (en) 2015-12-04 2021-11-30 Massachusetts Eye And Ear Infirmary Treatment of hearing loss by inhibition of casein kinase 1
US11286487B2 (en) 2014-08-06 2022-03-29 Massachusetts Eye And Ear Infirmary Increasing ATOH1 life to drive sensorineural hair cell differentiation
US11466252B2 (en) 2016-01-29 2022-10-11 Massachusetts Eye And Ear Infirmary Expansion and differentiation of inner ear supporting cells and methods of use thereof

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392645A1 (en) 2005-10-14 2011-12-07 MUSC Foundation For Research Development Targeting PAX2 for the induction of DEFB1-mediated tumor immunity and cancer therapy
US20100029504A1 (en) * 2007-01-16 2010-02-04 Phigenix, Inc. Detecting pax2 for the diagnosis of breast cancer
US11707520B2 (en) 2005-11-03 2023-07-25 Seqirus UK Limited Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
HUE051122T2 (en) 2005-11-04 2021-03-01 Seqirus Uk Ltd Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
JP5386180B2 (en) 2006-02-28 2014-01-15 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Method for compact aggregation of dermal cells
BRPI0806779A2 (en) * 2007-01-16 2011-09-13 Musc Found For Res Dev compositions and methods for diagnosis, treatment and prevention of prostate conditions
WO2009100438A2 (en) 2008-02-07 2009-08-13 Massachusetts Eye & Ear Infirmary Compounds that enhance atoh-1 expression
WO2009147684A2 (en) * 2008-06-06 2009-12-10 Quark Pharmaceuticals, Inc. Compositions and methods for treatment of ear disorders
US8318817B2 (en) 2008-07-21 2012-11-27 Otonomy, Inc. Controlled release antimicrobial compositions and methods for the treatment of otic disorders
WO2011005496A2 (en) * 2009-06-22 2011-01-13 Massachusetts Eye & Ear Infirmary Islet1 (isl1) and hearing loss
EP3508197A1 (en) * 2009-10-21 2019-07-10 Otonomy, Inc. Modulation of gel temperature of poloxamer-containing formulations
TWI573591B (en) 2009-10-29 2017-03-11 阿卡斯提製藥公司 Concentrated therapeutic phospholipid compositions
JP5860805B2 (en) * 2010-03-23 2016-02-16 オリンパス株式会社 Method for monitoring the differentiation state of stem cells
DK2576783T3 (en) 2010-05-26 2018-03-12 Curna Inc TREATMENT OF ATONAL HOMOLOGY 1- (ATOH1) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENCE TRANSCRIPTS AT ATOH1
WO2011153348A2 (en) 2010-06-04 2011-12-08 Hough Ear Institute Composition and method for inner ear sensory hair cell regeneration and replacement
KR102055438B1 (en) 2012-07-31 2019-12-19 에이지엑스 쎄라퓨틱스, 인크. Hla g-modified cells and methods
SG10201707569YA (en) 2012-12-12 2017-10-30 Broad Inst Inc Delivery, Engineering and Optimization of Systems, Methods and Compositions for Sequence Manipulation and Therapeutic Applications
EP4056677A1 (en) 2013-03-14 2022-09-14 The Brigham & Women's Hospital, Inc. Compositions and methods for epithelial stem cell expansion and culture
AU2014262376A1 (en) * 2013-05-10 2015-11-26 Cell-Innovations Ip Pty Ltd Compositions and methods for the treatment of tinnitus
KR20160019553A (en) 2013-06-17 2016-02-19 더 브로드 인스티튜트, 인코퍼레이티드 Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
EP3597755A1 (en) 2013-06-17 2020-01-22 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
MX2016007328A (en) 2013-12-12 2017-07-19 Broad Inst Inc Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing.
WO2015089419A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components
US9512400B2 (en) 2014-04-28 2016-12-06 The University Of Kansas Reprogramming of human whartons jelly cells to produce hair cells
CN107073042A (en) 2014-09-03 2017-08-18 布里格海姆妇女医院公司 Composition, the system and method for hearing loss are treated for producing inner ear hair cells
EP3230451B1 (en) 2014-12-12 2021-04-07 The Broad Institute, Inc. Protected guide rnas (pgrnas)
EP3230452A1 (en) 2014-12-12 2017-10-18 The Broad Institute Inc. Dead guides for crispr transcription factors
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
AU2015369725A1 (en) 2014-12-24 2017-06-29 Massachusetts Institute Of Technology CRISPR having or associated with destabilization domains
AR105080A1 (en) 2015-07-07 2017-09-06 Lilly Co Eli INHIBITING COMPOUNDS OF THE SIGNALING OF THE NOTCH ROAD
EP3400286A1 (en) 2016-01-08 2018-11-14 Massachusetts Institute Of Technology Production of differentiated enteroendocrine cells and insulin producing cells
US11260130B2 (en) 2016-03-02 2022-03-01 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using a GSK3 inhibitor: IV
US10201540B2 (en) 2016-03-02 2019-02-12 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using GSK3 inhibitors: I
US10213511B2 (en) 2016-03-02 2019-02-26 Frequency Therapeutics, Inc. Thermoreversible compositions for administration of therapeutic agents
GB201615714D0 (en) 2016-09-15 2016-11-02 Univ Of Sheffield The Otic progenitor identification and isolation
CN110392686A (en) 2016-12-30 2019-10-29 频率治疗公司 1H- pyrrole-2,5-diones compound and making be used to induction it is dry/method of ancestral's sertoli cell self-renewing
CA3052704A1 (en) * 2017-02-06 2018-08-09 Children's Medical Center Corporation Materials and methods for delivering nucleic acids to cochlear and vestibular cells
WO2018148071A1 (en) 2017-02-10 2018-08-16 St. Jude Children's Research Hospital Combination therapy for treating disorders of the ear
US11793867B2 (en) 2017-12-18 2023-10-24 Biontech Us Inc. Neoantigens and uses thereof
JP2021533788A (en) 2018-08-17 2021-12-09 フリークエンシー セラピューティクス インコーポレイテッド Compositions and Methods for Generating Hair Cells by Up-Controlling JAG-1
EP3837351A1 (en) 2018-08-17 2021-06-23 Frequency Therapeutics, Inc. Compositions and methods for generating hair cells by downregulating foxo
EP3898958A1 (en) 2018-12-17 2021-10-27 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
WO2020236967A1 (en) 2019-05-20 2020-11-26 The Broad Institute, Inc. Random crispr-cas deletion mutant
WO2021041922A1 (en) 2019-08-30 2021-03-04 The Broad Institute, Inc. Crispr-associated mu transposase systems
CN116457460A (en) * 2020-10-14 2023-07-18 澳大利亚耳科学研究所 Method for producing inner ear hair cells

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277820B1 (en) * 1998-04-09 2001-08-21 Genentech, Inc. Method of dopaminergic and serotonergic neuron formation from neuroprogenitor cells
US6589505B1 (en) * 1999-01-29 2003-07-08 St. Jude Children's Research Hospital Cells that lack p19ink4d and p27kip1 activity and methods of use thereof
US20040166091A1 (en) * 2003-02-24 2004-08-26 Genvec, Inc. Materials and methods for treating disorders of the ear
US20040231009A1 (en) * 1999-06-01 2004-11-18 Zoghbi Huda Y. Composition and methods for the therapeutic use of an atonal-associated sequence for deafness, osteoarthritis and abnormal cell proliferation
US20050019801A1 (en) * 2003-06-04 2005-01-27 Curis, Inc. Stem cell-based methods for identifying and characterizing agents
US6929948B1 (en) * 1998-04-14 2005-08-16 The University Court Of The University Of Edinburgh Lineage specific cells and progenitor cells
US20090004736A1 (en) * 2002-02-05 2009-01-01 Es Cell International Pte Ltd. Generation of neural stem cells undifferentiated human embryonic stem cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273570B2 (en) * 2000-05-16 2012-09-25 Riken Process of inducing differentiation of embryonic cell to cell expressing neural surface marker using OP9 or PA6 cells
CA2411914C (en) 2000-06-20 2012-08-21 Es Cell International Pte Ltd Method of controlling differentiation of embryonic stem (es) cells by culturing es cells in the presence of bmp-2 pathway antagonists
JP2003093049A (en) * 2001-09-25 2003-04-02 Kansai Tlo Kk Inner ear stem cell and method for preparing the same
US20030114381A1 (en) * 2001-10-22 2003-06-19 Cotanche Douglas A. Method of treating sensorineural hearing loss
US7390659B2 (en) * 2002-07-16 2008-06-24 The Trustees Of Columbia University In The City Of New York Methods for inducing differentiation of embryonic stem cells and uses thereof
US8673634B2 (en) 2003-11-13 2014-03-18 Massachusetts Eye & Ear Infirmary Method for the treatment of hearing loss
JP2006117536A (en) 2004-10-19 2006-05-11 Kyoto Univ Medicine for inducing hair cell of internal ear

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277820B1 (en) * 1998-04-09 2001-08-21 Genentech, Inc. Method of dopaminergic and serotonergic neuron formation from neuroprogenitor cells
US6929948B1 (en) * 1998-04-14 2005-08-16 The University Court Of The University Of Edinburgh Lineage specific cells and progenitor cells
US6589505B1 (en) * 1999-01-29 2003-07-08 St. Jude Children's Research Hospital Cells that lack p19ink4d and p27kip1 activity and methods of use thereof
US20040231009A1 (en) * 1999-06-01 2004-11-18 Zoghbi Huda Y. Composition and methods for the therapeutic use of an atonal-associated sequence for deafness, osteoarthritis and abnormal cell proliferation
US20090004736A1 (en) * 2002-02-05 2009-01-01 Es Cell International Pte Ltd. Generation of neural stem cells undifferentiated human embryonic stem cells
US7604992B2 (en) * 2002-06-05 2009-10-20 Es Cell International Pte Ltd. Generation of neural stem cells from undifferentiated human embryonic stem cells
US20040166091A1 (en) * 2003-02-24 2004-08-26 Genvec, Inc. Materials and methods for treating disorders of the ear
US20050019801A1 (en) * 2003-06-04 2005-01-27 Curis, Inc. Stem cell-based methods for identifying and characterizing agents

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375452B2 (en) 2003-11-13 2016-06-28 Massachusetts Eye & Ear Infirmary Use of stem cells to generate inner ear cells
US20100129327A1 (en) * 2006-10-11 2010-05-27 Sharon Oleskevich Method of treating hearing loss
US9896658B2 (en) 2006-11-15 2018-02-20 Massachusetts Eye & Eat Infirmary Generation of inner ear auditory hair cell
US11542472B2 (en) 2006-11-15 2023-01-03 Massachusetts Eye & Ear Infirmary Generation of inner ear cells
US10143711B2 (en) 2008-11-24 2018-12-04 Massachusetts Eye & Ear Infirmary Pathways to generate hair cells
WO2012103012A1 (en) 2011-01-24 2012-08-02 The Board Of Trustees Of The Leland Stanford Junior University Methods for generating inner ear cells in vitro
US9157064B2 (en) 2011-01-24 2015-10-13 The Board Of Trustees Of The Leland Stanford Junior University Methods for generating inner ear cells in vitro
US10898492B2 (en) 2012-09-07 2021-01-26 Massachusetts Eye And Ear Infirmary Treating hearing loss
US11286487B2 (en) 2014-08-06 2022-03-29 Massachusetts Eye And Ear Infirmary Increasing ATOH1 life to drive sensorineural hair cell differentiation
US11180751B2 (en) 2015-06-18 2021-11-23 The Broad Institute, Inc. CRISPR enzymes and systems
US11185536B2 (en) 2015-12-04 2021-11-30 Massachusetts Eye And Ear Infirmary Treatment of hearing loss by inhibition of casein kinase 1
US11466252B2 (en) 2016-01-29 2022-10-11 Massachusetts Eye And Ear Infirmary Expansion and differentiation of inner ear supporting cells and methods of use thereof

Also Published As

Publication number Publication date
US20090124568A1 (en) 2009-05-14
US20050287127A1 (en) 2005-12-29
US9375452B2 (en) 2016-06-28
US8673634B2 (en) 2014-03-18
WO2006026570A2 (en) 2006-03-09
US20150030568A1 (en) 2015-01-29
US8617810B2 (en) 2013-12-31
WO2006026570A3 (en) 2008-05-02
WO2006026570A8 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US9375452B2 (en) Use of stem cells to generate inner ear cells
US11542472B2 (en) Generation of inner ear cells
JP6961667B2 (en) Pathway for producing hair cells
JP4652645B2 (en) Manipulation of tissue or organ type using Notch pathway
Prajapati-DiNubila et al. Activin signaling informs the graded pattern of terminal mitosis and hair cell differentiation in the mammalian cochlea
Tata Vascular regulation of embryonic neurogenesis
JP2011019520A (en) Operation of tissue type or organ type by using notch pathway
Silva-Vargas Characterisation and modulation of patterning of mammalian epidermis
Jacques A comparative study of Fgfr3 signaling during the development of the organ of Corti and basilar papilla
Kokuzawa ated cells (1 X 10" cells) were plated onto poly-D-lysine

Legal Events

Date Code Title Description
AS Assignment

Owner name: MASSACHUSETTS EYE & EAR INFIRMARY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EDGE, ALBERT;HELLER, STEFAN;REEL/FRAME:021500/0776

Effective date: 20050401

Owner name: MASSACHUSETTS EYE & EAR INFIRMARY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, HUAWEI;REEL/FRAME:021500/0787

Effective date: 20050816

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION