US20080255927A1 - Forecasting - Google Patents

Forecasting Download PDF

Info

Publication number
US20080255927A1
US20080255927A1 US12/082,445 US8244508A US2008255927A1 US 20080255927 A1 US20080255927 A1 US 20080255927A1 US 8244508 A US8244508 A US 8244508A US 2008255927 A1 US2008255927 A1 US 2008255927A1
Authority
US
United States
Prior art keywords
data
game
sales
base
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/082,445
Inventor
Peter Sispoidis
Justin Holmes
Jeffrey Thibeault
Original Assignee
Peter Sispoidis
Justin Holmes
Jeffrey Thibeault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US92335107P priority Critical
Priority to US92334407P priority
Priority to US92335307P priority
Priority to US92326407P priority
Priority to US92334607P priority
Priority to US92335207P priority
Priority to US92334507P priority
Application filed by Peter Sispoidis, Justin Holmes, Jeffrey Thibeault filed Critical Peter Sispoidis
Priority to US12/082,445 priority patent/US20080255927A1/en
Publication of US20080255927A1 publication Critical patent/US20080255927A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0202Market predictions or demand forecasting
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports or amusements, e.g. casino games, online gambling or betting
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F17/00Coin-freed apparatus for hiring articles; Coin-freed facilities or services
    • G07F17/32Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports or amusements, e.g. casino games, online gambling or betting
    • G07F17/3225Data transfer within a gaming system, e.g. data sent between gaming machines and users
    • G07F17/3227Configuring a gaming machine, e.g. downloading personal settings, selecting working parameters

Abstract

A method for forecasting a performance characteristic of a game title is provided and includes selecting base game-play data for the game title, wherein the base-game play data is at least partially responsive to the game-play pattern of a user, generating base sales data for the game title responsive to initial sales data and generating forecast data for the game title responsive to the base sales data and the base game-play data.

Description

    RELATED APPLICATIONS
  • This application relates to U.S. Provisional Patent Application Ser. No. 60/923,264 (Atty. Docket No. IGA-0001-P), filed Apr. 12, 2007, U.S. Provisional Patent Application Ser. No. 60/923,344 (Atty. Docket No. IGA-0002-P), filed Apr. 12, 2007, U.S. Provisional Patent Application Ser. No. 60/923,345 (Atty. Docket No. IGA-0003-P), filed Apr. 12, 2007, U.S. Provisional Patent Application Ser. No. 60/923,346 (Atty. Docket No. IGA-0004-P), filed Apr. 12, 2007, U.S. Provisional Patent Application Ser. No. 60/923,351 (Atty. Docket No. IGA-0005-P), filed Apr. 12, 2007, U.S. Provisional Patent Application Ser. No. 60/923,352 (Atty. Docket No. IGA-0006-P), filed Apr. 12, 2007, U.S. Provisional Patent Application Ser. No. 60/923,353 (Atty. Docket No. IGA-0007-P), filed Apr. 12, 2007, all of which are incorporated by reference herein in their entireties.
  • FIELD OF THE INVENTION
  • This disclosure relates generally to in-game advertising and more particularly to a method for estimating desired parameters relevant to in-game advertising.
  • BACKGROUND OF THE INVENTION
  • As the placement of realistic advertisements in video games becomes more popular and acceptable in the gaming community, more and more video games are beginning to utilize video game advertisements as a viable source of revenue. Currently, most video games that employ realistic advertisements typically utilize a static advertising technique that involves placing each advertisement in one site throughout game play. As such, the location of the advertisement cannot change or move and other advertisements cannot take its place. Thus, although there may be multiple advertisements in one game, each advertisement can only occupy a single location throughout the entire game. This is undesirable because it lacks the ability to maximize the effect of the advertisement on the gamer.
  • One way to increase the effectiveness of the advertisement on the gamer is to utilize real-time dynamic advertising techniques which allow for the targeting of advertisements to specific gamers or groups of gamers. These dynamic advertising techniques allow multiple advertisements from different advertisers to be rotated through the same site during game play. Moreover, these dynamic advertising techniques allow for different content types, such as Billboard, Logo, Video, Audio and Beacons, to be used to display advertisements to the gamer. Each of these content types is capable of receiving and displaying multiple advertisements throughout the game for display to the gamer. For example, a racing game may have a billboard display advertising one product as the racing car goes around the curve and passes the billboard. However, subsequent times the race car goes around the curve and passes the billboard, entirely different advertisements may be displayed. Thus, dynamic advertising not only enhances the reality of the game's content, it maximizes the revenue generating capability of the software product by generating multiple revenue streams, as opposed to one revenue stream generated using static advertising techniques.
  • Unfortunately however, some problems currently exist with current approaches to in-game advertising. For example, because it is very difficult to determine the number of available users (i.e. gamers) and/or impressions that a game title is capable of delivering, it is very difficult to efficiently and effectively target advertisements to a specific audience.
  • SUMMARY OF THE INVENTION
  • A method for forecasting a performance characteristic of a game title is provided and includes selecting base game-play data for the game title, wherein the base-game play data is at least partially responsive to the game-play pattern of a user, generating base sales data for the game title responsive to initial sales data and generating forecast data for the game title responsive to the base sales data and the base game-play data.
  • A system for implementing a method for forecasting the performance of a game title is provided, where the includes a means for selecting base game-play data for the game title, wherein the base-game play data is at least partially responsive to the game-play pattern of a user, a means for generating base sales data for the game title responsive to initial sales data and a means for generating forecast data for the game title responsive to the base sales data and the base game-play data.
  • A computer readable storage medium having computer executable instructions for implementing a method for forecasting the performance of a game title is provided, where the method includes selecting base game-play data for the game title, wherein the base-game play data is at least partially responsive to the game-play pattern of a user, generating base sales data for the game title responsive to initial sales data and generating forecast data for the game title responsive to the base sales data and the base game-play data.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other features and advantages of the present invention will be more fully understood from the following detailed description of illustrative embodiments, taken in conjunction with the accompanying figures in which like elements are numbered alike:
  • FIG. 1 is a high level schematic block diagram illustrating one embodiment of a gaming system, in accordance with the present invention.
  • FIG. 2 is a lower level schematic block diagram illustrating the integration server of the embodiment of the gaming system of FIG. 1, in accordance with the present invention.
  • FIG. 3 is a high level block diagram illustrating one embodiment of a method for forecasting a performance characteristic of a game title, in accordance with the present invention.
  • FIG. 4 is a lower level block diagram illustrating the method of FIG. 3, in accordance with the present invention.
  • FIG. 5 is a graph illustrating one embodiment of a “game-play curve,” in accordance with the present invention;
  • FIG. 6 is a graph illustrating another embodiment of a “game-play curve,” in accordance with the present invention;
  • FIG. 7 is a graph illustrating still another embodiment of a “game-play curve,” in accordance with the present invention;
  • FIG. 8 is a graph illustrating one embodiment of a “sales forecast curve,” in accordance with the present invention;
  • FIG. 9 is a graph illustrating one embodiment of a “seasonal sales modifier curve,” in accordance with the present invention;
  • FIG. 10 is a graph illustrating one embodiment of a “day of week modifier curve,” in accordance with the present invention;
  • FIG. 11 is a graph illustrating one embodiment of a “hours played/day curve,” in accordance with the present invention;
  • FIG. 12 is a graph illustrating one embodiment of “monthly sales information,” in accordance with the present invention;
  • FIG. 13 is a graph illustrating one embodiment of a “seasonal sales modifier,” in accordance with the present invention;
  • FIG. 14 is a graph illustrating one embodiment of a “sale forecast,” in accordance with the present invention;
  • FIG. 15 is a graph illustrating one embodiment of a “final sales curve,” in accordance with the present invention;
  • FIG. 16 is a graph illustrating one embodiment of a “life-cycle curve,” in accordance with the present invention;
  • FIG. 17 is a graph illustrating one embodiment of a “life-cycle curve,” with iterations, in accordance with the present invention
  • FIG. 18 is a graph illustrating one embodiment of a “base life-cycle curve,” in accordance with the present invention;
  • FIG. 19 is a graph illustrating one embodiment of a “day-of-week modifier curve,” in accordance with the present invention;
  • FIG. 20 is a graph illustrating one embodiment of a “life-cycle curve,” in accordance with the present invention; and
  • FIG. 21 is a graph illustrating one embodiment of an “impression forecast curve,” in accordance with the present invention.
  • DETAILED DESCRIPTION
  • The present invention allows for the accurate determination, or forecasting, of an audience for a game title over a given time period, such as for example the game title “GameX” for the month of April of a specific year. Thus, forecasting provides an accurate estimate as to the number of available users and impressions that a specific game title is capable of delivering. It should be appreciated that as referred to herein, advertising content means any type of advertising content, including but not limited to 3-Dimensional and/or holographic content.
  • In accordance with the present invention, one way forecasting may be accomplished is via algorithms that determine with a great deal of precision the audience for a title over a desired time period. This information may then be used, along with weighting information, to increase the effectiveness of an advertising campaign by delivering a requested number of impressions to a specifically targeted audience. It should be noted that the impression numbers are typically dependent upon the users making the forecasting accuracies only one component to success in in-game advertising. Accordingly, a sophisticated analytic engine is provided herein that is capable of accurately predicting out months (and/or years) at a time how many users and impressions a title is capable of delivering. This analytic engine helps advertisers plan an advertising campaign with an accurate degree of certainty, wherein the analytic engine may include a data warehouse that uses an analytical approach, such as an OLAP, to provide data, such as a comprehensive matrix of data, for a specific purpose, such as reporting and/or forecasting purposes.
  • The algorithm(s) used in forecasting may take into account seasonal game-play variations (i.e. variations in game-play activity due to seasons (summer, winter, fall, spring) and holidays (people tend to play more during holidays)) as well as day-of-week variations (day-of-week variations tend to be similar, but people tend to play more on weekends), using actual and/or predicted performance data as a feedback loop to modify forecasts on an ongoing dynamic basis, using actual and/or predicted data from similar games to generate forecast data and/or using pre-sales and/or post-sales data to determine the expected number of users that may be playing the game. One embodiment of the feedback loop works as follows: generate a forecast of the number of users, get actual user numbers and plug both of these values into the algorithm (and/or equation) to help generate more accurate data. This more accurate data can then be used to forecast similar games of similar genres, say for example two types of first-person shooter games.
  • It should be appreciated that the present invention is capable of determining inventory availability more precisely than current methods of random guessing. Additionally, the invention can also take into account marketing budgets, “buzz,” title genre, setting and/or game-play attributes, and/or uses one of a set of base game-play curves that describes the game-play pattern of an average user of that type of game. This base game-play curve can then be extrapolated to generate a life-cycle curve for the game, where the life-cycle curve is a larger curve created by combining sales forecasts (that are themselves determined by above factors). This life-cycle curve indicates the number of users expected to be playing a game for any date desired, such as a date within the game's life-time. An impression curve can also be generated based on testing of the game title. This impression curve is used to determine the number of impressions delivered within a typical session of game play. The impression curve can be combined with the life-cycle curve to provide the expected impressions for any date or time frame desired, such as that within the game's life-time. As actual game-play data is generated and/or recorded, this information can be fed back into the system (via a feedback loop) and used to adjust the forecast and/or delivery of content. It should be appreciated that theoretically there is a point where the forecast data and actual data converge to approximately (or exactly) the same values. This information may then be used to plan effective advertising campaigns.
  • In accordance with the present invention, although the concepts as discussed herein are discussed with regards to a gaming environment as follows, any type of gaming environment or configuration may be used. Referring to FIG. 1, one embodiment of a gaming system 10 for implementing the method of the invention showing the connectivity between the elements is shown and includes a user gaming device 20 having gaming software 30 and application software (SDK) 40, a gaming server 50 (optional) and an integration server 60 which includes advertiser information 70. In accordance with the present invention, a gaming server is optional and the game may be wholly or partially implemented via one or more computer(s) and/or gaming device(s) as desired. During gameplay, the gaming software 30 communicates with the gaming server 50 (optional) to facilitate the gameplay and the SDK 40 communicates with the integration server 60 to facilitate the integration of advertising content. Referring to FIG. 2, a lower level block diagram illustrating the elements of the integration server 60. As shown, the interaction within the integration server 60 is illustrated by a first set of arrows 75 which represents the flow of impressions through the integration server 60, a second set of arrows 80 which represents the flow of advertising content through the integration server 60 and a third set of arrows 85 which represents the flow of control messages (i.e. figuring out a user location, start session message, etc.) through the integration server 60.
  • In accordance with the present invention, one embodiment of a method 300 for forecasting the number of available users and/or impressions that a specific game title is capable of delivering is discussed hereinafter with regards to the performance of a specific game title in relation to the number of available users and impressions over the lifetime of the game (i.e. the title's forecast) and is illustrated as shown in FIG. 3 and FIG. 4. The method 300 includes selecting a base “game-play curve” for the game title from a set of pre-generated “game-play curves,” (see FIG. 5, FIG. 6, and FIG. 7 for examples) as shown in operational block 302, where the “game-play curve” is representative of how many hours a single average user would most likely play the game per day from the time the game was purchased/received until the end of the life of the game (i.e. no longer played).
  • The pre-generated “game-play curves” may be provided by the game publisher or generated based on test data, historical data, estimated data and/or predicted data as desired, such as for example a game title, genre and/or age group. The “game-play curve” may be selected from the set of pre-generated “game-play curves” based on one or more desired parameters, such as common characteristics between a specific pre-generated “game-play curve” and the game title being forecasted. For example, the pre-generated “game-play curves” may include a curve that is representative of an action game genre which involves a fantasy science fiction theme and that is targeted to the 15-18 year old age group. If the game title being forecasted is for an action game genre that is targeted to the 15-18 year old age group, then the aforementioned game-play curve may be selected. Additionally, if the pre-generated “game-play curves” also include a curve that is representative of an action game genre which involves a non-fantasy science fiction theme and that is targeted to the 15-18 year old age group, this game-play curve may be selected.
  • It is also contemplated that selected curves in the pre-generated set of “game-play curves” may be combined and/or used together to generate forecast data. Accordingly, the selected “game-play curve” may be selected based on various attributes of the title, including (but not limited to): Genre (i.e. Action, Driving, Shooter, Role-Playing), Distribution Type (i.e. Retail, Budget, Demo), Game-play (i.e. Single Player, Multiplayer), and Setting (i.e. Fantasy, Historic, Sci-Fi). This is possible because each attribute (or combination thereof) typically lends itself to different playing habits, which may ultimately be used to determine how many hours and at what frequency the game is played.
  • A base “sales curve” is also created, as shown in operational block 304, wherein the base “sales curve” is representative of how many units are expected and/or estimated to be sold during the life-time of the game and may be broken down into specific time periods, such as individual days. This helps to determine how many units of the game title are available and is usually directly related to the number of users available (typically a one-to-one relationship although the ratio may be different), as well as how long the game will be available. Creation of the base “sales curve” may be accomplished by taking sales forecast data (which may be furnished by the game publisher or obtained via other methods) (see FIG. 8 for example), actual sales data from previous versions of the game (if the game is a sequel), and/or actual sales data from similar games (i.e. games that may have the same or similar attributes used in determination of the “game-play curve”). Actual sales information may be generated by the user, provided by some entity that tracks such sales and/or provided by the publishers themselves. All or some of this data may be combined to form the “base sales curve,” where a weighted average may or may not be used.
  • The “base sales curve” may be modified to produce a “final sales curve,” as shown in operational block 306, wherein the modifier may be based on any number of desired characteristics, such as factors which affect the number of units “sold” over a period of time. For example, since the release date of the game is typically known in advance, the “sales curve” can be fixed to a specific period of time where Day 0 of the curve indicates the release date of the game. Accordingly, one modification to the “sales curve” may include adjustments to account for seasonal sales trends. One way this may be accomplished is by using a “seasonal sales modifier curve” (see FIG. 9 for example), where the “seasonal sales modifier curve” is a set of data (fixed or variable) that indicates representative for each day of the year (e.g. 1 through 365) of whether the game sales will be higher or lower than average, with a value of 1.0 typically indicating average. This modifier curve may be shifted (and repeated) so that the days of the year match those of the “fixed sales curve” and the values of the two curves can then be combined, for example multiplied together. Furthermore, it is contemplated that other modifier curves may be used to adjust the “base sales curve” in the same or similar manner, including but not limited to: a “marketing modifier curve” that indicates how the amount spent and methods of marketing the game title will affect the sales of the game over time, a “buzz modifier curve” that indicates how media attention to the game title will affect the sales of the game over time, a “pricing modifier curve” that indicates how adjustments in the pricing of the game title will affect the sales over time and a “piracy modifier curve” that indicates how rates of software piracy will typically affect the number of units of the game being played over time.
  • At this point, the “final sales curve” and the selected “base game-play curve” are combined to create a “final life-cycle curve,” as shown in operational block 308, which provides an indication of how many hours per day the game is expected to be played throughout its lifetime. The “final life-cycle curve” can be generated by iterating over a specific time period in the “final sales curve,” for example each day, taking the number of units expected to be “sold” on that day and multiplying the selected “game-play curve” by that number of units and plotting the results of the “final life-cycle curve” starting at the day of iteration. Next, the “forecast data” is generated, as shown in operational block 310, and may be accomplished by multiplying one or more additional modifiers in the same way that the “seasonal sales modifier curve” is used to modify the “base sales curve.” These modifiers however relate the number of hours played to time (instead of units “sold” to time), and may be generated and formatted similarly to the sales modifier curves. One such modifier may be the “day of week modifier curve” (see FIG. 10 for example) which indicates how the day of week on which the game is played will affect the number of hours that a user will play the game. It is contemplated that at this stage if no modifiers are desired, then the “final life-cycle curve” can be interpreted as the forecast data. The resultant forecast data is indicative of the number of available users that the game title will most likely generate.
  • It should be appreciated that before a game title is released, it may undergo a testing period that determines how many impressions per hour on average the title will be expected to generate. This may be accomplished in any number of ways, such as by playing the game as a normal user would and counting the number of impressions generated during each hour period, or through some other acceptable method. The “final life-cycle curve” is then multiplied by the impressions per hour value, to produce the forecast data for the number of available impressions that the game title will typically generate on a daily basis. Once the game title is released, the actual performance of the game title may not match that of the forecast values, so the forecast for future days may be modified to take this discrepancy into account. Actual performance data may include data sent to the system by the title and may include counts of impressions and/or users and may be stored in a database that allows easy access and/or search capabilities. This performance data can then be combined with the original forecast data for available users and impressions, by using a weighted average of the forecast and/or actual data, where the weight of the forecast data may initially be much higher than that of the actual data, but will typically decrease over time as the weight of the actual data increases over time as more actual data is accrued (i.e. the longer the game title is out, the more actual data is obtained). This process of adjusting the forecast can be repeated continuously (or in a predetermined fashion) as data is received for the game title. Typically, the forecast data and actual data will eventually converge within a small margin of error, such that the forecast data may be very close to what the game title will actually deliver.
  • In accordance with the invention, the method 300 for forecasting is illustrated with regards to the following example which assumes that the game title for which the forecast is being generated is directed to a single-player, shooter game set in the present day that will be distributed through retail channels starting at a predetermined time. Based on these attributes, a particular “game-play curve” is chosen as described hereinbefore. Typically performed by an analyst familiar with game-play styles, this selection may be based on only one characteristic of the game title. For this example, a curve as shown in FIG. 11 is chosen. This curve may be selected from a set of “standard” and/or pre-generated “game-play curves,” each of which provides for different types, genres and patterns of play. The curve that was selected is one in which game-play starts out at a constant level, and falls gradually over time. For this example, it is assumed that an average player will play the game for 33 days, with a maximum daily game-play of 5 hours and as such, the selected curve has been scaled to conform to these values.
  • The next (or preceding or concurrent) step in forecasting data for this game title is to combine data collected from various sources to generate a predictive “base sales curve.” It is contemplated that if no combination of data is desired then the original data could be used for the “base sales curve” or that no data is available, then the “base sales curve” could be generated with data already obtained at this point. Referring to FIG. 12, monthly sales information used to generate the sales forecast (shown as a thicker line) is illustrated and may combine information on sales of a previous version of the game, sales of similar games and/or sales predictions provided/generated by the publisher or other entity. In this example, these three sets of data are combined using a weighted average to generate the sales forecast. The data has been weighted such that the sales forecast is approximately 50% of the sales of the previous game, 30% of the sales of similar games, and 20% of the publisher sales predictions. As shown in FIG. 12, for this example in month 0 the sales for the previous game version was 25,000 units, the sales for similar game titles were 30,000 units and the publisher prediction was 30,000 units. Given these values the forecast for month 0 is equal to 27,500 units (i.e. (25,000*0.50)+(30,000*0.30)+(30,000*0.20)=27,500 units). It is contemplated that other methods for generating weight values may also be used.
  • At this point, the “base sales curve” is modified to generate a “final sales curve.” It should be appreciated that although for this example only one modifier was used to show the process, any number of modifiers (include zero) may be applied in the same manner. For this example a “seasonal sales modifier,” as illustrated by the graph shown in FIG. 13, was used, where the “seasonal sales modifier” indicates how sales are affected by the time of year. However, the sales forecast may be fixed to a specific period of time. This is possible because the date the game will be released is typically known and may correspond to the beginning of month 0 of the sales forecast as shown in FIG. 14.
  • The modifier curve may be applied to the sales forecast, for example one way may include aligning the time periods on both curves, and replicating the modifier curve to span the entire period of the forecast. Referring to FIG. 15, the “final sales curve” (i.e. the thicker line) is generated by multiplying the “base sales curve” by the “modifier curve.” At this point, the life-cycle curve is created by combining the game-play curve and the final sales curve. This process may be better understood and illustrated by describing the process of combining the curves, rather than by showing it in graphical form, where the process is an iteration over every day in the “final sales curve” (e.g. the time period in this example). For each day, the “game-play curve” may be multiplied by the number of units to be sold that day. The monthly values of the sales curve may then be extrapolated to daily values by spreading them evenly throughout the month (i.e. 30,000 units in the month of April would amount to 1,000 units sold each day on average). It is contemplated that this may be accomplished via any mathematical method to more accurately match the slope of the sales curve. In this example, although the monthly values are distributed evenly throughout the month to simplify the process, it is contemplated that these may be distributed any way suitable to the desired end purpose.
  • For example, if sales for the month of January for a given year are predicted to be 33,000 units, it would be expected that about 1,065 units per day would be sold that month (i.e. 33,000/31). The first day of the set over which we are iterating is January 1st, so the “game-play curve” is multiplied by that number of units to be sold on January 1st (i.e. 1,065) which will produce a curve as shown in FIG. 16. This resultant curve may be viewed as the start of our life-cycle curve. The second day of the iteration is January 2nd, with another 1,065 units expected to be sold. Again, the “game-play curve” is multiplied by that value and the resultant value is added to our life-cycle curve with day 0 indicating January 2nd, as shown in FIG. 17. This iteration is continued until the “final life-cycle curve” is created, as shown in FIG. 18.
  • Next, modifiers to the “final life-cycle curve” may be applied in the same manner as was done with the “final sales curve” to generate the forecast data. Referring to FIG. 19, for this example a “day of week modifier” is applied to the “final life-cycle curve.” It should be appreciated that the overall resultant final curve (forecast data) is difficult to illustrate since the modifier causes the curve to have peaks and valleys on a weekly cycle. However, for illustrative purposes a section of the resultant final curve is shown in FIG. 20 for the first month of the life-cycle, in this case January. At this point in the forecasting process the number of hours expected to be played may be converted to a value which indicates the number of impressions expected. For this example, it is assumed that the game title being forecast has been tested and generates an average of seven (7) impressions for each hour that it is played. To perform the conversion for this example, the “final life-cycle curve” is multiplied by this value (i.e. “7”). The resulting “impression forecast curve” is shown in FIG. 21 and typically indicates the number of impressions expected per day.
  • It should be appreciated that once the game title is released, the actual impression and/or user data that is collected may be compared to the predicted impressions and/or user values (i.e. the “final sales curve,” “impression forecast curve,” etc.). This may be done by taking representative samples of users playing the game, generating an “actual game-play curve” and/or generating an “actual sales curve.” These curves may then undergo the same procedure as described hereinbefore, with the possible exception of the modifiers since the modifiers may be implicit in the actual data, to create an “actual impression curve.” However, it is contemplated that modifiers may or may not be used as desired. The resulting curve may then be combined with the “impression forecast curve” using a weighted average (in the same or similar manner as for creating the “base sales curve”). As discussed hereinbefore, the weighting values for this average may start out highly in favor of the forecast curve and decrease as time goes on (e.g. 95% to 5%) since very little actual data is immediately available. Since this process occurs on a regular basis (perhaps at least once a day), the amount of actual data will typically increase, as will it's reliability. Over time, as more actual data is obtained, the weighting values for the forecast curve may be reduced while the weighting value for the actual curve may be increased until they each reach approximately 50% each. The result from this averaging may then become the new forecast curve.
  • It should be appreciated that the method of the present invention may be embodied, in whole or in part, via software, firmware and/or hardware, and that that any type of application software may be used to practice the present invention. Moreover, the invention may be implemented via any type or configuration of software suitable to the desired end purpose, such as a generic SDK and/or an application specific SDK. Furthermore, the software application may or may not be embedded, in whole or in part. Additionally, it should also be appreciated that the method of the present invention may or may not be embodied, in whole or in part, via instruction using training manuals (i.e. text based materials), seminars, classes, and/or any other media suitable to the desired end purpose. Moreover, it should be appreciated that although the method of the present invention may be implemented, in whole or in part, via software, hardware, firmware and/or any combination thereof, it is also contemplated that the method of the present invention may also be implemented, in whole or in part, without the use of software, hardware, firmware and/or any combination thereof. For example, without the full or partial use of any software, hardware and/or firmware and/or with any combination thereof, but rather via instruction using PC based software and/or classroom instruction with text materials (i.e. books, pamphlets, handouts, tapes, optical media, etc.).
  • Moreover, it should be appreciated that each of the elements of the present invention may be implemented in part, or in whole, in any order suitable to the desired end purpose. In accordance with an exemplary embodiment, the processing required to practice the method of the present invention, either in whole or in part, may be implemented, wholly or partially, by a controller operating in response to a machine-readable computer program. In order to perform the prescribed functions and desired processing, as well as the computations therefore (e.g. execution control algorithm(s), the control processes prescribed herein, and the like), the controller may include, but not be limited to, a processor(s), computer(s), memory, storage, register(s), timing, interrupt(s), communication interface(s), and input/output signal interface(s), as well as combination comprising at least one of the foregoing. It should also be appreciated that the embodiments disclosed herein are for illustrative purposes only and include only some of the possible embodiments contemplated by the present invention.
  • Furthermore, the invention may be wholly or partially embodied in the form of a computer or controller implemented processes. It should be appreciated that any type of computer system (as is well known in the art) and/or gaming system may be used and that the invention may be implemented via any type of network setup, including but not limited to a LAN and/or a WAN (wired or wireless). The invention may also be embodied in the form of computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, and/or any other computer-readable medium, wherein when the computer program code is loaded into and executed by a computer or controller, the computer or controller becomes an apparatus for practicing the invention. The invention can also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer or controller, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein when the computer program code is loaded into and executed by a computer or a controller, the computer or controller becomes an apparatus for practicing the invention. When implemented on a general-purpose microprocessor the computer program code segments may configure the microprocessor to create specific logic circuits.
  • While the invention has been described with reference to an exemplary embodiment, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, unless specifically stated any use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.

Claims (20)

1. A method for forecasting a performance characteristic of a game title, the method comprising:
selecting base game-play data for the game title, wherein the base-game play data is at least partially responsive to the game-play pattern of a user;
generating base sales data for the game title responsive to initial sales data; and
generating forecast data for the game title responsive to the base sales data and the base game-play data.
2. The method of claim 1, wherein said initial sales data includes at least one of said sales forecast data, sales data from previous versions of the game title and sales data from similar game titles.
3. The method of claim 2, wherein generating base sales data includes combining said at least one of said sales forecast data, sales data from previous versions of the game title and sales data from similar game titles.
4. The method of claim 1, wherein generating forecast data includes generating final sales data responsive at least in part to the base sales data.
5. The method of claim 4, wherein generating final sales data includes combining the base sales data with sales modifier data, wherein said sales modifier data includes at least one of seasonal sales modifier data, marketing modifier data, piracy modifier data, pricing modifier data and buzz modifier data.
6. The method of claim 4, further comprising combining the final sales data and the base game-play data to generate life-cycle data.
7. The method of claim 6, further comprising combining the life-cycle data with a life-cycle modifier data to generate the forecast data.
8. The method of claim 7, wherein life-cycle modifier data includes data that relates the number of hours the game is played to the time frame that the game is played.
9. The method of claim 5, wherein sales modifier data includes data that relates the number of units sold to the amount of time the game is played.
10. A system for implementing a method for forecasting the performance of a game title, the system comprising:
a means for selecting base game-play data for the game title, wherein the base-game play data is at least partially responsive to the game-play pattern of a user;
a means for generating base sales data for the game title responsive to initial sales data; and
a means for generating forecast data for the game title responsive to the base sales data and the base game-play data.
11. The system of claim 10, wherein said initial sales data includes at least one of said sales forecast data, sales data from previous versions of the game title and sales data from similar game titles.
12. The system of claim 11, wherein generating base sales data includes combining said at least one of said sales forecast data, sales data from previous versions of the game title and sales data from similar game titles.
13. The system of claim 10, wherein generating forecast data includes generating final sales data responsive at least in part to the base sales data.
14. The system of claim 13, wherein generating final sales data includes combining the base sales data with sales modifier data, wherein said sales modifier data includes at least one of seasonal sales modifier data, marketing modifier data, piracy modifier data, pricing modifier data and buzz modifier data.
15. The system of claim 13, further comprising combining the final sales data and the base game-play data to generate life-cycle data.
16. The system of claim 15, further comprising combining the life-cycle data with a life-cycle modifier data to generate the forecast data.
17. The system of claim 16, wherein life-cycle modifier data includes data that relates the number of hours the game is played to the time frame that the game is played.
18. The method of claim 14, wherein sales modifier data includes data that relates the number of units sold to the amount of time the game is played.
19. A computer readable storage medium having computer executable instructions for implementing a method for forecasting the performance of a game title, the method comprising:
selecting base game-play data for the game title, wherein the base-game play data is at least partially responsive to the game-play pattern of a user;
generating base sales data for the game title responsive to initial sales data; and
generating forecast data for the game title responsive to the base sales data and the base game-play data.
20. The computer readable storage medium of claim 19, wherein generating forecast data includes,
combining the base sales data with sales modifier data to generate final sales data;
processing the final sales data with the base game-play data to generate life-cycle data; and
combining the life-cycle data with life-cycle modifier data to generate the forecast data.
US12/082,445 2007-04-12 2008-04-11 Forecasting Abandoned US20080255927A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US92334407P true 2007-04-12 2007-04-12
US92335307P true 2007-04-12 2007-04-12
US92326407P true 2007-04-12 2007-04-12
US92334607P true 2007-04-12 2007-04-12
US92335207P true 2007-04-12 2007-04-12
US92335107P true 2007-04-12 2007-04-12
US92334507P true 2007-04-12 2007-04-12
US12/082,445 US20080255927A1 (en) 2007-04-12 2008-04-11 Forecasting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/082,445 US20080255927A1 (en) 2007-04-12 2008-04-11 Forecasting

Publications (1)

Publication Number Publication Date
US20080255927A1 true US20080255927A1 (en) 2008-10-16

Family

ID=39854232

Family Applications (7)

Application Number Title Priority Date Filing Date
US12/082,445 Abandoned US20080255927A1 (en) 2007-04-12 2008-04-11 Forecasting
US12/082,489 Abandoned US20080254890A1 (en) 2007-04-12 2008-04-11 Inventory placement
US12/082,449 Abandoned US20090029752A1 (en) 2007-04-12 2008-04-11 Content delivery
US12/082,448 Expired - Fee Related US8277323B2 (en) 2007-04-12 2008-04-11 Remote tracking and reporting of software state
US12/082,446 Abandoned US20080254896A1 (en) 2007-04-12 2008-04-11 Impression tracking
US12/082,505 Abandoned US20080256234A1 (en) 2007-04-12 2008-04-11 Data flow control
US12/082,447 Abandoned US20080254889A1 (en) 2007-04-12 2008-04-11 Method for correcting impression flow

Family Applications After (6)

Application Number Title Priority Date Filing Date
US12/082,489 Abandoned US20080254890A1 (en) 2007-04-12 2008-04-11 Inventory placement
US12/082,449 Abandoned US20090029752A1 (en) 2007-04-12 2008-04-11 Content delivery
US12/082,448 Expired - Fee Related US8277323B2 (en) 2007-04-12 2008-04-11 Remote tracking and reporting of software state
US12/082,446 Abandoned US20080254896A1 (en) 2007-04-12 2008-04-11 Impression tracking
US12/082,505 Abandoned US20080256234A1 (en) 2007-04-12 2008-04-11 Data flow control
US12/082,447 Abandoned US20080254889A1 (en) 2007-04-12 2008-04-11 Method for correcting impression flow

Country Status (1)

Country Link
US (7) US20080255927A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090198559A1 (en) * 2008-02-06 2009-08-06 Disney Enterprises, Inc. Multi-resolutional forecasting system
US20150231502A1 (en) * 2014-02-19 2015-08-20 International Business Machines Corporation Game adjustments through crowdsourcing

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484900B2 (en) * 2007-05-31 2010-06-16 株式会社スクウェア・エニックス Game use advertising distribution system
US20080307103A1 (en) * 2007-06-06 2008-12-11 Sony Computer Entertainment Inc. Mediation for auxiliary content in an interactive environment
US20080307412A1 (en) * 2007-06-06 2008-12-11 Sony Computer Entertainment Inc. Cached content consistency management
US20100274644A1 (en) * 2007-09-07 2010-10-28 Ryan Steelberg Engine, system and method for generation of brand affinity content
US20110184805A1 (en) * 2008-09-25 2011-07-28 Tictacti Ltd. System and method for precision placement of in-game dynamic advertising in computer games
US8407090B2 (en) * 2008-11-25 2013-03-26 Skyworks Ventures, Inc. Dynamic reassignment of advertisement placements to maximize impression count
US8959508B2 (en) * 2009-06-15 2015-02-17 Microsoft Technology Licensing, Llc Mitigating user interruption for partially downloaded streamed and virtualized applications
US20100332512A1 (en) * 2009-06-26 2010-12-30 Walltrix Tech (2009) Ltd. System and method for creating and manipulating thumbnail walls
US20100333204A1 (en) * 2009-06-26 2010-12-30 Walltrix Corp. System and method for virus resistant image transfer
US20110029319A1 (en) * 2009-07-29 2011-02-03 Google Inc. Impression forecasting and reservation analysis
US20110066506A1 (en) * 2009-09-11 2011-03-17 Social App Holdings, LLC Social networking monetization system and method
US20120209963A1 (en) * 2011-02-10 2012-08-16 OneScreen Inc. Apparatus, method, and computer program for dynamic processing, selection, and/or manipulation of content
FR2979509B1 (en) * 2011-08-29 2014-06-06 Alcatel Lucent Method and server for tracking users during their navigation in a communication network
US8856650B1 (en) 2012-06-15 2014-10-07 Gregory S. Off System and method for interactive digital content generation
US8990172B1 (en) 2012-08-02 2015-03-24 Google Inc. Key management in smart pixel based tracking
US20170011541A1 (en) * 2014-07-10 2017-01-12 Shahar NAOR Method for creating animated advertisements using parallax scrolling
US10318984B1 (en) * 2014-07-30 2019-06-11 Groupon, Inc. Predictive recommendation system using tiered feature data
AU2017286898A1 (en) * 2016-06-29 2019-01-03 Synergy Blue, Llc Dynamic placement of in-game ads, in-game product placement, and in-game promotions in wager-based game environments

Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105184A (en) * 1989-11-09 1992-04-14 Noorali Pirani Methods for displaying and integrating commercial advertisements with computer software
US5781894A (en) * 1995-08-11 1998-07-14 Petrecca; Anthony Method and system for advertising on personal computers
US5964660A (en) * 1997-06-18 1999-10-12 Vr-1, Inc. Network multiplayer game
US6002450A (en) * 1997-03-24 1999-12-14 Evolve Products, Inc. Two-way remote control with advertising display
US6036601A (en) * 1999-02-24 2000-03-14 Adaboy, Inc. Method for advertising over a computer network utilizing virtual environments of games
US6141010A (en) * 1998-07-17 2000-10-31 B. E. Technology, Llc Computer interface method and apparatus with targeted advertising
US6179713B1 (en) * 1997-06-18 2001-01-30 Circadence Corporation Full-time turn based network multiplayer game
US6216112B1 (en) * 1998-05-27 2001-04-10 William H. Fuller Method for software distribution and compensation with replenishable advertisements
US6285985B1 (en) * 1998-04-03 2001-09-04 Preview Systems, Inc. Advertising-subsidized and advertising-enabled software
US6321209B1 (en) * 1999-02-18 2001-11-20 Wired Solutions, Llc System and method for providing a dynamic advertising content window within a window based content manifestation environment provided in a browser
US20010056405A1 (en) * 1997-09-11 2001-12-27 Muyres Matthew R. Behavior tracking and user profiling system
US20020029267A1 (en) * 2000-09-01 2002-03-07 Subhash Sankuratripati Target information generation and ad server
US20020082068A1 (en) * 2000-12-22 2002-06-27 Singhal Tara Chand Method and apparatus for an educational game and dynamic message entry and display
US6442529B1 (en) * 1998-11-17 2002-08-27 Novaweb Technologies, Inc. Methods and apparatus for delivering targeted information and advertising over the internet
US20020173359A1 (en) * 2001-05-16 2002-11-21 Gallo Augusline M. Modular video game
US20030004781A1 (en) * 2001-06-18 2003-01-02 Mallon Kenneth P. Method and system for predicting aggregate behavior using on-line interest data
US6513052B1 (en) * 1999-12-15 2003-01-28 Imation Corp. Targeted advertising over global computer networks
US20030074323A1 (en) * 2001-10-02 2003-04-17 Koninklijke Philips Electronics N.V. Business model for downloadable video games
US20030101092A1 (en) * 1998-05-27 2003-05-29 William Fuller Method for software distribution and compensation with replenishable advertisements
US20030191690A1 (en) * 1999-11-30 2003-10-09 Mclntyre Dale F. Computer software product and system for advertising business and services
US6640336B1 (en) * 1996-12-25 2003-10-28 Sony Corporation Game machine system, broadcasting system, data distribution system and method, program executing apparatus and method
US20040068451A1 (en) * 2002-10-07 2004-04-08 Gamefly, Inc. Method and apparatus for managing demand and inventory
US6724407B1 (en) * 2000-02-07 2004-04-20 Muse Corporation Method and system for displaying conventional hypermedia files in a 3D viewing environment
US20040116183A1 (en) * 2002-12-16 2004-06-17 Prindle Joseph Charles Digital advertisement insertion system and method for video games
US6766369B1 (en) * 1998-03-09 2004-07-20 Net Zero, Inc. Internet service error tracking
US20040148424A1 (en) * 2003-01-24 2004-07-29 Aaron Berkson Digital media distribution system with expiring advertisements
US6782417B1 (en) * 1999-10-12 2004-08-24 Nortel Networks Limited Advertising system for callers to busy data service providers
US6810527B1 (en) * 1999-09-27 2004-10-26 News America, Inc. System and method for distribution and delivery of media context and other data to aircraft passengers
US20040225553A1 (en) * 2003-05-05 2004-11-11 Broady George Vincent Measuring customer interest to forecast product consumption
US20050021403A1 (en) * 2001-11-21 2005-01-27 Microsoft Corporation Methods and systems for selectively displaying advertisements
US20050278629A1 (en) * 1999-07-16 2005-12-15 Qarbon.Com Inc. System for creating media presentations of computer software application programs
US6978249B1 (en) * 2000-07-28 2005-12-20 Hewlett-Packard Development Company, L.P. Profile-based product demand forecasting
US7003478B1 (en) * 1999-09-27 2006-02-21 Choi Hyung-Sik Advertising method using software products
US7006606B1 (en) * 1996-06-05 2006-02-28 Cohen Marc A Sponsored information distribution method and apparatus
US7028268B1 (en) * 2000-06-15 2006-04-11 Conley Jr Ralph F Multiple destination banners
US7054917B1 (en) * 2002-08-07 2006-05-30 Propel Software Corporation Method for accelerating delivery of content in a computer network
US20060136295A1 (en) * 2004-11-23 2006-06-22 Mark Bobick Techniques for magazine like presentation of advertisment using computers
US20060168664A1 (en) * 2004-11-15 2006-07-27 Microsoft Corporation Profitable free computing resources leveraging the advertising model
US20060248209A1 (en) * 2005-04-27 2006-11-02 Leo Chiu Network system for facilitating audio and video advertising to end users through audio and video podcasts
US20060264256A1 (en) * 2005-04-12 2006-11-23 Gagner Mark B Gaming system with administrative interfaces for managing downloadable game components
US20060287105A1 (en) * 2005-05-17 2006-12-21 Daniel Willis Method and system for enhancing video games and video game systems
US7168084B1 (en) * 1992-12-09 2007-01-23 Sedna Patent Services, Llc Method and apparatus for targeting virtual objects
US20070066403A1 (en) * 2005-09-20 2007-03-22 Conkwright George C Method for dynamically adjusting an interactive application such as a videogame based on continuing assessments of user capability
US20070072676A1 (en) * 2005-09-29 2007-03-29 Shumeet Baluja Using information from user-video game interactions to target advertisements, such as advertisements to be served in video games for example
US20070093360A1 (en) * 2003-07-15 2007-04-26 Neff John D Interactive computer simulation enhanced exercise machine
US20070101361A1 (en) * 2005-10-27 2007-05-03 Spielman Howard L Distribution of advertising content for an entertainment device
US20070112762A1 (en) * 2005-10-25 2007-05-17 Brubaker Curtis M Method and apparatus for obtaining revenue from the distribution of hyper-relevant advertising through permissive mind reading, proximity encounters, and database aggregation
US20070112627A1 (en) * 1999-12-08 2007-05-17 Jacobs Paul E Method for distributing advertisements to client devices using an obscured ad monitoring function
US7392157B1 (en) * 2006-10-31 2008-06-24 M-Factor, Inc. Model update
US7406436B1 (en) * 2001-03-22 2008-07-29 Richard Reisman Method and apparatus for collecting, aggregating and providing post-sale market data for an item
US7533037B1 (en) * 2003-11-06 2009-05-12 Teradata Us, Inc. Methods and systems for forecasting daily product sales

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US700606A (en) * 1900-05-14 1902-05-20 John S Barnes Mold for collar-buttons.
US6134532A (en) * 1997-11-14 2000-10-17 Aptex Software, Inc. System and method for optimal adaptive matching of users to most relevant entity and information in real-time
US6286005B1 (en) * 1998-03-11 2001-09-04 Cannon Holdings, L.L.C. Method and apparatus for analyzing data and advertising optimization
JP3919140B2 (en) * 1998-07-03 2007-05-23 株式会社バンダイナムコゲームス Game apparatus and information storage medium
CN1213606C (en) * 2000-04-28 2005-08-03 英特尔公司 Providing content interruptions
US8495679B2 (en) * 2000-06-30 2013-07-23 Thomson Licensing Method and apparatus for delivery of television programs and targeted de-coupled advertising
JP3236603B1 (en) * 2001-02-28 2001-12-10 コナミ株式会社 Game advertisement billing system and a program of home games, etc.
US20030130887A1 (en) * 2001-10-03 2003-07-10 Thurston Nathaniel Non-deterministic method and system for the optimization of a targeted content delivery
US20040205119A1 (en) * 2002-03-26 2004-10-14 Streble Mary C. Method and apparatus for capturing web page content development data
US7729946B2 (en) * 2003-01-24 2010-06-01 Massive Incorporated Online game advertising system
US7813957B1 (en) * 2003-02-18 2010-10-12 Microsoft Corporation System and method for delivering payloads such as ads
US7797343B2 (en) * 2003-03-17 2010-09-14 Xerox Corporation System and method for providing usage metrics of digital content
CA2558579A1 (en) * 2004-03-08 2005-09-22 Massive Incorporated Delivery of advertising into multiple video games
JP4342356B2 (en) * 2004-03-22 2009-10-14 任天堂株式会社 Game system, a game device, and a game program
US20060135233A1 (en) * 2004-12-17 2006-06-22 Daniel Willis System and method for managing advertising content delivery in an on-line gaming environment
US20060143675A1 (en) * 2004-12-17 2006-06-29 Daniel Willis Proxy advertisement server and method
US20060136297A1 (en) * 2004-12-17 2006-06-22 Daniel Willis Method and system for providing location specific advertising content within mobile platforms
US20070055562A1 (en) * 2005-08-23 2007-03-08 Way Out World, Llc System and methods for multi-modal game augmented interactive marketing
US20070073581A1 (en) * 2005-09-27 2007-03-29 Miva, Inc. System and method for delivering pay for performance advertising in conjunction with distributed media content
US8574074B2 (en) * 2005-09-30 2013-11-05 Sony Computer Entertainment America Llc Advertising impression determination
US20070129990A1 (en) * 2005-12-01 2007-06-07 Exent Technologies, Ltd. System, method and computer program product for dynamically serving advertisements in an executing computer game based on the entity having jurisdiction over the advertising space in the game
US7901288B2 (en) * 2006-04-20 2011-03-08 International Business Machines Corporation Embedded advertising enhancements in interactive computer game environments
US20080086368A1 (en) * 2006-10-05 2008-04-10 Google Inc. Location Based, Content Targeted Online Advertising

Patent Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105184B1 (en) * 1989-11-09 1997-06-17 Noorali Pirani Methods for displaying and integrating commercial advertisements with computer software
US5105184A (en) * 1989-11-09 1992-04-14 Noorali Pirani Methods for displaying and integrating commercial advertisements with computer software
US7168084B1 (en) * 1992-12-09 2007-01-23 Sedna Patent Services, Llc Method and apparatus for targeting virtual objects
US5781894A (en) * 1995-08-11 1998-07-14 Petrecca; Anthony Method and system for advertising on personal computers
US7006606B1 (en) * 1996-06-05 2006-02-28 Cohen Marc A Sponsored information distribution method and apparatus
US6640336B1 (en) * 1996-12-25 2003-10-28 Sony Corporation Game machine system, broadcasting system, data distribution system and method, program executing apparatus and method
US6002450A (en) * 1997-03-24 1999-12-14 Evolve Products, Inc. Two-way remote control with advertising display
US6179713B1 (en) * 1997-06-18 2001-01-30 Circadence Corporation Full-time turn based network multiplayer game
US5964660A (en) * 1997-06-18 1999-10-12 Vr-1, Inc. Network multiplayer game
US20010056405A1 (en) * 1997-09-11 2001-12-27 Muyres Matthew R. Behavior tracking and user profiling system
US6766369B1 (en) * 1998-03-09 2004-07-20 Net Zero, Inc. Internet service error tracking
US6285985B1 (en) * 1998-04-03 2001-09-04 Preview Systems, Inc. Advertising-subsidized and advertising-enabled software
US6216112B1 (en) * 1998-05-27 2001-04-10 William H. Fuller Method for software distribution and compensation with replenishable advertisements
US20030101092A1 (en) * 1998-05-27 2003-05-29 William Fuller Method for software distribution and compensation with replenishable advertisements
US20050005242A1 (en) * 1998-07-17 2005-01-06 B.E. Technology, Llc Computer interface method and apparatus with portable network organization system and targeted advertising
US6141010A (en) * 1998-07-17 2000-10-31 B. E. Technology, Llc Computer interface method and apparatus with targeted advertising
US6628314B1 (en) * 1998-07-17 2003-09-30 B.E. Technology, Llc Computer interface method and apparatus with targeted advertising
US6771290B1 (en) * 1998-07-17 2004-08-03 B.E. Technology, Llc Computer interface method and apparatus with portable network organization system and targeted advertising
US6442529B1 (en) * 1998-11-17 2002-08-27 Novaweb Technologies, Inc. Methods and apparatus for delivering targeted information and advertising over the internet
US6321209B1 (en) * 1999-02-18 2001-11-20 Wired Solutions, Llc System and method for providing a dynamic advertising content window within a window based content manifestation environment provided in a browser
US6036601A (en) * 1999-02-24 2000-03-14 Adaboy, Inc. Method for advertising over a computer network utilizing virtual environments of games
US20050278629A1 (en) * 1999-07-16 2005-12-15 Qarbon.Com Inc. System for creating media presentations of computer software application programs
US6810527B1 (en) * 1999-09-27 2004-10-26 News America, Inc. System and method for distribution and delivery of media context and other data to aircraft passengers
US7003478B1 (en) * 1999-09-27 2006-02-21 Choi Hyung-Sik Advertising method using software products
US6782417B1 (en) * 1999-10-12 2004-08-24 Nortel Networks Limited Advertising system for callers to busy data service providers
US20030191690A1 (en) * 1999-11-30 2003-10-09 Mclntyre Dale F. Computer software product and system for advertising business and services
US20070112627A1 (en) * 1999-12-08 2007-05-17 Jacobs Paul E Method for distributing advertisements to client devices using an obscured ad monitoring function
US6513052B1 (en) * 1999-12-15 2003-01-28 Imation Corp. Targeted advertising over global computer networks
US6724407B1 (en) * 2000-02-07 2004-04-20 Muse Corporation Method and system for displaying conventional hypermedia files in a 3D viewing environment
US7028268B1 (en) * 2000-06-15 2006-04-11 Conley Jr Ralph F Multiple destination banners
US6978249B1 (en) * 2000-07-28 2005-12-20 Hewlett-Packard Development Company, L.P. Profile-based product demand forecasting
US20070088821A1 (en) * 2000-09-01 2007-04-19 Yodlee.Com, Inc. Target Information Generation and Ad Server
US20020029267A1 (en) * 2000-09-01 2002-03-07 Subhash Sankuratripati Target information generation and ad server
US7155508B2 (en) * 2000-09-01 2006-12-26 Yodlee.Com, Inc. Target information generation and ad server
US6872137B2 (en) * 2000-12-22 2005-03-29 Tara Chand Singhal Method and apparatus for an educational game and dynamic message entry and display
US20020082068A1 (en) * 2000-12-22 2002-06-27 Singhal Tara Chand Method and apparatus for an educational game and dynamic message entry and display
US7406436B1 (en) * 2001-03-22 2008-07-29 Richard Reisman Method and apparatus for collecting, aggregating and providing post-sale market data for an item
US20020173359A1 (en) * 2001-05-16 2002-11-21 Gallo Augusline M. Modular video game
US20030004781A1 (en) * 2001-06-18 2003-01-02 Mallon Kenneth P. Method and system for predicting aggregate behavior using on-line interest data
US20030074323A1 (en) * 2001-10-02 2003-04-17 Koninklijke Philips Electronics N.V. Business model for downloadable video games
US20050021403A1 (en) * 2001-11-21 2005-01-27 Microsoft Corporation Methods and systems for selectively displaying advertisements
US7054917B1 (en) * 2002-08-07 2006-05-30 Propel Software Corporation Method for accelerating delivery of content in a computer network
US20040068451A1 (en) * 2002-10-07 2004-04-08 Gamefly, Inc. Method and apparatus for managing demand and inventory
US20040116183A1 (en) * 2002-12-16 2004-06-17 Prindle Joseph Charles Digital advertisement insertion system and method for video games
US20040148424A1 (en) * 2003-01-24 2004-07-29 Aaron Berkson Digital media distribution system with expiring advertisements
US20040225553A1 (en) * 2003-05-05 2004-11-11 Broady George Vincent Measuring customer interest to forecast product consumption
US20070093360A1 (en) * 2003-07-15 2007-04-26 Neff John D Interactive computer simulation enhanced exercise machine
US7533037B1 (en) * 2003-11-06 2009-05-12 Teradata Us, Inc. Methods and systems for forecasting daily product sales
US20060168664A1 (en) * 2004-11-15 2006-07-27 Microsoft Corporation Profitable free computing resources leveraging the advertising model
US20060136295A1 (en) * 2004-11-23 2006-06-22 Mark Bobick Techniques for magazine like presentation of advertisment using computers
US20060264256A1 (en) * 2005-04-12 2006-11-23 Gagner Mark B Gaming system with administrative interfaces for managing downloadable game components
US20060248209A1 (en) * 2005-04-27 2006-11-02 Leo Chiu Network system for facilitating audio and video advertising to end users through audio and video podcasts
US20060287105A1 (en) * 2005-05-17 2006-12-21 Daniel Willis Method and system for enhancing video games and video game systems
US20070066403A1 (en) * 2005-09-20 2007-03-22 Conkwright George C Method for dynamically adjusting an interactive application such as a videogame based on continuing assessments of user capability
US20070072676A1 (en) * 2005-09-29 2007-03-29 Shumeet Baluja Using information from user-video game interactions to target advertisements, such as advertisements to be served in video games for example
US20070112762A1 (en) * 2005-10-25 2007-05-17 Brubaker Curtis M Method and apparatus for obtaining revenue from the distribution of hyper-relevant advertising through permissive mind reading, proximity encounters, and database aggregation
US20070101361A1 (en) * 2005-10-27 2007-05-03 Spielman Howard L Distribution of advertising content for an entertainment device
US7392157B1 (en) * 2006-10-31 2008-06-24 M-Factor, Inc. Model update

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090198559A1 (en) * 2008-02-06 2009-08-06 Disney Enterprises, Inc. Multi-resolutional forecasting system
US20150231502A1 (en) * 2014-02-19 2015-08-20 International Business Machines Corporation Game adjustments through crowdsourcing
US9636586B2 (en) * 2014-02-19 2017-05-02 International Business Machines Corporation Game adjustments through crowdsourcing

Also Published As

Publication number Publication date
US20090029778A1 (en) 2009-01-29
US20090029752A1 (en) 2009-01-29
US20080254889A1 (en) 2008-10-16
US20080256234A1 (en) 2008-10-16
US20080254896A1 (en) 2008-10-16
US20080254890A1 (en) 2008-10-16
US8277323B2 (en) 2012-10-02

Similar Documents

Publication Publication Date Title
US8172683B2 (en) Network gaming system
US8944909B2 (en) Gaming system having a plurality of players and randomly incremented progressive prize
US8360867B2 (en) Video game which delivers an offer to a player
US6749511B2 (en) Website promotional applet process
US6343990B1 (en) Entertainment system offering merit-based rewards
US9633508B2 (en) Enhanced video gaming machine
US8272964B2 (en) Identifying obstructions in an impression area
AU2010232782B2 (en) Methods and apparatus for providing for disposition of promotional offers in a wagering environment
US9873052B2 (en) Monitoring advertisement impressions
US7901288B2 (en) Embedded advertising enhancements in interactive computer game environments
US20080015022A1 (en) Method and apparatus for providing instructions to gaming devices
US20020120501A1 (en) Systems and processes for measuring, evaluating and reporting audience response to audio, video, and other content
US20020065826A1 (en) Systems and processes for measuring, evaluating and reporting audience response to audio, video, and other content
Mulligan et al. Developing online games: An insider's guide
US20060155597A1 (en) Method, system and apparatus for location based advertising
US8151199B2 (en) Computational delivery system for avatar and background game content
US6954728B1 (en) System and method for consumer-selected advertising and branding in interactive media
US8849701B2 (en) Online video game advertising system and method supporting multiplayer ads
US8328640B2 (en) Dynamic advertising system for interactive games
Nelson Recall of brand placements in computer/video games
Lewis et al. In-game advertising effects: Examining player perceptions of advertising schema congruity in a massively multiplayer online role-playing game
EP2191346B1 (en) Independently-defined alteration of output from software executable using later-integrated code
US8353750B2 (en) Response game systems and method
US20040133480A1 (en) Targeted promotional method & system
US20050044575A1 (en) Real-time broadcast of interactive simulations

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION