US20080231000A1 - Trapezoid-Sectional Annular Thermally-Assisted Sealing Arrangement - Google Patents

Trapezoid-Sectional Annular Thermally-Assisted Sealing Arrangement Download PDF

Info

Publication number
US20080231000A1
US20080231000A1 US12/064,570 US6457006A US2008231000A1 US 20080231000 A1 US20080231000 A1 US 20080231000A1 US 6457006 A US6457006 A US 6457006A US 2008231000 A1 US2008231000 A1 US 2008231000A1
Authority
US
United States
Prior art keywords
annular
trapezoid
sectional
packing
gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/064,570
Inventor
Changxiang Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang China Valve Co Ltd
Original Assignee
Zhejiang China Valve Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang China Valve Co Ltd filed Critical Zhejiang China Valve Co Ltd
Assigned to ZHEJIANG CHINA VALVE CO., LTD. reassignment ZHEJIANG CHINA VALVE CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XU, CHANGXIANG
Publication of US20080231000A1 publication Critical patent/US20080231000A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings
    • F16K41/02Spindle sealings with stuffing-box ; Sealing rings
    • F16K41/04Spindle sealings with stuffing-box ; Sealing rings with at least one ring of rubber or like material between spindle and housing

Definitions

  • the invention relates generally to fluid seals and more particularly to seals for the connection of two fluid-containing members that is subjected to thermal cycling.
  • All the fluid-containing members need to be connected or enclosed to withstand a pressure.
  • the connections shall complete the two kinds of sealing and fastening tasks, and are often realized by welding, threading, flanging, flaring, swaging etc.
  • the sealing arrangement is different as the connecting or fastening method differs.
  • the weld connection completes sealing and fastening at the same time by weld metal.
  • the connection by jointing threads where pressure tight joints are made on the threads completes its sealing and fastening by the same threads.
  • the connection by fastening threads where pressure tight joints are not made on the threads completes its fastening by threads or bolts disposed around the flow path, and its sealing by annular sealing gaskets or packing disposed between the end faces to be joined.
  • the annular sealing gasket is often made of non-metal, and sometimes compressed into a metal cavity which is enclosed by the connecting components in order to meet a higher requirement.
  • the non-metal and metal often have a thermal expansion coefficient very different from each other, and create problems with the seal integrity when subjected to thermal cycling.
  • U.S. Pat. No. 6,837,482 disclosed a diamond-shaped cross-sectional thermally-assisted sealing arrangement to try to make use of material thermal expansion to enhance sealing connection.
  • the patent could not disclose a complete principle of thermally-assisted sealing cavities, and misunderstood that any annular non-metal packing would simply move radially relative to its containing metal cavity into one of the converging end portions of the diamond-shaped cavity to enhance the sealing connection in response to temperature changes. As it is, it is not so simple. As well known, any differences in thermal expansion or contraction coefficients will cause the sectional area and gyro-radius of the said annular gasket to either increase or decrease in response to temperature changes at the same time relative to the cavity enclosing the annular gasket, regardless of whether the coefficient of the annular gasket material is greater or less than the gasket-containing cavity material.
  • annular packing increases in sectional areas and gyro-radii relative to its containing cavity means that more packing material is to be compressed into a smaller cavity, and so any shape of cavities does not create sealing problems provided the tensile strength of packing material is lower than the strength of cavity material.
  • the annular packing decreases in sectional areas and gyro-radii relative to its containing cavity, the annular packing whose gyro-radius is decreasing shall be strong enough for contracting into a radially inward converging portion of the cavity to compensate the decreasing sectional area of the annular packing, that is to say, the annular packing shall have enough tensile strength for carrying out such a compensation.
  • the annular packing has to move diagonally or not radially relative to its containing cavity to provide a thermally-assisted compensating seal in response to temperature changes, whereas the packing-expanding or contracting force is radial; that is to say, the force diagonally moving the annular packing is only a component of the radial packing-expanding or contracting power.
  • the diamond-shaped design of U.S. Pat. No. 6,837,482 cannot fully utilize the thermal expansion or contraction force of the annular packing relative to its cavity to perform the thermally-assisted compensating seal and is not yet an ideal design.
  • the second, the diamond-shaped cavity shall be made of two halves separately in two end face to be joined; if not, for example, if the diamond-shaped cavity is designed to completely sink into one face of the two butt end faces and the other end face is fully plain, the annular packing in its containing cavity will be diagonally away from and cause leakage along the plain face when the annular packing moves inward to its diagonal corner in response to temperature changes. It is well known that it is the most simple for user's connection designs and the most convenient for user's application for the packing-containing cavity to be designed completely at the manufacturer's product end. However, it is very difficult for the design to be machined with a complete diamond-shaped cavity at one end even if there would be no leakage problem with the diamond-shaped design. Therefore it may be said that the diamond-shaped design of U.S. Pat. No. 6,837,482 is neither ideal nor practical.
  • Valves as the controlling unit for fluid conveying, have a valving member, such as the ball in ball valves, the gate in gate valves, etc.
  • the valving member is installed in a flow path, and has an open position, which allows media to flow through the valve, and a closed position, which prevents media from flowing through the valve.
  • the shifting of the two positions of the valving member in its seat is realized by a stem extending out of the valve.
  • the installing or fixing of the valving member and its seats in the valve flow path relates to the sealing connection realized by annular sealing gaskets or packing disposed around the flow path and between the end faces to be joined, and relates to one of the three basic fastening connections realized by fastening threads or bolts, one is by bolted flanges, another, by threaded flanges or threaded upset ends, and the other, by threaded unupset ends.
  • the object of the invention is to provide an improved thermally-assisted sealing arrangement for the connection of two fluid-containing members connected by fastening threads or bolts.
  • the thermally assisted sealing arrangement of the invention is a trapezoid-sectional annular sealing arrangement, including a trapezoid-sectional annular cavity and gasket or packing used to realize the sealing connection of two fluid-containing members connected by fastening threads or bolts.
  • the said trapezoid-sectional annular gasket or packing generally with a sectional area slightly bigger than the sectional area of the said cavity, is enclosed in the said cavity formed by the said two fluid-containing members as joined together by fastening threads or bolts, and the said trapezoid is disposed to converge radially and inward.
  • the said trapezoid-sectional annular cavity is preferably designed to completely sink into one face of the two end faces to be joined.
  • the sectional area and gyro-radius of the annular gasket will either increase or decrease in response to temperature changes at the same time relative to the cavity containing the annular gasket, regardless of whether the coefficient of the annular gasket material is greater or less than the gasket-containing cavity material. That the annular packing increases in sectional areas and gyro-radii relative to its containing cavity means that more packing material is to be compressed into a smaller cavity, and so any shape of cavities does not create sealing problems provided the tensile strength of packing material is lower than the strength of cavity material.
  • the annular packing decreases in sectional areas and gyro-radii relative to its containing cavity
  • the annular packing whose gyro-radius is decreasing shall be strong enough for contracting into a radially inward converging portion of the cavity to compensate the decreasing sectional area of the annular packing, that is to say, the annular packing shall have enough tensile strength for carrying out such a compensation.
  • thermally assisted sealing arrangement is that the said trapezoid-sectional annular cavity is made of metal, and the said annular packing or gasket is made of non-metal, such as PTFE (Polytetrafluoroethylene) and the like.
  • PTFE Polytetrafluoroethylene
  • Another embodiment of the thermally assisted sealing arrangement is that it is disposed between two flange end faces to be connected, where the flanges are connected by either bolts or threads.
  • Another embodiment of the thermally assisted sealing arrangement is that it is disposed on the end face of either externally threaded parts or internally threaded parts, where the male and female threads fasten the two fluid-containing parts together by engagement.
  • Another embodiment of the thermally assisted sealing arrangement is that it is used to realize the sealing connection of valve bodies or valve flow paths, where the fastening connection is realized by threads or flanges.
  • FIG. 1 is a partial cross-sectional view of a two-body type ball valve whose body is joined together by fastening threads, including two trapezoid-sectional annular sealing arrangements in accordance with the invention.
  • FIG. 1 a is a partially enlarged view of the trapezoid-sectional annular sealing arrangement of FIG. 1 .
  • FIG. 2 is a complete one-body type ball valve including a trapezoid-sectional annular sealing arrangement in accordance with the invention, shown in cross-sectional elevation.
  • FIG. 3 is a disassembled perspective view of FIG. 2 .
  • FIG. 4 is a trapezoid-sectional annular sealing gasket taken out of the cavity in accordance with the invention, shown in partially cross-sectional elevation.
  • FIG. 5 is a pipe union joined together by threaded flanges including a trapezoid-sectional annular sealing arrangement in accordance with the invention, shown in partially cross-sectional elevation.
  • FIG. 6 is another pipe union joined together by bolted flanges including a trapezoid-sectional annular sealing arrangement in accordance with the invention, shown in partially cross-sectional elevation.
  • FIG. 1 a is a partially enlarged view of the trapezoid-sectional annular sealing arrangement in FIG. 1 .
  • annular gasket increases in sectional areas and gyro-radii relative to its enclosing cavity in response to temperature changes means that more gasket material, such as PTFE, will be compressed into a smaller metal cavity to enhance the sealing, which means any shape of cavities does not create sealing problems.
  • gasket material such as PTFE
  • the decreasing annular gasket will radially inward contract into a smaller portion of its cavity as its gyro-radius decreases so as to compensate its decreasing area and to keep the sealing integrity of the connection (see FIG. 1 a ), provided the annular gasket has enough tensile strength.
  • FIGS. 2 and 3 What is shown in FIGS. 2 and 3 is the same ball valve, a one-body type ball valve.
  • each like reference numeral indicates the same component.
  • the flow controlling path is formed of a ball 03 and two seats 02 fixed in a body 01 by an insert 05 engaged into the body by fastening threads.
  • a trapezoid-sectional annular gasket 04 is enclosed in the annular cavity formed by the engagement at the end of the insert 05 to provide a thermally assisted sealing arrangement for the connection.
  • the ball 03 with a through hole is captured between the seats 02 , and can be turned by a stem 06 with a handle 14 or an actuator to provide a fully open position, a partially open position and a fully closed position for flow control.
  • the stem sealing assembly includes a triangle-sectional bushing used as stem cylinder seals and a ball wedge/spherical seat mating used as stem shoulder seals.
  • the triangular bushing 09 is clamped around the stem 06 against the bushing seat at the stem exit on the body 01 by a gland 10 , Belleville washers 11 and a nut 12 engaged with the stem to provide a cylinder seal for the stem.
  • the ball wedge/spherical seat mating is formed of a ball wedge shoulder of the stem 06 and a spherical seat at the stem entrance on the body 01 . As the triangular bushing 09 is clamped against its seat, the ball wedge shoulder is pulled against its spherical seat to provide a shoulder seal for the stem.
  • FIG. 5 shows a pipe union joined together by threaded flanges
  • FIG. 6 shows another pipe union joined together by bolted flanges, which both include a trapezoid-sectional cavity of annular packing or gaskets between the two butt end faces.
  • the cavity shown in these two pipe unions is caved only in one end face, with the other end face completely plain, but actually it can be enclosed by two halves of cavities or two internally shaped surfaces sinking in the two faces.
  • FIG. 4 The trapezoid-sectional annular gasket shown in FIG. 4 is the same as the one indicated by the like reference numeral 04 in the other drawings, which has been taken out of its cavity and shown in partially cross-sectional elevation.
  • the trapezoid-sectional annular sealing arrangement can be used as the thermally assisted seal in any connections of two fluid-containing members connected by bolted flanges ( FIG. 6 ), threaded flanges ( FIG. 5 ) and fastening threads ( FIGS. 1 and 2 ).

Abstract

A trapezoid-sectional annular sealing arrangement, including a trapezoid-sectional annular cavity and gasket or packing used to realize the sealing connection of two fluid-containing members connected by fastening threads or bolts, wherein the said annular gasket or packing is enclosed in the said annular cavity formed by the said two fluid-containing members as joined together by fastening threads or bolts, the said trapezoid is disposed to converge radially and inward, the annular gasket or packing has a sectional area slightly bigger than the sectional area of the annular cavity, and the annular cavity is preferably designed to completely sink into one face of the two end faces to be joined. The sectional area and gyro-radius of the annular gasket with a material thermal expansion coefficient different from the annular cavity will either increase or decrease in response to temperature changes at the same time relative to the annular cavity to enhance or retain the original sealing connection.

Description

    TECHNICAL FIELD
  • The invention relates generally to fluid seals and more particularly to seals for the connection of two fluid-containing members that is subjected to thermal cycling.
  • BACKGROUND ART
  • All the fluid-containing members need to be connected or enclosed to withstand a pressure. The connections shall complete the two kinds of sealing and fastening tasks, and are often realized by welding, threading, flanging, flaring, swaging etc. The sealing arrangement is different as the connecting or fastening method differs. The weld connection completes sealing and fastening at the same time by weld metal. The connection by jointing threads where pressure tight joints are made on the threads completes its sealing and fastening by the same threads. The connection by fastening threads where pressure tight joints are not made on the threads completes its fastening by threads or bolts disposed around the flow path, and its sealing by annular sealing gaskets or packing disposed between the end faces to be joined. The annular sealing gasket is often made of non-metal, and sometimes compressed into a metal cavity which is enclosed by the connecting components in order to meet a higher requirement. The non-metal and metal often have a thermal expansion coefficient very different from each other, and create problems with the seal integrity when subjected to thermal cycling. U.S. Pat. No. 6,837,482 disclosed a diamond-shaped cross-sectional thermally-assisted sealing arrangement to try to make use of material thermal expansion to enhance sealing connection. However, the patent could not disclose a complete principle of thermally-assisted sealing cavities, and misunderstood that any annular non-metal packing would simply move radially relative to its containing metal cavity into one of the converging end portions of the diamond-shaped cavity to enhance the sealing connection in response to temperature changes. As it is, it is not so simple. As well known, any differences in thermal expansion or contraction coefficients will cause the sectional area and gyro-radius of the said annular gasket to either increase or decrease in response to temperature changes at the same time relative to the cavity enclosing the annular gasket, regardless of whether the coefficient of the annular gasket material is greater or less than the gasket-containing cavity material. That the annular packing increases in sectional areas and gyro-radii relative to its containing cavity means that more packing material is to be compressed into a smaller cavity, and so any shape of cavities does not create sealing problems provided the tensile strength of packing material is lower than the strength of cavity material. However, when the annular packing decreases in sectional areas and gyro-radii relative to its containing cavity, the annular packing whose gyro-radius is decreasing shall be strong enough for contracting into a radially inward converging portion of the cavity to compensate the decreasing sectional area of the annular packing, that is to say, the annular packing shall have enough tensile strength for carrying out such a compensation.
  • As for the diamond-shaped design of U.S. Pat. No. 6,837,482, the first, the annular packing has to move diagonally or not radially relative to its containing cavity to provide a thermally-assisted compensating seal in response to temperature changes, whereas the packing-expanding or contracting force is radial; that is to say, the force diagonally moving the annular packing is only a component of the radial packing-expanding or contracting power. In another words, the diamond-shaped design of U.S. Pat. No. 6,837,482 cannot fully utilize the thermal expansion or contraction force of the annular packing relative to its cavity to perform the thermally-assisted compensating seal and is not yet an ideal design.
  • The second, the diamond-shaped cavity shall be made of two halves separately in two end face to be joined; if not, for example, if the diamond-shaped cavity is designed to completely sink into one face of the two butt end faces and the other end face is fully plain, the annular packing in its containing cavity will be diagonally away from and cause leakage along the plain face when the annular packing moves inward to its diagonal corner in response to temperature changes. It is well known that it is the most simple for user's connection designs and the most convenient for user's application for the packing-containing cavity to be designed completely at the manufacturer's product end. However, it is very difficult for the design to be machined with a complete diamond-shaped cavity at one end even if there would be no leakage problem with the diamond-shaped design. Therefore it may be said that the diamond-shaped design of U.S. Pat. No. 6,837,482 is neither ideal nor practical.
  • The last, U.S. Pat. No. 6,837,482 incorrectly taught that any forms of air and jell in the diamond-shaped cavity could move along its sectional diagonal and provide a thermally-assisted compensating seal in response to temperature changes. Actually it is impossible because any gas or jell free in a container can not expand or contract or move along a certain direction excluding gravity direction in response to temperature changes; that is to say, U.S. Pat. No. 6,837,482 may cause an incorrect application without reliability.
  • Valves, as the controlling unit for fluid conveying, have a valving member, such as the ball in ball valves, the gate in gate valves, etc. The valving member is installed in a flow path, and has an open position, which allows media to flow through the valve, and a closed position, which prevents media from flowing through the valve. The shifting of the two positions of the valving member in its seat is realized by a stem extending out of the valve. The installing or fixing of the valving member and its seats in the valve flow path relates to the sealing connection realized by annular sealing gaskets or packing disposed around the flow path and between the end faces to be joined, and relates to one of the three basic fastening connections realized by fastening threads or bolts, one is by bolted flanges, another, by threaded flanges or threaded upset ends, and the other, by threaded unupset ends.
  • DISCLOSURE OF THE INVENTION
  • The object of the invention is to provide an improved thermally-assisted sealing arrangement for the connection of two fluid-containing members connected by fastening threads or bolts.
  • The thermally assisted sealing arrangement of the invention is a trapezoid-sectional annular sealing arrangement, including a trapezoid-sectional annular cavity and gasket or packing used to realize the sealing connection of two fluid-containing members connected by fastening threads or bolts. The said trapezoid-sectional annular gasket or packing, generally with a sectional area slightly bigger than the sectional area of the said cavity, is enclosed in the said cavity formed by the said two fluid-containing members as joined together by fastening threads or bolts, and the said trapezoid is disposed to converge radially and inward. The said trapezoid-sectional annular cavity is preferably designed to completely sink into one face of the two end faces to be joined. When the thermal expansion coefficients of materials used for the annular cavity and the annular gasket are different from each other, the sectional area and gyro-radius of the annular gasket will either increase or decrease in response to temperature changes at the same time relative to the cavity containing the annular gasket, regardless of whether the coefficient of the annular gasket material is greater or less than the gasket-containing cavity material. That the annular packing increases in sectional areas and gyro-radii relative to its containing cavity means that more packing material is to be compressed into a smaller cavity, and so any shape of cavities does not create sealing problems provided the tensile strength of packing material is lower than the strength of cavity material. However, when the annular packing decreases in sectional areas and gyro-radii relative to its containing cavity, the annular packing whose gyro-radius is decreasing shall be strong enough for contracting into a radially inward converging portion of the cavity to compensate the decreasing sectional area of the annular packing, that is to say, the annular packing shall have enough tensile strength for carrying out such a compensation.
  • One embodiment of the thermally assisted sealing arrangement is that the said trapezoid-sectional annular cavity is made of metal, and the said annular packing or gasket is made of non-metal, such as PTFE (Polytetrafluoroethylene) and the like. Another embodiment of the thermally assisted sealing arrangement is that it is disposed between two flange end faces to be connected, where the flanges are connected by either bolts or threads. Another embodiment of the thermally assisted sealing arrangement is that it is disposed on the end face of either externally threaded parts or internally threaded parts, where the male and female threads fasten the two fluid-containing parts together by engagement. Another embodiment of the thermally assisted sealing arrangement is that it is used to realize the sealing connection of valve bodies or valve flow paths, where the fastening connection is realized by threads or flanges.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial cross-sectional view of a two-body type ball valve whose body is joined together by fastening threads, including two trapezoid-sectional annular sealing arrangements in accordance with the invention.
  • FIG. 1 a is a partially enlarged view of the trapezoid-sectional annular sealing arrangement of FIG. 1.
  • FIG. 2 is a complete one-body type ball valve including a trapezoid-sectional annular sealing arrangement in accordance with the invention, shown in cross-sectional elevation.
  • FIG. 3 is a disassembled perspective view of FIG. 2.
  • FIG. 4 is a trapezoid-sectional annular sealing gasket taken out of the cavity in accordance with the invention, shown in partially cross-sectional elevation.
  • FIG. 5 is a pipe union joined together by threaded flanges including a trapezoid-sectional annular sealing arrangement in accordance with the invention, shown in partially cross-sectional elevation.
  • FIG. 6 is another pipe union joined together by bolted flanges including a trapezoid-sectional annular sealing arrangement in accordance with the invention, shown in partially cross-sectional elevation.
  • BEST MODE OF CARRYING OUT THE PRESENT INVENTION
  • One embodied application and disposition of the trapezoid-sectional annular sealing arrangement in the connection of two fluid-containing members can be found in the flow controlling path of the two-body type ball valve shown in FIG. 1. The flow controlling path is formed of a ball 03 and two seats 02 fixed in a body 01 by an end cap 05 engaged into the body by fastening threads. There are two trapezoid-sectional annular cavities of gaskets 04 separately enclosed at the end of the externally threaded end cap and at the mouth of internally threaded opening when the end cap are engaged into the body. FIG. 1 a is a partially enlarged view of the trapezoid-sectional annular sealing arrangement in FIG. 1. That the annular gasket increases in sectional areas and gyro-radii relative to its enclosing cavity in response to temperature changes means that more gasket material, such as PTFE, will be compressed into a smaller metal cavity to enhance the sealing, which means any shape of cavities does not create sealing problems. As the annular gasket decreases in sectional areas and gyro-radii relative to its enclosing cavity, the decreasing annular gasket will radially inward contract into a smaller portion of its cavity as its gyro-radius decreases so as to compensate its decreasing area and to keep the sealing integrity of the connection (see FIG. 1 a), provided the annular gasket has enough tensile strength.
  • What is shown in FIGS. 2 and 3 is the same ball valve, a one-body type ball valve. In these two drawings, each like reference numeral indicates the same component. In the ball valve, there is a flow controlling path assembly and a stem sealing assembly. The flow controlling path is formed of a ball 03 and two seats 02 fixed in a body 01 by an insert 05 engaged into the body by fastening threads. As the externally threaded insert 05 is engaged into the internally threaded body, a trapezoid-sectional annular gasket 04 is enclosed in the annular cavity formed by the engagement at the end of the insert 05 to provide a thermally assisted sealing arrangement for the connection. The ball 03 with a through hole is captured between the seats 02, and can be turned by a stem 06 with a handle 14 or an actuator to provide a fully open position, a partially open position and a fully closed position for flow control. The stem sealing assembly includes a triangle-sectional bushing used as stem cylinder seals and a ball wedge/spherical seat mating used as stem shoulder seals. The triangular bushing 09 is clamped around the stem 06 against the bushing seat at the stem exit on the body 01 by a gland 10, Belleville washers 11 and a nut 12 engaged with the stem to provide a cylinder seal for the stem. The ball wedge/spherical seat mating is formed of a ball wedge shoulder of the stem 06 and a spherical seat at the stem entrance on the body 01. As the triangular bushing 09 is clamped against its seat, the ball wedge shoulder is pulled against its spherical seat to provide a shoulder seal for the stem.
  • FIG. 5 shows a pipe union joined together by threaded flanges and FIG. 6 shows another pipe union joined together by bolted flanges, which both include a trapezoid-sectional cavity of annular packing or gaskets between the two butt end faces. The cavity shown in these two pipe unions is caved only in one end face, with the other end face completely plain, but actually it can be enclosed by two halves of cavities or two internally shaped surfaces sinking in the two faces.
  • The trapezoid-sectional annular gasket shown in FIG. 4 is the same as the one indicated by the like reference numeral 04 in the other drawings, which has been taken out of its cavity and shown in partially cross-sectional elevation.
  • As a matter of fact, the trapezoid-sectional annular sealing arrangement can be used as the thermally assisted seal in any connections of two fluid-containing members connected by bolted flanges (FIG. 6), threaded flanges (FIG. 5) and fastening threads (FIGS. 1 and 2).

Claims (6)

1. A trapezoid-sectional annular sealing arrangement, including a trapezoid-sectional annular cavity and gasket or packing used to realize the sealing connection of two fluid-containing members connected by fastening threads or bolts, wherein the said annular gasket or packing is enclosed in the said annular cavity formed by the said two fluid-containing members as joined together by fastening threads or bolts, and the said trapezoid is disposed to converge radially and inward.
2. A trapezoid-sectional annular sealing arrangement in accordance with claim 1, wherein the said annular gasket or packing has a sectional area slightly bigger than the sectional area of the said annular cavity.
3. A trapezoid-sectional annular sealing arrangement in accordance with claim 1, wherein the said annular cavity is preferably designed to completely sink into one face of the two end faces to be joined.
4. A trapezoid-sectional annular sealing arrangement in accordance with claim 1, wherein the said annular cavity and gasket or packing is disposed around the flow path and between the two flange faces to be joined by bolts or threads.
5. A trapezoid-sectional annular sealing arrangement in accordance with claim 1, wherein the said annular cavity and gasket or packing is disposed around the flow path and at the end of either externally or internally threaded fluid-containing parts to be joined by fastening threads.
6. A trapezoid-sectional annular sealing arrangement in accordance with claim 1, wherein the said annular cavity and gasket or packing is disposed around the flow path to realize the sealing connection of valve bodies to be joined by threads or flanges.
US12/064,570 2005-08-23 2006-08-23 Trapezoid-Sectional Annular Thermally-Assisted Sealing Arrangement Abandoned US20080231000A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNB2005100979056A CN100513850C (en) 2005-08-23 2005-08-23 Sealing sleeve with a triangle section
CN200510097905.6 2005-08-23
PCT/CN2006/002157 WO2007022722A1 (en) 2005-08-23 2006-08-23 A thermally assisted annular sealing structure with trapezoidal shaped cross-section

Publications (1)

Publication Number Publication Date
US20080231000A1 true US20080231000A1 (en) 2008-09-25

Family

ID=37771237

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/064,561 Active 2028-06-13 US8382067B2 (en) 2005-08-23 2006-08-23 Stem seal
US12/064,570 Abandoned US20080231000A1 (en) 2005-08-23 2006-08-23 Trapezoid-Sectional Annular Thermally-Assisted Sealing Arrangement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/064,561 Active 2028-06-13 US8382067B2 (en) 2005-08-23 2006-08-23 Stem seal

Country Status (3)

Country Link
US (2) US8382067B2 (en)
CN (1) CN100513850C (en)
WO (2) WO2007022722A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168937A1 (en) * 2008-09-05 2011-07-14 Vat Holding Ag Vacuum valve with gas-tight shaft penetration
US20110297863A1 (en) * 2008-10-28 2011-12-08 Zhejiang China Valve Co., Ltd. Stem shoulder seal with double rings and an assembly of independent dual stem seals
DE202015006226U1 (en) * 2015-09-04 2016-12-08 Gebrüder Kemper Gmbh + Co. Kg Metallwerke ball valve

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513850C (en) * 2005-08-23 2009-07-15 浙江华夏阀门有限公司 Sealing sleeve with a triangle section
FI120891B (en) * 2007-06-01 2010-04-15 Metso Automation Oy Simple axial locking of the valve shaft
CN101398092B (en) * 2008-10-28 2012-01-25 浙江华夏阀门有限公司 Ball valve seat and ball valve according to equilateral triangle section structure
CN101551013A (en) * 2008-12-31 2009-10-07 浙江华夏阀门有限公司 Sealing structure for trough pad
CN101476623B (en) * 2009-01-22 2011-09-07 丹佛斯(天津)有限公司 Sealing device and valve
CN102691806B (en) * 2012-06-12 2014-03-12 株洲市创锐高强陶瓷有限公司 Valve combination mode of high polymer material combined with ceramic and composite ball valve
DE202013003034U1 (en) * 2013-03-28 2014-07-01 Robert Bosch Gmbh Hydraulic valve with a holding part for a seal
US9353873B2 (en) 2013-09-30 2016-05-31 Pentair Flow Services Ag Ball valve having conically shaped stem seal
CN104121417A (en) * 2014-07-12 2014-10-29 江苏神通阀门股份有限公司 Combined type padding structure
CN104089042A (en) * 2014-07-19 2014-10-08 苏州创维晟自动化科技有限公司 Durable ball valve
CN105972306B (en) * 2016-06-02 2018-05-04 天津大学 A kind of zero-leakage type valve rod leak-proof structure
CN106051203A (en) * 2016-07-13 2016-10-26 罗启明 Stop valve
CN107701800A (en) * 2017-11-21 2018-02-16 北京航天动力研究所 Ultralow temperature device disc spring loaded type wedge shape movable sealing structure
CN108547950A (en) * 2018-01-01 2018-09-18 保集团有限公司 The bar of triangular loop seals
CN111133236B (en) * 2018-03-09 2021-10-29 Nok株式会社 Sealing device and assembling method thereof
US11131403B2 (en) 2019-05-08 2021-09-28 Nibco Inc. Reversible ball valve
CN112827677A (en) * 2019-11-25 2021-05-25 厦门松霖科技股份有限公司 Waterway control device and handheld water outlet device
US20220221066A1 (en) * 2021-01-13 2022-07-14 Advanced Control Products, Llc Valve Assemblies
US20220235865A1 (en) * 2021-01-22 2022-07-28 Allegheny Valve & Coupling, Inc. Gate valve arrangement

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US660862A (en) * 1900-04-11 1900-10-30 Luther D Lovekin Pipe-coupling.
US2056099A (en) * 1934-05-26 1936-09-29 Henry W Grimm Piston oil ring
US2775471A (en) * 1949-11-23 1956-12-25 Special Screw Products Company Tube coupling with sealed conical interface
US3132869A (en) * 1961-03-13 1964-05-12 Malcolm R Maben Fluid pressure responsive seal assembly
US3226082A (en) * 1965-03-22 1965-12-28 Acf Ind Inc Joint connection and seal therefor
US3281135A (en) * 1963-12-26 1966-10-25 American Brake Shoe Co Blast furnace apparatus
US3334650A (en) * 1964-03-12 1967-08-08 Acf Ind Inc Valve
US3567258A (en) * 1969-03-10 1971-03-02 Domer Scaramucci Seal assembly
US3630532A (en) * 1969-07-16 1971-12-28 Shamban & Co W S High- and low-pressure seal assembly
US3998245A (en) * 1974-08-01 1976-12-21 Martin Carlyle J Seal assemblies for water well casings
US4068822A (en) * 1975-05-29 1978-01-17 B. C. Richards & Co. Pty. Ltd. Ball valve
US4113268A (en) * 1977-03-15 1978-09-12 Posi-Seal International, Inc. Extended temperature range valve seal
US4134595A (en) * 1976-08-04 1979-01-16 Worcester Controls (U.K.) Limited Annular seals
US4304415A (en) * 1978-12-18 1981-12-08 Woco Franz-Josef Wolf & Co. Packing ring for ribbed conduits
US4345738A (en) * 1980-08-25 1982-08-24 Grove Valve And Regulator Company Fire safe seal
US4380342A (en) * 1980-09-22 1983-04-19 Vought Corporation Fluid sealing devices
US4458926A (en) * 1983-05-10 1984-07-10 Williamson Nigel D L Hydraulic hose adapter with O-ring seal
US4566482A (en) * 1985-06-27 1986-01-28 Stunkard Gerald A Top entry trunnion ball valve
US4605202A (en) * 1983-10-28 1986-08-12 Asahi Yukizai Kogyo Co., Ltd. Ball valve
US4813649A (en) * 1984-10-17 1989-03-21 Sekisui Kagaku Kogyo Kabushiki Kaisha Ball valve
US5178400A (en) * 1991-01-14 1993-01-12 General Electric Company Squeeze film damper seal
US5291974A (en) * 1992-08-24 1994-03-08 Livernois Automation Company High pressure self-contained gas spring or die cylinder and sealing arrangement therefor
US5427386A (en) * 1992-10-14 1995-06-27 Corrosion Control Corp. Protective seal for use in fluid flow lines and method therefor
US5620187A (en) * 1993-06-01 1997-04-15 Florida Atlantic University Contracting/expanding self-sealing cryogenic tube seals
US6129336A (en) * 1998-01-16 2000-10-10 Xomox Ball stem seal
US20020130292A1 (en) * 2001-03-19 2002-09-19 Brian Nolan Sealing arrangement for thermally enhanced sealing
US20020185625A1 (en) * 2001-06-08 2002-12-12 Frank Gosling Leakproof ball valve structure
US20030111631A1 (en) * 2001-06-08 2003-06-19 Frank Gosling Leakproof ball valve structure
US6669171B1 (en) * 1999-10-29 2003-12-30 Aceco Valve, Inc. Compact manifold trunnion ball valve
US20080217568A1 (en) * 2005-08-23 2008-09-11 Zhejiang China Valve Co., Ltd. Stem Seal

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1197480A (en) * 1915-03-03 1916-09-05 William G Tice Valve.
US3458172A (en) * 1966-05-26 1969-07-29 Dresser Ind Ball valve
US3425663A (en) * 1966-06-28 1969-02-04 Hills Mccanna Co Ball valve assembly
US3614063A (en) * 1968-11-26 1971-10-19 Jean Gachot Cock with a rotatable plug
FI60919C (en) * 1978-10-16 1982-04-13 Waertsilae Oy Ab ANORDNING FOER TAETNING AV VENTILSPINDEL
US4546790A (en) * 1983-04-07 1985-10-15 Klinger Ag Fluid valve
US4558874A (en) * 1983-07-05 1985-12-17 Whitey Co. Valve stem packing assembly
DE3825116A1 (en) * 1988-07-23 1990-01-25 Xomox Int Gmbh SHUT-OFF AND CONTROL VALVE
CN2101139U (en) * 1991-09-02 1992-04-08 刘刚 Trapezoidal sealing ring
US5461146A (en) * 1992-07-24 1995-10-24 Cephalon, Inc. Selected protein kinase inhibitors for the treatment of neurological disorders
US5407176A (en) * 1993-08-12 1995-04-18 Nevrekar; Venkatesh R. Back-seating of rotary valve stem
FR2712058B1 (en) * 1993-11-04 1996-04-26 Imperator Joints Ind Composite ring seal.
DE19646040A1 (en) * 1996-11-08 1998-05-20 Pfannenschmidt Erhard Control valve
CN1105842C (en) * 1998-08-24 2003-04-16 罗宝生 Double-wedge type semi-spherical ball valve
JP2002061760A (en) 2000-08-21 2002-02-28 Shinwa Sangyo Co Ltd Gas cock
CN2512960Y (en) 2001-11-16 2002-09-25 陈满林 Ball valve
JP4500511B2 (en) 2002-07-03 2010-07-14 キヤノン株式会社 Image forming apparatus
CN100363659C (en) 2002-08-15 2008-01-23 徐长祥 Ball wedge flap valve and clip connecting method
CN1217119C (en) 2003-04-05 2005-08-31 刘景田 Special plastic compound pipe with reliable connection and seal

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US660862A (en) * 1900-04-11 1900-10-30 Luther D Lovekin Pipe-coupling.
US2056099A (en) * 1934-05-26 1936-09-29 Henry W Grimm Piston oil ring
US2775471A (en) * 1949-11-23 1956-12-25 Special Screw Products Company Tube coupling with sealed conical interface
US3132869A (en) * 1961-03-13 1964-05-12 Malcolm R Maben Fluid pressure responsive seal assembly
US3281135A (en) * 1963-12-26 1966-10-25 American Brake Shoe Co Blast furnace apparatus
US3334650A (en) * 1964-03-12 1967-08-08 Acf Ind Inc Valve
US3226082A (en) * 1965-03-22 1965-12-28 Acf Ind Inc Joint connection and seal therefor
US3567258A (en) * 1969-03-10 1971-03-02 Domer Scaramucci Seal assembly
US3630532A (en) * 1969-07-16 1971-12-28 Shamban & Co W S High- and low-pressure seal assembly
US3998245A (en) * 1974-08-01 1976-12-21 Martin Carlyle J Seal assemblies for water well casings
US4068822A (en) * 1975-05-29 1978-01-17 B. C. Richards & Co. Pty. Ltd. Ball valve
US4134595A (en) * 1976-08-04 1979-01-16 Worcester Controls (U.K.) Limited Annular seals
US4113268A (en) * 1977-03-15 1978-09-12 Posi-Seal International, Inc. Extended temperature range valve seal
US4304415A (en) * 1978-12-18 1981-12-08 Woco Franz-Josef Wolf & Co. Packing ring for ribbed conduits
US4345738A (en) * 1980-08-25 1982-08-24 Grove Valve And Regulator Company Fire safe seal
US4380342A (en) * 1980-09-22 1983-04-19 Vought Corporation Fluid sealing devices
US4458926A (en) * 1983-05-10 1984-07-10 Williamson Nigel D L Hydraulic hose adapter with O-ring seal
US4605202A (en) * 1983-10-28 1986-08-12 Asahi Yukizai Kogyo Co., Ltd. Ball valve
US4813649A (en) * 1984-10-17 1989-03-21 Sekisui Kagaku Kogyo Kabushiki Kaisha Ball valve
US4566482A (en) * 1985-06-27 1986-01-28 Stunkard Gerald A Top entry trunnion ball valve
US5178400A (en) * 1991-01-14 1993-01-12 General Electric Company Squeeze film damper seal
US5291974A (en) * 1992-08-24 1994-03-08 Livernois Automation Company High pressure self-contained gas spring or die cylinder and sealing arrangement therefor
US5427386A (en) * 1992-10-14 1995-06-27 Corrosion Control Corp. Protective seal for use in fluid flow lines and method therefor
US5620187A (en) * 1993-06-01 1997-04-15 Florida Atlantic University Contracting/expanding self-sealing cryogenic tube seals
US6129336A (en) * 1998-01-16 2000-10-10 Xomox Ball stem seal
US6669171B1 (en) * 1999-10-29 2003-12-30 Aceco Valve, Inc. Compact manifold trunnion ball valve
US20020130292A1 (en) * 2001-03-19 2002-09-19 Brian Nolan Sealing arrangement for thermally enhanced sealing
US6837482B2 (en) * 2001-03-19 2005-01-04 Xomox Corporation Sealing arrangement for thermally enhanced sealing
US20020185625A1 (en) * 2001-06-08 2002-12-12 Frank Gosling Leakproof ball valve structure
US20030111631A1 (en) * 2001-06-08 2003-06-19 Frank Gosling Leakproof ball valve structure
US20080217568A1 (en) * 2005-08-23 2008-09-11 Zhejiang China Valve Co., Ltd. Stem Seal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dictionary definition of "seal", accessed 10/9/13 via thefreedictionary.com *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168937A1 (en) * 2008-09-05 2011-07-14 Vat Holding Ag Vacuum valve with gas-tight shaft penetration
DE112009002071B4 (en) * 2008-09-05 2012-11-08 Vat Holding Ag Vacuum valve with gas-tight shaft passage
US8727311B2 (en) 2008-09-05 2014-05-20 Vat Holding Ag Vacuum valve with gas-tight shaft penetration
US20110297863A1 (en) * 2008-10-28 2011-12-08 Zhejiang China Valve Co., Ltd. Stem shoulder seal with double rings and an assembly of independent dual stem seals
US8439330B2 (en) * 2008-10-28 2013-05-14 Zhejiang China Value Co., Ltd. Stem shoulder seal with double rings and an assembly of independent dual stem seals
DE202015006226U1 (en) * 2015-09-04 2016-12-08 Gebrüder Kemper Gmbh + Co. Kg Metallwerke ball valve

Also Published As

Publication number Publication date
US20080217568A1 (en) 2008-09-11
WO2007022721A1 (en) 2007-03-01
US8382067B2 (en) 2013-02-26
WO2007022722A1 (en) 2007-03-01
CN1920363A (en) 2007-02-28
CN100513850C (en) 2009-07-15

Similar Documents

Publication Publication Date Title
US20080231000A1 (en) Trapezoid-Sectional Annular Thermally-Assisted Sealing Arrangement
US7644961B2 (en) Tube joint
JP6699992B2 (en) Gasket for fluid coupling and fluid coupling
JP5086408B2 (en) How to use a joint with an angled cavity
US6217003B1 (en) Valve assembly having floating retainer rings
US8196892B2 (en) Fluid control valve
EP2171321B1 (en) Methods and apparatus to align a seat ring in a valve
US7080822B2 (en) Ball valve with a single piece ball-stem and an integrated actuator mounting flange
US20120074694A1 (en) Self-aligning sanitary pipe joints and related systems
TWI663355B (en) A valve for controlling fulid flow through pipe elenents connected thereto and a valve coupling for joining pipe elements
RU2730539C2 (en) Insert of spade valve
US9353873B2 (en) Ball valve having conically shaped stem seal
US5586749A (en) Composite polyethylene and transition valve
US6123317A (en) Coupling
CN107013383A (en) angled fastener
US10746330B2 (en) Pipe coupling
US6505813B1 (en) Valve assemblies
US6217002B1 (en) Valve assembly having floating retainer rings
US4909548A (en) Compound-taper flange assembly
US4214732A (en) Side-split ball valve construction
JP4280151B2 (en) Corrosion resistant valve
JP2008190700A (en) Valve with diameter-reduced joint part
US20230003308A1 (en) Valve assembly and cage for a valve assembly
US2539614A (en) Peripherally sealed joint
US4575106A (en) High pressure sealing connection with metal seal

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZHEJIANG CHINA VALVE CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:XU, CHANGXIANG;REEL/FRAME:020769/0425

Effective date: 20080403

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION