Connect public, paid and private patent data with Google Patents Public Datasets

Broadband solid-state spectroscopy illuminator and method

Download PDF

Info

Publication number
US20080188727A1
US20080188727A1 US12101906 US10190608A US20080188727A1 US 20080188727 A1 US20080188727 A1 US 20080188727A1 US 12101906 US12101906 US 12101906 US 10190608 A US10190608 A US 10190608A US 20080188727 A1 US20080188727 A1 US 20080188727A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
light
difference
tissue
ischemia
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12101906
Inventor
David A. Benaron
Illian H. Parachikov
Michael R. Fierro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AliphCom
Benaron David A
Original Assignee
Spectros Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/412Detecting or monitoring sepsis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0059Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0059Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14558Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's

Abstract

An improved spectroscopy illuminator (103) for generating broadband light and for delivering the light to a sample with an improved delivery efficiency, for higher optical density and/or reduced thermal transfer uses a solid-state broadband white LED (107) to produce broadband light (114), which is then transmitted to a sample region (125), such as a living tissue or blood in vivo or a biological sample in a spectrophotometer target region. The solid-state source keeps both the illuminator and sample cool during operation, allowing the illuminator to be integrated into the tip of a medical probe, a medical system such as an oximeter, or other monitoring systems or devices making measurements based on light scattering, absorbance, fluorescence, phosphorescence, Raman effects, use of a contrast agent, or other known spectroscopy techniques. Systems incorporating the improved illuminator, and methods of use are also disclosed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation-in-part of U.S. patent application Ser. No. 11/451,681 filed on Jun. 12, 2006, relating to the detection of local tissue ischemia, which is a continuation-in-part of U.S. patent application Ser. No. 10/651,541 filed on Aug. 29, 2003, now U.S. Pat. No. 7,062,306; which is a continuation of U.S. patent application Ser. No. 10/119,998 filed on Apr. 9, 2002, now U.S. Pat. No. 6,711,426, the disclosures of all of which are incorporated in full by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates to devices and methods for providing, simultaneously or near-simultaneously, spectroscopic analysis from more than one somatic site, and more particularly relates to the determination of a difference-weighted analysis wherein the near-simultaneous determination of two (or more) spectroscopically-determined somatic oxygenation saturation values is performed in a manner allowing for the direct and near-simultaneous comparison of these two (or more) somatic saturation values, by direct mutual inspection or computational means, in order to provide synergistic and added medical value above that provided by each individual value considered separately. In another aspect, the present invention provides real-time spectroscopic analysis of in-vivo tissue perfusion from more than one somatic site that is sensitive to local tissue ischemia and insensitive to regional arterial and venous oxygenation.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Ischemia, defined as a reduction in blood flow, can be due to local causes (e.g., due to vascular occlusion or increased metabolism such as a tumor), global causes (e.g., due to body-wide reduced blood flow from reduced cardiac output), or both. However, discriminating the source of changes in tissue oxygenation can be difficult, considering values at each site individually.
  • [0004]
    Collecting spectroscopic values from two different sites (e.g., organ versus organ, or two sites within the same organ), and considering or analyzing these together as a difference-weighted measure, can add medical value. For example, a growing difference between a stable and normal cheek tissue oximetry, and a falling colon tissue oximetry, points to a colon-centered pathology rather than to a global cause such as impending cardiac failure. Similarly, a widening difference-weighted measurement between a pulse and tissue oximeter (estimates of arterial and venous saturation, respectively), helps pinpoint the source of the change as cardiovascular pathology, rather than increasing pulmonary failure. Last, a widening spatial gradient, such as a difference-weighted value between a pair of sensors that is scanned over a single breast, reduces the noise from organ-wide regional gradients and highlights local inhomogeneities associated with tumors such as breast cancer. Each of these three exemplary difference-weighted values add medical value above what the absolute values, considered alone and separately, would merit.
  • [0005]
    The noninvasive spectroscopic monitoring of hemoglobin saturation in vivo is known in the art. The great majority of such known devices and methods monitor only at one site (U.S. Pat. No. 6,662,033, WO/2003/003914); such devices do not allow for mutual or computational determination of a difference-weighted value. A few devices and methods in the art teach monitoring at more than one sites. For example, U.S. Pat. No. 6,615,065 describes dual monitoring of the brain, wherein the two sensors are applied to a head of the test subject, taking advantage of the unique hemispheric and non-somatic structure of the brain, to monitor two mutually separate regions within a brain of the test subject, with the two values being simultaneously displayed to allow a user to observationally and mutually compare the two. No computational comparison is taught. Further, the '065 patent teaches that it is the unique, hemispheric structure of the brain that allows the device of '065 to operate, and thus the device would not be suitable for somatic monitoring. In contrast, clinicians recognize that the non-brain (the “somatic”) regional of the body constitute an advantageous early warning system not present in the brain, and are some of the first key tissues to be shut down by the body during impending failure of oxygen delivery to tissue. Similarly, U.S. Patent Application Publication no. 2006/0105319 describes the measuring of two values, arterial and venous. However, again no computational comparison is taught, and one of these values is determined through invasive blood sample, not from spectrophotometric measurement of tissue itself.
  • [0006]
    All of the above devices are limited to being single measures of oxygenation, are limited or optimized by design or omission to non-somatic tissue, and/or do not allow direct and near-simultaneous mutual comparison or computational processing of at least two somatic values obtained by spectrophotometric measures.
  • [0007]
    None of the prior devices or methods allow for a difference-weighted spectroscopy that facilitates simultaneous or near-simultaneous comparison of spectroscopic values from two somatic regions or sites by inspection or computation. Such a system has hot been previously described, nor successfully commercialized. Thus, further developments are needed.
  • SUMMARY AND OBJECTS OF THE INVENTION
  • [0008]
    The inventors have discovered that certain diseases (vascular ischemia, cancer) are frequently localized, and by comparing at least two somatic values—either multiple sites or times—within the body, resulting in a more sensitive detection of such local conditions.
  • [0009]
    A salient feature of the present invention is that the detection and treatment of diseases such as somatic ischemia or cancer is aided by use of at least two measurements—either by multiple somatic sensors monitoring at least two nearby or distant regions or by dual measurements made by a single sensor over space or time—allowing a direct comparison of these different spectroscopic values by mutual inspection or computation.
  • [0010]
    In one aspect, the present invention provides a somatic monitoring apparatus comprising: a first and second sensor, each configured to generate, based upon light produced and/or detected by each sensor, first and second somatic output signals that are a function of each somatic target site, and a difference unit for comparing said first and second signals, and for generating a difference-weighted output signal based upon this comparison.
  • [0011]
    In other embodiments, this dual-sensor somatic tissue ischemia monitoring apparatus generates an output signal that is a function of the presence or degree of local tissue ischemia or cancer at a first and second target site, with a display unit configured to display or allow near or substantially simultaneous comparison of said signals at the two target sites. This can be expanded to N sensors, with comparisons of a first through Nth output signals via a difference unit configured to compare at least two of said first through Nth somatic signals, and to generate a difference-weighted output signal based upon said comparison.
  • [0012]
    In yet another aspect, the difference measurement can be generated using a single sensor moved through space (allowing comparison of two sites with one detector), or used over time (such as reporting changes with time), or even measuring both arterial and tissue oximetry measurements using one probe (allow arteriovenous differences to be detected).
  • [0013]
    In embodiments of the present invention, we provide both apparatus and methods for the dual, N, and signal sensor approaches. In one embodiment of the invention there is provided a device with dual somatic spectroscopic monitoring sites, including two solid state broadband light sources and sensors for generating, delivering, and detecting light from at least two target sites, for the purpose of allowing a direct comparison of the spectroscopic values by mutual inspection or computation, thereby adding medical value. In another example, the system uses dual phosphor-coated white LED's to produce continuous, broadband, visible light from 400 nm to 700 nm at two somatic sites. Scattered light returning from each target is detected by a wavelength-sensitive detector, and two signals, one from each site, is generated using this wavelength-sensitive information via spectroscopic analysis. The values are displayed or computed in a manner to allow direct comparison of the spectroscopic values by mutual inspection or computation. Systems incorporating the difference-weighted somatic spectroscopic system arid medical methods of use are described.
  • [0014]
    Some embodiments the present invention further provide a device for detecting local ischemia in a tissue at one or more tissue sites, characterized in that the device is configured such that wavelengths of light are selectively emitted, and the selective wavelengths are substantially transmitted through capillaries in tissue while being substantially absorbed by arterial and venous vessels in the tissue.
  • [0015]
    As will be understood by the detailed description below, the somatic monitoring apparatus provides one or more advantages. For example, by way of illustration and in no way limiting the invention, one advantage is that the system and method may be constructed to detect ischemia, cancer, or changes in perfusion.
  • [0016]
    Another exemplary advantage is that a physician or surgeon can obtain improved real-time feedback regarding local tissue ischemia, cancer, or perfusion in high-risk patients, and to respond accordingly.
  • [0017]
    Another exemplary advantage is that ischemia (low delivery of oxygen to tissues) can be differentiated from pulmonary-induced hypoxemia (low arterial saturation).
  • [0018]
    Yet another exemplary advantage is that local changes in oximetry (vascular disease) can be differentiated from mixed or global changes (low cardiac output).
  • [0019]
    Another advantage is that the detector of the present invention may be actively coupled to a therapeutic device, such as a pacemaker, to provide feedback to the pacing function, or passively coupled to a therapeutic device, such as applied to a stent to monitor stent performance over time, based upon the detection and degree of local ischemia. Ischemia sensing may be used to enable detection of many types of disease, such as tissue rejection, tissue infection, vessel leakage, vessel occlusion, and the like, many of which produce ischemia as an aspect of the disease.
  • [0020]
    The breadth of uses and advantages of the present invention are best understood by example, and by a detailed explanation of the workings of a constructed apparatus, now in tested in human subjects. These and other advantages of the invention will become apparent when viewed in light of the accompanying drawings, examples, and detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0021]
    The breadth of uses and advantages of the present invention are best understood by example, and by a detailed explanation of the workings of a constructed device. These and other advantages of the present invention will become apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
  • [0022]
    FIG. 1 a schematic diagram of a difference-weighted spectroscopy system incorporating a white LED and constructed in accordance with embodiments of the present invention;
  • [0023]
    FIG. 2 shows a medical monitor system constructed in accordance with embodiments the present invention;
  • [0024]
    FIG. 3A shows a pulsatile broadband signal intensity using a single probe monitor constructed to monitor both arterial and capillary saturation in accordance with some embodiments of the present invention;
  • [0025]
    FIG. 3B shows a peak systolic and trough diastolic pulse oximetry signal measured using a single probe difference monitor constructed in accordance with some embodiments of the present invention; and
  • [0026]
    FIG. 4 shows an exemplary sensor probe having one light and two (dual) monitoring fibers for monitoring two closely located sites, in this case located at different depths in a tissue, according to some embodiments of the present invention.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION Definitions
  • [0027]
    For the purposes of this invention, the following definitions are provided for illustration purposes. These definitions are not intended to limit the scope of the invention:
  • [0028]
    Head or Cranial: Associated with the Head or Skull, respectively, as opposed to the body tissue (c.f., Somatic, below). Stedman's Medical Dictionary, 27th edition, states that cranial is “Relating to the cranium or head.” Blood perfusion to the brain and head, via the carotid supply, can be very different than to somatic tissues, such as liver, intestine, heart, kidney, and others.
  • [0029]
    Somatic: Tissue in the body and central organs, as opposed to the brain (c.f., brain). Stedman's Medical Dictionary, 27th edition, states that this is “[r]elating to the soma or trunk”. Organs within the body are considered somatic tissues, and include the liver, spleen, intestine, heart, kidney, muscle, and pancreas. Oxygenation and measures in somatic tissues are central to monitoring for sufficiency of oxygen delivery to tissue in the body as a whole.
  • [0030]
    Ischemia: A condition in which the perfusion of a tissue is locally inadequate to meet its metabolic needs. Ischemia is distinguished from low blood flow per se in that low blood flow alone does not guarantee ischemia (such as during tissue cooling on which flow can be low without significant ischemia), nor does high flow rule out or prevent ischemia (such as during sepsis or when the blood delivered does not contain adequate oxygen). Ischemia is a co-existing condition in many different types of illnesses, including infection (sepsis), tissue rejection (host vs. graft disease), heart attack (myocardial ischemia), stroke (cerebral ischemia), acute or chronic organ failure, diabetic peripheral vascular disease, and other conditions.
  • [0031]
    Perfusion: The flow of blood or other perfusate per unit volume of tissue, as in ventilation/perfusion ratio. Reduction in perfusion is a major clinical problem, and it is associated with, but not equivalent to, ischemia.
  • [0032]
    Difference-Weighted: A measurement that is formed from the direct or indirect comparison of two or more oxygenation values, such as somatic venous saturation at organ A to somatic venous saturation of organ B. Another difference measurement is the difference between arterial and venous saturation such as described in detail in co-pending U.S. patent application Ser. No. 11/451,681. Another difference measure is the comparison of a measured value to a baseline or historical value.
  • [0033]
    Spectroscopy. Measurement of material, including tissue, using light. Such measures can involve a spectrum composed of only a few wavelengths, such as two discrete wavelengths, or can involve a spectrum recorded over a range using a broadband light source, and a wavelength-resolved detector.
  • [0034]
    One embodiment of the device will now be described. This device has been built in prototype form, tested in the laboratory under experimental conditions, and tested on animals under Animal Study Review Board approval, as shown in some of the data which follow the initial description of one embodiment of the system.
  • [0035]
    A cut-away schematic showing the interior of spectroscopic device or apparatus 101 according to embodiments of the present invention is shown in FIG. 1. Device 101 is preferably surrounded by soft silicone exterior shell 102, permitting a good grip while scanning device 101 across a target region, or for implantation for chronic monitoring. Typically, exterior shell 102 is constructed from approved Class VI biocompatible materials as recognized by the U.S. FDA or other medical device regulatory agencies. Portions of sensor 155, power source 179, light source LED A 103A and LED B 103B, or other components may protrude as needed from this shell within the spirit of this invention, provided that the protruding parts themselves are biocompatible as required.
  • [0036]
    Within device 101, source LED 103A is illustrated in its component parts. Broad spectrum white light is emitted by a high conversion-efficiency white LED 105 (e.g., The LED Light, model T1-¾-20W-a, Fallon, Nev.). Source 105 is itself embedded into a plastic beam-shaping mount using optical clear epoxy 111 to allow light generated in diode 105 to be collimated, thus remaining at a near-constant diameter after passing through optical window 115A to leave device 101. Light then is able to pass forward as shown by light path vectors 119, with at least a portion of this light optically coupled to first target region 123A in target 125. Note that while target region 125 may be in some instances a living tissue, the tissue itself is not considered to be a claimed part of this invention.
  • [0037]
    A portion of the light reaching region 123A of target 125 is backscattered and returns as to device 101, as shown by light path vectors 128, to optical collection window 141. Collection window 141 in this embodiment is a glass, plastic, or quartz window, but can alternatively be merely an aperture, or even be a lens, as required. Light then strikes sensor 155, where it is sensed and detected.
  • [0038]
    Similarly, within device 101, there is a second light source, LED 103B is illustrated in its component parts, constructed in much the same manner as LED 103A, however light this time exits by optical window 115B, to strike second target region 123B in target 125. Again, a portion of the light reaching region 123B is backscattered and returns to device 101 via light path vector 128, to optical collection window 141, striking sensor 155.
  • [0039]
    Sensor 155 may be comprised of a number of discrete detectors configured to be wavelength-sensitive, or maybe a continuous CCD spectrometer, with entry of light by wavelength controlled by gratings, filters, or wavelength-specific optical fibers. In any event, sensor 155 transmits an ischemia signal related to the detected light backscattered from target 125, producing an electrical signal sent via wires 161 and 163 to the unit that determines a weighted difference, difference unit 167.
  • [0040]
    Light source 103A and 103B could be instead multiple, with up to N light sources, constructed as described; or in a varying manner. In any event, Light source 103A and 103B also has two electrical connections 175 and 176, connecting light sources 103A and 103B to power source 179. In this embodiment, power source 179 is an inductive power supply, capable of receiving an inductive field from externally powered coil and RFID receiver. Such coils and receivers are well known.
  • [0041]
    Operation of the device may now be described.
  • [0042]
    Device 101 is scanned across a breast, for example in a patient being screened for breast cancer. The device may measure the various components of the breast such as lipid and water, and/or it may measure tissue hemoglobin saturation. It may be placed on the breast directly, or it can be placed at a distance. In the latter case, vectors 119 are fiber Optics extended from device 101 and into close proximity to the target heart muscle, sufficient for optical coupling. Then the patient is allowed to heal after surgery, and the implantable device is left inside the patient's body, without a direct physical connection to the outside world.
  • [0043]
    In this example, device 101 is normally powered down and in a resting (off) state. At some point, it is desired to test the target heart muscle for the presence of ischemia. Power source 179 located within device 101, produces sufficient power for device 101 to power up and turn on. Light sources 103A, 103B, and others if present, begin to illuminate the target 125, in this case heart muscle. Sensor 155, which is an embedded spectrophotometer, receives backscattered light, resolves the incoming light by wavelength, a marker of ischemia. Under control Of lines 175 and 176, LED 103A is first scanned, with an estimated tissue saturation (as determined by tissue oximeters arranged as known in the art, for example, the commercially available T-Stat model 303 Tissue Oximeter may be used, whose design and methods are incorporated into this specification by reference) of 72%. Next, under control of lines 175 and 176, LED 103B is illuminated, producing an estimated tissue saturation of 72%. There values are sent to difference Unit 167, and the difference is found to be zero, which is the median value one expects in normal tissue without cancer.
  • [0044]
    Once the measurement is completed, device 101 powers down and returns to a resting state.
  • [0045]
    In an alternative embodiment, power source 179 may be charged during proximity to external coil, or have an internal battery source, allowing device 101 to operate when external coil 179 is not present. Difference unit 167 may then transmit without being directly queried, such as in response to a dangerous level of ischemia.
  • [0046]
    The breadth of uses and the basis of the present invention is best understood by example; and thus the detailed description will be further illustrated by the following examples. These examples are by no means intended to be inclusive of all uses and applications of the apparatus, merely to serve as a case study by which a person, skilled in the art, can better appreciate the methods of utilizing, and the scope of, such a device.
  • EXAMPLE 1 Simultaneous Two-Site Two-Organ Somatic Difference Monitoring
  • [0047]
    In this example, a clinical application related to ischemia is described. Here, a surgeon is repairing the aorta. There are several reasons why the local tissue oxygenation may fail. For example, the patient is under anesthesia, and a general depression (reduction) of cardiac output may occur. If so, the delivery of oxygen to all parts of the body will fall. On the other hand, if the blood vessel supplying the colon, which arises in part from the aorta, is occluded, then the saturation to the colon will fall, but not the saturation to the cheek. Therefore, by looking at the saturation of both the cheek and colon at substantially the same time, or by displaying a difference between the two values, the cause of the drop in local oxygenation may be determined to be either local and due to the vascular repair (e.g., large difference, in this case the absolute value of |Δ0 saturation|>10%) which is an indication of local ischemia, or systemic and due to hypotension or cardiac failure (e.g., small difference, in this case the absolute value of |Δ saturation|<10%), which is an indication of systemic ischemia
  • [0048]
    This is shown in the following table:
  • [0000]
    TABLE 1
    The difference (Δ) between check and colon oxygenation
    is small (|<10%|) under normal conditions, and during system-
    wide, whole-body, global reductions in heart output, hematocrit, or
    oxygenation from the lungs. In contrast, a large difference between
    check and colon oxygenation (|>10%|) is a sign of disparate flow,
    and likely of local ischemia.
    Cheek
    (Buccal) Gut (Colon) Δ Local
    Site Oxygenation Oxygenation Cheek − Colon Ischemia?
    Normal 76% 71% +5% No
    Low He art 42% 48% −6% No
    Output
    Bad Colon 76% 22% +44% YES
    Artery
  • [0049]
    A device displaying two values, simultaneously or near-simultaneously measured, as well as a difference-weighted value display, is shown in FIG. 2 according to some embodiments of the present invention. Monitor or display 313 has two somatic probes 183 and 185 attached, each placed at difference sites. This number of probes could, for other embodiments, be any number of N probes, where N is two or more, within the spirit of the invention. Monitor 313 displays the results of these two sites of measurement, as well as a veno-venous(or Δ) difference of 64%. In other embodiments, the display of N values itself allows a user to manually and directly compare the two values, adding medical value, or alternatively, only the difference-weighted value alone could be displayed, within the spirit of the invention. In view of this large, calculated veno-venous difference, alert 322 is displayed to the user.
  • [0050]
    Note that near-simultaneous display of the measurement of two or more somatic sites, in this case somatic tissue oxygenation as compared at two sites using a dual-site somatic tissue oximeter constructed in accordance with the present invention, allows either a direct, mutual comparison by an observer of these two displayed values, or a calculation or computation, and then display of, this difference-weighted value. Each of these, dual display for direct, mutual inspection, or calculation of a processed, weighted difference, can be a useful difference-weighted measurement. Further, it is noted that this difference-weighted value is inherently advantageous, adding medical value and relevance to either value taken alone and singly, such as by allowing detection of a local or regional ischemia with better precision, or faster recognition of an ischemic event, or by allowing more rapid identification of the source (cardiac/pulmonary) of the low oxygenation, among advantages illustrated herein. Other advantages, not discussed here, may be learned, and are incorporated into the broad list of medical advantages intended within the scope of the present invention. It is not intended that the medical advantages be subject to limitation by omission of such additional advantages.
  • EXAMPLE 2 Simultaneous Two-Site Single-Organ Somatic Difference Monitoring
  • [0051]
    In the example above, two different organs were studied. In this example, the monitoring of a single organ, the breast, is described. It is toward this Example that the embodiment of FIG. 1 is directed.
  • [0052]
    In breast cancer, the detection of angiogenesis, the proliferation of new blood vessels, is a key feature of cancer that lets the cancer gain the ability to grow and spread. However, the background variation in blood content in the breast between women of different ages and breast composition makes the use of a single-site blood-content threshold less useful than it could otherwise be. That is, the range of normal blood content in breast tissue between different women is so large that the increase in blood due to cancer can be lost in that broad range.
  • [0053]
    To illustrate this, consider data from women with breast cancer. By looking at the difference measurement of the oxygenation at one location on the breast as compared to another near-simultaneously or simultaneously measured point of the breast, and by displaying this difference, local tumor ischemia can be detected to be present (large local difference, in this case the absolute value of Δ saturation>10%) or not present (small difference, in this case the absolute value of Δ saturation<10%), as shown:
  • [0000]
    TABLE 2
    The difference in oxygenation between two nearby regions of the
    human breast is small under normal circumstances. A tumor produces
    a local region of a high gradient of change in oxygenation (and also
    in deoxyhemoglobin content). This difference can be lost in the local
    variations (sites A and B, two sites within each region), but there is a
    large difference that is a sign of a tumor when one sensor is near
    the tumor, and the other is actually over the tumor.
    Breast Site A Breast Site B Δ Site Local
    Site Saturation Saturation A − B Ischemia?
    Normal 1 76% 74% +2% No
    Normal 2 71% 68% +3% No
    Normal 3 63% 66% −3% No
    Tumor 4 78% 66% +12%  YES
  • [0054]
    This Site A vs. Site B comparison gains utility because the local variations in oxygenation within a region (at two sites) are small, but the variations between patients is large. In Error! Reference source not found. 2, the range of normals above is 15%, but by looking at differences between sites, only one patient is seen to have cancer.
  • EXAMPLE 3 Multi-Site Single-Organ Somatic Difference Monitoring
  • [0055]
    In the above example, pairs of data were taken, one pair at a time. In this example, instead of plotting values from a single pair, embodiments of the present invention provide for plotting real time difference values from many measures at many sites.
  • [0056]
    Again, using data from human subjects with and without breast cancer, the following table can be generated. Such differences can be found by having a difference in spatial separation at two points, as shown as the difference (delta) values at 5 sites labeled A-E on each subject, as follows:
  • [0000]
    TABLE 3
    The Spatial difference at multiple sites by plotting differences,
    reduces the noise in breast tissue saturation, and allows simple
    detection of tumor near site C of Patient Tumor 4, in which
    the saturation difference has a negative then
    positive deflection (or vice-versa) during scanning.
    Patient Δ Site A Δ Site B Δ Site C Δ Site D Δ Site E
    Normal 1 2% 4% −3% 5% −3%
    Normal 2 0% −2% 3% 2% −3%
    Normal 3 1% 4% −1% −4% −1%
    Tumor 4 −1% −4% −18% 13% 3%
  • [0057]
    Alternatively, the above differences can be found by a single emitter/detector pair that is scanned over the tissue. Using a 3-D positional sensor (X-Y-Z) or 2-D surface motion sensor (such as the motion detection pad from an optical mouse, based upon a LED and CCD to detect translation across a surface), measures can betaken a multiple real-time instances during motion, and the delta value calculated from the different positions of the detector. So, at time zero there is no delta, while at time 1 the delta is the time 1 value minus the time 0 value, at time 2 the delta is the time 2 value minus time 1, and so on.
  • EXAMPLE 4 Difference Abdominal Monitoring For Necrotizing Colitis Detection
  • [0058]
    In this example, the monitoring of the premature newborn abdomen is described. A baseline probe is placed over another tissue, such as the buccal mucosa.
  • [0059]
    As a probe is scanned across the abdomen of normal infants and across one with a regional portion of bowel with low oxygenation, the following table is created:
  • [0000]
    TABLE 4
    The difference display allows the values abnormal for the oxygenation
    status to show ischemic necrotizing enterocolitis at sites C and D of
    patient Ischemia 4 to be displayed and/or detected.
    Patient Δ Site A Δ Site B Δ Site C Δ Site D Δ Site D
    Normal 1 −4% 3% −3% −6% 1%
    Normal 2 0% 6% 2% −4% −2%
    Normal 3 −4% 0% 2% 3% 5%
    Ischemia 4 3% 5% −22% −37% −10%
  • [0060]
    In each of these cases, the medical accuracy and value of these measurement comes from or is enhanced by the simultaneous measurement of two or more somatic sites.
  • [0061]
    It goes without saying that other configurations and embodiments shall fall within the spirit of the invention, provided that two or more measures in the body are provided more or less simultaneously. For example, the reverse situation, in which one or more sensors and a single light source is used is well within the spirit of the invention, as are multiple sensors and multiple sources, provided that more than one location is measured more or less contemporaneously, to allow an enhanced value from simultaneous measures.
  • [0062]
    Last, an advantage is simply that the user can use one monitor at multiple sites, without having to purchase multiple monitors.
  • EXAMPLE 5 Single or Dual Site Arterio-Venous Difference Monitoring
  • [0063]
    In prior examples, venous or tissue oxygenation values were compared. In this example, arterial and venous values are compared according to another aspect of the present invention.
  • [0064]
    We have shown that the difference between a pulse oximeter and a tissue oximeter, one showing arterial and the other showing venous saturation, allows ischemia (low tissue oxygen delivery) and hypoxemia (low arterial blood saturation) be distinguished as described in more detail in co-pending parent application U.S. Ser. No. 11/451,681, the entire disclosure of which is hereby incorporated by reference. Embodiments of the present invention employ this difference arterial and venous saturation into a real-time calculation, and make it possible for real-time monitoring previously not available.
  • [0065]
    In the table below, values of tissue and arterial values measured in animals are summarized. By making this a real-time calculation, these values could be demonstrated in real time, rather than determined after the fact, as had been performed in these earlier data:
  • [0000]
    TABLE 5
    The difference display allows the differences, here calculated after
    the fact by separate measures, to be displayed. Values for Normoxia,
    Hypoxemic Hypoxia, and Ischemic Hypoxia (low flow and delivery)
    to be distinguished in animal and human models
    (from Benaron et al, Anesthesiology, 2004).
    Normoxia Hypoxemic Hypoxia Ischemic Hypoxia
    Subject (Δ saturation %) (Δ saturation %) (Δ saturation %)
    Human 21-29% 16% 51-91%
    Animal 25-28% 22-38% 66-83%
  • [0066]
    In this example, this table can be incorporated into monitor 313 of FIG. 2, in which the difference value of 64% is used to turn on ischemic hypoxia alert 322. Again, by making this a real-time calculation, these values could be demonstrated in realtime, rather than determined after the fact, as had been performed in these earlier data.
  • [0067]
    In some embodiments, a device is provided with dual somatic spectroscopic monitoring sites where light sources and sensors generate and detect light from at least two tissue target sites and are configured to emit light at selective wavelengths where the selective wavelengths are substantially transmitted through capillaries in tissue while being substantially absorbed by arterial and venous vessels in the tissue. This aspect is described in detail in co-pending U.S. patent application Ser. No. 11/451,681 filed on Jun. 12, 2006, the entire disclosure of which is hereby incorporated by reference. More specifically, in some embodiments the device of the present invention is configured to operate at a wavelength range, such as a range of 400 to 600 nm, and more specifically blue to green visible illuminating light (at around 500 nm). The inventors have discovered that this range of wavelengths penetrates larger vessels very poorly while being relatively highly transmitted by the capillaries, thus allowing sensitivity of the ischemia measurement at the two or more tissue sites to be increased. This is wavelength range is taught away from by oximetry art, which instead is focused on the advantages of near infrared light. This locally-weighted and microvascular-weighted measurements to detect ischemia in a local portion of a target tissue site may be utilized to determine the difference in measurements between two or more somatic monitoring sites. A locally-weighted measurement, as used herein, is a measurement that is weighted toward the condition of a local tissue near a sensor probe,, rather than the blood flowing in the larger vessels that is not in physiological contact, e.g., capable of direct and significant oxygen exchange, with that local tissue. A microvascular-weighted measurement is a measurement that is weighted toward the smallest vessels, such as those having 20 microns or smaller, rather than to the blood flowing in the larger vessels that is not in physiologic contact with the local tissue.
  • [0068]
    Due to the deep penetration of large vessels by infrared (and red) light, using infrared or red light to measure light transmittance and absorbance through tissue reflects a wide range of vessel sizes and results in measurements that are not substantially locally-weighted or microvascularly-weighted. In contrast, a blue-green weighted measurement penetrates larger vessels poorly but capillaries well, and does not travel to sufficient depths that would force inclusion of many large vessels. That is, using blue-green light to measure light transmittance and absorbance through tissue results in a substantially locally-weighted and microvascular-weighted measurement. This is non-obvious and counterintuitive to the prior art, which tends to teach the use of infrared light for its tissue-penetrating ability and against the use of the shallow-penetrating blue end of the visible spectrum.
  • [0069]
    Another aspect of the arterial-venous approach is that it can be performed using the present invention, in the absence of a pulse oximeter, but with the a dual or single site multispectral or broadband tissue oximeter alone. This was first measured by one of the inventors in the present invention in the 1990's, and has now been further developed and an enabling embodiment invented using the device as disclosed in the present invention, with measurement even using a single probe over time produces multispectral pulse oximetry plethysmograph 403, as reflected in data collected from a human subject in FIG. 3A. The intensity of the signal changes for a wide range of wavelengths over time, between a minimum to a maximum intensity, in a pulsatile manner. The maximum absorbance occurs during the period the tissue is most filled with blood (usually near the peak of systolic arterial blood pressure, but sometimes associated with the transmitted pressure of a ventilator breath, or other blood volume changes), which corresponds to local pulsatile absorbance maximum 411. Similarly, as the tissue blood content falls, there is a minimum absorbance during the period the tissue is least filled with blood (usually near the end of the diastolic arterial blood pressure resting phase, but sometimes associated with the release of pressure of a ventilator breath, or other changes), which corresponds to local pulsatile absorbance minimum 419.
  • [0070]
    The important issues of the combined measurement of the pulse and tissue oximetry signals here are several-fold. First, by measuring both the venous and the arterial signal, the difference measurement can be obtained using a single probe, or by two tissue oximetry probes, wherein the arterial pulsations can be analyzed using conventional or proprietary pulse oximetry techniques (computer analysis of the difference signal, ratios at wavelengths, or even using self-adjusting variable-weight signal extraction technologies). Such a difference spectrum is illustrated for broadband pulse oximetry in FIG. 3B, where systolic peak absorbance signal 424 and diastolic trough absorbance signal 426 can be subtracted to produce delta signal 432. Delta signal 432 may then be further analyzed to determine an arterial saturation estimate. Unsubtracted peak absorbance signal 424 and diastolic trough absorbance signal 426 can then be analyzed (separately or as an average) to yield a conventional tissue capillary oximetry signal, as disclosed in this, invention. The difference weighted measure here is then the arterial minus the venous signal, as described earlier in this example.
  • [0071]
    The ability to generate a perfusion measurement warrants some attention here. The magnitude of variation in with time of delta signal 432 (either in absolute terms, as a fraction of the total hemoglobin signal, or as a volume-corrected signal) can be used as a perfusion index. Another measure of perfusion is the A-V difference itself, which given a fixed amount of oxygen extraction by the tissue, widens as the inverse of the A-V (or pulse minus tissue) difference. For example, if the perfusion falls in half, and the arterial saturation is 100%, one would expect the tissue saturation to fall from 70% (30% difference) to 40% (60% difference, or twice 30%), in the absence of other physiological corrections. Combination of magnitude of time-varying delta signal 432 and A-V difference measures, additionally even including other measures such as laser Doppler capillary velocity that are known in the art or correction of these signals for blood volume determined optically, could be used to generate a more accurate or robust perfusion index, all optically determined or even augmented with other flow-sensitive methods such as ultrasound Doppler.
  • EXAMPLE 6 Layer-Stripping Difference Monitoring for Colon Ischemia
  • [0072]
    In the prior examples, oxygenation values were compared using a simple subtraction. In this example embodiments of the present invention provide an apparatus or device comprising a probe with a single light source and two detection fibers at different distances is used to monitor colon during interventional surgery. Alternatively, the apparatus may be comprised of a probe with two light sources and one detection fiber, or separate detection fibers and separate light sources. Other arrangements may be used by those of skill in the art, all of which are within the spirit of the present invention.
  • [0073]
    When colon or intestine is joined at surgery, the joined site is called the anastomosis. Leakage at the joining site, called anastomotic leakage, occurs after surgery in 5%-14% of patients undergoing esophageal, gastric, intestinal, and colon anastomosis, typically several days to weeks after surgery. Leakage results in gut and colon contents spilling into normally sterile body cavities, and results in prolonged hospitalizations, sepsis, and death. However, it is currently not predictable at the time of surgery which patients will go on to leak, preventing additional and known steps to be taken in the operating room that could help avoid future leakage.
  • [0074]
    A high-specificity mucosal, intraoperative ischemia detection system would permit real-time detection of patients at risk for leakage, allowing for real-time surgical attempts at correction of the problem. Leakage is, of course, multi-factorial, but the cause of a leak is frequently local ischemia caused by poor local perfusion, difficult access with insufficient “good” bowel to sew to, preexisting infection, and difficult location that leads to poor local perfusion. These each lead in turn leads to breakdown and leakage at the site of anastomosis. By identifying the subset of patients with poor perfusion and likely leak, those patients would be able to be the focus of more invasive procedures, procedures that would not be justified if used in all patients, but certainly justified in patents at high risk for leak.
  • [0075]
    We tested the ability of this system to detect colon ischemia, and found that in open surgery, the top few millimeters oxygenate from the air, even if the gut is truly ischemic. Therefore we constructed a scanner, such as that shown in FIG. 1, in which optical illumination occurs at two difference locations, and measurement is made through one fiber. Equivalently, one light could be used, with two different measurement fibers, as shown in FIG. 4. Here, light source 617 contains central light detection fiber 623, as well as peripheral light detection fiber 626.
  • [0076]
    Using the device as constructed in FIG. 4, as attached to monitor 313 of FIG. 2, spectra were collected at two separations, and then the saturation was deduced using a standard radiological approach called layer stripping, in which the effect of the overlying layer is removed from the underlying layer. In this embodiment, monitor 313 comprises a difference unit programmed with software know in the art for performing layer stripping. In this approach, it is not the saturation values that are subtracted, but rather by collecting and mathematically removing the narrowly-spaced spectrum (collected from light source 617 and central fiber 623) from the spectrum collected from the more widely spaced pair (light source 617 and peripheral fiber 626), a common data analysis tool called layer stripping in radiology, and then reanalyzing the remaining spectrum for oxygen saturation, deeper ischemia in the breast or other target tissue can reliably be detected, as shown:
  • [0000]
    TABLE 6
    The difference, in this case calculated by removing the spectra
    collected from the deeper-collected spectrum, and then reanalyzing
    the values, allows the deeper oxygenation to be determined,
    thus showing tissues which may not heal in anastomosis
    Narrow Deep Color Deep
    Actual Tissue Measured Pair Only Pair Only Difference Ischemia?
    Ischemia Under 80% 40% 09% Yes
    Oxygenated Surface
    Normal Under Ischemic 45% 62% 69% No
    Surface
    Normal Tissue Under 70% 65% 63% No
    Normal Mucosa
  • [0077]
    In patients with ischemia, the surgical procedure can then be changed by this value, and conversely those with normal values may be allowed to undergo higher risk procedures. For example, if the ischemic site is the anastomosis of two regions of a colon, and the saturation is low, then the tissue should not be sewn together, as it will not heal. One may also use this approach to study the effect of surgical staples on ischemia, in order to determine that surgical staple lines are too tight to heal well.
  • [0078]
    We have discovered a dual or multiple somatic measurement difference method that allows for more sensitive detection of local ischemia and or local cancer using oximetry measurements. As described above, in some embodiments the apparatus comprises two phosphor-coated LED's and integrated collimating optics constructed in accordance with the present invention to produce light at two or more target sites. Light backscattered by each target site is collected by the same or multiple sensors, allowing for an index or measure of ischemia to be determined, and subsequently transmitted to a comparison unit that additional compares the two results. This device has immediate application to several important problems, both medical and industrial, and thus constitutes an important advance in the art.

Claims (40)

1-23. (canceled)
24. A broadband illuminator for use in illuminating spectroscopy samples comprising at least one solid-state broadband light source, wherein the broadband spectroscopy source emits useable light over a wavelength range of 40 nm or more.
25. A broadband illuminator for use in illuminating spectroscopy samples comprising at least one solid-state broadband light source, wherein the broadband spectroscopy source emits useable light over a wavelength range of at least 100 nm.
26. A broadband illuminator for use in illuminating spectroscopy samples comprising at least one solid-state broadband light source, wherein the solid-state broadband light source emits useable light over a wavelength range of at least 100 nm, and wherein said solid-state broadband light source is a broadband LED.
27. The illuminator of claim 24, 25 or 26, wherein said illuminator is incorporated into a device or system.
28. The illuminator of claim 27, wherein the device or system is configured to enable an analysis performed using at least a portion of the light returning after interaction with the sample.
29. The illuminator of claim 27, where said device or system is selected from the group of devices or systems consisting of: spectrophotometers, microdevices, microchip, lab-on-a-chip, or other small optical device with space and size constraints, disposable optical devices, or other optical spectroscopy devices and systems.
30. The illuminator of claim 28, further comprising an analysis system configured to perform the analysis by solution of multiple simultaneous spectroscopic equations.
31. The illuminator of claim 24, 25, or 26, further wherein said illuminator is incorporated into a medical device or a medical system.
32. The illuminator of claim 31, wherein the medical device or medical system is selected from the group of medical devices and systems consisting of: probes for medical endoscopic use, targetable injection needles, catheters, needles, catheters with extendable needles, nibblers, devices with jaws, scissors, probes that measure colon oxygenation, probes that measure by pulse oximetry, probes that measure arterial oxygenation, probes that measure oxygen delivery to the body's core organs, probes that measure in the gastrointestinal system including could reasonably include the oropharynx, nasopharynx, esophagus, stomach, duodenum, ileum, colon, or other gastrointestinal tissues.
33. The illuminator of claim 31, wherein the medical device is a probe configured for use in measuring oxygenation.
34. The illuminator of claim 31, wherein the medical device is an oximeter probe.
35. The illuminator of claim 31, wherein the medical device is a probe is configured to monitor any one or more of: met-hemoglobin, carboxy-hemoglobin, and other blood components.
36. The illuminator of claim 36, wherein the monitoring of met-hemoglobin, carboxy-hemoglobin, and other blood components is achieved by pulse oximetry.
37. The illuminator of claim 31, wherein the medical device is configured to identify tissue by type or state.
38. The illuminator of claim 24, 25 or 26, wherein the illuminator is a medical device configured for use inside, or in contact with, living tissue.
39. The illuminator of claim 24, 25, or 26, wherein the illuminator is incorporated into a spectrophotometer.
40. The illuminator of claim 24, 25, or 26, wherein the light is pulsed.
41. The illuminator of claim 24, 25, or 26, wherein the illuminator is incorporated into a system where the light is analyzed as time-resolved, frequency-resolved, or spatially-resolved.
42. The illuminator of claim 26, wherein the broadband LED is comprised of multiple light emitting elements to produce a broadband and continuous spectrum of light.
43. The illuminator of claim 42 wherein the multiple light emitting elements are comprised of a combination of different light emitting diodes.
44. The illuminator of claim 43 wherein each of the multiple LEDs operate in at least one wavelength band.
45. The illuminator of claim 26, wherein the broadband LED is a white LED
46. The illuminator of claim 26, wherein the broadband LED comprises a blue LED and a phosphor.
47. The illuminator of claim 26, wherein the broadband LED comprises an LED and a fluorescent dye.
48. The illuminator of claim 24, 25, or 26, wherein the illuminator operates to produce at least a portion of its light in the infrared spectrum.
49. The illuminator of claim 24, 25, or 26, wherein the illuminator operates to produce at least a portion of its light in the ultraviolet spectrum.
50. The illuminator of claim 24, 25, or 26, further comprising a target signal, where said target signal is enhanced, produced, or detected, at least in part, by one or more of the following: light absorbance, polarization, optical rotation, scattering, fluorescence, Raman effects, phosphorescence, fluorescence decay, re-emission, use of a contrast agent, dye shift, or other spectroscopy techniques.
51. The illuminator of claim 24, 25, or 26, wherein the illuminator is incorporated into a pulse oximeter.
52. The illuminator of claim 24, 25 , or 26, wherein the illuminator is incorporated into a medical device that analyzes hemoglobins selected from the list of hemoglobins consisting of: methemoglobin, carboxyhemoglobin, and hemoglobins blood components.
53. A spectroscopy method comprising:
illuminating a sample with a broadband illumination from a broadband solid-state illuminator, wherein said broadband illuminator emits useable light over a wavelength range of at least 100 nm; and
performing optical spectroscopy.
54. The method of claim 53, wherein the illuminator is a broadband LED.
55. A spectroscopy method wherein illumination of a sample is achieved using a broadband LED.
56. The method of claim 53 or 55, wherein performing optical spectroscopy further includes: obtaining a target signal, where said target signal is enhanced, produced, or detected, at least in part, by one or more of the following methods: light absorbance, polarization, optical rotation, scattering, fluorescence, Raman effects, phosphorescence, fluorescence decay, re-emission, use of a contrast agent, dye shift, or other spectroscopy techniques.
57. The method of claim 54, wherein the broadband LED is comprised of multiple light emitting elements to produce a broadband and continuous spectrum of light.
58. The method of claim 57 wherein the multiple light emitting elements are comprised of a combination of different light emitting diodes.
59. The method of claim 58 wherein each of the multiple LEDs operate in at least one wavelength band;
60. The method of claim 54 wherein the broadband LED is a white LED.
61. The method of claim 53 or 55, wherein the illuminator is incorporated into a pulse oximeter.
62. The method of claim 53 or 55, wherein the illuminator is incorporated into a medical device that analyzes hemoglobins and further including the step of monitoring hemoglobins selected from the list of hemoglobins consisting of met-hemoglobin, carboxy-hemoglobin, and other hemoglobins.
US12101906 2002-04-09 2008-04-11 Broadband solid-state spectroscopy illuminator and method Abandoned US20080188727A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10119998 US6711426B2 (en) 2002-04-09 2002-04-09 Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US10651541 US7062306B2 (en) 2002-04-09 2003-08-29 Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US11451681 US20070015981A1 (en) 2003-08-29 2006-06-12 Device and methods for the detection of locally-weighted tissue ischemia
US11820809 US20080009689A1 (en) 2002-04-09 2007-06-20 Difference-weighted somatic spectroscopy
US12101906 US20080188727A1 (en) 2002-04-09 2008-04-11 Broadband solid-state spectroscopy illuminator and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12101906 US20080188727A1 (en) 2002-04-09 2008-04-11 Broadband solid-state spectroscopy illuminator and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11820809 Continuation US20080009689A1 (en) 2002-04-09 2007-06-20 Difference-weighted somatic spectroscopy

Publications (1)

Publication Number Publication Date
US20080188727A1 true true US20080188727A1 (en) 2008-08-07

Family

ID=28674623

Family Applications (4)

Application Number Title Priority Date Filing Date
US10119998 Active US6711426B2 (en) 2002-04-09 2002-04-09 Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US10651541 Active 2022-09-06 US7062306B2 (en) 2002-04-09 2003-08-29 Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US12101906 Abandoned US20080188727A1 (en) 2002-04-09 2008-04-11 Broadband solid-state spectroscopy illuminator and method
US12180449 Abandoned US20080287758A1 (en) 2002-04-09 2008-07-25 Illuminator probe with memory device and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10119998 Active US6711426B2 (en) 2002-04-09 2002-04-09 Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US10651541 Active 2022-09-06 US7062306B2 (en) 2002-04-09 2003-08-29 Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12180449 Abandoned US20080287758A1 (en) 2002-04-09 2008-07-25 Illuminator probe with memory device and method

Country Status (4)

Country Link
US (4) US6711426B2 (en)
JP (3) JP2005522256A (en)
EP (1) EP1492445A4 (en)
WO (1) WO2003086173A3 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081975A1 (en) * 2006-09-28 2008-04-03 Geeta Agashe System and method for detection of brain edema using spectrophotometry
US20090143774A1 (en) * 2006-05-30 2009-06-04 Koninklijke Philips Electronics N.V. Apparatus for depth-resolved measurements of properties of tissue
US20090177053A1 (en) * 2007-12-27 2009-07-09 Nellcor Puritan Bennett Llc Coaxial LED Light Sources
US20090246797A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Medical device for the assessment of internal organ tissue and technique for using the same
US20090259117A1 (en) * 2008-04-11 2009-10-15 Wider Michael D System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
US7884933B1 (en) 2010-05-05 2011-02-08 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
US20110245687A1 (en) * 2008-12-05 2011-10-06 Koninklijke Philips Electronics N.V. Optical detection method and device for optical detection of the condition of joints
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US8348838B1 (en) 2011-06-16 2013-01-08 Boris Khurgin Surgical suction instrument providing illumination
US20130030255A1 (en) * 2011-07-26 2013-01-31 Embry Ii William Ben Biocompatible implant device
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US8487274B2 (en) 2011-05-17 2013-07-16 National Taipei University Of Technology Stroboscopic optical image mapping system
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US9042967B2 (en) 2008-05-20 2015-05-26 University Health Network Device and method for wound imaging and monitoring
US20150148625A1 (en) * 2013-11-26 2015-05-28 David Alan Benaron Respiratory Monitoring Sensor And Method For Cell Phones, Smart Watches, Occupancy Sensors, And Wearables

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990365B1 (en) 1998-07-04 2006-01-24 Edwards Lifesciences Apparatus for measurement of blood analytes
EP1408831A4 (en) * 2001-06-19 2007-01-31 Univ Pennsylvania Optical guidance system for invasive catheter placement
US7992573B2 (en) * 2001-06-19 2011-08-09 The Trustees Of The University Of Pennsylvania Optically guided system for precise placement of a medical catheter in a patient
US20080039715A1 (en) * 2004-11-04 2008-02-14 Wilson David F Three-dimensional optical guidance for catheter placement
US20040146290A1 (en) * 2001-11-08 2004-07-29 Nikiforos Kollias Method of taking images of the skin using blue light and the use thereof
US8026942B2 (en) * 2004-10-29 2011-09-27 Johnson & Johnson Consumer Companies, Inc. Skin imaging system with probe
US7738032B2 (en) * 2001-11-08 2010-06-15 Johnson & Johnson Consumer Companies, Inc. Apparatus for and method of taking and viewing images of the skin
US20080009689A1 (en) * 2002-04-09 2008-01-10 Benaron David A Difference-weighted somatic spectroscopy
US20070015981A1 (en) * 2003-08-29 2007-01-18 Benaron David A Device and methods for the detection of locally-weighted tissue ischemia
US6711426B2 (en) * 2002-04-09 2004-03-23 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US6841802B2 (en) 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
JP4916113B2 (en) * 2002-11-25 2012-04-11 ボストン サイエンティフィック リミテッド Injection device
CA2515439A1 (en) * 2003-02-07 2004-08-26 Ramez Emile Necola Shehada Surgical drain with sensors for monitoring internal tissue condition and for monitoring fluid in lumen
WO2004075782A3 (en) * 2003-02-26 2005-06-30 Alfred E Mann Inst Biomed Eng An implantable device with sensors for differential monitoring of internal condition
US7132645B2 (en) * 2003-03-07 2006-11-07 Infraredx, Inc. System and method for assessing catheter connection using return loss
US7578786B2 (en) 2003-04-01 2009-08-25 Boston Scientific Scimed, Inc. Video endoscope
US8118732B2 (en) 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope
US20050245789A1 (en) 2003-04-01 2005-11-03 Boston Scientific Scimed, Inc. Fluid manifold for endoscope system
US7591783B2 (en) 2003-04-01 2009-09-22 Boston Scientific Scimed, Inc. Articulation joint for video endoscope
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US7499159B2 (en) * 2004-04-16 2009-03-03 Ahura Corporation Method and apparatus for conducting Raman spectroscopy using a remote optical probe
US7095930B2 (en) * 2003-07-17 2006-08-22 Draka Comteq B.V. Groove cable
US20050053895A1 (en) * 2003-09-09 2005-03-10 The Procter & Gamble Company Attention: Chief Patent Counsel Illuminated electric toothbrushes emitting high luminous intensity toothbrush
EP1733077A4 (en) * 2004-01-15 2011-10-26 Samsung Electronics Co Ltd Nanocrystal doped matrixes
US8005624B1 (en) * 2004-04-26 2011-08-23 Starr Life Sciences Corp. Medical devices and techniques for rodent and small mammalian based research
US7548311B2 (en) 2005-04-29 2009-06-16 Ahura Corporation Method and apparatus for conducting Raman spectroscopy
WO2006016913A3 (en) * 2004-04-30 2007-11-15 Ahura Corp Method and apparatus for conducting raman spectroscopy
EP1789762A2 (en) * 2004-08-30 2007-05-30 Ahura Corporation Use of free-space coupling between laser assembly, optical probe head assembly, spectrometer assembly and/or other optical elements for portable optical applications such as raman instruments
US7427165B2 (en) * 2004-06-16 2008-09-23 Spectros Corporation Optical and electrical hybrid connector
US7289208B2 (en) * 2004-08-30 2007-10-30 Ahura Corporation Low profile spectrometer and Raman analyzer utilizing the same
US20060088069A1 (en) * 2004-08-30 2006-04-27 Daryoosh Vakhshoori Uncooled, low profile, external cavity wavelength stabilized laser, and portable Raman analyzer utilizing the same
US20060045151A1 (en) * 2004-08-30 2006-03-02 Daryoosh Vakhshoori External cavity wavelength stabilized Raman lasers insensitive to temperature and/or external mechanical stresses, and Raman analyzer utilizing the same
US8083671B2 (en) 2004-09-30 2011-12-27 Boston Scientific Scimed, Inc. Fluid delivery system for use with an endoscope
US7241263B2 (en) 2004-09-30 2007-07-10 Scimed Life Systems, Inc. Selectively rotatable shaft coupler
EP1799096A2 (en) 2004-09-30 2007-06-27 Boston Scientific Scimed, Inc. System and method of obstruction removal
US7479106B2 (en) 2004-09-30 2009-01-20 Boston Scientific Scimed, Inc. Automated control of irrigation and aspiration in a single-use endoscope
JP2008514363A (en) 2004-09-30 2008-05-08 ボストン サイエンティフィック リミテッドBoston Scientific Limited Multifunctional endoscopic system for use in electrosurgery applications
WO2006039522A3 (en) 2004-09-30 2006-07-27 Boston Scient Scimed Inc Adapter for use with digital imaging medical device
US7930015B2 (en) * 2005-02-14 2011-04-19 Hebah Noshy Mansour Methods and sensors for monitoring internal tissue conditions
US8097003B2 (en) * 2005-05-13 2012-01-17 Boston Scientific Scimed, Inc. Endoscopic apparatus with integrated variceal ligation device
US7846107B2 (en) 2005-05-13 2010-12-07 Boston Scientific Scimed, Inc. Endoscopic apparatus with integrated multiple biopsy device
WO2007002323A3 (en) * 2005-06-23 2007-08-16 Alexander Michael Aravanis System and method for monitoring of end organ oxygenation by measurement of in vivo cellular energy status
JP4804057B2 (en) * 2005-07-28 2011-10-26 オリンパス株式会社 The inner surface measuring device
US7813778B2 (en) * 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor
US8052597B2 (en) 2005-08-30 2011-11-08 Boston Scientific Scimed, Inc. Method for forming an endoscope articulation joint
US8954134B2 (en) 2005-09-13 2015-02-10 Children's Medical Center Corporation Light-guided transluminal catheter
CA2610753C (en) * 2005-09-13 2014-04-29 Edwards Lifesciences Corporation Continuous spectroscopic measurement of total hemoglobin
US20070073160A1 (en) 2005-09-13 2007-03-29 Children's Medical Center Corporation Light-guided transluminal catheter
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7773645B2 (en) * 2005-11-08 2010-08-10 Ahura Scientific Inc. Uncooled external cavity laser operating over an extended temperature range
WO2007079347A3 (en) * 2005-12-16 2008-04-17 Cas Medical Systems Inc Stabilized multi-wavelength laser system for non-invasive spectrophotometric monitoring
US7967759B2 (en) 2006-01-19 2011-06-28 Boston Scientific Scimed, Inc. Endoscopic system with integrated patient respiratory status indicator
WO2007083991A1 (en) * 2006-01-19 2007-07-26 Erasmus University Medical Center Rotterdam Apparatus and method for performing optical analysis
US8888684B2 (en) 2006-03-27 2014-11-18 Boston Scientific Scimed, Inc. Medical devices with local drug delivery capabilities
US7955255B2 (en) 2006-04-20 2011-06-07 Boston Scientific Scimed, Inc. Imaging assembly with transparent distal cap
US8202265B2 (en) 2006-04-20 2012-06-19 Boston Scientific Scimed, Inc. Multiple lumen assembly for use in endoscopes or other medical devices
CA2645228A1 (en) 2006-05-02 2007-11-15 Superbulbs, Inc. Method of light dispersion and preferential scattering of certain wavelengths of light for light-emitting diodes and bulbs constructed therefrom
WO2007130358A3 (en) 2006-05-02 2008-11-27 Superbulbs Inc Plastic led bulb
KR20090007741A (en) 2006-05-02 2009-01-20 슈퍼불브스, 인크. Heat removal design for led bulbs
US7701571B2 (en) * 2006-08-22 2010-04-20 Ahura Scientific Inc. Raman spectrometry assembly
US7764303B2 (en) * 2006-10-02 2010-07-27 Johnson & Johnson Consumer Companies, Inc. Imaging apparatus and methods for capturing and analyzing digital images of the skin
US8164747B2 (en) * 2006-12-14 2012-04-24 ASD, Inc Apparatus, system and method for optical spectroscopic measurements
EP2143045A1 (en) * 2007-03-14 2010-01-13 Spectros Corporation Metabolism-or biochemical-based anti-spoofing biometrics devices, systems, and methods
EP1987762A1 (en) * 2007-05-03 2008-11-05 F.Hoffmann-La Roche Ag Oximeter
US7976537B2 (en) * 2007-06-28 2011-07-12 Biosense Webster, Inc. Optical pyrometric catheter for tissue temperature monitoring during cardiac ablation
US20090020684A1 (en) * 2007-07-16 2009-01-22 Cheng-Chung Shih Illumination apparatus and optical radiation control method thereof
DE102007041133A1 (en) * 2007-08-30 2009-03-05 Osram Opto Semiconductors Gmbh Housing with a lower housing part, as well as methods for the transmission of electromagnetic radiation
WO2009045438A1 (en) 2007-10-03 2009-04-09 Superbulbs, Inc. Glass led light bulbs
WO2009054948A1 (en) * 2007-10-24 2009-04-30 Superbulbs, Inc. Diffuser for led light sources
US20100268090A1 (en) * 2007-11-06 2010-10-21 Rubinstein Eduardo H Measurement of hematocrit and cardiac output from optical transmission and reflection changes
US7998089B2 (en) * 2007-11-08 2011-08-16 Radi Medical Systems Ab Method of making a guide wire based assembly and reusing an energy source
DE102007055003A1 (en) * 2007-11-14 2009-05-20 Carl Zeiss Surgical Gmbh Medical lighting unit
WO2009120694A3 (en) * 2008-03-24 2009-12-17 The Regents Of The University Of Michigan Office Of Technology Transfer Non-contact infrared fiber-optic device for monitoring esophageal temperature to prevent thermal injury during radiofrequency catheter ablation or cryoablation
US9560994B2 (en) 2008-03-26 2017-02-07 Covidien Lp Pulse oximeter with adaptive power conservation
WO2009144653A3 (en) * 2008-05-30 2010-03-11 Koninklijke Philips Electronics N.V. Needle with integrated photon detector
CA2763087C (en) * 2008-07-22 2017-01-24 Research Foundation Of The City University Of New York Handheld apparatus to determine the viability of a biological tissue
US8914088B2 (en) 2008-09-30 2014-12-16 Covidien Lp Medical sensor and technique for using the same
US7883276B2 (en) * 2008-10-14 2011-02-08 Sonosite, Inc. Optical transmission coupling
US9737213B1 (en) * 2009-03-24 2017-08-22 Vioptix, Inc. Using an oximeter probe to detect intestinal ischemia
CN104387772B (en) 2009-05-01 2017-07-11 纳米系统公司 For nanostructures functionalized matrix dispersion
US8812080B2 (en) * 2009-06-10 2014-08-19 Koninklijke Philips N.V. Algorithm for photonic needle console
EP2451344A4 (en) 2009-07-10 2014-04-09 Cas Medical Systems Inc Method for spectrophotometric blood oxygenation monitoring of the lower gastrointestinal tract
US8521244B2 (en) * 2009-09-16 2013-08-27 Analogic Corporation Physiological parameter monitoring apparatus
US8376955B2 (en) * 2009-09-29 2013-02-19 Covidien Lp Spectroscopic method and system for assessing tissue temperature
US20110213217A1 (en) * 2010-02-28 2011-09-01 Nellcor Puritan Bennett Llc Energy optimized sensing techniques
US8391943B2 (en) 2010-03-31 2013-03-05 Covidien Lp Multi-wavelength photon density wave system using an optical switch
DE102010014592A1 (en) * 2010-04-09 2011-10-13 Mbr Optical Systems Gmbh & Co. Kg Measuring means for collecting measurement signals from vital tissue
GB201005930D0 (en) * 2010-04-09 2010-05-26 Univ St Andrews Monolithic device
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
WO2012050847A3 (en) 2010-09-28 2012-06-21 Masimo Corporation Depth of consciousness monitor including oximeter
US20120083678A1 (en) * 2010-09-30 2012-04-05 Chemimage Corporation System and method for raman chemical analysis of lung cancer with digital staining
WO2012061584A3 (en) 2010-11-03 2012-07-19 University Of Washington Through Its Center For Commercialization Deternimation of tissue oxygenation in vivo
US8591069B2 (en) 2011-09-21 2013-11-26 Switch Bulb Company, Inc. LED light bulb with controlled color distribution using quantum dots
US9733119B2 (en) 2011-11-02 2017-08-15 Seno Medical Instruments, Inc. Optoacoustic component utilization tracking
WO2014144257A1 (en) * 2013-03-15 2014-09-18 Seno Medical Instruments, Inc. Optoacoustic component utilization tracking
US8992042B2 (en) 2011-11-14 2015-03-31 Halma Holdings, Inc. Illumination devices using natural light LEDs
WO2013109612A1 (en) * 2012-01-16 2013-07-25 Filmetrics, Inc. High-lifetime broadband light source for low-power applications
US20130294969A1 (en) 2012-05-02 2013-11-07 Nellcor Puritan Bennett Llc Wireless, Reusable, Rechargeable Medical Sensors and System for Recharging and Disinfecting the Same
US9139770B2 (en) 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
CN104520228B (en) 2012-07-02 2017-03-08 纳米系统公司 Highly luminescent nanostructures and methods for their preparation
US20140121468A1 (en) * 2012-10-26 2014-05-01 Halma Holdings, Inc. Spectroscopic illumination device using white light leds
WO2014074537A1 (en) * 2012-11-06 2014-05-15 Bausch & Lomb Incorporated Ophthalmic laser illuminator with graphical user interface
US9351688B2 (en) 2013-01-29 2016-05-31 Covidien Lp Low power monitoring systems and method
US9005480B2 (en) 2013-03-14 2015-04-14 Nanosys, Inc. Method for solventless quantum dot exchange
JP5814287B2 (en) * 2013-03-25 2015-11-17 株式会社フジクラ Guide wire
US20150073269A1 (en) * 2013-09-06 2015-03-12 Covidien Lp System and method for light based lung visualization
JP2017026599A (en) * 2015-07-22 2017-02-02 パナソニックIpマネジメント株式会社 Hydrogen gas inspection method and hydrogen gas inspection device

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29304E (en) * 1963-10-21 1977-07-12 Raydne Limited Plasma light source for spectroscopic investigation
US4164374A (en) * 1977-09-26 1979-08-14 Ford Motor Company Spectrophotometer utilizing a solid state source of radiant energy having a controllable frequency spectra characteristic
US4213462A (en) * 1977-08-25 1980-07-22 Nobuhiro Sato Optical assembly for detecting an abnormality of an organ or tissue and method
US4427889A (en) * 1979-08-23 1984-01-24 Carl Zeiss Stiftung Method and apparatus for molecular spectroscopy, particularly for the determination of products of metabolism
US4513751A (en) * 1979-03-07 1985-04-30 Sumitomo Electric Industries, Ltd. Method for measuring oxygen metabolism in internal organ or tissue
US4660974A (en) * 1984-04-14 1987-04-28 Carl-Zeiss-Stiftung Arrangement for determining the spectral characteristic of the refractive index of a fluid
US4697593A (en) * 1984-06-26 1987-10-06 Evans John M Method and apparatus for measuring blood oxygen levels
US5040533A (en) * 1989-12-29 1991-08-20 Medical Engineering And Development Institute Incorporated Implantable cardiovascular treatment device container for sensing a physiological parameter
US5040538A (en) * 1989-09-05 1991-08-20 Siemens-Pacesetter, Inc. Pulsed light blood oxygen content sensor system and method of using same
US5135004A (en) * 1991-03-12 1992-08-04 Incontrol, Inc. Implantable myocardial ischemia monitor and related method
US5190040A (en) * 1986-12-26 1993-03-02 Nihon Kohden Corporation Apparatus for measuring the change in the concentration of a pigment in blood
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5257636A (en) * 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
US5259052A (en) * 1984-06-08 1993-11-02 Amp Incorporated High precision optical fiber connectors
US5280788A (en) * 1991-02-26 1994-01-25 Massachusetts Institute Of Technology Devices and methods for optical diagnosis of tissue
US5305745A (en) * 1988-06-13 1994-04-26 Fred Zacouto Device for protection against blood-related disorders, notably thromboses, embolisms, vascular spasms, hemorrhages, hemopathies and the presence of abnormal elements in the blood
US5318022A (en) * 1991-03-01 1994-06-07 John Taboada Method and apparatus for determining hemoglobin oxygenation such as in ocular and other vascular beds
US5329922A (en) * 1992-10-19 1994-07-19 Atlee Iii John L Oximetric esophageal probe
US5355425A (en) * 1992-09-04 1994-10-11 Braiman Mark S Light coupling device for optical fibers
US5357954A (en) * 1993-01-04 1994-10-25 Respiratory Support Products, Inc. Optical blood oxygen saturation probe for insertion into the esophagus
US5417207A (en) * 1993-12-06 1995-05-23 Sensor Devices, Inc. Apparatus for the invasive use of oximeter probes
US5520190A (en) * 1994-10-31 1996-05-28 Ventritex, Inc. Cardiac blood flow sensor and method
US5564417A (en) * 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
US5645059A (en) * 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
US5672875A (en) * 1992-07-15 1997-09-30 Optix Lp Methods of minimizing scattering and improving tissue sampling in non-invasive testing and imaging
US5733313A (en) * 1996-08-01 1998-03-31 Exonix Corporation RF coupled, implantable medical device with rechargeable back-up power source
US5743261A (en) * 1993-12-06 1998-04-28 Sensor Devices, Inc. Methods and apparatus for the invasive use of oximeter probes
US5757002A (en) * 1995-08-30 1998-05-26 Kyoto Dai-Ichi Kagaku Co., Ltd. Method of and apparatus for measuring lactic acid in organism
US5769791A (en) * 1992-09-14 1998-06-23 Sextant Medical Corporation Tissue interrogating device and methods
US5777350A (en) * 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US5779631A (en) * 1988-11-02 1998-07-14 Non-Invasive Technology, Inc. Spectrophotometer for measuring the metabolic condition of a subject
US5782756A (en) * 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis
US5830132A (en) * 1993-08-24 1998-11-03 Robinson; Mark R. Robust accurate non-invasive analyte monitor
US5830137A (en) * 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
US5833603A (en) * 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5879294A (en) * 1996-06-28 1999-03-09 Hutchinson Technology Inc. Tissue chromophore measurement system
US5901261A (en) * 1997-06-19 1999-05-04 Visionex, Inc. Fiber optic interface for optical probes with enhanced photonic efficiency, light manipulation, and stray light rejection
US5902235A (en) * 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
US5931779A (en) * 1996-06-06 1999-08-03 Wisconsin Alumni Research Foundation Real-time in-vivo measurement of myoglobin oxygen saturation
US5933498A (en) * 1996-01-11 1999-08-03 Mrj, Inc. System for controlling access and distribution of digital property
US5941822A (en) * 1997-03-17 1999-08-24 Polartechnics Limited Apparatus for tissue type recognition within a body canal
US5974210A (en) * 1997-01-15 1999-10-26 Perkin-Elmer Ltd. Probe for spectroscopic analysis
US5987346A (en) * 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US6043893A (en) * 1998-10-09 2000-03-28 Universities Space Research Association Manually portable reflectance spectrometer
US6119031A (en) * 1996-11-21 2000-09-12 Boston Scientific Corporation Miniature spectrometer
US6122536A (en) * 1995-07-06 2000-09-19 Animas Corporation Implantable sensor and system for measurement and control of blood constituent levels
US6127783A (en) * 1998-12-18 2000-10-03 Philips Electronics North America Corp. LED luminaire with electronically adjusted color balance
US6216021B1 (en) * 1999-06-04 2001-04-10 The Board Of Trustees Of The University Of Illinois Method for measuring absolute saturation of time-varying and other hemoglobin compartments
US6226082B1 (en) * 1998-06-25 2001-05-01 Amira Medical Method and apparatus for the quantitative analysis of a liquid sample with surface enhanced spectroscopy
US6251068B1 (en) * 1998-05-18 2001-06-26 Fuji Photo Optical Co., Ltd. Endoscopic observation system
US6252254B1 (en) * 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
US6256524B1 (en) * 1998-09-09 2001-07-03 The United States Of America As Represented By The Secretary Of The Army Pulse oximeter sensor combined with a combination oropharyngeal airway and bite block
US6277078B1 (en) * 1999-11-19 2001-08-21 Remon Medical Technologies, Ltd. System and method for monitoring a parameter associated with the performance of a heart
US20010045509A1 (en) * 1999-08-26 2001-11-29 Ammar Al-Ali A system for indicating the expiration of the useful operating life of a pulse oximetry sensor
US20020021444A1 (en) * 1997-12-18 2002-02-21 Chromatics Colorsciences Inc., Color measurement system with color index for skin, teeth, hair and material substances
US6353226B1 (en) * 1998-11-23 2002-03-05 Abbott Laboratories Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
US20020036778A1 (en) * 2000-09-28 2002-03-28 Gregg Wagner Handheld, portable color measuring device with display
US20020043651A1 (en) * 2000-04-04 2002-04-18 Darrow Christopher B. Fluorescent lifetime assays for non-invasive quantification of analytes such as glucose
US6381018B1 (en) * 1998-07-28 2002-04-30 The Regents Of The University Of California Method for measuring changes in light absorption of highly scattering media
US20020070681A1 (en) * 2000-05-31 2002-06-13 Masanori Shimizu Led lamp
US20020082489A1 (en) * 1994-04-01 2002-06-27 Casciani James R. Pulse oximeter and sensor optimized for low saturation
US20020082488A1 (en) * 1998-06-03 2002-06-27 Ammar Al-Ali Stereo pulse oximeter
US6432364B1 (en) * 1998-07-06 2002-08-13 Suzuki Motor Corporation SPR sensor cell and immunoassay apparatus using the same
US6438399B1 (en) * 1999-02-16 2002-08-20 The Children's Hospital Of Philadelphia Multi-wavelength frequency domain near-infrared cerebral oximeter
US20020158565A1 (en) * 2001-04-27 2002-10-31 Setlur Anant Achyut Phosphor blends for generating white light from near-UV/blue light-emitting devices
US20020171911A1 (en) * 2001-05-17 2002-11-21 Mamoru Maegawa Method for adjusting the hue of the light emitted by a light-emitting diode
US20020193664A1 (en) * 1999-12-29 2002-12-19 Ross Ian Michael Light source for borescopes and endoscopes
US20030006702A1 (en) * 1999-02-18 2003-01-09 Lumileds Lighting, U.S., Llc Red-deficiency compensating phosphor light emitting device
US20030036031A1 (en) * 2001-08-20 2003-02-20 Lieb Joseph Alexander Light-emitting handpiece for curing photopolymerizable resins
US6527729B1 (en) * 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US6532381B2 (en) * 2001-01-11 2003-03-11 Ge Medical Systems Information Technologies, Inc. Patient monitor for determining a probability that a patient has acute cardiac ischemia
US6533466B1 (en) * 2000-09-07 2003-03-18 International Business Machines Corporation Hybrid connector assembly for electrical conductors and fiber optic data conductors
US20030073889A1 (en) * 2001-10-11 2003-04-17 Keilbach Kevin A. Monitoring led wavelength shift in photoplethysmography
US6550979B1 (en) * 2001-10-19 2003-04-22 Corning Cable Systems Llc Floating connector subassembly and connector including same
US20030111533A1 (en) * 2001-12-19 2003-06-19 Koninklijke Philips Electronics N.V. RGB led based white light control system with quasi-uniform color metric
US6588938B1 (en) * 2000-10-18 2003-07-08 Fitel Usa Corp. Optical/electrical plug connector
US6599025B1 (en) * 1998-03-11 2003-07-29 Ccs Technology, Inc. Hybrid data plug
US20030158470A1 (en) * 2000-09-18 2003-08-21 Sti Medical Systems, Inc. Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process
US6612857B2 (en) * 2001-07-05 2003-09-02 Bernard R. Tolmie Electrical connector system and method having optical and/or cooling capability
US6615065B1 (en) * 1998-10-13 2003-09-02 Somanetics Corporation Multi-channel non-invasive tissue oximeter
US20030191379A1 (en) * 2002-04-09 2003-10-09 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US6694159B2 (en) * 2001-07-16 2004-02-17 Art, Advanced Research Technologies Inc. Choice of wavelengths for multiwavelength optical imaging
US6744514B2 (en) * 2000-04-03 2004-06-01 Sensopart Industriesensorik Gmbh Process and arrangement for detecting or recognizing an object
US20040122478A1 (en) * 2002-12-20 2004-06-24 Stadler Robert W. Method and apparatus for gauging severity of myocardial ischemic episodes
US6785568B2 (en) * 1992-05-18 2004-08-31 Non-Invasive Technology Inc. Transcranial examination of the brain
US6842635B1 (en) * 1998-08-13 2005-01-11 Edwards Lifesciences Llc Optical device
US6859658B1 (en) * 1998-11-18 2005-02-22 Lea Medizintechnik Gmbh Device for non-invasively detecting the oxygen metabolism in tissues
US6921920B2 (en) * 2001-08-31 2005-07-26 Smith & Nephew, Inc. Solid-state light source
US6944488B2 (en) * 2003-04-30 2005-09-13 Medtronic, Inc. Normalization method for a chronically implanted optical sensor
US20050285129A1 (en) * 2000-10-27 2005-12-29 Jackson Joseph H Iii Instrument excitation source and calibration method
US20060105319A1 (en) * 2002-07-26 2006-05-18 Obi Aps Method for converting venous blood values to arterial blood values, system for utilising said method and devices for such system
US20060217605A1 (en) * 2000-08-31 2006-09-28 Nellcor Puritan Bennett Inc. Oximeter sensor with digital memory encoding sensor data
US20070016080A1 (en) * 2005-04-28 2007-01-18 Research Foundation Of The City University Of New York Imaging systems and methods to improve backscattering imaging using circular polarization memory
US20070015981A1 (en) * 2003-08-29 2007-01-18 Benaron David A Device and methods for the detection of locally-weighted tissue ischemia
US7813778B2 (en) * 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29304A (en) 1860-07-24 Compensating lever-sprincr
US5147207A (en) * 1990-10-30 1992-09-15 Teledyne Kinetics Balanced pressure connector
JP3917702B2 (en) * 1997-02-28 2007-05-23 オリンパス株式会社 Endoscope apparatus
US6501091B1 (en) * 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US6462770B1 (en) * 1998-04-20 2002-10-08 Xillix Technologies Corp. Imaging system with automatic gain control for reflectance and fluorescence endoscopy
JP4486253B2 (en) 1998-07-07 2010-06-23 ライタッチ メディカル インコーポレイテッド Analyte concentration determination apparatus
US6646292B2 (en) * 1999-12-22 2003-11-11 Lumileds Lighting, U.S., Llc Semiconductor light emitting device and method
EP1111333A4 (en) 1999-06-29 2002-08-28 Omron Tateisi Electronics Co Light source device, spectroscope comprising the light source device, and film thickness sensor
US6504301B1 (en) * 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US6642652B2 (en) * 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29304E (en) * 1963-10-21 1977-07-12 Raydne Limited Plasma light source for spectroscopic investigation
US4213462A (en) * 1977-08-25 1980-07-22 Nobuhiro Sato Optical assembly for detecting an abnormality of an organ or tissue and method
US4164374A (en) * 1977-09-26 1979-08-14 Ford Motor Company Spectrophotometer utilizing a solid state source of radiant energy having a controllable frequency spectra characteristic
US4513751A (en) * 1979-03-07 1985-04-30 Sumitomo Electric Industries, Ltd. Method for measuring oxygen metabolism in internal organ or tissue
US4427889A (en) * 1979-08-23 1984-01-24 Carl Zeiss Stiftung Method and apparatus for molecular spectroscopy, particularly for the determination of products of metabolism
US4660974A (en) * 1984-04-14 1987-04-28 Carl-Zeiss-Stiftung Arrangement for determining the spectral characteristic of the refractive index of a fluid
US5259052A (en) * 1984-06-08 1993-11-02 Amp Incorporated High precision optical fiber connectors
US4697593A (en) * 1984-06-26 1987-10-06 Evans John M Method and apparatus for measuring blood oxygen levels
US5190040A (en) * 1986-12-26 1993-03-02 Nihon Kohden Corporation Apparatus for measuring the change in the concentration of a pigment in blood
US5305745A (en) * 1988-06-13 1994-04-26 Fred Zacouto Device for protection against blood-related disorders, notably thromboses, embolisms, vascular spasms, hemorrhages, hemopathies and the presence of abnormal elements in the blood
US6134460A (en) * 1988-11-02 2000-10-17 Non-Invasive Technology, Inc. Spectrophotometers with catheters for measuring internal tissue
US5779631A (en) * 1988-11-02 1998-07-14 Non-Invasive Technology, Inc. Spectrophotometer for measuring the metabolic condition of a subject
US5902235A (en) * 1989-03-29 1999-05-11 Somanetics Corporation Optical cerebral oximeter
US5040538A (en) * 1989-09-05 1991-08-20 Siemens-Pacesetter, Inc. Pulsed light blood oxygen content sensor system and method of using same
US5040533A (en) * 1989-12-29 1991-08-20 Medical Engineering And Development Institute Incorporated Implantable cardiovascular treatment device container for sensing a physiological parameter
US5564417A (en) * 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
US5280788A (en) * 1991-02-26 1994-01-25 Massachusetts Institute Of Technology Devices and methods for optical diagnosis of tissue
US5318022A (en) * 1991-03-01 1994-06-07 John Taboada Method and apparatus for determining hemoglobin oxygenation such as in ocular and other vascular beds
US5135004A (en) * 1991-03-12 1992-08-04 Incontrol, Inc. Implantable myocardial ischemia monitor and related method
US5199428A (en) * 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5257636A (en) * 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
US6785568B2 (en) * 1992-05-18 2004-08-31 Non-Invasive Technology Inc. Transcranial examination of the brain
US5672875A (en) * 1992-07-15 1997-09-30 Optix Lp Methods of minimizing scattering and improving tissue sampling in non-invasive testing and imaging
US5355425A (en) * 1992-09-04 1994-10-11 Braiman Mark S Light coupling device for optical fibers
US5785658A (en) * 1992-09-14 1998-07-28 Sexant Medical Corporation In vivo tissue analysis methods and apparatus
US5769791A (en) * 1992-09-14 1998-06-23 Sextant Medical Corporation Tissue interrogating device and methods
US5329922A (en) * 1992-10-19 1994-07-19 Atlee Iii John L Oximetric esophageal probe
US5357954A (en) * 1993-01-04 1994-10-25 Respiratory Support Products, Inc. Optical blood oxygen saturation probe for insertion into the esophagus
US5987346A (en) * 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5830132A (en) * 1993-08-24 1998-11-03 Robinson; Mark R. Robust accurate non-invasive analyte monitor
US6278889B1 (en) * 1993-08-24 2001-08-21 Mark R. Robinson Robust accurate non-invasive analyte monitor
US5417207A (en) * 1993-12-06 1995-05-23 Sensor Devices, Inc. Apparatus for the invasive use of oximeter probes
US5743261A (en) * 1993-12-06 1998-04-28 Sensor Devices, Inc. Methods and apparatus for the invasive use of oximeter probes
US5645059A (en) * 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
US20020082489A1 (en) * 1994-04-01 2002-06-27 Casciani James R. Pulse oximeter and sensor optimized for low saturation
US5520190A (en) * 1994-10-31 1996-05-28 Ventritex, Inc. Cardiac blood flow sensor and method
US5777350A (en) * 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US6122536A (en) * 1995-07-06 2000-09-19 Animas Corporation Implantable sensor and system for measurement and control of blood constituent levels
US5757002A (en) * 1995-08-30 1998-05-26 Kyoto Dai-Ichi Kagaku Co., Ltd. Method of and apparatus for measuring lactic acid in organism
US5933498A (en) * 1996-01-11 1999-08-03 Mrj, Inc. System for controlling access and distribution of digital property
US5833603A (en) * 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5931779A (en) * 1996-06-06 1999-08-03 Wisconsin Alumni Research Foundation Real-time in-vivo measurement of myoglobin oxygen saturation
US5879294A (en) * 1996-06-28 1999-03-09 Hutchinson Technology Inc. Tissue chromophore measurement system
US5733313A (en) * 1996-08-01 1998-03-31 Exonix Corporation RF coupled, implantable medical device with rechargeable back-up power source
US5782756A (en) * 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis
US5830137A (en) * 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
US6119031A (en) * 1996-11-21 2000-09-12 Boston Scientific Corporation Miniature spectrometer
US5974210A (en) * 1997-01-15 1999-10-26 Perkin-Elmer Ltd. Probe for spectroscopic analysis
US5941822A (en) * 1997-03-17 1999-08-24 Polartechnics Limited Apparatus for tissue type recognition within a body canal
US5901261A (en) * 1997-06-19 1999-05-04 Visionex, Inc. Fiber optic interface for optical probes with enhanced photonic efficiency, light manipulation, and stray light rejection
US20020021444A1 (en) * 1997-12-18 2002-02-21 Chromatics Colorsciences Inc., Color measurement system with color index for skin, teeth, hair and material substances
US6252254B1 (en) * 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
US6599025B1 (en) * 1998-03-11 2003-07-29 Ccs Technology, Inc. Hybrid data plug
US6251068B1 (en) * 1998-05-18 2001-06-26 Fuji Photo Optical Co., Ltd. Endoscopic observation system
US20020082488A1 (en) * 1998-06-03 2002-06-27 Ammar Al-Ali Stereo pulse oximeter
US6226082B1 (en) * 1998-06-25 2001-05-01 Amira Medical Method and apparatus for the quantitative analysis of a liquid sample with surface enhanced spectroscopy
US6432364B1 (en) * 1998-07-06 2002-08-13 Suzuki Motor Corporation SPR sensor cell and immunoassay apparatus using the same
US6381018B1 (en) * 1998-07-28 2002-04-30 The Regents Of The University Of California Method for measuring changes in light absorption of highly scattering media
US6842635B1 (en) * 1998-08-13 2005-01-11 Edwards Lifesciences Llc Optical device
US6256524B1 (en) * 1998-09-09 2001-07-03 The United States Of America As Represented By The Secretary Of The Army Pulse oximeter sensor combined with a combination oropharyngeal airway and bite block
US6043893A (en) * 1998-10-09 2000-03-28 Universities Space Research Association Manually portable reflectance spectrometer
US6615065B1 (en) * 1998-10-13 2003-09-02 Somanetics Corporation Multi-channel non-invasive tissue oximeter
US6859658B1 (en) * 1998-11-18 2005-02-22 Lea Medizintechnik Gmbh Device for non-invasively detecting the oxygen metabolism in tissues
US6353226B1 (en) * 1998-11-23 2002-03-05 Abbott Laboratories Non-invasive sensor capable of determining optical parameters in a sample having multiple layers
US6127783A (en) * 1998-12-18 2000-10-03 Philips Electronics North America Corp. LED luminaire with electronically adjusted color balance
US6438399B1 (en) * 1999-02-16 2002-08-20 The Children's Hospital Of Philadelphia Multi-wavelength frequency domain near-infrared cerebral oximeter
US20030006702A1 (en) * 1999-02-18 2003-01-09 Lumileds Lighting, U.S., Llc Red-deficiency compensating phosphor light emitting device
US6216021B1 (en) * 1999-06-04 2001-04-10 The Board Of Trustees Of The University Of Illinois Method for measuring absolute saturation of time-varying and other hemoglobin compartments
US20010045509A1 (en) * 1999-08-26 2001-11-29 Ammar Al-Ali A system for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6527729B1 (en) * 1999-11-10 2003-03-04 Pacesetter, Inc. Method for monitoring patient using acoustic sensor
US6277078B1 (en) * 1999-11-19 2001-08-21 Remon Medical Technologies, Ltd. System and method for monitoring a parameter associated with the performance of a heart
US20020193664A1 (en) * 1999-12-29 2002-12-19 Ross Ian Michael Light source for borescopes and endoscopes
US6744514B2 (en) * 2000-04-03 2004-06-01 Sensopart Industriesensorik Gmbh Process and arrangement for detecting or recognizing an object
US20020043651A1 (en) * 2000-04-04 2002-04-18 Darrow Christopher B. Fluorescent lifetime assays for non-invasive quantification of analytes such as glucose
US20020070681A1 (en) * 2000-05-31 2002-06-13 Masanori Shimizu Led lamp
US20060217605A1 (en) * 2000-08-31 2006-09-28 Nellcor Puritan Bennett Inc. Oximeter sensor with digital memory encoding sensor data
US6533466B1 (en) * 2000-09-07 2003-03-18 International Business Machines Corporation Hybrid connector assembly for electrical conductors and fiber optic data conductors
US20030158470A1 (en) * 2000-09-18 2003-08-21 Sti Medical Systems, Inc. Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process
US20020036778A1 (en) * 2000-09-28 2002-03-28 Gregg Wagner Handheld, portable color measuring device with display
US6588938B1 (en) * 2000-10-18 2003-07-08 Fitel Usa Corp. Optical/electrical plug connector
US20050285129A1 (en) * 2000-10-27 2005-12-29 Jackson Joseph H Iii Instrument excitation source and calibration method
US6532381B2 (en) * 2001-01-11 2003-03-11 Ge Medical Systems Information Technologies, Inc. Patient monitor for determining a probability that a patient has acute cardiac ischemia
US20020158565A1 (en) * 2001-04-27 2002-10-31 Setlur Anant Achyut Phosphor blends for generating white light from near-UV/blue light-emitting devices
US20020171911A1 (en) * 2001-05-17 2002-11-21 Mamoru Maegawa Method for adjusting the hue of the light emitted by a light-emitting diode
US6612857B2 (en) * 2001-07-05 2003-09-02 Bernard R. Tolmie Electrical connector system and method having optical and/or cooling capability
US6694159B2 (en) * 2001-07-16 2004-02-17 Art, Advanced Research Technologies Inc. Choice of wavelengths for multiwavelength optical imaging
US20050010113A1 (en) * 2001-07-16 2005-01-13 Art, Advanced Research Technologies, Inc. Choice of wavelengths for multiwavelength optical imaging
US20030036031A1 (en) * 2001-08-20 2003-02-20 Lieb Joseph Alexander Light-emitting handpiece for curing photopolymerizable resins
US6921920B2 (en) * 2001-08-31 2005-07-26 Smith & Nephew, Inc. Solid-state light source
US20030073889A1 (en) * 2001-10-11 2003-04-17 Keilbach Kevin A. Monitoring led wavelength shift in photoplethysmography
US6550979B1 (en) * 2001-10-19 2003-04-22 Corning Cable Systems Llc Floating connector subassembly and connector including same
US20030111533A1 (en) * 2001-12-19 2003-06-19 Koninklijke Philips Electronics N.V. RGB led based white light control system with quasi-uniform color metric
US6711426B2 (en) * 2002-04-09 2004-03-23 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US7062306B2 (en) * 2002-04-09 2006-06-13 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US20030191379A1 (en) * 2002-04-09 2003-10-09 Spectros Corporation Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
US20060105319A1 (en) * 2002-07-26 2006-05-18 Obi Aps Method for converting venous blood values to arterial blood values, system for utilising said method and devices for such system
US20040122478A1 (en) * 2002-12-20 2004-06-24 Stadler Robert W. Method and apparatus for gauging severity of myocardial ischemic episodes
US6944488B2 (en) * 2003-04-30 2005-09-13 Medtronic, Inc. Normalization method for a chronically implanted optical sensor
US20070015981A1 (en) * 2003-08-29 2007-01-18 Benaron David A Device and methods for the detection of locally-weighted tissue ischemia
US20070016080A1 (en) * 2005-04-28 2007-01-18 Research Foundation Of The City University Of New York Imaging systems and methods to improve backscattering imaging using circular polarization memory
US7813778B2 (en) * 2005-07-29 2010-10-12 Spectros Corporation Implantable tissue ischemia sensor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Huffaker et al., Continuous-Wave Low-Threshold Performance of 1.3-um InGaAs-GaAs Quantum-Dot Lasers, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 3, MAY/JUNE 2000, 452-461 *
Krames et al., High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency, Appl. Phys. Lett. 75, 2365 (1999), 2365-2367 *
Lumileds, Thermal Design Considerations for Luxeon 5 Watt Power Light Sources, Publication No. AB23 (08012002), 2002 *
Steigerwald et al., Illumination With Solid State Lighting Technology, IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 2, MARCH/APRIL 2002, 310-320 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233954B2 (en) 2005-09-30 2012-07-31 Nellcor Puritan Bennett Llc Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US20090143774A1 (en) * 2006-05-30 2009-06-04 Koninklijke Philips Electronics N.V. Apparatus for depth-resolved measurements of properties of tissue
US8417323B2 (en) * 2006-05-30 2013-04-09 Koninklijke Philips Electronics N.V. Apparatus for depth-resolved measurements of properties of tissue
US20080081975A1 (en) * 2006-09-28 2008-04-03 Geeta Agashe System and method for detection of brain edema using spectrophotometry
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US20090177053A1 (en) * 2007-12-27 2009-07-09 Nellcor Puritan Bennett Llc Coaxial LED Light Sources
US20090246797A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Medical device for the assessment of internal organ tissue and technique for using the same
US20090259117A1 (en) * 2008-04-11 2009-10-15 Wider Michael D System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
US8781546B2 (en) * 2008-04-11 2014-07-15 Covidien Lp System and method for differentiating between tissue-specific and systemic causes of changes in oxygen saturation in tissue and organs
US20140323833A1 (en) * 2008-04-11 2014-10-30 Covidien Lp System and Method for Differentiating Between Tissue-Specific and Systemic Causes of Changes in Oxygen Saturation in Tissue and Organs
US9042967B2 (en) 2008-05-20 2015-05-26 University Health Network Device and method for wound imaging and monitoring
US8423112B2 (en) 2008-09-30 2013-04-16 Covidien Lp Medical sensor and technique for using the same
US20110245687A1 (en) * 2008-12-05 2011-10-06 Koninklijke Philips Electronics N.V. Optical detection method and device for optical detection of the condition of joints
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US8199322B2 (en) 2010-05-05 2012-06-12 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
US7884933B1 (en) 2010-05-05 2011-02-08 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
US8487274B2 (en) 2011-05-17 2013-07-16 National Taipei University Of Technology Stroboscopic optical image mapping system
US8348838B1 (en) 2011-06-16 2013-01-08 Boris Khurgin Surgical suction instrument providing illumination
US20130030255A1 (en) * 2011-07-26 2013-01-31 Embry Ii William Ben Biocompatible implant device
US20150148625A1 (en) * 2013-11-26 2015-05-28 David Alan Benaron Respiratory Monitoring Sensor And Method For Cell Phones, Smart Watches, Occupancy Sensors, And Wearables

Also Published As

Publication number Publication date Type
WO2003086173A3 (en) 2004-07-15 application
WO2003086173A2 (en) 2003-10-23 application
US6711426B2 (en) 2004-03-23 grant
US20030191379A1 (en) 2003-10-09 application
EP1492445A4 (en) 2009-03-04 application
JP2012210430A (en) 2012-11-01 application
US20040039274A1 (en) 2004-02-26 application
JP2005522256A (en) 2005-07-28 application
JP2009279460A (en) 2009-12-03 application
US20080287758A1 (en) 2008-11-20 application
US7062306B2 (en) 2006-06-13 grant
EP1492445A2 (en) 2005-01-05 application

Similar Documents

Publication Publication Date Title
Branthwaite et al. Measurement of cardiac output by thermal dilution in man
Ayata et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex
Hielscher et al. Near-infrared diffuse optical tomography
US5329922A (en) Oximetric esophageal probe
US6961600B2 (en) Transbronchial reflectance oximetric measurement of mixed venous oxygen saturation, and device therefor
US6498942B1 (en) Optoacoustic monitoring of blood oxygenation
US5974338A (en) Non-invasive blood analyzer
US5282467A (en) Non-invasive method for detecting deep venous thrombosis in the human body
US5408998A (en) Video based tissue oximetry
US6632183B2 (en) Perfusion sensitive biopsy extractor
US5987346A (en) Device and method for classification of tissue
Pellicer et al. Near-infrared spectroscopy: a methodology-focused review
US20030236458A1 (en) Spectroscopic systems and methods for detecting tissue properties
US20080004513A1 (en) VCSEL Tissue Spectrometer
US20040039269A1 (en) Use of ultraviolet, near-ultraviolet and near infrared resonance raman spec-troscopy and fluorescence spectroscopy fro tissue interrogation of shock states, critical illnesses, and other disease states
US20070016079A1 (en) Hyperspectral imaging in diabetes and peripheral vascular disease
US20080312540A1 (en) System and Method for Normalized Flourescence or Bioluminescence Imaging
US20050228253A1 (en) Photoplethysmography with a spatially homogenous multi-color source
Allen et al. Microvascular imaging: techniques and opportunities for clinical physiological measurements
US20040039268A1 (en) System and method for quantifying the dynamic response of a target system
US20060253016A1 (en) Systems and methods to assess one or more body fluid metrics
US5040539A (en) Pulse oximeter for diagnosis of dental pulp pathology
US6915154B1 (en) Method and apparatus for performing intra-operative angiography
Hu et al. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy
US20080275317A1 (en) Medical Measuring Device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPECTROS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENARON, DAVID A.;PARACHIKOV, ILIAN H.;FIERRO, MICHAEL R.;SIGNING DATES FROM 20070904 TO 20070919;REEL/FRAME:026658/0427

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SPECTROS CORPORATION;REEL/FRAME:036259/0157

Effective date: 20150731

AS Assignment

Owner name: ALIPHCOM, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPECTROS CORPORATION;REEL/FRAME:036630/0699

Effective date: 20150917

AS Assignment

Owner name: BLACKROCK ADVISORS, LLC, NEW JERSEY

Free format text: SECURITY INTEREST;ASSIGNOR:ALIPHCOM;REEL/FRAME:037196/0229

Effective date: 20150917