US20080185774A1 - Method Of Collecting Print Media In A Vertical Orientation - Google Patents

Method Of Collecting Print Media In A Vertical Orientation Download PDF

Info

Publication number
US20080185774A1
US20080185774A1 US12/062,512 US6251208A US2008185774A1 US 20080185774 A1 US20080185774 A1 US 20080185774A1 US 6251208 A US6251208 A US 6251208A US 2008185774 A1 US2008185774 A1 US 2008185774A1
Authority
US
United States
Prior art keywords
media
printer
printing
printhead
print
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/062,512
Inventor
Tobin Allen King
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silverbrook Research Pty Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/760,254 priority Critical patent/US7448734B2/en
Priority to US11/014,728 priority patent/US7377635B2/en
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Priority to US12/062,512 priority patent/US20080185774A1/en
Assigned to SILVERBROOK RESEARCH PTY LTD reassignment SILVERBROOK RESEARCH PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KING, TOBIN ALLEN, SILVERBROOK, KIA
Publication of US20080185774A1 publication Critical patent/US20080185774A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/34Bodily-changeable print heads or carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04543Block driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04585Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on thermal bent actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04591Width of the driving signal being adjusted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1623Production of nozzles manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1626Production of nozzles manufacturing processes etching
    • B41J2/1628Production of nozzles manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1632Production of nozzles manufacturing processes machining
    • B41J2/1634Production of nozzles manufacturing processes machining laser machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1637Production of nozzles manufacturing processes molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/164Production of nozzles manufacturing processes thin film formation
    • B41J2/1642Production of nozzles manufacturing processes thin film formation thin film formation by CVD [chemical vapor deposition]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1648Production of print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16517Cleaning of print head nozzles
    • B41J2/1652Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head
    • B41J2/16526Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head by applying pressure only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16517Cleaning of print head nozzles
    • B41J2/16535Cleaning of print head nozzles using wiping constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/1707Conditioning of the inside of ink supply circuits, e.g. flushing during start-up or shut-down
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/1714Conditioning of the outside of ink supply systems, e.g. inkjet collector cleaning, ink mist removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17506Refilling of the cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17506Refilling of the cartridge
    • B41J2/17509Whilst mounted in the printer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/1752Mounting within the printer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17536Protection of cartridges or parts thereof, e.g. tape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17553Outer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17556Means for regulating the pressure in the cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17566Ink level or ink residue control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/19Ink jet characterised by ink handling for removing air bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/485Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes
    • B41J2/505Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes from an assembly of identical printing elements
    • B41J2/515Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes from an assembly of identical printing elements line printer type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/02Framework
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/12Guards, shields or dust excluders
    • B41J29/13Cases or covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14362Assembling elements of heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14403Structure thereof only for on-demand ink jet heads including a filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • B41J2002/14435Moving nozzle made of thermal bend detached actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14459Matrix arrangement of the pressure chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14475Structure thereof only for on-demand ink jet heads characterised by nozzle shapes or number of orifices per chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14491Electrical connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/1721Collecting waste ink; Collectors therefor
    • B41J2002/1742Open waste ink collector, e.g. ink receiving from a print head above the collector during borderless printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • B41J2002/17516Inner structure comprising a collapsible ink holder, e.g. a flexible bag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/19Assembling head units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/20Modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/21Line printing

Abstract

A method of collecting printed sheets of media from a printer is provided in which a printed sheet is ejected from the printer and allowed to fall along a substantially vertical path before the leading edge thereof is captured and a retaining force having a component substantially perpendicular to the vertical path is applied thereto. The sheet is then collected on a retaining surface which is inclined with respect to the substantially vertical path. In this way, the printed sheet is collected whilst maximising the amount of time that the ink printed on the sheet is exposed to air without contact with another surface. Accordingly, the ink is given time to dry and set thereby reducing any detrimental effects on the quality of the printout caused by collection.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present application is a continuation application of U.S. Ser. No. 11/014,728 filed on Dec. 20, 2004, which is a Continuation-In-Part application of U.S. Ser. No. 10/760,254 filed on Jan. 21, 2004. In the interests of brevity, the disclosure of the parent application is incorporated in its entirety into the present specification by cross reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a high-speed printer, and more particularly to a method of collection printouts from a desktop printer which can print more than 30 pages or more a minute at high quality whilst occupying a minimum amount of space.
  • CO-PENDING APPLICATIONS
  • The following applications have been filed by the Applicant simultaneously with the present application:
  • 7152972 11/014731 11/014764 11/014763 7331663 11/014747 7328973 11/014760 11/014757 7303252 7249822 11/014762 7311382 11/014723 11/014756 11/014736 11/014759 11/014758 11/014725 7331660 11/014738 11/014737 7322684 7322685 7311381 7270405 7303268 11/014735 11/014734 11/014719 11/014750 11/014749 7249833 11/014769 11/014729 7331661 11/014733 7300140 11/014755 11/014765 11/014766 11/014740 7284816 7284845 7255430 11/014744 7328984 11/014768 7322671 11/014718 11/014717 11/014716 11/014732 7347534 7306320 11/014727 11/014730

    The disclosures of these co-pending applications are incorporated herein by reference.
  • CROSS REFERENCES TO RELATED APPLICATIONS
  • The following patents or patent applications filed by the applicant or assignee of the present invention are hereby incorporated by cross-reference.
  • 11/003786 7258417 7293853 7328968 7270395 11/003404 11/003419 7334864 7255419 7284819 7229148 7258416 7273263 7270393 6984017 7347526 11/003463 11/003701 11/003683 11/003614 7284820 7341328 7246875 7322669 6623101 6406129 6505916 6457809 6550895 6457812 7152962 6428133 7204941 7282164 10/815628 7278727 10/913373 10/913374 10/913372 7138391 7153956 10/913380 10/913379 10/913376 7122076 7148345 10/407212 7252366 10/683064 10/683041 7275811 10/884889 10/922890 7334874 10/922885 10/922889 10/922884 10/922879 10/922887 10/922888 10/922874 7234795 10/922871 7328975 7293855 10/922882 10/922883 10/922878 10/922872 10/922876 10/922877 6746105 7156508 7159972 7083271 7165834 7080894 7201469 7090336 7156489 10/760233 10/760246 7083257 7258422 7255423 7219980 10/760253 10/760255 10/760209 7118192 10/760194 7322672 7077505 7198354 7077504 10/760189 7198355 10/760232 7322676 7152959 7213906 7178901 7222938 7108353 7104629 7246886 7128400 7108355 6991322 7287836 7118197 10/728784 10/728783 7077493 6962402 10/728803 7147308 10/728779 7118198 7168790 7172270 7229155 6830318 7195342 7175261 10/773183 7108356 7118202 10/773186 7134744 10/773185 7134743 7182439 7210768 10/773187 7134745 7156484 7118201 7111926 10/773184 09/575197 7079712 6825945 7330974 6813039 6987506 7038797 6980318 6816274 7102772 7350236 6681045 6728000 7173722 7088459 09/575181 7068382 7062651 6789194 6789191 6644642 6502614 6622999 6669385 6549935 6987573 6727996 6591884 6439706 6760119 7295332 7064851 6826547 6290349 6428155 6785016 6831682 6741871 6927871 6980306 6965439 6840606 7036918 6977746 6970264 7068389 7093991 7190491 10/901154 10/932044 10/962412 7177054 10/962552 10/965733 10/965933 10/974742 10/986375 6982798 6870966 6822639 6737591 7055739 7233320 6830196 6832717 6957768 7170499 7106888 7123239 10/727181 10/727162 10/727163 10/727245 7121639 7165824 7152942 10/727157 7181572 7096137 7302592 7278034 7188282 10/727159 10/727180 10/727179 10/727192 10/727274 10/727164 10/727161 10/727198 10/727158 10/754536 10/754938 10/727160 10/934720 10/296522 6795215 7070098 7154638 6805419 6859289 6977751 6398332 6394573 6622923 6747760 6921144 10/884881 7092112 7192106 10/854521 10/854522 10/854488 7281330 10/854503 7328956 10/854509 7188928 7093989 10/854497 10/854495 10/854498 10/854511 10/854512 10/854525 10/854526 10/854516 7252353 10/854515 7267417 10/854505 10/854493 7275805 7314261 10/854490 7281777 7290852 10/854528 10/854523 10/854527 10/854524 10/854520 10/854514 10/854519 10/854513 10/854499 10/854501 7266661 7243193 10/854518 10/854517 10/934628
  • BACKGROUND OF THE INVENTION
  • Desktop printers for use in home and office environments are well known and are widely commercially available with varying designs and capabilities. Typically, commercially available desktop printers are of a size and configuration that requires a relatively substantial amount of space to accommodate the printer unit and associated components, such as print media input and/or output trays. Indeed, much of this large “footprint” of conventional printers may be occupied by the input and output trays. The footprint of the printer typically also includes the space required for accessing the printer and for printing in an unobstructed manner.
  • Even in conventional printers which do not use such print media trays and incorporate print media source and collection areas within the printer unit itself, a limitation in minimising the printer's footprint still remains in that it must at the very least correspond to the largest print media size to be printed, for example, A4 or A3 paper.
  • With the ongoing trend of smaller and more compact workstations it is necessary to maximise the available workspace, such that it is becoming increasingly necessary to reduce the amount of space occupied by equipment, such as desktop printers. Thus, there is a need to minimise the footprint of a desktop printer.
  • SUMMARY OF THE INVENTION
  • In a first aspect the present invention provides a printer comprising:
      • a print media supply for supplying print media for printing;
      • a printhead for printing on said print media;
      • a print media collector for collecting said printed print media; and
      • a transport device for transporting the print media through a delivery path from the print media supply to the print media collector via the printhead,
      • wherein the print media supply and collector are substantially vertically disposed, and
      • the print media delivery path passes through an angle of at least 140°.
  • Optionally the printhead is a pagewidth inkjet printhead.
  • Optionally the print media delivery path passes through an angle of at least 180°.
  • Optionally the print media supply is adaptable to store variously sized print media.
  • Optionally the print media supply is inclined to the vertical by an angle of about 15° to 20°.
  • Optionally the print media collector is inclined to the vertical by an angle of about 10° to 15°.
  • Optionally the print media supply and collector are arranged adjacent one another beneath the printhead.
  • Optionally the transport device comprises:
      • a picker assembly arranged to pick-up sheets of print media from the print media supply; and
      • a roller assembly arranged to receive the picked-up sheets from the picker assembly and transport the received sheets to the printhead for printing.
  • Optionally the transport device further comprises print media guides for guiding the picked-up sheets of print media from the picker assembly to the roller assembly.
  • In a further aspect there is provided a printer, further comprising drive electronics for driving the printing of the printhead and controlling the picker assembly to advance the picked-up sheets of print media and the roller assembly to transport the accepted sheets of print media to the printhead.
  • In a further aspect there is provided a printer, further comprising:
      • a base;
      • a print engine having the printhead for printing an image on print media; and
      • a substantially vertically extending body connecting the base and the print engine, said body having at least two substantially vertically extending surfaces,
      • wherein the print media supply is provided on a first surface of said surfaces of the body and the print media collector is provided on a second surface of said surfaces of the body.
  • In a further aspect there is provided a printer, further comprising means for collecting printed sheets of print media, wherein the means:
      • ejects a printed sheet from the printhead;
      • allows said sheet to fall from the printhead assuming a substantially vertical path;
      • captures the leading edge of said sheet; and
      • applies a retaining force to said sheet, said retaining force having a component substantially perpendicular to said substantially vertical path; and
      • collects said sheet on a retaining surface of the print media collector, said retaining surface being inclined with respect to said substantially vertical path.
  • In a further aspect there is provided a printer, wherein:
      • the printhead is comprised in a print engine having an outlet arranged to eject printed sheets from the print engine in a substantially vertical path;
      • the print media collector is disposed beneath said outlet and has a collection surface inclined with respect to said substantially vertical path for collecting said ejected sheets and a foot portion projecting from the collection surface; and
      • the foot portion is arranged to project into the substantially vertical path of said ejected sheets and has a contact surface arranged to contact a leading edge of said sheets to stop movement thereof in said substantially vertical path, said contact surface being arranged to urge said sheets toward the collection surface for collection.
  • In a further aspect there is provided a printer, wherein the print media collector comprises a substantially vertical collection surface adapted to collect one or more sheets of the print media fed from the printhead in a substantially vertical direction and to retain said one or more sheets in a substantially vertical orientation, the collection surface being arranged to impart a lateral curvature to the collected print media orthogonal to the feed direction of the print media.
  • In a further aspect there is provided a printer incorporating a system for indicating a state of the printer, the system comprising:
      • a light source arranged to emit light of a plurality of colours;
      • a light transmitting channel extending along a surface of the printer and arranged so as to transmit light from the light source and emit said light along a length of the channel; and
      • a controller arranged to control the light source in response to a detected operational state of the printer, so that the light transmitting channel emits predefined different colours to indicate predefined different states of the printer.
  • In a further aspect there is provided a printer, further comprising:
      • a housing having a print engine comprising the printhead;
      • a print media supply tray incorporated in the print media supply for receiving print media for printing by said print engine, said print media supply tray being arranged to be received by the housing so that said print media is maintained in a substantially vertical orientation; and
      • a retaining element provided on the housing and arranged to contact the print media when the supply tray is received by the housing so as to retain the print media in said substantially vertical orientation.
  • In a further aspect there is provided a printer, further comprising a detachable stand for supporting the print media supply, the printhead and the print media collector in an operating orientation wherein the print media supply and the print media collector are substantially vertically disposed.
  • In a further aspect there is provided a printer arranged as a desktop printer, wherein:
      • the printhead incorporates a pagewidth printhead arranged as a two-dimensional array of at least 5000 printing nozzles for printing across the width of print media supplied from the substantially vertically orientated print media supply and delivered to the substantially vertically orientated print media collector after printing; and
      • the print media supply and collector are provided on different sides of a substantially vertically extending body of the desktop printer.
  • In a further aspect there is provided a printer arranged as a desktop printer, wherein:
      • the printhead has an array of ink ejecting nozzles configured as a pagewidth printhead arranged to print on print media supplied from the substantially vertically orientated print media supply by ejecting drops of ink across the width of said print media at a rate of at least 50 million drops per second and to deliver the printed media to the substantially vertically orientated print media collector; and
      • the print media supply and collector are provided on different sides of a substantially vertically extending body of the desktop printer.
  • In another aspect the present invention provides a printer comprising:
      • a print media supply for supplying print media for printing;
      • a printhead for printing on said print media;
      • a print media collector for collecting said printed print media; and
      • a transport device for transporting the print media through a delivery path from the print media supply to the print media collector via the printhead,
      • wherein the print media supply and collector are substantially vertically disposed, and
      • the print media delivery path passes through an angle of at least 140°.
  • In another aspect the present invention provides a printer for printing on media supplied from a media supply and delivering printed media to a media collector, comprising:
      • a base;
      • a print engine for printing an image on media; and
      • a substantially vertically extending body connecting the base and the print engine, said body having at least two substantially vertically extending surfaces,
      • wherein the media supply is provided on a first surface of said surfaces of the body and the media collector is provided on a second surface of said surfaces of the body.
  • In another aspect the present invention provides a method of collecting printed sheets of media from a printer, comprising the steps of:
      • ejecting a printed sheet from the printer;
      • allowing said sheet to fall from the printer assuming a substantially vertical path;
      • capturing the leading edge of said sheet; and
      • applying a retaining force to said sheet, said retaining force having a component substantially perpendicular to said substantially vertical path; and
      • collecting said sheet on a retaining surface, said retaining surface being inclined with respect to said substantially vertical path.
  • In another aspect the present invention provides a system for collecting printed sheets of media from a printer, comprising:
      • a print engine having a printhead for printing images on sheets of media and an outlet arranged to eject said printed sheets from the print engine in a substantially vertical path; and
      • a collector disposed beneath said outlet having a collection surface inclined with respect to said substantially vertical path for collecting said ejected sheets and a foot portion projecting from the collection surface,
      • wherein the foot portion is arranged to project into the substantially vertical path of said ejected sheets and has a contact surface arranged to contact a leading edge of said sheets to stop movement thereof in said substantially vertical path, said contact surface being arranged to urge said sheets toward the collection surface for collection.
  • In another aspect the present invention provides a collector for collecting print media fed from a printer comprising:
      • a substantially vertical collection surface adapted to collect one or more sheets of print media fed from said printer in a substantially vertical direction and to retain said one or more sheets in a substantially vertical orientation,
      • wherein the collection surface is arranged to impart a lateral curvature to the collected print media orthogonal to the feed direction of the print media.
  • In another aspect the present invention provides a system for indicating a state of a printer, comprising:
      • a light source arranged to emit light of a plurality of colours;
      • a light transmitting channel extending along a surface of the printer and arranged so as to transmit light from the light source and emit said light along a length of the channel; and
      • a controller arranged to control the light source in response to a detected operational state of the printer, so that the light transmitting channel emits predefined different colours to indicate predefined different states of the printer.
  • In another aspect the present invention provides a printing device for printing an image onto a surface of print media comprising:
      • a housing having a print engine for printing;
      • a print media supply tray for receiving print media for printing by said print engine, said print media supply tray arranged to be received by the housing so that said print media is maintained in a substantially vertical orientation; and
      • a retaining element provided on the housing and arranged to contact the print media when the supply tray is received by the housing so as to retain the print media in said substantially vertical orientation.
  • In another aspect the present invention provides a printer comprising:
      • a print media supply for supplying print media for printing;
      • a printhead for printing on said print media;
      • a print media collector for collecting said printed print media;
      • a transport device for transporting the print media through a delivery path from the print media supply to the print media collector via the printhead; and
      • a detachable stand for supporting the print media supply, the printhead and the print media collector in an operating orientation wherein the print media supply and the print media collector are substantially vertically disposed, and
      • the print media delivery path defines an angle of at least 140°.
  • In another aspect the present invention provides a desktop printer comprising a pagewidth printhead arranged as a two-dimensional array of at least 5000 printing nozzles for printing across the width of media supplied from a substantially vertically orientated media supply and delivered to a substantially vertically orientated media collector after printing, the media supply and collector being provided on different sides of a substantially vertically extending body of the printer.
  • In another aspect the present invention provides a desktop printer comprising an array of ink ejecting nozzles configured as a pagewidth printhead arranged to print on media supplied from a substantially vertically orientated media supply by ejecting drops of ink across the width of said media at a rate of at least 50 million drops per second and to deliver the printed media to a substantially vertically orientated media collector, the media supply and collector being provided on different sides of a substantially vertically extending body of the printer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings:
  • FIG. 1 shows a perspective view of a printer in accordance with an embodiment of the present invention;
  • FIG. 2 shows a front plan view of the printer of FIG. 1;
  • FIG. 3 shows a rear plan view of the printer of FIG. 1;
  • FIG. 4 shows a rear perspective view of the printer of FIG. 1 illustrating a print media source tray assembly and base unit thereof;
  • FIG. 5 illustrates an open position of the print media source tray assembly of FIG. 4;
  • FIG. 6 illustrates components of a housing and a head unit of the printer of FIG. 1;
  • FIG. 7 shows an exploded view of the printer of FIG. 1 illustrating the various components thereof;
  • FIG. 8 illustrates the print media source tray assembly of FIG. 4 loaded with A4 print media;
  • FIG. 9 shows an exploded view of the print media source tray assembly of FIG. 8;
  • FIG. 10 illustrates the print media source tray assembly of FIG. 4 loaded with photographic print media;
  • FIG. 11 illustrates the printer as shown in FIG. 4 with the print media source tray assembly removed;
  • FIG. 12 illustrates the printer as shown in FIG. 11 with a foil member thereof removed revealing WIFI and Bluetooth® card components;
  • FIG. 13 shows a cross-sectional view of the printer taken along the line A-A of FIG. 2;
  • FIG. 14 illustrates an operative position of a picker assembly of the printer in relation to the print media source tray assembly of FIG. 10;
  • FIG. 15 illustrates, in more detail, the components in an upper portion of the printer shown in FIG. 13 in relation to a path of a topmost sheet from a print media stack held by the print media source tray assembly through the picker assembly of FIG. 14;
  • FIG. 16 illustrates an open position of the head unit with a cartridge unit shown removed from the printer of FIG. 6;
  • FIG. 17 shows the opened head unit of FIG. 16 in more detail with the cartridge unit in place and a refill cartridge being applied thereto;
  • FIG. 18 illustrates print media collection performed by the printer of FIG. 1 and an extendable support member of the printer;
  • FIG. 19 shows a top plan view of the printer of FIG. 1;
  • FIG. 20 shows in cross-section the components in an upper portion of a printer in accordance with an embodiment of the present invention illustrating a path of a manually-fed print media sheet;
  • FIG. 21 shows a top view of the printer of FIG. 20;
  • FIG. 22 shows a side plan view of the printer of FIG. 1;
  • FIGS. 23A and 23B respectively illustrate the position of a sheet of print media exiting and being released from a print engine assembly of the printer of FIG. 1;
  • FIG. 24A illustrates a light pipe of the printer of FIG. 1;
  • FIG. 24B illustrates a light source of the light pipe of FIG. 24A;
  • FIG. 25 shows a perspective view of a printer in accordance with an embodiment of the present invention;
  • FIG. 26 illustrates the base unit as shown in FIG. 4 with a cover thereof removed;
  • FIG. 27 shows a bottom view of the printer of FIG. 1;
  • FIG. 28 illustrates the printer of FIG. 1 positioned on a stand assembly;
  • FIG. 29 shows a rear perspective view of the printer positioned on the stand assembly of FIG. 28;
  • FIG. 30 shows a perspective view (partly in section) of a portion of a nozzle system of a printhead integrated circuit that is incorporated in a printhead of the printer of FIG. 1;
  • FIG. 31 shows a vertical sectional view of a single nozzle (of the nozzle system shown in FIG. 30) in a quiescent state;
  • FIG. 32 shows a vertical sectional view of the nozzle of FIG. 31 at an initial actuation state;
  • FIG. 33 shows a vertical sectional view of the nozzle of FIG. 32 at a later actuation state;
  • FIG. 34 shows in perspective a partial vertical sectional view of the nozzle at the initial actuation state shown in FIG. 32;
  • FIG. 35 shows in perspective a partial vertical sectional view of the nozzle at the later actuation state shown in FIG. 33;
  • FIG. 36 shows a schematic diagram of document data flow in the printer of FIG. 1;
  • FIG. 37 illustrates a data representation of a page element used in FIG. 36;
  • FIG. 38 shows a more detailed schematic diagram showing an architecture used in FIG. 36;
  • FIG. 39 shows a schematic view of a controller incorporated in a print engine assembly of the printer of FIG. 1;
  • FIG. 40 shows a schematic diagram illustrating CMOS drive and control blocks for use in FIG. 36;
  • FIG. 41 shows a schematic diagram illustrating the relationship between nozzle columns and dot shift registers in the CMOS blocks of FIG. 40;
  • FIG. 42 shows a more detailed schematic diagram illustrating a unit cell and its relationship to the nozzle columns and dot shift registers of FIG. 41; and
  • FIG. 43 shows a circuit diagram illustrating logic for a single nozzle in FIG. 36.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • A printer 100 in accordance with the present invention is variously illustrated in FIGS. 1 to 7. The printer 100 comprises a housing 101, a head unit 102 and a print media source tray assembly 103.
  • The housing 101 is provided as a substantially vertically extending body of the printer 100 having an inverted L-shape with an upper portion 104 and a lower portion 105. The upper portion 104 is arranged to receive a picker assembly 106 and a print engine assembly 107 (see FIGS. 6 and 7) which together provide a print media transport system for transporting print media from the print media source tray assembly 103 which acts as a print media source or supply of the printer 100, to the printing mechanics of the print engine assembly 107 (described later). The lower portion 105 is arranged as a print media collection area or collector. In this description, all references to upper, lower, outer, inner, bottom and top are provided with respect to the orientation of the printer 100 shown in FIGS. 1 to 7.
  • The head unit 102 covers the picker and print engine assemblies 106 and 107 held by the upper portion 104 of the housing 101 and is pivotally attached to the upper portion 104 via hinges 108 (see FIG. 6). This provides easy access to the picker and print engine assemblies 106 and 107 so that maintenance thereof and the clearing of print media jams and the like can be performed. The head unit 102 incorporates a user interface 109 via which a user can operate the printer 100 (discussed in more detail later).
  • The print media source tray assembly 103 is received by the lower portion 105 of the housing 101, as is shown in FIGS. 5 and 6, and is capable of storing print media 110 for printing in a paper tray portion 111 thereof (see FIG. 7). The print media 110 may be provided in the form of variously sized print media stacks each comprising of about 250 sheets, and up to 500 sheets, i.e., a ream of paper. For example, in FIG. 7 photographic print media, e.g., 4″×6″ paper, is held by the source tray assembly 103, whilst in FIG. 8 A4 paper is held. In the following description the print media for use in the printer 100 is referred to as paper, however other forms of print media are applicable.
  • The housing 101 and the source tray assembly 103 are supported by a base unit 112 which houses power and data connections for the various electronic components of the printer 100. Particularly, the collection area 105 of the housing 101 and the source tray assembly 103 are supported by the base unit 112 in a substantially vertical orientation. That is, the planar surfaces of the source tray assembly 103 and the collection area 105 which are used to support paper for printing and paper which has been printed, respectively, are held by the base unit 112 so as to be substantially vertically oriented, which provides a reduced “footprint” of the printer 100 as discussed in more detail later.
  • Referring to FIGS. 5, 7, 8, 11 and 13 (where FIG. 13 shows a cross-sectional view of the printer 100 taken along the line A-A of FIG. 2), the printer 100 is constructed by sliding an inner surface 105 a and side portions 105 b of the collection area 105 over front edges 112 a and side portions 112 b, respectively, of the base unit 112, with the upper portion 104 of the housing 101 mounting the print engine assembly and picker assemblies 106 and 107 hingedly covered by the head unit 102.
  • The source tray assembly 103 is secured to the base unit 112 by engaging a tab 103 a on the bottom edge thereof with a slot 112 c in an upper surface 112 d of the base unit 112. Through this, the source tray assembly 103 can be hingedly engaged with the housing 101, as shown in FIG. 5, in order to access the paper tray portion 111. This is done by using a handle recess 113 provided in an outer surface 103 b of the source tray assembly 103. Those skilled in the art will understand that the above construction technique is merely one such technique, and alternative means of constructing the printer 100, such as using one or more “clipping” arrangements, are within the scope of the present invention.
  • The printer 100 thus constructed is intended for use as a desktop printer which is capable of printing information onto paper at a rate of at least 30 pages per minute (ppm), preferably at least 60 ppm, with a printing resolution providing for so-called photographic quality printing of at least 1200 dots per inch (dpi), preferably at least 1600 dpi. In use, the printer 100 presents a footprint, i.e., the surface area occupied by the printer 100 on the desktop, which is greatly reduced from that of conventional printers since the printer 100 along with its paper supply and collector, i.e., the source tray assembly 103 and the collection area 105, stands in a substantially vertical orientation with respect to the desktop surface. The manner in which the printer 100 operates in this substantially vertical orientation will now be discussed.
  • FIG. 8 illustrates the source tray assembly 103 separated from the printer 100 and holding the stack 110 of A4 paper, and FIG. 9 shows an exploded view of the source tray assembly 103 as shown in FIG. 8. As can be seen, the source tray assembly 103 comprises a cover portion 114 which forms the rear outer surface 103 b of the printer 100 when the source tray assembly 103 is mounted to the base unit 112 and the housing 101 (see FIG. 4). The cover portion 114 holds the paper tray portion 111 which consists of a tray 115, a platen 116 arranged within the tray 115, a stop plate 117 and a fence plate 118. The paper stack 110 is loaded on the source tray assembly 103 by being placed on the platen 116 arranged in the tray 115 and is held in a desired location on the platen 116 by using the stop and fence plates 117 and 118.
  • A support member 119 is held between the cover portion 114 and the tray 115 so as to be slidable beyond the top edge of the source tray assembly 103 to an uppermost position, as is shown in FIG. 19. A raised portion 114 a of the cover 114 contacts an inner edge 119 a of the support member 119 thereby providing a lowermost position for the support member 119, as is shown in FIG. 8. The reasons for providing this slidable support member 119 are discussed later.
  • The platen 116 is secured to the tray 115 by way of engaging holes 116 a in side portions 116 b and 116 c of the platen 116 with corresponding lugs 115 a on side portions 115 b of the tray 115. By way of this engagement, the platen 116 is able to pivot with respect to the tray 115. The reasons for providing this pivoting motion of the platen 116 will become apparent from the discussion below. The side portion 116 c of the platen 116 situated at a lower end thereof below the pivots 115 a/116 a is angled away from the planar body of the platen 116 so as to provide a lever arm 120 for facilitating the pivoting of the platen 116.
  • A pad 121 is provided on an upper arm portion 116 d of the platen 116, and the side portions 116 b and 116 c project from a lower arm portion 116 e of the platen 116. The pad 121 is formed of a material, such as rubber, felt, cork, etc, which provides friction on the rear surface of the lowermost sheet of paper in the stack 110 loaded on the assembled platen 116 and tray 115. This friction is provided so as to assist in the process of picking-up the sheets of paper from the stack 110 for printing, which is discussed in detail later.
  • The stop plate 117 has (two) tabs 117 a arranged to be able to engage with a plurality of (pairs of) holes 115 d of the tray 115 and a tab 117 b arranged to be able to engage with a plurality of further holes 115 e of the tray 115. The holes 115 d and 115 e are provided in a section of the planar portion of the tray 115 below that which receives the platen 116, where one of the holes 115 e is provided between each of a pair of the holes 115 d so that the tabs 117 a and 117 b can be engaged therewith to secure the stop plate 117 to the tray 115 (see FIG. 13).
  • The fence plate 118 similarly has a tab 118 a for engaging with holes 115 f provided in a lateral row on the tray 115. The tab 118 a is provided on a bottom edge of a locking member 118 b which is used to lock the fence plate 118 in place on the tray 115 by engaging the tab 118 a with one of the holes 115 f. This is enabled by the locking member 118 b being able to pivot with respect to the body of the fence plate 118 about a pivot point 118 c. A hole (or depression) is provided in the locking member 118 b to allow a user's finger and the like to be placed therein so as to disengage the tab 118 a from the holes 115 f of the tray 115. The fence plate 118 is secured to the tray 115 by engaging a clip portion 118 d with a rod 122 provided in a recess 115 g of the tray 115 and a clipping element 123, shown individually in FIG. 9, positioned beneath the rod 122. In this way, the fence plate 118 is able to slide laterally across the tray 115 along the rod 122.
  • The tray 115, and consequently the source tray assembly 103, is made to a size sufficient to accommodate the maximum sized paper to be used with the printer 100. In the embodiment shown in the figures, the maximum paper size that may be accommodated in this way is US legal (8.5″×14″). However, the printer 100 may be arranged to accommodate a different maximum print media size. Different sized paper is accommodated in the source tray assembly 103 as shown in FIGS. 8 and 10 by moving the stop and fence plates 117 and 118 into varying positions via the holes 115 d-f. Those skilled in the art will understand that the above-described arrangement to accommodate variously sized paper stacks within the source tray assembly 103 is merely an example, and alternative arrangements and mechanisms may be used in accordance with the present invention to securely hold such paper stacks.
  • FIG. 11 illustrates the inner section of the housing 101, with the housing 101 being mounted to the base unit 112. The inner section the housing 101 comprises foils 124 as retaining members for the paper stack 10. The foils 124 extend across the width of the inner section and are removably secured to the housing 101 via brackets 125 at one end thereof. For example, one of the foils 124 is shown removed in FIG. 12. When secured, the foils 124 hang down from their secured end so as to project out from the inner section of the housing 101. The foils 124 are made from a flexible material, such as plastic, but are secured so as to be resilient to small forces. The purpose of the foils 124 is as follows.
  • Referring to the cross-sectional view of the printer 100 in FIG. 13, the collection area 105 of the housing 101 is angled from the horizontal by about 75° to 80° (i.e., 10° to 15° from the vertical), which angle is provided so as to assist in collection of the printed paper from the print engine assembly 107 as discussed in more detail later. Consequently, when the source tray assembly 103 is mounted to the housing 101, it is at an angle of about 70° to 75° from the horizontal (i.e., 15° to 20° from the vertical). This angle on the source tray assembly 103 assists in the storage of the stack 110 and reduces the occurrence of “sagging” in the paper of the stack 110 over time. However, the action of the picker assembly 106 used to pick-up the topmost sheet from the stack 110 may cause subsequent sheet(s) to experience some movement that may cause them to separate slightly from the stack 110, particularly at the lower regions.
  • Thus, the foils 124 are provided to apply a retaining force against the sheets in the stack 110 urging them back against the stack 110 thereby preventing individual sheets from separating and falling into the lower region of the paper tray portion 111 which can cause jams to occur. The resilient nature of the foils 124 provides the appropriate retaining force to maintain the sheets in position. Whilst two foils 124 are shown a greater or lesser number of foils is within the scope of the present invention as to are foils having recessed portions along their length rather than being continuous, so long as the arrangement thereof provides the securing of the sheets in the stack 110. The stack 110 is situated at the upper right corner of the tray 115 so that a topmost sheet 110 a of the stack 110 is presented to the picker assembly 106, as shown in FIGS. 6 and 14.
  • The picker assembly 106, shown most clearly in FIG. 14, may comprise a drive roller 126 driven by a motor 127 via a gearing mechanism 128 situated on motor and roller axles 129 and 130. In the arrangement shown, the drive roller 126 is rotated clockwise by the motor 127 so as to pick-up the topmost sheet 110 a, where the speed of the drive roller 126 is controlled by feeding back a detection result of an encoder arrangement 131 to the motor 127 via control circuitry (not shown). The drive roller 126 has a surface, such as rubber, which grips the sheets of paper.
  • An idler or pinch roller 132 having a position variable with respect to the drive roller 126 is used so that a sheet of differently sized print media can pass therebetween. A separator pad 133 is provided to ensure that only a single sheet is fed through the picker assembly 106 to the print engine assembly 107 for printing at any one time, thereby preventing multiple feeds to the print engine assembly 107 which can cause jams and/or distorted prints. It will be understood that other types of picker mechanism could be used in accordance with the present invention.
  • The picker assembly 106 is held within the upper portion 104 of the housing 101 via a support frame 134, as shown in FIGS. 6, 7 and 13, so as to be in the position shown in FIG. 14 relative to the stack 110. In operation, the topmost sheet 110 a of the stack 110 is located against the drive roller 126 of the picker assembly 106 so that it may be readily picked-up for advancement to the print engine assembly 107 for printing, as shown in FIG. 15. As each consecutive topmost sheet 110 a is picked-up the relative height of the stack 110 decreases. Therefore, the platen 116 of the source tray assembly 103 is spring loaded towards the picker assembly 106 to ensure that the topmost sheet 110 a is consistently presented to the picker assembly 106.
  • To achieve this, the housing 101 comprises a spring mechanism 135 which contacts the lever arm 120 of the platen 116 as shown in FIG. 13. The spring mechanism 135 urges the lever arm 120 towards the tray 115 thereby causing the platen 116 to pivot about its pivot points 115 a/116 a, which causes an upper portion of the sheets in the stack 110 to be angled away from the tray 115 and towards the housing 101. Thus, throughout the pick-up process the upper portion of the stack 110 is urged toward the picker assembly 106. As an alternative, the spring mechanism 135 can be incorporated on the lever arm 120 of the platen 116 so as to engage with the inner section of the housing 101 to provide the same action.
  • In this pick-up process, when the stack 110 approaches its depleted state, there will be a situation where only a small number of sheets remain, e.g., two sheets. In this situation it is possible that all of these sheets will be picked-up together, creating a multiple feed. This is because the friction between the sheets may be greater than the friction between the stack 110 and the source tray assembly 103. Thus, the pad 121 is provided on the platen 116, as previously described, so as to present a higher friction surface between the last sheet of paper in the stack 110 and the platen 116 than that between the last and second-to-last sheets of paper in the stack 110. This arrangement assists in ensuring that too many sheets are not fed at once which otherwise may cause a jam to occur at the interface between the separator pad 133 and the drive roller 126 of the picker assembly 106 or further downstream of the transport system or print engine assembly 107.
  • Upon leaving the drive roller 126, the leading edge of the advancing sheet 110 a impinges upon an upper surface of the head unit 102, as is shown in FIG. 15. A plurality of (shaped) guides 136 are therefore provided on this upper surface of the head unit 102 (see also FIG. 6) to guide the sheet 110 a to the print engine assembly 107. That is, the leading edge of the sheet 110 a follows the trajectory of the shape of the guides 136 to contact a guide plate 137 of the print engine assembly 107 which then directs the sheet 110 a into the print engine assembly 107 under the drive of the drive roller 126 of the picker assembly 106.
  • The print engine assembly 107 may be of the type described in the present Applicant's U.S. patent applications Filing Docket Nos. RRA01US to RRA33US, the disclosures of which are all incorporated herein by reference. These applications have been identified by their filing docket number, which will be substituted with the corresponding application number, once assigned. As such, the print engine assembly 107 is generally comprised of two parts: a cradle unit 138 and a cartridge unit 139, shown variously in FIGS. 6, 7, 15 and 16.
  • The cartridge unit 139 comprises a printhead 140 for printing on a sheet of print media as it passes thereby and ink handling and storage reservoirs 141 for providing ink to the printhead 140. The printhead 140 is a pagewidth printhead, which means that no scanning of the printhead 140 across the sheets is required. This enables high-speed printing to be performed. Those skilled in the art however will understand that the present invention is applicable to printers employing other types of printheads. Further, as shown in FIG. 15, the cartridge unit 139 comprises a single printhead 140. However, a duplex printer may be used employing a cartridge unit having two pagewidth printheads aligned so that printing surfaces thereof oppose each other with a gap therebetween for accommodating the sheet of print media.
  • The cradle unit 138 comprises the guide plate 137, a roller assembly 142 and an associated motor 143 for advancing the sheet 110 a and controlling the trajectory and speed of the sheet 110 a as it passes the printhead 140, drive electronics 144 for controlling the printing performed by the printhead 140 and a capping unit 145 for capping the printhead 140 when printing is not being performed.
  • The cradle unit 138 is mounted within the upper portion 104 of the housing 101 and the cartridge unit 139 is removable received within the cradle unit 138, which allows for easy replacement of the printhead 140 and ink storage reservoirs 141 when necessary. A release latch 146 is provided for controlling this removal. The ink handling and storage reservoirs 141 of the cartridge unit 139 may store different coloured ink and associated printing fluids, such as fixative for assisting the setting of the printed ink. The printhead 140 draws the ink from the reservoirs 141 in order to print on the print media sheets.
  • A refill port 147 is incorporated in the cartridge unit 139 to which a refill cartridge 148 can be applied so as to refill the reservoirs with the particular types of inks which may have been depleted through printing, as shown in FIG. 17 for the case of cyan ink. In order to facilitate this refilling process an indicator light 149, such as an LED, is provided on the cradle unit 138 which is controlled to indicate to a user when refilling is needed and/or has been completed in the manner described in the present Applicant's above-mentioned applications. The need for refilling can also be indicated to a user via the user interface 109 of the head unit 102 or by print manager software loaded on the user's personal computer (PC) connected to the printer 100, as discussed later.
  • The mounted position of the cradle unit 138 is such that the leading edge of the sheet 110 a being fed from the drive roller 126 of the picker assembly 106 and guided by the plurality of guides 136 and the guide plate 137 enters the roller assembly 142 of the cradle unit 138 so as to be advanced past the printhead 140 to be printed under action of the roller assembly 142 (and, in part, of the drive roller 126). The leading edge of the sheet 110 a progresses through the cradle unit 138 and following printing exits the upper portion 104 of the housing 101 via an exit slot 104 b (see FIGS. 7 and 13). As such, the sheet 110 a is guided through an angle of at least 140°, and preferably an angle of at least 180°, from the source tray assembly 103 to the collection area 105 via the printhead 140.
  • During the printing process, the trailing edge of the sheet 110 a is transferred from being driven by the drive roller 126 to being driven only by the roller assembly 142 of the print engine assembly 107. Once printed, the trailing edge exits the upper portion 104 of the housing 101 via the exit slot 104 b, whereupon the printed sheet 110 a is collected by the collection area 105 of the housing 101, as shown in FIG. 18. The orientation of the cradle unit 138 and the cartridge unit 139 of the print engine assembly 107 is such that the printed sheet 110 a falls under gravity through the exit slot 104 b so as to be collected by the collection area 105.
  • Sheets of print media may also be manually fed to the roller assembly 142 of the print engine assembly 107 rather than being fed from the stack 110 held by the source tray assembly 103. This manual feeding is primarily provided for printing individual print jobs on print media that may not be present in or suitable for the source tray assembly 103, such as photographic paper or other types of print media, such as cardboard, wood, fabric and plastics.
  • In order to provide for this manual feeding, a slot 150 is provided in an upper portion of the head unit 102, as shown in FIG. 19, through which print media sheets are manually fed. The slot 150 has a length sufficient to accommodate the width of the maximum print media size for the printer 100. In order to reduce the entry of dust and the like into the print engine assembly 107 through the slot 150, since dust, etc may damage the printhead 140, a flap 151 (see FIG. 15) spring loaded so as to be hinged inwardly or outwardly may be provided to close the slot 150 when manual feeding is not being performed.
  • Referring again to FIG. 19, the head unit 102 may comprise a margin element 152 which runs the length of the slot 150 on the upper surface of the head unit 102. The margin element 152 partly supports the sheet being fed and incorporates a sliding fence 153 which assists in controlling the feeding of differently sized print media through the slot 150. In order to manually feed a print media sheet into the printer 100 in this arrangement, the flap 151 is hinged so as to be lowered or raised and the leading edge of the sheet is fed through the slot 150 so as to impinge on the left hand side (in the orientation of FIG. 15) of the guide plate 137 of the print engine assembly 107. The sheet then progresses down the guide plate 137 so as to enter the roller assembly 142 similar to the process for an automatically fed sheet described earlier.
  • When manual feeding is being performed for consecutive sheets, the support member 119 of the source tray assembly 103 can be extended as shown in FIG. 18 so that the yet-to-be-fed sheets can be held against the upper surface of the head unit 102 and the support member 119. This support is provided by the support member 119 being angled from the vertical due to the above-described angle of the source tray assembly 103.
  • Additional guiding support for the manually fed sheets may be provided as shown in FIG. 20. That is, the flap 151 of the head unit 102 may alternatively be arranged so as to provide such support for a manually fed sheet 110 b by being configured to be larger than the slot 150, see FIG. 21, and hinged so that part of the flap 151 extends into the head unit 102 and the remaining part of flap 151 projects out of the head unit 102 when manual feeding is desired. As can be seen, in this arrangement the guide plate 137 is provided within the head unit 102 so as to assist in the supporting position of the flap 151, and the margin element 152 and the sliding fence 153 are incorporated into the flap 151.
  • Further, as can be seen from FIGS. 20 and 21, the head unit 102 in this arrangement is configured slightly differently and more compactly from the head unit 102 shown in FIGS. 15 and 19, in order to accommodate the larger flap 151. Due to the more compact size, a direct drive picker assembly 106 may be used as shown in FIG. 20, which has the motor 127 and drive roller 126 on the same axle.
  • As described earlier, the outer surface of the lower portion 105 of the housing 101 serves as a collector for collecting the printed sheets which exit the print engine assembly 107 through the exit slot 104 b of the upper portion 104 of the housing 101. This is done whether the printed sheet is automatically or manually fed.
  • In order to securely collect a number of printed sheets 110 a, which may amount to at least the number of sheets comprised in the stack 110, the collection area 105 comprises guides or ribs 154 for guiding collection of the printed sheets 110 a and holding such once collected. To achieve this the guides 105 are substantially L-shaped with a foot 155 located at the bottom end of the collection area 105 and a leg 156 running substantially for the length of the collection area 105, as shown in FIG. 1.
  • As can be seen in FIG. 18, the flat upper surfaces of the feet 155 are aligned parallel with one another and substantially orthogonal to the incline of the collection area 105 so as to provide a stop surface and support for the leading edge of the falling printed sheet 110 a. By using a plurality of the ribs 154 (e.g., three are shown in the figures) with the feet 155 in parallel-alignment, the consecutively released sheets 110 a can be “squared-up” or “knocked-up” so as to provide a neat collection of the printed sheets 110 a.
  • The middle rib 154 situated between the two outer ribs 154 is located closer to the right hand side outer rib 154 (as orientated in FIG. 1) than the left hand side outer rib 154. This is so that print media having a width which does not extend for the full width of the collection area 105, such as the photographic paper shown in FIG. 10 aligned in the upper right corner of the tray 115, is properly collected and knocked-up by the collection area 105.
  • Further, the middle rib 154 is arranged so that the leg 156 thereof projects out from the surface of the collection area 105 further than the legs 156 of the outer ribs 154. This is illustrated in FIGS. 19 and 22, where in the top view of FIG. 19, broken line 157 shows that the legs 156 of the outer ribs 154 are aligned parallel to one another with respect to the surface of the collection area 105 whilst the leg 156 of the middle rib 154 projects out from the surface beyond line 157, and in the side view of FIG. 22, the leg 156 of the middle rib 154 is clearly shown as projecting further from the surface of the collection area 105 than that of the outer rib(s) 154.
  • The legs 156 of the ribs 154 are arranged in this way so that curvature is imparted to the printed sheets 110 a with a middle portion of each of the printed sheets 110 a being situated further from the collection area 105 than the edge portions thereof. That is, a lateral curvature orthogonal to the surface of the collection area 105 is imparted to the collected sheets, which applies a retaining force on the sheets by allowing the sheets to become more rigid and less inclined to fall forward upon contact with the feet 155. This ensures that the sheets are allowed to settle on the collection area 105 without toppling forward which may effect the image printing thereon. This action is assisted by the previously-mentioned angle of about 75° to 80° from the horizontal of the collection area 105, upon which angle the legs 156 also substantially lie.
  • The manner in which the sheet 110 a exits the upper portion 104 of the housing 101 and is captured on the collection area 105 is shown in FIGS. 23A and 23B, respectively. As can be seen from FIG. 23A, the sheet 110 a exits the exit slot 104 b of the upper portion 104 of the housing 101 in a substantially vertical orientation (i.e., in the direction of arrow A). Once the sheet 110 a is released from the exit slot 104 b, as shown in FIG. 23B, the sheet 110 a drops downward under gravity until its downward motion is stopped by the leading edge of the sheet 110 a coming into contact with the feet 155.
  • As can be seen in FIG. 22, the feet 155 project from the surface of the collection area 105 substantially orthogonal to this surface. Therefore, the feet 155 are angled about 10° to 15° from the horizontal. As such, upon contact with the feet 155 the sheet 110 a is caused to settle or (slowly) fall back to the surface of the collection area 105 in the direction of arrow B so as to finally come to rest in the position shown in FIG. 18. As described above, since curvature is imparted to the sheet 110 a it becomes relatively rigid thereby reducing the likelihood of the top portion of the sheet 100 a toppling over causing the sheet 110 a to move forward off of the collection area 105.
  • Due to the high-speed printing ability of the printer 100, contact between surfaces of printed sheets could have detrimental effects on the quality of the printed image(s), such as smudging and the like which may occur due to the relatively short amount of time between the collection of consecutive sheets, e.g., about one second for 60 ppm printing. That is, the ink printed on the surface of the sheets may not have time to dry or set before the next sheet contacts and comes to rest on the previous sheet's surface, such that the ink may bleed between the sheets. The above-described sheet collection arrangement of the present invention minimises the possibility of such effects on the printed image occurring as follows.
  • As consecutive printed sheets are delivered vertically to the collection area 105, the exposure of the printed sheet to air is maximised as it proceeds along its downward trajectory after exiting the upper portion 104 of the housing 101 thereby facilitating increased drying and setting of the printed ink. Further, as the leading edge of the first sheet is captured by the feet 155 of the ribs 154, following release of the sheet from the upper portion 104, the sheet falls into position against the surface of the collection area 105 whereby a cushion of air is created between the falling sheet and the collection area 105. For the successive sheets, this cushion of air remains while the sheet settles and until it comes to rest through this settling motion on the previously collected sheet. This cushion of air prior to settling of the sheets assists the drying/setting of the ink printed on the previously collect sheet, or on both sheets in the case of duplex printing.
  • In addition to acting as a means for collecting printouts, the ribs 154 of the collection area 105 may also act as a means of providing a user of the printer 100 with an indication of the state of the printer 100 and/or the printing being performed thereby. This is achieved by forming the ribs 154 from light pipes 158 through which light can be emitted indicating such states, where these light pipe 158 are provided within the surface of the collection area 105 as shown in FIG. 12.
  • The structure of one of the light pipes 158 is shown in FIG. 24A. The light pipe 158 consists of a hollow transparent material, such as plastic, provided as a light transmitting channel which may be moulded into the shape of the ribs 154 or any other desired shape. The inner surface of the hollow material incorporates a lining which is highly reflective for light striking its surface at certain angles and transmissive for light striking at other angles. As such, light transmitted into the hollow portion is trained so as to flow for the length of the light pipe 158 and be emitted thereby through its entire length.
  • A light source assembly 159 positioned on the light pipe 158, as shown in FIG. 24A, is used to supply light into the hollow portion of the light pipe 158. The light source assembly 159 may be positioned relative to the light pipe 158, such as in the position shown in FIG. 24 or at the end of the light pipe 158, for example. The light source assembly 159 may comprise three differently coloured light sources, a red light source 160, a green light source 161 and a blue light source 162, as shown in FIG. 24B. Each of the light sources 160-162 may be a LED. The use of these different coloured light sources 160-162 allows a wide spectrum of colours to be emitted by the light pipe 158 when the light sources 160-162 are selectively operated either individually or in combination. Alternatively, a single light source capable of multiple colour emission may be used. As such, different coloured light can be used to indicate different states of the printer 100 and/or the printing being performed thereby by controlling the light source assembly 159 emission with the control circuitry of the printer 100 and/or the drive electronics 144 of the print engine assembly 107.
  • For example, a blue light emitted by the light pipes 158 used as the ribs 154 of the collection area 105 may indicate that the printer 100 is in a standby state, whilst a green light may indicate that the printer 100 is in the state of printing and a red light may indicate that the printer 100 is malfunctioning, such as there being a paper jam or there being a need for more paper or ink. Other combinations of lighting, strobing, flashing, etc could alternatively be used for such purposes. For example, increased aesthetic appeal of the printer 100 could be provided by indicating the standby state with a cycle through a spectrum of colours. The operational state of the printer 100, such as the occurrence of a paper jam, may be determined in a conventional manner as understood by those skilled in the art.
  • The light pipes 158 can also be incorporated into the head unit 102 of the printer 100, as shown in FIG. 1. The light pipes 158 of the head unit 102 can be controlled in the same manner as those of the ribs 154, as discussed above, in order to indicate to a user the state of the printer 100, etc. Further, the combination of the light pipes 158 in both the head unit 102 and the collection area 105 can be used to indicate the state of different parts of the printer 100 by the individual operation thereof. Further still, other parts of the printer 100 could also be arranged with the light pipes 158 for this purpose. For example, the display of a red light with the light pipes 158 in the head unit 102 whilst the rest of the light pipes 158 of the printer 100 display green light could be used to immediately indicate to a user that there is a problem in the area of the head unit 102, such as paper jam or the like, whilst the rest of the printer 100 is functioning normally. In this way the user can easily and quickly identify and address any problems with the functioning of the printer 100.
  • Alternatively, the light pipes 158 may be provided in only one area of the printer 100 to indicate the state of the whole of the printer 100. In this case, the light pipes 158 are preferably provided only in the head unit 102 on the front facing surface thereof about the user interface 109, as shown in FIG. 1 for example, so as to provide good visibility for users. In this arrangement, if a problem arises with the functioning of the printer 100, the light pipes 158 of the head unit 102 can be used to indicate that a problem has occurred, upon which the user can refer to the user interface 109 or the print manager software loaded on the user's PC to determine what problem has occurred, and where.
  • For example, the light pipes 158 may emit blue light to indicate the standby state of the printer 100, green light to indicate the normal operation state of the printer 100, orange light to indicate a fault state of the source tray assembly 103, such as paper jam at the picker assembly 106 or the source tray assembly 103 not being fully closed with respect to the housing 101, and purple light to indicate a fault state of the head unit 102, such as a paper jam at the roller assembly 142 of the print engine assembly 107. However, other combinations of coloured lights may be used to indicate the state of the different operational areas of the printer 100.
  • The user interface 109 may be a display screen, such as a liquid crystal display, as shown in FIG. 1, used to display information about the state of the printer 100 and the like, and is preferably a touch screen via which users can operate the printer 100. This means that mechanical buttons and the like do not need to be provided on the printer 100 which facilitates a compact design of the printer 100. However, such buttons can be provided together with a simple display screen if desired.
  • The user interface 109 can therefore be used, either alone or in combination with the light pipes 158, to display information as to the state of the printer 100, such as the ink capacity left in the ink storage reservoirs of the print engine assembly 107, the occurrence of a paper jam in the transport system, as well as command and information menus, etc for the operation of the printer 100. To achieve this, the user interface 109 may further comprise a memory and a processor (not shown) for storing software for such menus and processing commands input by the user by touching areas of the touch screen. Alternatively, such components may be provided by the drive electronics 144 of the print engine assembly 107 with suitable connections between the user interface 109 and the drive electronics 144 being provided in the head unit 102 and the upper portion 104 of the housing 101.
  • The command and information menus displayed by the user interface 109 can also be used to display information on print jobs being, or to be, performed by the printer 100. In order to receive print jobs, the printer 100 may be connected directly to a user terminal (not shown), such as a PC, or connected to a plurality of such terminals via a network, which terminal(s) transmit the print jobs to the drive electronics 144 of the print engine assembly 107 for processing and printing by the printhead 140. Such menus can also be easily adapted to display in different languages, etc, which is convenient for providing the printer 100 for use in different countries. In this way the user interface 109 is able to display information to a user regarding the operation of the printer 100 which is more useful than that which is typically provided at the print manager level on a PC connected to the printer, which is typically the case for conventional desktop printers.
  • This connection can be provided in a wired manner via a Pictbridge connector 163 situated in the collection area 105 area of the housing 101, as shown in FIG. 1, which allows for connection between the terminals and the printer 100. The Pictbridge connector 163 is positioned below the paper collection surfaces of the feet 155 of the collection area 105 so that a cable connected thereto (not shown) does not to interfere with the printout collection. However, the Pictbridge connector 163 may instead be positioned on the side or rear of the housing 101, or within the base unit 112.
  • Alternatively, the connection between the terminals and the printer 100 can be provided in a wireless manner by using a WIFI card 164 and/or a Bluetooth® card 165 located in the inner section of the housing 101, as shown in FIGS. 7 and 12.
  • Alternatively still, or in addition, the printer 100 may incorporate means for directly receiving image data for the print jobs by incorporating slots 166 and 167, such as those shown in FIG. 25 in one of the side portions 105 b of the lower portion 105 of the housing 101. The slots 166 and 167 are arranged to receive photocards and the like so that images stored thereon can be downloaded to the printer's 100 or the drive electronics' 144 memory for direct printing.
  • Power for the user interface 109, the print engine assembly 107 (particularly for the motor 143 of the roller assembly 142, the printhead 140, the drive electronics 144 and the capping unit 145), the picker assembly 106 (particularly for the motor 127 of the drive roller 126), the light pipes 158 and other electronic components of the printer 100 is supplied from an external power source (not shown) via a power connector 168 and power supply unit (PSU) 169 provided in the base unit 112, as shown in FIGS. 7, 11 and 26. Corresponding connections from the PSU 169 to the various electronic components can be provided via suitable wiring housed within the inner section and upper portion 104 of the housing 101 of the printer 100.
  • As can be seen from FIG. 26, in which a cover 112 e of the base unit 112 (see FIGS. 4 and 7) has been removed from a support portion 112 f thereof, the base unit 112 not only provides a base for holding the housing 101 and source tray assembly 103 in a substantially vertical orientation but also provides for the various connections of the printer 100. That is, in addition to the power connector 168, the base unit 112 may also hold a USB connector 170 and an Ethernet connector 171, for connection to external devices/terminals and networks, for the reasons discussed earlier. As with the power connections, corresponding connections from the connectors 170 and 171, and also from the card devices 164 and 165 and the Pictbridge connector 163, to the various data components of the printer 100 can be provided via suitable wiring housed within the inner section and upper portion 104 of the printer 100.
  • The support portion 112 f of the base unit 112 extends from the bottom portion of the base unit 112 to the rear of the printer 100 so as to provide additional support for the assembled printer 100, particularly since the housing 101 and the source tray assembly 103 are angled from the vertical towards the rear of the printer 100. Further, the cover 112 e is arranged on the support portion 112 f and is easily removable to gain access to the connectors 168, 170 and 171 for connection to corresponding device/terminal cables (not shown). The cover 112 e is conveniently able to be placed on the support portion 112 f even when cables are connected as space is provided for accommodating the plugs on the end of the cables and a gap 112 g is provided for accommodating the cables themselves (see FIG. 3). Feet portions 112 h are also provided on the bottom of the base unit 112 for providing stability to the substantially vertical printer 100, as shown in FIGS. 3, 22 and 27.
  • Apart from serving the above-mentioned purposes of providing a support for the housing 101, the head unit 102 and the source tray assembly 103, and connections for power and data, the base unit 112 may also be arranged on a stand assembly 172 for the printer 100 as shown in FIGS. 28 and 29.
  • The stand assembly 172 enables the printer 100 to be easily converted from a pure “desktop” printer to a stand-alone printer. This provides for even greater desk space in a home or office environment. Further, the stand assembly 172 is provided with a similar footprint to that of the printer 100, such that the assembled printer 100 and stand assembly 172 continues to provide a relatively small footprint printing system.
  • As shown in FIG. 29, an upper frame portion 173 of the stand assembly 172 is arranged so as to conform to the shape of the bottom of the base unit 112, including the support portion 112 f of the base unit 112, which is shown in FIG. 27. In this way, the base unit 112 is locked to the upper frame portion 173 by a nesting arrangement, thereby providing secure assembly of the printer 100 to the stand assembly 172.
  • Cables 174 from external devices/terminals for connection to the connectors 168, 170 and 171 provided in the base unit 112 are accommodated in a cable housing 175 which is held at a top end thereof by the upper frame portion 173 at the rear of the stand assembly 172. The cable housing 175 comprises a cover 176 which neatly and safely encloses the cables 174, whilst being removable so as to provide quick access thereto. A handle 177 is provided at the top of the cable housing 175 on the upper frame portion 173 for easy transport of the assembled printer 100 and stand assembly 172.
  • A lower frame portion 178 and a base plate 179, to which the lower frame portion 178 is attached, are provided at the bottom of the stand assembly 172. The base plate 179 provides sufficient stability to the assembled printer 100 and stand assembly 172 whilst retaining a relatively small footprint, whilst the lower frame portion 178 is shaped similar to the upper frame portion 173 so as to hold the bottom end of the cable housing 175. The upper and lower frame portions 173 and 178 hold a frame 180 therebetween within which one or more print media trays 181 may be arranged.
  • As can be seen, each of the print media trays 181 are provided at an angle to the vertical so as to each be able to hold a stack of print media, such as paper. The trays 181 may be used to store paper for printing and/or paper that has been printed. The frame 180 is shown in FIGS. 28 and 29 arranged with three of the trays 181, however a greater or lesser number of the trays may be provided in accordance with the present invention.
  • The provision of a plurality of trays 181 provides storage for stacks of different sized print media for printing. That is, if printing on different sized paper than is presently loaded in the source tray assembly 103 of the printer 100 is required, it is a simple task for a user to source this paper from the trays 181 to replace the paper in the source tray assembly 103 or manually feed this paper into the printer 100. Further, the plurality of trays 181 can be used to hold additional stacks of the most common paper size used with the printer 100 so as to provide an efficient means of reloading the source tray assembly 103 when the need for such is indicated to a user via the light pipes 158 and/or the user interface 109, for example.
  • The provision of the plurality of trays 181 may also provide a means to collate different print job outputs. That is, in a network printing environment, say, it may be necessary to collate the outputs of a number of users since those users may not immediately collect their printouts. Such manual collation may be needed due to the high-speed printing capability of the printer 100 through which many outputs may be produced in a relatively short amount of time.
  • The trays 181 are arranged to slide into place in the frame 180 so that the inner edges 181 a thereof rest on the cable housing 175 (see FIG. 29). Further, the upper and lower frame portions 173 and 178 are arranged to removably receive the frame 180 and cable housing 195 therein. In this way, the stand assembly 172 is provided as a modular assembly of the above-mentioned parts such that it is easily assembled and disassembled. In its disassembled state, the stand assembly 172 presents a number of compact parts which can be easily packaged with the parts of the disassembled printer 100, i.e., the separate parts of the housing 101, the head unit 102, the source tray assembly 103, the picker assembly 106, the print engine assembly 107 and the base unit 112. In order to facilitate assembly/disassembly and the mobility of the assembled printer 100 and stand assembly 172, the components of the stand assembly 172 are preferably made from a lightweight material, such as plastic.
  • Exemplary construction and operation of the vertical printer of the present invention is now described.
  • For the desktop printer 100 configured to print on A4 paper as being the maximum-sized paper, the pagewidth printhead 140 of the print engine assembly 107 has a printhead width of 224 mm or 8.8 inches. In order to form this printing width the printhead 140 comprises a plurality of printhead integrated circuits (ICs) incorporating printing or ink ejecting nozzles therein, such as those described in the present Applicant's above-referenced applications RRA01US to RRA33US.
  • In accordance with the present invention, at least 5,000 nozzles may be incorporated to provide the required quality of printing, i.e., at least 1600 dpi, at the high-speed of at least 30 ppm, preferably at least 60 ppm. However, depending upon the printing quality and speed required, the printhead may comprise at least 10,000 nozzles, preferably at least 20,000 nozzles, and more preferably at least 50,000 nozzles in higher-speed, higher-quality printing applications.
  • These nozzles are arranged as a two-dimensional array across the width of the printhead so as to eject ink, and other printing fluids such as fixative, onto the surface of the passing print media in order to print images thereon. Each of the nozzles corresponds to a printed dot on the print media, and therefore the larger the number of nozzles and the greater the packing density thereof in the printhead the closer the printed dots, and therefore the higher the resolution of the printing. The drive electronics 144 receives and processes image data from an external data source, via one or more of the data connectors 163, 170 and 171 or data devices 164 and 165, and drives the nozzles of the printhead in accordance with the processed image data (explained in more detail later).
  • With respect to the type of nozzle systems which are applicable for the printhead 140, any type of ink jet nozzle array which can be integrated on a printhead IC is suitable. That is, systems such as a continuous ink system, an electrostatic system and a drop-on-demand system, including thermal and piezoelectric types, can be used.
  • Regarding a thermal drop-on-demand system, there are various types known which typically include ink reservoirs adjacent the nozzles and heater elements in thermal contact therewith. The heater elements heat the ink which creates gas bubbles therein. The gas bubbles generate pressures in the ink causing droplets to be ejected through the nozzles onto the print media. The amount of ink ejected onto the print media by each nozzle and when this occurs is controlled by the drive electronics. Such thermal systems impose limitations on the type of ink that can be used however, since the ink must be resistant to heat, and also require a cooling process which can reduce the optimum printing speed.
  • Regarding a piezoelectric drop-on-demand system, various types are also known which typically use piezo-crystals arranged adjacent the ink reservoirs which are caused to flex when an electric current flows therethrough. This flexing causes droplets of ink to be ejected from the nozzles in a similar manner to the thermal systems described above. Such piezoelectric systems allow more control over the shape and size of the ink droplets than the thermal systems and the ink does not have to be heated and cooled between cycles, giving a greater range of available ink types.
  • Further, a micro-electromechanical system (MEMS) of nozzles could be used which includes thermo-actuators which cause the nozzles to eject ink droplets. Such nozzle systems are described in the present Applicant's following co-pending and granted applications:
  • U.S. Pat. Nos. 6,188,415; 6,209,989; 6,213,588; 6,213,589; 6,217,153; 6,220,694; 6,227,652; 6,227,653; 6,227,654; 6,231,163; 6,234,609; 6,234,610; 6,234,611; 6,238,040; 6,338,547; 6,239,821; 6,241,342; 6,243,113; 6,244,691; 6,247,790; 6,247,791; 6,247,792; 6,247,793; 6,247,794; 6,247,795; 6,247,796; 6,254,220; 6,257,704; 6,257,705; 6,260,953; 6,264,306; 6,264,307; 6,267,469; 6,283,581; 6,283,582; 6,293,653; 6,302,528; 6,312,107; 6,336,710; 6,362,843; 6,390,603; 6,394,581; 6,416,167; 6,416,168; 6,557,977; 6,273,544; 6,299,289; 6,299,290; 6,309,048; 6,378,989; 6,420,196; 6,425,654; 6,439,689; 6,443,558; and 6,634,735, U.S. patent application Ser. No. 09/425,420, U.S. Pat. Nos. 6,623,101; 6,406,129; 6,457,809; 6,457,812; 6,505,916; 6,550,895; 6,428,133; 6,305,788; 6,315,399; 6,322,194; 6,322,195; 6,328,425; 6,328,431; 6,338,548; 6,364,453; 6,383,833; 6,390,591; 6,390,605; 6,417,757; 6,425,971; 6,426,014; 6,428,139; 6,428,142; 6,439,693; 6,439,908; 6,457,795; 6,502,306; 6,565,193; 6,588,885; 6,595,624; 6,460,778; 6,464,332; 6,478,406; 6,480,089; 6,540,319; 6,575,549; 6,609,786; 6,609,787; 6,612,110; 6,623,106; 6,629,745; 6,652,071; 6,659,590, U.S. patent application Ser. Nos. 09/575,127; 09/575,152; 09/575,176; 09/575,177; 09/608,780; 09/693,079; 09/693,135; 09/693,735; 10/129,433; 10/129,437; 10/129,503; 10/407,207; and 10/407,212, Filing Docket Nos. JUM003 and JUM004, U.S. patent application Ser. Nos. 10/302,274; 10/302,297; 10/302,577; 10/302,617; 10/302,618; 10/302,644; 10/302,668; 10/302,669; 10/303,312; 10/303,348; 10/303,352; and 10/303,433, and Filing Docket Nos. MTB01 to MTB14, the disclosures of which are all incorporated herein by reference. Some of the above applications have been identified by their filing docket number, which will be substituted with the corresponding application number, once assigned.
  • Description of an exemplary MEMS nozzle system applicable to the printhead 140 is provided below, as is an exemplary manner in which the drive electronics processes the image data and drives such a nozzle system, with reference the FIGS. 30 to 43.
  • FIG. 30 shows an array of nozzle arrangements 182. The nozzle arrangements 182 shown are identical, however different nozzle arrangements 182 may used which are fed with different colored inks and fixative. Preferably, the printhead 140 is configured with the nozzle arrangements 182 in rows, with one row each to print in one of 5 colours: Cyan; Magenta; Yellow; blacK (“CMYK”); and InfraRed (“IR”), and one row to print Fixative (“F”). CMY is provided for regular colour printing, K is provided for black text, line graphics and greyscale printing, IR is provided for applications requiring “invisible” printing, and F is provided to assist in the prevention of smudging of the printouts at high-speed.
  • The printhead 140 can however be adapted to print using any desired number of colours, and can comprise a monolithic printhead IC or require multiple substrates depending upon implementation. Further, the rows of the nozzle arrangements 182 are staggered with respect to each other, allowing closer spacing of ink dots during printing than would be possible with a single row of nozzles. The multiple rows also allow for redundancy (if desired), thereby allowing for a predetermined failure rate per nozzle.
  • The printhead ICs of the printhead 140 are manufactured using an integrated circuit fabrication technique and, as previously indicated, embody a micro-electromechanical system (MEMS). Referring to FIG. 31, which shows a single nozzle, each printhead IC includes a silicon wafer substrate 183 and CMOS microprocessing circuitry formed thereon. This is done by depositing a silicon dioxide layer 184 on the substrate 183 as a dielectric layer and aluminium electrode contact layers 185 on the silicon dioxide layer 184. Both the substrate 183 and the layer 184 are etched to define an ink channel 186, and an aluminium diffusion barrier 187 is positioned about the ink channel 186.
  • A passivation layer 188 of silicon nitride is deposited over the aluminium contact layers 185 and the layer 184. Portions of the passivation layer 188 that are positioned over the contact layers 185 have openings 189 therein to provide access to the contact layers 185.
  • Each nozzle includes a nozzle chamber 190 which is defined by a nozzle wall 191, a nozzle roof 192 and a radially inner nozzle rim 193. The ink channel 186 is in fluid communication with the chamber 190.
  • A moveable rim 194, that includes a movable seal lip 195, is located at the lower end of the nozzle wall 191. An encircling wall 196 surrounds the nozzle and provides a stationery seal lip 197 that, when the nozzle is at rest as shown in FIG. 31, is adjacent the moveable rim 194. A fluidic seal 198 is formed due to the surface tension of ink trapped between the stationery seal lip 197 and the moveable seal lip 195. This prevents leakage of ink from the chamber whilst providing a low resistance coupling between the encircling wall 196 and the nozzle wall 191.
  • The nozzle wall 191 forms part of lever arrangement that is mounted to a carrier 199 having a generally U-shaped profile with a base 200 attached to the layer 188. The lever arrangement also includes a lever arm 201 that extends from the nozzle wall and incorporates a lateral stiffening beam 202. The lever arm 201 is attached to a pair of passive beams 203 that are formed from titanium nitride and are positioned at each side of the nozzle, (best seen in FIGS. 34 and 35). The other ends of the passive beams 203 are attached to the carriers 199.
  • The lever arm 201 is also attached to an actuator beam 204, which is formed from TiN. This attachment to the actuator beam is made at a point which is a small, but critical, distance higher than the attachments to the passive beam 203.
  • As can best be seen from FIGS. 34 and 35, the actuator beam 204 is substantially U-shaped in plan, defining a current path between an electrode 205 and an opposite electrode 206. Each of the electrodes 205 and 206 is electrically connected to a respective point in the contact layer 185. The actuator beam 204 is also mechanically secured to an anchor 207, and the anchor 207 is configured to constrain motion of the actuator beam 204 to the left of FIGS. 31 to 33 when the nozzle arrangement is activated.
  • The actuator beam 204 is conductive, being composed of TiN, but has a sufficiently high enough electrical resistance to generate self-heating when a current is passed between the electrodes 205 and 206. No current flows through the passive beams 203, so they do not experience thermal expansion.
  • In operation, the nozzle is filled with ink 208 that defines a meniscus 209 under the influence of surface tension. The ink 208 is retained in the chamber 190 by the meniscus 209, and will not generally leak out in the absence of some other physical influence.
  • To fire ink from the nozzle, a current is passed between the contacts 205 and 206, passing through the actuator beam 204. The self-heating of the beam 204 causes it to expand, with the actuator beam 204 being dimensioned and shaped so that it expands predominantly in a horizontal direction with respect to FIGS. 31 to 33. The expansion is constrained to the left by the anchor 207, so the end of the actuator beam 204 adjacent the lever arm 201 is impelled to the right.
  • The relative horizontal inflexibility of the passive beams 203 prevents them from allowing much horizontal movement of the lever arm 201. However, the relative displacement of the attachment points of the passive beams and actuator beam respectively to the lever arm causes a twisting movement that, in turn, causes the lever arm 201 to move generally downwardly with a pivoting or hinging motion. However, the absence of a true pivot point means that rotation is about a pivot region defined by bending of the passive beams 203.
  • The downward movement (and slight rotation) of the lever arm 201 is amplified by the distance of the nozzle wall 191 from the passive beams 203. The downward movement of the nozzle walls and roof causes a pressure increase within the chamber 190, causing the meniscus 209 to bulge as shown in FIG. 32. The surface tension of the ink causes the fluid seal 198 to be stretched by this motion, however ink is not allowed to leak out.
  • As shown in FIG. 33, at the appropriate time the drive current is stopped and the actuator beam 204 quickly cools and contracts. This contraction causes the lever arm 201 to commence its return to the quiescent position, which in turn causes a reduction in pressure in the chamber 190. The interplay of the momentum of the bulging ink and its inherent surface tension, and the negative pressure caused by the upward movement of the nozzle chamber 190 causes thinning, and ultimately snapping, of the bulging meniscus 209 to define an ink drop 210 that continues upwards until it contacts passing print media.
  • Immediately after the drop 210 detaches, the meniscus 209 forms the concave shape shown in FIG. 33. Surface tension causes the pressure in the chamber 190 to remain relatively low until ink has been suctioned upwards through the inlet 186, which returns the nozzle arrangement and the ink to the quiescent state shown in FIG. 31.
  • In order to control the delivery of the drops from each of the nozzles, the print engine assembly 107 uses the drive electronics 144. As described earlier, the drive electronics 144 receives image data of print jobs to be printed by the printer 100. Referring to FIG. 36, this image data may be received from an external data source, such as a computer system or user's PC 211. The PC 211 is programmed to perform various steps involved in printing image data (i.e., a document), including receiving the document (step 212), buffering and rasterising the document to provide a page description (steps 213 and 214) and compressing this to provide a page image (step 215) suitable for transmission to the print engine assembly 107 of the printer 100.
  • At the drive electronics 144 of the print engine assembly 107 provided in the printer 100, the compressed, multi-layered page image is buffered (step 216) and then expanded to separate the different layers of the page image (step 217). The expanded contone layer is dithered (step 218) and then the black layer is composited over the dithered contone layer (step 219). Coded data can also be rendered (step 220) to form an additional layer, to be printed using infrared ink, for example, that is substantially invisible to the human eye. The black, dithered contone and infrared layers are combined (step 221) to form a page that is supplied to the printhead 140 for printing (step 222), which as mentioned above, is preferably configured to print in 5 colours.
  • Further, the document data is preferably divided into a high-resolution bi-level mask layer for text and line art and a medium-resolution contone colour image layer for images or background colours. Optionally, coloured text can be supported by the addition of a medium-to-high-resolution contone texture layer for texturing text and line art with colour data taken from an image or from flat colours. The contone layers are generalised by representing them in abstract “image” and “texture” layers which can refer to either image data or flat colour data. This division of data into layers based on content follows the base mode Mixed Raster Content (MRC) model known to those skilled in the art. Like the MRC base mode, compromises are made in some cases when data to be printed overlap. For example, all overlaps may be reduced to a 3-layer representation in a process (collision resolution) embodying the compromises explicitly.
  • The central data structure is a generalised representation of the three layers, called a page element 223, shown in a simplified UML diagram in FIG. 37. The page element 223 can be used to represent units ranging from single rendered elements emerging from a rendering engine up to an entire band of a print job. Conceptually, the bi-level symbol region selects between the two colour sources, as described in more detail below with reference to FIGS. 37 and 38. It will be appreciated that the device components shown in FIG. 38, which carry out the steps 212 to 222 shown in FIG. 36, will typically be device dependent, in that they process the data into a form required by a software or hardware component further downstream.
  • In FIG. 38, a renderer 224 is provided outside of the more general printer system pipeline shown in FIG. 36 in order to render files to be printed and deliver the rendered elements to a data receiver 225 (step 212) of the pipeline, using an Application Programming Interface (API) exposed by the data receiver 225 for that purpose. The rendered elements are delivered in order according to the painter's algorithm, which is well known to those skilled in the art. The data passed in through the API is converted by the data receiver 225 into lists of dictionaries and page elements for processing in later stages.
  • The data is then rasterised (step 214 in FIG. 36) as follows. A collision resolver 226 accepts the simple page elements created by the data receiver 225 (via buffering at step 213) and creates a fully opaque “resolved” page element for each intersection of a new element with the background and any elements already present. Fundamentally, the collision resolver 226 guarantees that the entire page is tiled with opaque elements. A stripper 227 divides a band of data into horizontally overlapping pieces, which is performed since the printer 100 is relatively fast and as such uses multiple parallel devices in order to achieve the required output dot-rate. In such cases, each horizontally overlapping piece is fed into a corresponding device downstream. Where such data division is not required, the stripper 227 can be omitted.
  • Different printing configurations will require different configurations of layers for delivery to the downstream hardware. A layer reorganiser 228 converts 3-layer page elements to the appropriate 2- or 3-layer form for the specific configuration. Again, there may be cases in which this function is not required, in which case the layer organiser 228 can be omitted. A contone combiner 229 combines and clips the image and texture layers of all page elements in a strip into single image and texture layers, as required by downstream hardware.
  • A colour converter 230 transforms the contone planes of all page elements from the input colour space to a device-specific colour space (which is usually CMYK). A mask combiner 231 performs the same operation on the mask layer as the contone combiner 229 performs on the contone layers. All elements are clipped to a strip boundary and drawn into a single mask buffer.
  • A densitometer 232 measures the density of the current page as a percentage of total possible density. This operation is necessary when the power supply of the printer 100 is not able to handle a fully dense page at full speed. A contone compressor 233 compresses the contone layers of all page elements in order to reduce downstream memory and/or transmission bandwidth requirements. A mask formatter 234 converts the mask layer of page elements, which may be represented as regions of placed symbol references, into the form expected by a downstream mask decompressor.
  • A size limiter 235 ensures that all size limitations, for bands and for entire pages, are adhered to, by either dividing bands into smaller bands or by recompressing the data, repeating until the constraint is satisfied. If data is to be transmitted to the printer 100 between pipeline stages, a serialised form of the data structures is generated (in a serialiser 236), transmitted, then deserialised (in a deserialiser 237).
  • Within the drive electronics 144 of the print engine assembly 107 incorporated in the printer 100, a distributor 238 converts data from a proprietary representation into a hardware-specific representation and ensures that the data for each strip is sent to the correct hardware device whilst observing any constraints or requirements on data transmission to these devices. The distributor 238 distributes the converted data to an appropriate one of a plurality of pipelines 239. The pipelines 239 are identical to each other, and in essence provide decompression, scaling and dot compositing functions to generate a set of printable dot outputs for the nozzles of the printhead 140.
  • Each pipeline 239 includes a buffer 240 for receiving the page image data from the PC 211 (step 216 in FIG. 36). A contone decompressor 241 decompresses the colour contone planes and a mask decompressor 242 decompresses the monotone (text) layer (step 217 in FIG. 36). Further, a contone scaler 243 and a mask scaler 244 are provided to scale the decompressed contone and mask planes, respectively, to take into account the size of the print media onto which the processed page is to be printed by the printhead 140.
  • The scaled contone planes are then dithered by a ditherer 245 using stochastic dispersed-dot dither (step 218 in FIG. 36). Clustered-dot, or amplitude-modulated, dither is not used since dispersed-dot, or frequency-modulated, dither reproduces high spatial frequencies (i.e., image detail) almost to the limits of the dot resolution while simultaneously reproducing lower spatial frequencies to their full colour depth when spatially integrated by the eye. A stochastic dither matrix is carefully designed to be relatively free of objectionable low-frequency patterns when tiled across the image. As such, its size typically exceeds the minimum size required to support a particular number of intensity levels (e.g., 16×16×8 bits for 257 intensity levels).
  • The dithered planes are then composited in a dot compositor 246 on a dot-by-dot basis to provide dot data suitable for printing (steps 219 and 221 in FIG. 36). This data is forwarded to data distribution and drive circuitry 247, which in turn distributes the data to the correct nozzle actuators 204 of the printhead 140 which in turn cause ink to be ejected from the correct nozzles at the correct time (step 222 in FIG. 36).
  • In the above system, a mainly software-based PC portion 211 is provided prior to the serialiser 236, and a mainly hardware-based print engine assembly portion 107, that is located within the printer 100 remote from the PC 211, is provided including everything from the deserialiser 237 onwards. It will be appreciated, however, that the indicated division between computer system and printer is somewhat arbitrary, and various components can be placed on different sides of the divide without substantially altering the operation as a whole. It will also be appreciated that some of the device components can be handled in hardware or software remotely from the computer system and printer. For example, rather than relying on the general-purpose processor of the PC, some of the components in the architecture can be accelerated using dedicated hardware.
  • Preferably, the hardware pipelines 239 are embodied in a controller of the print engine assembly 107, which also preferably includes one or more system on a chip (SoC) components, as well as the print engine assembly pipeline control application specific logic, configured to perform some or all of the functions described above in relation to the printing pipeline.
  • Referring to FIG. 39, from the highest point of view the controller of the print engine assembly 107 consists of three distinct subsystems: a central processing unit (CPU) subsystem 248, a dynamic random access memory (DRAM) subsystem 249 and a print engine assembly pipeline (PEP) subsystem 250. Various components of these subsystems 248 to 250 are described below, with a more detailed description of these components, including their various functions, being provided later in Tables 1 to 3.
  • The CPU subsystem 248 includes a CPU 251 that controls and configures all aspects of the other subsystems and provides general support for interfacing and synchronizing the various components of the printer 100 with the print engine assembly 107. It also controls the low-speed communication to Quality Assurance (QA) devices (described in more detail later). The CPU subsystem 248 also contains various peripherals to aid the CPU 251, such as General Purpose Input Output (“GPIO”), which includes motor control, etc, Interrupt Controller Unit (“ICU”), Low-Speed Serial (“LSS”) master and general Timers (“TIM”).
  • The DRAM subsystem 249 accepts requests from the CPU 251, Serial Communications Block (“SCB”) on the CPU subsystem 248, which provides a full speed USB1.1 interface to the host as well as an Interface (“INT”) to other controllers of the print engine assembly 107 and blocks within the PEP subsystem 250. The DRAM subsystem 249, and in particular DRAM Interface Unit (“DIU”) thereof, arbitrates the various requests and determines which request should win access to DRAM incorporated therein. DIU arbitrates based on configured parameters, to allow sufficient access to DRAM for all requesters. DIU also hides the implementation specifics of DRAM, such as page size, number of banks and refresh rates.
  • The PEP subsystem 250 accepts compressed pages from DRAM and renders them to bi-level dots for a given print line destined for PrintHead Interface (“PHI”) that communicates directly with the printhead ICs of the printhead 140. The first stage of the page expansion pipeline includes Contone Decoder Unit (“CDU”), Lossless Bi-level Decoder (“LBD”) and Tag Encoder (“TE”). CDU expands the JPEG-compressed contone (typically CMYK) layers, LBD expands the compressed bi-level layer (typically K), and TE encodes infrared tags for later rendering (typically in IR or K ink). The output from the first stage is a set of buffers: Contone FIFO Unit (“CFU”); Spot FIFO Unit (“SFU”); and Tag FIFO Unit (“TFU”). CFU and SFU buffers are implemented in dynamic random access memory.
  • The second stage includes Halftone Compositor Unit (“HCU”), which dithers the contone layer and composites position tags and the bi-level spot layer over the resulting bi-level dithered layer. A number of compositing options can be implemented, depending upon the printhead 140 with which the controller is used. Up to six channels of bi-level data are produced from this stage, although not all channels may be present on the printhead 140. For example, the printhead 140 may be CMY only, with K pushed into the CMY channels and IR ignored. Alternatively, the encoded tags may be printed in K if IR ink is not available (or for testing purposes).
  • In the third stage, Dead Nozzle Compensator (“DNC”) compensates for dead nozzles in the printhead 140 by colour redundancy and error diffusing of dead nozzle data into surrounding dots. The resultant bi-level six channel dot-data (typically CMYK, IR and fixative) is buffered and written to a set of line buffers stored in DRAM via Dotline Writer Unit (DWU). Finally, the dot-data is loaded back from DRAM, and passed to PHI via a dot FIFO (not shown). The dot FIFO accepts data from Line Loader Unit (“LLU”) at the system clock rate, while PHI removes data from the dot FIFO and sends it to the printhead 140 at a rate of ⅔ times the system clock rate.
  • The details and functions of the above-described components of the subsystems 248 to 250 and those shown in FIG. 39 but not described above are provided in Tables 1 to 3 below, for the CPU subsystem 248, the DRAM subsystem 249 and the PEP subsystem 250, respectively.
  • TABLE 1 Acronym Component Description DIU DRAM Provides an interface for DRAM read and write Interface access for the various controllers, the CPU 251 Unit and SCB block, arbitration between competing units and controls access to DRAM DRAM (embedded) 20 Mbits of embedded DRAM DRAM
  • TABLE 2 Acronym Component Description CPU Central Processing Unit For system configuration and control MMU Memory Management Unit Limits access to certain memory address areas in CPU user mode RDU Real-time Debug Unit Facilitates the observation of the contents of most of the CPU addressable registers in the controller, in addition to some pseudo-registers in real time TIM (general) Timer Contains watchdog and general system timers LSS Low-Speed Serial interfaces Low level controller for interfacing with the QA devices GPIO General Purpose Input/Outputs General IO controller with built-in motor control and LED pulse units and de-glitch circuitry ROM Boot ROM 16 KBytes of System Boot ROM code ICU Interrupt Controller Unit General Purpose interrupt controller with configurable priority, and masking CPR Clock, Power and Reset block Central Unit for controlling and generating the system clocks and resets and power-down mechanisms PSS Power Save Storage Storage retained while system is powered down USB Universal Serial Bus device USB device controller for interfacing with the host USB INT Interface Interface controller for data and control communication with other controllers in a multiple controller print engine assembly 107 SCB Serial Communication Block Contains both USB and Interface blocks
  • TABLE 3 Acronym Component Description PCU PEP controller Provides the CPU 251 with the means to read and write PEP Unit registers, and read and write DRAM in single 32-bit chunks CDU Contone Decoder Unit Expands JPEG compressed contone layer and writes decompressed contone to DRAM CFU Contone FIFO Unit Provides line buffering between CDU and HCU LBD Lossless Bi-level Decoder Expands compressed bi-level layer SFU Spot FIFO Unit Provides line buffering between LBD and HCU TE Tag Encoder Encodes tag data into line of tag dots TFU Tag FIFO Unit Provides tag data storage between TE and HCU HCU Halftoner Compositor Unit Dithers contone layer and composites the bi-level spot and position tag dots DNC Dead Nozzle Compensator Compensates for dead nozzles by colour redundancy and error diffusing dead nozzle data into surrounding dots DWU Dotline Writer Unit Writes out the six channels of dot data for a given print-line to a line store DRAM LLU Line Loader Unit Reads the expanded page image from the line store, formatting the data appropriately for the printhead 140 PHI PrintHead Interface Responsible for sending dot data to the nozzles of the printhead 140 and for providing line synchronization between multiple controllers, and provides a test interface to the printhead 140 such as temperature monitoring and dead nozzle identification
  • Preferably, DRAM of the DRAM subsystem 249 is 2.5 Mbytes in size, of which about 2 Mbytes are available for compressed page store data. A compressed page is received in two or more bands, with a number of bands stored in memory. As a band of the page is consumed by the PEP subsystem 250 for printing, a new band can be downloaded. The new band may be for the current page or the next page. Using banding it is possible to begin printing a page before the complete compressed page is downloaded, but care must be taken to ensure that data is always available for printing or a buffer under-run may occur.
  • The embedded USB 1.1 device accepts compressed page data and control commands from the PC 211 (FIG. 36), and facilitates the data transfer to either DRAM, or to another controller in a multiple controller print engine assembly. A multiple controller print engine assembly 107 may be used to perform different functions depending upon the particular implementation. For example, in some cases a controller can be used simply for its onboard DRAM, while another controller attends to the various decompression and formatting functions described above. This can reduce the chance of buffer under-run, which can happen in the event that the printhead 140 commences printing a page prior to all the data for that page being received and the rest of the data is not received in time. Adding an extra controller for its memory buffering capabilities doubles the amount of data that can be buffered, even if none of the other capabilities of the additional controller are utilized.
  • Each controller may have several QA devices designed to cooperate with each other to ensure the quality of the mechanics of the printer 100, the quality of the ink supply so the nozzles of the printhead 140 will not be damaged during printing and the quality of the software to ensure the printhead 140 and the mechanics of the printer 100 are not damaged.
  • Normally, each controller of the print engine assembly 107 will have an associated QA device (not shown) which stores information on the attributes of the printer 100, such as the maximum printing speed. The cartridge unit 139 of the print engine assembly 107 also contains an ink QA device (not shown) which stores information on the cartridge unit 139, such as the amount of ink remaining in the ink storage and handling reservoirs 141. The printhead 140 also has a QA device (not shown) which is configured to act as a ROM (effectively as an EEPROM) that stores printhead-specific information such as dead nozzle mapping and the characteristics of the printhead 140. The CPU 251 in the CPU subsystem 248 of the controller also runs a logical (software) QA device (not shown) and may optionally load and run program code from a QA device that effectively acts as a serial EEPROM. Generally, all of the QA devices are physically identical, with only the contents of flash memory differentiating one from the other.
  • Each controller has two LSS system buses that can communicate with QA devices for system authentication and ink usage accounting. A large number of QA devices can be used per bus and their position in the system is unrestricted with the exception that printhead QA and ink QA devices should be on separate LSS busses.
  • In use, the logical QA device communicates with the ink QA device to determine remaining ink. The reply from the ink QA device is authenticated with reference to the printhead QA device. The verification from the printhead QA device is itself authenticated by the logical QA device, thereby indirectly adding an additional authentication level to the reply from the ink QA device.
  • Data passed between the QA devices, other than the printhead QA device, is authenticated by way of digital signatures. For example, HMAC-SHA1 authentication may be used for data, and RSA may be used for program code, although other schemes could be used instead.
  • A single controller can control a plurality of the printhead ICs of the printhead 140 and up to the six printing fluid channels (e.g., CMYK, IR and F). However, the controller is preferably colour space agnostic. Such that, although the controller can accept contone data as CMYX or RGBX, where X is an optional 4th channel, it also can accept contone data in any print colour space. Additionally, the controller provides a mechanism for arbitrary mapping of input channels to output channels, including combining dots for ink optimization and generation of channels based on any number of other channels. However, inputs are typically CMYK for contone input, K for the bi-level input, the optional IR tag dots are typically rendered to an infrared layer, and a fixative channel is generated due to the high-speed printing capability.
  • Further, the controller is also preferably resolution agnostic, such that it merely provides a mapping between input resolutions and output resolutions by means of scale factors and has no knowledge of the physical resolution of the printhead 140. Further still, the controller is preferably pagelength agnostic, such that successive pages are typically split into bands and downloaded into the page store as each band of information is consumed.
  • Turning now to FIGS. 40 to 43, the printhead ICs of the printhead 140 will be further described. For clarity, only one printhead IC 252 is shown in FIG. 40, but it will be appreciated that a corresponding arrangement is implemented for the other printhead ICs.
  • FIG. 40 shows an overview of the printhead IC 252 and its connections to the controller of the drive electronics 144 of the print engine assembly 107. The printhead IC 252 includes a nozzle core array 253 containing the repeated logic for firing each of the nozzles provided in the printhead IC 252 and nozzle control logic 254 for generating the timing signals to fire the nozzles in accordance with data received from the controller via a high-speed link 255. The nozzle control logic 254 is configured to send serial data to the nozzle core array 253 for printing via a link 256. Status and other operational information about the nozzle core array 253 is communicated back to the nozzle control logic 254 via another link 257.
  • The nozzle core array 253 is shown in detail in FIGS. 41 and 42. As can be seen in FIG. 41 the nozzle core array 253 comprises an array of nozzle columns 258, a fire/select shift register 259 and up to six channels, each of which is represented by a corresponding dot shift register 260.
  • As shown in FIG. 42, the fire/select shift register 259 includes a forward path fire shift register 261, a reverse path fire shift register 262 and a select shift register 263, and each dot shift register 260 includes an odd dot shift register 264 and an even dot shift register 265. The odd and even dot shift registers 264 and 265 are connected at one end such that data is clocked through the odd shift register 264 in one direction, then through the even shift register 265 in the reverse direction. The output of all but the final even dot shift register 265 is fed to one input of one of plurality of multiplexers 266. This input of the multiplexers 266 is selected by a signal (CoreScan) during post-production testing. In normal operation, the CoreScan signal selects dot data input Dot[x] supplied to the other input of each of the multiplexers 266. This causes Dot[x] for each colour to be supplied to the respective dot shift registers 260.
  • A single column N of the array of nozzle columns 258 is also shown in FIG. 42. In the embodiment shown, the column N includes 12 data values, comprising an odd data value 267 and an even data value 268 for each of the six dot shift registers 260. Column N also includes an odd fire value 269 from the forward fire shift register 261 and an even fire value 270 from the reverse fire shift register 262, which are supplied as inputs to a multiplexer 271. The output of the multiplexer 271 is controlled by a select value 272 in the select shift register 263. When the select value 272 is zero, the odd fire value 269 is output, and when the select value 272 is one, the even fire value 270 is output.
  • Each of the odd and even data values 267 and 268 is provided as an input to corresponding odd and even dot latches 273 and 274, respectively. Each of the dot latches 273 and 274 and its associated data value 267 and 268 form a unit cell, such as a unit cell 275 shown in FIG. 42 for the odd latch 273 and the odd data value 267. This situation for the odd dot shift register 264 is illustrated in more detail in FIG. 43, which is also applicable to the situation for the even dot shift register 265.
  • Referring to FIG. 43, the odd dot latch 273 is a D-type flip-flop that accepts the output of the odd data value 267, which is held by the unit cell (a D-type flip-flop) 275 which forms an element of the odd dot shift register 264. The data input to the flip-flop 275 is provided from the output of a previous element in the odd dot shift register 264 (unless the element under consideration is the first element in the shift register 260, in which case its input is the Dot[x] value). Data is clocked from the output of the flip-flop 275 into the odd dot latch 273 upon receipt of a negative pulse provided on line LsyncL.
  • The output of the odd dot latch 273 is provided as one of the inputs to a three-input AND gate 276. Other inputs to the AND gate 276 are a fire enable (Fr) signal (from the output of multiplexer 271) and a pulse profile (Pr) signal. The firing time of a nozzle is controlled by the pulse profile signal Pr and can be, for example, lengthened to take into account a low voltage condition that arises due to low battery, in a situation where the power supply of the printer 100 is provided as a battery element (not shown) mounted in the housing 101, for example. This is to ensure that a relatively consistent amount of ink is efficiently ejected from each nozzle as it is fired. The profile signal Pr may be the same for each of the dot shift registers 260, which provides a balance between complexity, cost and performance. However, the Pr signal can be applied globally (i.e., is the same for all nozzles) or can be individually tailored to each unit cell or even to each nozzle.
  • Once the data is loaded into the odd dot latch 273, the Fr and Pr signals are applied to the AND gate 276, combining to trigger the nozzle to eject a dot of ink for each odd dot latch 273 that contains a logic 1.
  • The signals for each nozzle channel as shown in FIGS. 42 and 43 are summarized in Table 4below.
  • TABLE 4 Name Direction Description d Input Input dot pattern to shift register bit q Output Output dot pattern from shift register bit SrClk Input Shift register clock in; d is captured on rising edge of this clock Fr Input Fire enable; needs to be asserted for nozzle to fire Pr Input Profile; needs to be asserted for nozzle to fire
  • As shown in FIG. 43, the Fr signals are routed on a diagonal to enable firing of one colour in the current column, the next colour in the following column, and so on. This averages the current demand by spreading it over six columns in time-delayed fashion.
  • The dot latches and the latches forming the various shift registers are fully static and are CMOS-based. The design and construction of latches is well known to those skilled in the art and so is not described in detail herein.
  • As stated earlier, the printhead 140, which has a printing surface or zone across the width of a maximum-sized page of print media that can be printed on using the printer 100, may incorporate at least 5,000 nozzles and even more than 50,000 nozzles in order to provide the required quality of printing at the high-speed printing of the printer 100 across this pagewidth. For example, the combined printhead ICs 252 may define a printhead having 13824 nozzles per channel, including the coloured ink and fixative channels.
  • The nozzle speed may be as much as 20 kHz for the printer 100 capable of printing at about 60 ppm, and even more for higher speeds. At this range of nozzle speeds the amount of ink than can be ejected by the entire printhead 140 is at least 50 million drop per second. However, as the number of nozzles is increased to provide for higher-speed and higher-quality printing at least 100 million drops per second, preferably at least 300 million drops per second, and more preferably at least 1 billion drops per second may be delivered.
  • Consequently, in order to accommodate printing at these speeds, the drive electronics 144, and particularly the controller(s) thereof, must calculate whether a nozzle is to eject a drop of ink at a rate of at least 50 million dots per second, and depending on the printing speed, at least 100 million dots per second, preferably at least 300 million dots per second, and more preferably at least 1 billion dots per second for the higher-speed, higher-quality printing applications.
  • For the colour printer 100 printing with the maximum width of A4 paper, the above-described ranges of the number of nozzles and print speeds results in an area print speed of at least 50 cm2 per second, and depending on the printing speed, at least 100 cm2 per second, preferably at least 200 cm2 per second, and more preferably at least 500 cm2 per second at the higher-speeds.
  • The above-described characteristics of the printer 100 enable it to print at high-quality of at least 1200 dpi, preferably at least 1600 dpi, in colour at the high-speed of at least 30 ppm, preferably at least 60 ppm. These characteristics coupled with the reduced footprint and size of the printer 100, as discussed earlier, results in a compact high-speed, high-quality printer which heretofore has not been possible. For example, the printer 100, not including the stand assembly 172, may be constructed to have an overall width of about 300 mm, an overall height of about 465 mm and an overall depth of about 230 mm for accommodating A4 paper as the maximum-sized paper. However, other dimensions are possible depending upon the application for the printer.
  • Thus, it is envisaged that the fully assembled printer 100 has a minimum total volume, i.e., the sum of the actual volumes occupied by the components of the printer 100 including the housing 101, the head unit 102, the source tray assembly 103 and the base unit 112, of about 30,000 cm3 and a maximum total volume, i.e., the overall space occupied by the printer 100, of about 40,000 cm3. This results in a minimum printing rate to printer size (volume) ratio of at least about 0.002 ppm/cm3 for printing at 60 ppm. In cases where the printer 100 is able to print at even higher rates, i.e., more than 60 ppm and up to as much as 500 ppm for duplex printing as described earlier, a printing rate to printer size ratio of at least about 0.005 ppm/cm3, preferably at least about 0.01 ppm/cm3 and more preferably at least about 0.02 ppm/cm3 is possible.
  • Further, the components of the printer 100 including the housing 101, the head unit 102, the source tray assembly 103, the base unit 112 and the various components thereof can in the most part be moulded from lightweight material, such as plastic. As such, along with the above-described reduced size, the weight of the printer 100 can also be reduced. For example, it is envisaged that the printer 100 will have a weight of about 3.5 kg to about 4.6 kg. Thus, at the above-mentioned possible printing rates of the colour printer 100 beginning at about 30 ppm, a printing rate to printer weight ratio of about 0.2 ppm/kg is possible. Even if different, heavier materials are used for constructing the components of the printer 100 a printing rate to printer weight ratio of at least about 0.5 ppm/kg, preferably at least about 1 ppm/kg, and more preferably at least about 5 ppm/kg is possible as the printing rate is increased. Such printing rate to printer weight ratios are much better than those possible for conventional colour printers capable of printing at high-speed, since these printers are typically very large and heavy.
  • While the present invention has been illustrated and described with reference to exemplary embodiments thereof, various modifications will be apparent to and might readily be made by those skilled in the art without departing from the scope and spirit of the present invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but, rather, that the claims be broadly construed.

Claims (16)

1. A method of collecting printed sheets of media from a printer, comprising the steps of:
ejecting a printed sheet from the printer;
allowing said sheet to fall from the printer assuming a substantially vertical path;
capturing the leading edge of said sheet; and
applying a retaining force to said sheet, said retaining force having a component substantially perpendicular to said substantially vertical path; and
collecting said sheet on a retaining surface, said retaining surface being inclined with respect to said substantially vertical path.
2. A method according to claim 1, wherein the printer has a pagewidth inkjet printhead.
3. A method according to claim 1, further comprising the step of providing the retaining surface with an incline of about 10° to 15° from said substantially vertical path.
4. A method according to claim 3, further comprising the step of arranging a stop surface which projects from the retaining surface substantially orthogonal to the incline of the retaining surface,
wherein, in the capturing and force applying steps the leading edge of said sheet contacts the stop surface thereby stopping the motion thereof along said substantially vertical path and applying said retaining force thereto.
5. A method according to claim 4, further comprising the step of providing the retaining surface with an incline of about 10° to 15° from said substantially vertical path, whereby the stop surface is provided with an angle of about 10° to 15° from the horizontal.
6. A method according to claim 4, further comprising the step of imparting a lateral curvature to said sheet collected on the retaining surface orthogonal to said substantially vertical path.
7. A method according to claim 1, wherein, in the step of allowing said sheet to fall, said sheet is allowed to fall under gravity to assume said substantially vertical path.
8. A method according to claim 1, wherein the printer comprises:
a media supply for supplying media for printing;
a printhead for printing on said media;
a print media collector for collecting said printed media in said capture, force application and collection steps; and
a transport device for transporting the media through a delivery path from the media supply to the media collector via the printhead, the media supply and collector being substantially vertically disposed and the media delivery path passing through an angle of at least 140°.
9. A method according to claim 1, wherein the printer is arranged to print on media supplied from a media supply and deliver printed media to a media collector in said capture, force application and collection steps, the printer comprising:
a base;
a print engine for printing an image on media; and
a substantially vertically extending body connecting the base and the print engine, said body having at least two substantially vertically extending surfaces, the media supply being provided on a first surface of said surfaces of the body and the media collector being provided on a second surface of said surfaces of the body.
10. A method according to claim 1 performed in a system for collecting printed sheets of media from the printer, the system comprising:
a print engine having a printhead for printing images on sheets of media and an outlet arranged to eject said printed sheets from the print engine in a substantially vertical path; and
a collector disposed beneath said outlet having a collection surface inclined with respect to said substantially vertical path for collecting said ejected sheets and a foot portion projecting from the collection surface, the foot portion being arranged to project into the substantially vertical path of said ejected sheets and has a contact surface arranged to contact a leading edge of said sheets to stop movement thereof in said substantially vertical path, said contact surface being arranged to urge said sheets toward the collection surface for collection.
11. A method according to claim 1, wherein, in said capture, force application and collection steps, a collector for collecting media fed from the printer is used, the collector comprising:
a substantially vertical collection surface adapted to collect one or more sheets of print media fed from said printer in a substantially vertical direction and to retain said one or more sheets in a substantially vertical orientation, the collection surface being arranged to impart a lateral curvature to the collected print media orthogonal to the feed direction of the print media.
12. A method according to claim 1 performed in a system for indicating a state of the printer, the system comprising:
a light source arranged to emit light of a plurality of colours;
a light transmitting channel extending along a surface of the printer and arranged so as to transmit light from the light source and emit said light along a length of the channel; and
a controller arranged to control the light source in response to a detected operational state of the printer, so that the light transmitting channel emits predefined different colours to indicate predefined different states of the printer.
13. A method according to claim 1, wherein the printer comprises:
a housing having a print engine for printing;
a media supply tray for receiving media for printing by said print engine, said print media supply tray arranged to be received by the housing so that said media is maintained in a substantially vertical orientation; and
a retaining element provided on the housing and arranged to contact the media when the supply tray is received by the housing so as to retain the media in said substantially vertical orientation.
14. A method according to claim 1, wherein the printer comprises:
a print media supply for supplying media for printing;
a printhead for printing on said media;
a print media collector for collecting said printed media in said capture, force application and collection steps;
a transport device for transporting the media through a delivery path from the media supply to the media collector via the printhead; and
a detachable stand for supporting the media supply, the printhead and the media collector in an operating orientation in which the media supply and collector are substantially vertically disposed and the media delivery path defines an angle of at least 140°.
15. A method according to claim 1, wherein the printer is a desktop printer comprising a pagewidth printhead arranged as a two-dimensional array of at least 5000 printing nozzles for printing across the width of media supplied from a substantially vertically orientated media supply and delivered to a substantially vertically orientated media collector after printing, the media supply and collector being provided on different sides of a substantially vertically extending body of the printer.
16. A method according to claim 1, wherein the printer is a desktop printer comprising an array of ink ejecting nozzles configured as a pagewidth printhead arranged to print on media supplied from a substantially vertically orientated media supply by ejecting drops of ink across the width of said media at a rate of at least 50 million drops per second and to deliver the printed media to a substantially vertically orientated media collector, the media supply and collector being provided on different sides of a substantially vertically extending body of the printer.
US12/062,512 2004-01-21 2008-04-04 Method Of Collecting Print Media In A Vertical Orientation Abandoned US20080185774A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/760,254 US7448734B2 (en) 2004-01-21 2004-01-21 Inkjet printer cartridge with pagewidth printhead
US11/014,728 US7377635B2 (en) 2004-01-21 2004-12-20 Printer unit employing vertically disposed media storage and collection areas
US12/062,512 US20080185774A1 (en) 2004-01-21 2008-04-04 Method Of Collecting Print Media In A Vertical Orientation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/062,512 US20080185774A1 (en) 2004-01-21 2008-04-04 Method Of Collecting Print Media In A Vertical Orientation
US12/770,709 US20100220126A1 (en) 2004-01-21 2010-04-29 Vertical form factor printer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/014,728 Continuation US7377635B2 (en) 2004-01-21 2004-12-20 Printer unit employing vertically disposed media storage and collection areas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/770,709 Continuation US20100220126A1 (en) 2004-01-21 2010-04-29 Vertical form factor printer

Publications (1)

Publication Number Publication Date
US20080185774A1 true US20080185774A1 (en) 2008-08-07

Family

ID=34749937

Family Applications (155)

Application Number Title Priority Date Filing Date
US10/760,254 Active 2024-08-31 US7448734B2 (en) 2004-01-21 2004-01-21 Inkjet printer cartridge with pagewidth printhead
US11/014,766 Active 2025-02-19 US7566106B2 (en) 2004-01-21 2004-12-20 Refill unit for ink cartridge in printer with ink suitability verification
US11/014,759 Expired - Fee Related US7350896B2 (en) 2004-01-21 2004-12-20 Electromagnetically controlled capper assembly for capping a pagewidth printhead cartridge
US11/014,755 Expired - Fee Related US7357492B2 (en) 2004-01-21 2004-12-20 Ink cartridge with variable ink storage volume
US11/014,746 Active 2024-11-21 US7249833B2 (en) 2004-01-21 2004-12-20 Ink storage device
US11/014,735 Active 2024-12-18 US7470007B2 (en) 2004-01-21 2004-12-20 Method of refilling a high speed print engine
US11/014,718 Active 2024-12-31 US7380910B2 (en) 2004-01-21 2004-12-20 Inkjet printhead with electrical disconnection of printhead prior to removal
US11/014,761 Active 2025-02-23 US7328973B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead cartridge having a longitudinally extending electrical contact
US11/014,736 Active 2025-01-09 US7390075B2 (en) 2004-01-21 2004-12-20 Capper assembly having a biased capper element for capping a pagewidth printhead cartridge
US11/014,731 Active 2024-11-19 US7543808B2 (en) 2004-01-21 2004-12-20 Network inkjet printer unit having multiple media input trays
US11/014,738 Active 2025-01-08 US7416287B2 (en) 2004-01-21 2004-12-20 Cradle unit having a refill actuator for operating a refill unit
US11/014,750 Expired - Fee Related US7681967B2 (en) 2004-01-21 2004-12-20 Ink refill unit having control information stored thereon to control the refilling process
US11/014,748 Active 2025-02-26 US7331663B2 (en) 2004-01-21 2004-12-20 Replaceable pagewidth printhead cartridge
US11/014,751 Expired - Fee Related US7303268B2 (en) 2004-01-21 2004-12-20 Ink refill unit for refilling a high speed print engine
US11/014,764 Active 2024-11-08 US7621620B2 (en) 2004-01-21 2004-12-20 Inkjet printer unit having a high speed print engine
US11/014,741 Active 2024-12-31 US7328984B2 (en) 2004-01-21 2004-12-20 Ink refill unit with ink level indicator
US11/014,721 Active 2024-02-28 US7152972B2 (en) 2004-01-21 2004-12-20 Combination printer and image reader in L-shaped configuration
US11/014,744 Active 2024-12-26 US7390080B2 (en) 2004-01-21 2004-12-20 Ink refill unit with keyed connection ink cartridge
US11/014,734 Active 2025-01-07 US7399072B2 (en) 2004-01-21 2004-12-20 Ink refill unit having a linearly actuated plunger assembly
US11/014,767 Active 2025-03-03 US7322671B2 (en) 2004-01-21 2004-12-20 Inkjet printer with replaceable printhead requiring zero-insertion-force
US11/014,739 Active 2024-12-25 US7331660B2 (en) 2004-01-21 2004-12-20 Cradle unit having a cover assembly with ink refill port
US11/014,743 Active 2024-12-30 US7331661B2 (en) 2004-01-21 2004-12-20 Ink refill unit for docking with an ink cartridge
US11/014,714 Active 2024-11-10 US7303252B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly for a cartridge unit
US11/014,729 Active 2025-02-20 US7490927B2 (en) 2004-01-21 2004-12-20 Refill unit for simultaneously engaging with, and opening inlet valve to, an ink cartridge
US11/014,737 Active 2025-01-08 US7488052B2 (en) 2004-01-21 2004-12-20 Cradle unit having an electromagnetic capper actuation system
US11/014,725 Active 2025-11-25 US7384135B2 (en) 2004-01-21 2004-12-20 Cradle unit having pivotal electrical contacts for electrically engaging with a pagewidth printhead cartridge
US11/014,765 Expired - Fee Related US7357493B2 (en) 2004-01-21 2004-12-20 Ink refill unit with sequential valve actuators
US11/014,726 Active 2025-01-12 US7322684B2 (en) 2004-01-21 2004-12-20 Cover assembly for a cradle unit having an ink refilling capabilities
US11/014,715 Active 2025-01-12 US7270405B2 (en) 2004-01-21 2004-12-20 System for priming a pagewidth printhead cartridge
US11/014,724 Active 2024-12-21 US7311382B2 (en) 2004-01-21 2004-12-20 System for securing integrated circuits to a pagewidth printhead assembly
US11/014,720 Active 2024-12-06 US7284816B2 (en) 2004-01-21 2004-12-20 Printer with motor driven maintenance station
US11/014,728 Active 2024-10-17 US7377635B2 (en) 2004-01-21 2004-12-20 Printer unit employing vertically disposed media storage and collection areas
US11/014,760 Active 2025-02-07 US7427121B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead cartridge having multiple ink storage capacity
US11/014,740 Active 2025-02-05 US7380902B2 (en) 2004-01-21 2004-12-20 Printhead maintenance station
US11/014,754 Active 2025-01-08 US7300140B2 (en) 2004-01-21 2004-12-20 Ink refill unit for maintaining negative pressure in negatively pressurized ink storage compartment
US11/014,727 Active 2027-01-24 US7686446B2 (en) 2004-01-21 2004-12-20 Vertical desktop printer
US11/014,712 Active 2024-11-17 US7311381B2 (en) 2004-01-21 2004-12-20 System for priming a pagewidth printhead cartridge
US11/014,717 Active 2024-12-18 US7431424B2 (en) 2004-01-21 2004-12-20 Ink cartridge with printhead maintenance station for inkjet printer
US11/014,733 Active 2025-05-30 US7524043B2 (en) 2004-01-21 2004-12-20 Refill unit for engaging with, and closing the outlet valve from an ink storage compartment
US11/014,747 Expired - Fee Related US7360861B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead cartridge having an integral capper unit associated therewith
US11/014,768 Active - Reinstated 2025-02-23 US7350913B2 (en) 2004-01-21 2004-12-20 Inkjet printer with cradle for unobstructed access to cartridge
US11/014,753 Active 2024-11-21 US7284845B2 (en) 2004-01-21 2004-12-20 Ink refill unit with asymmetrically positioned ink outlet
US11/014,745 Active 2024-12-02 US7322685B2 (en) 2004-01-21 2004-12-20 Cover assembly for a cradle unit having an ink refilling actuator provided therein
US11/014,762 Active 2024-10-27 US7537309B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly having an improved ink distribution structure
US11/014,713 Active 2024-10-30 US7249822B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly having a longitudinally extending electrical connector
US11/014,749 Expired - Fee Related US7588301B2 (en) 2004-01-21 2004-12-20 Method for controlling the ink refilling procedure of a print engine
US11/014,752 Expired - Fee Related US7255430B2 (en) 2004-01-21 2004-12-20 Ink refill unit with cartridge constriction actuators
US11/014,758 Active 2025-01-12 US7429096B2 (en) 2004-01-21 2004-12-20 Cradle unit for electrically engaging with a pagewidth printhead cartridge
US11/014,742 Active 2025-03-07 US7347534B2 (en) 2004-01-21 2004-12-20 Inkjet printhead with apertured sealing film
US11/014,719 Active 2024-12-09 US7393076B2 (en) 2004-01-21 2004-12-20 Control system for controlling the refilling operation of a print engine
US11/014,757 Active - Reinstated 2025-06-02 US7407262B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly having abutting integrated circuits arranged thereon
US11/014,732 Active 2024-11-07 US7585054B2 (en) 2004-01-21 2004-12-20 Inkjet printhead with integrated circuit mounted on polymer sealing film
US11/014,723 Expired - Fee Related US7360860B2 (en) 2004-01-21 2004-12-20 System for mounting a capper assembly to a pagewidth printhead
US11/014,763 Active 2025-02-26 US7669961B2 (en) 2004-01-21 2004-12-20 Print engine for an inkjet printer
US11/014,756 Expired - Fee Related US7364257B2 (en) 2004-01-21 2004-12-20 Capper assembly for a pagewidth printhead cartridge
US11/014,716 Active 2024-10-22 US7470006B2 (en) 2004-01-21 2004-12-20 Inkjet printer with cartridge cradle having interfaces for refill units
US11/592,996 Active 2024-03-17 US7513615B2 (en) 2004-01-21 2006-11-06 Inkjet printer unit utilizing image reading unit for printed media collection
US11/758,640 Expired - Fee Related US7547098B2 (en) 2004-01-21 2007-06-05 Printing fluid supply device
US11/775,143 Active 2025-03-02 US7703886B2 (en) 2004-01-21 2007-07-09 Printhead assembly with pagewidth ink and data distribution
US11/778,567 Expired - Fee Related US7726789B2 (en) 2004-01-21 2007-07-16 Ink refill unit having printer ink storage actuators
US11/838,877 Active US7467860B2 (en) 2004-01-21 2007-08-14 Ink priming system for inkjet printhead having a bypass flow path
US11/852,907 Active 2024-08-01 US7748828B2 (en) 2004-01-21 2007-09-10 Printer print engine with cradled cartridge unit
US11/852,958 Expired - Fee Related US7914140B2 (en) 2004-01-21 2007-09-10 Printer unit with LCD touch screen on lid
US11/872,038 Active 2024-04-01 US7549738B2 (en) 2004-01-21 2007-10-15 Ink refill unit for a negatively pressurized ink reservoir of a printer cartridge
US11/944,453 Active 2024-11-25 US7753507B2 (en) 2004-01-21 2007-11-22 Pagewidth printhead assembly cartridge with micro-capillary feed
US11/944,633 Expired - Fee Related US7467861B2 (en) 2004-01-21 2007-11-25 Ink refill unit with incremental ink ejection for a print cartridge
US11/955,065 Expired - Fee Related US7658466B2 (en) 2004-01-21 2007-12-12 System for priming a cartridge having an ink retaining member
US11/955,093 Active US8079684B2 (en) 2004-01-21 2007-12-12 Ink storage module for a pagewidth printer cartridge
US11/961,578 Expired - Fee Related US7611223B2 (en) 2004-01-21 2007-12-20 Cradle unit having printhead maintenance and wiping arrangements for a print engine
US12/003,952 Active 2025-02-18 US8020976B2 (en) 2004-01-21 2008-01-03 Reservoir assembly for a pagewidth printhead cartridge
US12/003,875 Expired - Fee Related US8109616B2 (en) 2004-01-21 2008-01-03 Cover assembly including an ink refilling actuator member
US12/007,818 Active 2024-05-01 US7771035B2 (en) 2004-01-21 2008-01-16 Reservoir assembly for a pagewidth printhead cartridge
US12/007,817 Expired - Fee Related US7712882B2 (en) 2004-01-21 2008-01-16 Ink cartridge unit with ink suspension characteristics for an inkjet printer
US12/022,023 Active 2025-04-10 US7914136B2 (en) 2004-01-21 2008-01-29 Cartridge unit assembly with ink storage modules and a printhead IC for a printer
US12/023,018 Active 2024-04-17 US7686437B2 (en) 2004-01-21 2008-01-30 Cradle unit for receiving a print cartridge to form a print engine
US12/023,000 Active 2024-08-28 US7762652B2 (en) 2004-01-21 2008-01-30 Print engine with ink storage modules incorporating collapsible bags
US12/068,679 Expired - Fee Related US7771031B2 (en) 2004-01-21 2008-02-11 Ink refill unit with a mechanical tank compression arrangement
US12/031,582 Expired - Fee Related US7806519B2 (en) 2004-01-21 2008-02-14 Printer cartridge refill unit with verification integrated circuit
US12/071,187 Expired - Fee Related US7658479B2 (en) 2004-01-21 2008-02-19 Print engine with a refillable printer cartridge with ink refill ports
US12/043,708 Active 2024-08-04 US7686439B2 (en) 2004-01-21 2008-03-06 Print engine cartridge incorporating a post mounted maintenance assembly
US12/076,666 Expired - Fee Related US7819490B2 (en) 2004-01-21 2008-03-21 Printer unit with print engine that expands compressed image data
US12/076,665 Active US7556359B2 (en) 2004-01-21 2008-03-21 Ink refill unit with a working outlet and other dummy outlets
US12/076,664 Active US7513610B2 (en) 2004-01-21 2008-03-21 Cover assembly for a print engine with push rod for actuating a refill unit
US12/079,897 Active US7588324B2 (en) 2004-01-21 2008-03-31 Ink cartridge having enlarged end reservoirs
US12/062,512 Abandoned US20080185774A1 (en) 2004-01-21 2008-04-04 Method Of Collecting Print Media In A Vertical Orientation
US12/121,792 Active US7537315B2 (en) 2004-01-21 2008-05-16 Cradle unit for a print engine having a maintenance drive assembly
US12/122,711 Expired - Fee Related US7748818B2 (en) 2004-01-21 2008-05-18 Inkjet printhead with electrical disconnection of printhead prior to removal
US12/122,712 Active US7658483B2 (en) 2004-01-21 2008-05-18 Ink storage compartment with bypass fluid path structures
US12/123,403 Active 2024-08-26 US7815300B2 (en) 2004-01-21 2008-05-19 Cartridge unit having multiple ink storage capacity
US12/123,371 Expired - Fee Related US7841707B2 (en) 2004-01-21 2008-05-19 Cartridge unit having magnetically capped printhead
US12/123,394 Expired - Fee Related US7780282B2 (en) 2004-01-21 2008-05-19 Cartridge unit having capped printhead with multiple ink storage capacity
US12/138,424 Expired - Fee Related US7802879B2 (en) 2004-01-21 2008-06-13 Ink refill unit for a print engine having a compression arrangement with actuation means operable by a controller of the print engine
US12/138,420 Expired - Fee Related US7806522B2 (en) 2004-01-21 2008-06-13 Printer assembly having a refillable cartridge assembly
US12/138,418 Expired - Fee Related US8007087B2 (en) 2004-01-21 2008-06-13 Inkjet printer having an ink cartridge unit configured to facilitate flow of ink therefrom
US12/138,417 Active 2024-02-06 US7677692B2 (en) 2004-01-21 2008-06-13 Cradle unit for receiving a print cartridge to form a print engine
US12/170,431 Expired - Fee Related US8057023B2 (en) 2004-01-21 2008-07-09 Ink cartridge unit for an inkjet printer with an ink refill facility
US12/177,871 Active 2024-12-01 US7887169B2 (en) 2004-01-21 2008-07-22 Ink refill unit with incremental ink ejection accuated by print cartridge cradle
US12/177,868 Expired - Fee Related US7699448B2 (en) 2004-01-21 2008-07-22 Ink refill unit with threaded incremental ink ejection for print cartridge
US12/177,864 Expired - Fee Related US7699446B2 (en) 2004-01-21 2008-07-22 Ink refill unit with incremental millilitre ink ejection for print cartridge
US12/177,866 Expired - Fee Related US7699447B2 (en) 2004-01-21 2008-07-22 Ink refill unit with controlled incremental ink ejection for print cartridge
US12/190,586 Active 2024-12-01 US7901043B2 (en) 2004-01-21 2008-08-12 Printhead assembly having a ducting assembly and printhead titles
US12/190,561 Active 2024-03-13 US7695125B2 (en) 2004-01-21 2008-08-12 Reservoir assembly for a pagewidth printhead cartridge
US12/194,536 Active 2024-03-03 US7837296B2 (en) 2004-01-21 2008-08-20 Maintenance assembly for a pagewidth printer having a motorized drive
US12/234,695 Abandoned US20090009571A1 (en) 2004-01-21 2008-09-21 Printer receiving cartridge having pagewidth printhead
US12/264,126 Expired - Fee Related US7901062B2 (en) 2004-01-21 2008-11-03 Ink compartment refill unit with inlet valve acutator, outlet valve, actuator, and constrictor mechanism actuator
US12/264,749 Active US7661812B2 (en) 2004-01-21 2008-11-04 Printer unit for assembly with image reader unit
US12/276,384 Expired - Fee Related US7857436B2 (en) 2004-01-21 2008-11-23 Ink refill unit with incremental ink ejection mechanism
US12/276,358 Active 2024-09-27 US7938530B2 (en) 2004-01-21 2008-11-23 Cradle unit for a printer cartridge
US12/276,404 Expired - Fee Related US7695121B2 (en) 2004-01-21 2008-11-23 Method of refilling a printing unit
US12/324,610 Expired - Fee Related US7703885B2 (en) 2004-01-21 2008-11-26 Cradle unit which electromagnetically operates printhead capper
US12/324,573 Active 2024-07-31 US7845782B2 (en) 2004-01-21 2008-11-26 Pivotable PCB retension arrangement for inkjet cartridge cradle
US12/397,249 Expired - Fee Related US7775642B2 (en) 2004-01-21 2009-03-03 Docking port in a cover assembly
US12/422,879 Active US7708392B2 (en) 2004-01-21 2009-04-13 Refill unit for engaging with ink storage compartment, and fluidically isolating printhead
US12/433,862 Active 2024-04-21 US7942502B2 (en) 2004-01-21 2009-04-30 Print engine cradle with maintenance assembly
US12/436,127 Abandoned US20090213176A1 (en) 2004-01-21 2009-05-06 Inkjet Printhead Having Adhered Ink Distribution Structure
US12/436,124 Expired - Fee Related US7874665B2 (en) 2004-01-21 2009-05-06 Printer having nested media trays
US12/475,553 Expired - Fee Related US7946697B2 (en) 2004-01-21 2009-05-31 Printing fluid supply device with channeled absorbent material
US12/475,562 Expired - Fee Related US7938518B2 (en) 2004-01-21 2009-05-31 Ink refill unit for an ink reservoir
US12/480,686 Expired - Fee Related US7938519B2 (en) 2004-01-21 2009-06-09 Refill unit for refilling one of a number of ink compartments
US12/493,236 Active 2024-01-22 US8007065B2 (en) 2004-01-21 2009-06-28 Printer control circuitry for reading ink information from a refill unit
US12/540,360 Expired - Fee Related US8070266B2 (en) 2004-01-21 2009-08-12 Printhead assembly with ink supply to nozzles through polymer sealing film
US12/542,647 Expired - Fee Related US8240825B2 (en) 2004-01-21 2009-08-17 Ink refill unit having a clip arrangement for engaging with the print engine during refilling
US12/542,645 Expired - Fee Related US8251499B2 (en) 2004-01-21 2009-08-17 Securing arrangement for securing a refill unit to a print engine during refilling
US12/542,691 Active US7976137B2 (en) 2004-01-21 2009-08-17 Print cartridge having enlarged end reservoirs
US12/605,365 Active 2025-04-02 US8376533B2 (en) 2004-01-21 2009-10-25 Cradle unit for receiving removable printer cartridge unit
US12/612,660 Abandoned US20100053273A1 (en) 2004-01-21 2009-11-04 Printer Having Simple Connection Printhead
US12/649,311 Expired - Fee Related US8007093B2 (en) 2004-01-21 2009-12-29 Print engine for inkjet printer
US12/694,036 Expired - Fee Related US8025381B2 (en) 2004-01-21 2010-01-26 Priming system for pagewidth print cartridge
US12/696,031 Expired - Fee Related US8002393B2 (en) 2004-01-21 2010-01-28 Print engine with a refillable printer cartridge and ink refill port
US12/697,271 Expired - Fee Related US7971978B2 (en) 2004-01-21 2010-01-31 Refillable ink cartridge with ink bypass channel for refilling
US12/702,103 Active 2024-02-14 US8079700B2 (en) 2004-01-21 2010-02-08 Printer for nesting with image reader
US12/711,258 Active 2025-02-18 US8366244B2 (en) 2004-01-21 2010-02-24 Printhead cartridge cradle having control circuitry
US12/720,665 Active US8042922B2 (en) 2004-01-21 2010-03-09 Dispenser unit for refilling printing unit
US12/720,590 Active 2025-08-27 US8485651B2 (en) 2004-01-21 2010-03-09 Print cartrdge cradle unit incorporating maintenance assembly
US12/720,342 Abandoned US20100165058A1 (en) 2004-01-21 2010-03-09 Ink Refill Unit Having Discretely Incrementable Variable Storage Volume
US12/721,541 Active 2025-01-08 US8251501B2 (en) 2004-01-21 2010-03-10 Inkjet print engine having printer cartridge incorporating maintenance assembly and cradle unit incorporating maintenance drive assembly
US12/749,252 Active 2025-03-12 US8398216B2 (en) 2004-01-21 2010-03-29 Reservoir assembly for supplying fluid to printhead
US12/757,039 Active 2024-02-23 US8047639B2 (en) 2004-01-21 2010-04-09 Refill unit for incremental millilitre fluid refill
US12/758,801 Expired - Fee Related US8002394B2 (en) 2004-01-21 2010-04-13 Refill unit for fluid container
US12/758,800 Expired - Fee Related US8007083B2 (en) 2004-01-21 2010-04-13 Refill unit for incrementally filling fluid container
US12/765,803 Active 2024-10-24 US8348386B2 (en) 2004-01-21 2010-04-22 Pagewidth printhead assembly with ink and data distribution
US12/765,862 Active US8220900B2 (en) 2004-01-21 2010-04-23 Printhead cradle having electromagnetic control of capper
US12/769,533 Active US8075110B2 (en) 2004-01-21 2010-04-28 Refill unit for an ink storage compartment connected to a printhead through an outlet valve
US12/770,709 Abandoned US20100220126A1 (en) 2004-01-21 2010-04-29 Vertical form factor printer
US12/773,655 Active 2025-10-18 US8500259B2 (en) 2004-01-21 2010-05-04 Cartridge for printer having fluid flow arrangement
US12/785,475 Abandoned US20100225714A1 (en) 2004-01-21 2010-05-23 Refill unit having fluid storage actuators
US12/829,260 Active 2024-08-25 US8235502B2 (en) 2004-01-21 2010-07-01 Printer print engine with cradled cartridge unit
US12/829,324 Abandoned US20100271421A1 (en) 2004-01-21 2010-07-01 Maintenance assembly for pagewidth printhead
US12/832,923 Abandoned US20100271427A1 (en) 2004-01-21 2010-07-08 Printhead assembly with capillary channels in fluid chambers
US12/835,493 Abandoned US20100277556A1 (en) 2004-01-21 2010-07-13 Print engine with ink storage modules incorporating collapsible bags
US13/296,197 Abandoned US20120056941A1 (en) 2004-01-21 2011-11-14 Printhead having fluid supply through sealing film
US13/330,255 Active US8439497B2 (en) 2004-01-21 2011-12-19 Image processing apparatus with nested printer and scanner
US13/773,488 Active US8672450B2 (en) 2004-01-21 2013-02-21 Printhead assembly having electrical connector for transmitting power and data
US14/180,585 Active US9044956B2 (en) 2004-01-21 2014-02-14 Pagewidth printhead assembly having ink distribution member
US14/634,226 Abandoned US20150165800A1 (en) 2004-01-21 2015-02-27 Removable printhead assembly

Family Applications Before (84)

Application Number Title Priority Date Filing Date
US10/760,254 Active 2024-08-31 US7448734B2 (en) 2004-01-21 2004-01-21 Inkjet printer cartridge with pagewidth printhead
US11/014,766 Active 2025-02-19 US7566106B2 (en) 2004-01-21 2004-12-20 Refill unit for ink cartridge in printer with ink suitability verification
US11/014,759 Expired - Fee Related US7350896B2 (en) 2004-01-21 2004-12-20 Electromagnetically controlled capper assembly for capping a pagewidth printhead cartridge
US11/014,755 Expired - Fee Related US7357492B2 (en) 2004-01-21 2004-12-20 Ink cartridge with variable ink storage volume
US11/014,746 Active 2024-11-21 US7249833B2 (en) 2004-01-21 2004-12-20 Ink storage device
US11/014,735 Active 2024-12-18 US7470007B2 (en) 2004-01-21 2004-12-20 Method of refilling a high speed print engine
US11/014,718 Active 2024-12-31 US7380910B2 (en) 2004-01-21 2004-12-20 Inkjet printhead with electrical disconnection of printhead prior to removal
US11/014,761 Active 2025-02-23 US7328973B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead cartridge having a longitudinally extending electrical contact
US11/014,736 Active 2025-01-09 US7390075B2 (en) 2004-01-21 2004-12-20 Capper assembly having a biased capper element for capping a pagewidth printhead cartridge
US11/014,731 Active 2024-11-19 US7543808B2 (en) 2004-01-21 2004-12-20 Network inkjet printer unit having multiple media input trays
US11/014,738 Active 2025-01-08 US7416287B2 (en) 2004-01-21 2004-12-20 Cradle unit having a refill actuator for operating a refill unit
US11/014,750 Expired - Fee Related US7681967B2 (en) 2004-01-21 2004-12-20 Ink refill unit having control information stored thereon to control the refilling process
US11/014,748 Active 2025-02-26 US7331663B2 (en) 2004-01-21 2004-12-20 Replaceable pagewidth printhead cartridge
US11/014,751 Expired - Fee Related US7303268B2 (en) 2004-01-21 2004-12-20 Ink refill unit for refilling a high speed print engine
US11/014,764 Active 2024-11-08 US7621620B2 (en) 2004-01-21 2004-12-20 Inkjet printer unit having a high speed print engine
US11/014,741 Active 2024-12-31 US7328984B2 (en) 2004-01-21 2004-12-20 Ink refill unit with ink level indicator
US11/014,721 Active 2024-02-28 US7152972B2 (en) 2004-01-21 2004-12-20 Combination printer and image reader in L-shaped configuration
US11/014,744 Active 2024-12-26 US7390080B2 (en) 2004-01-21 2004-12-20 Ink refill unit with keyed connection ink cartridge
US11/014,734 Active 2025-01-07 US7399072B2 (en) 2004-01-21 2004-12-20 Ink refill unit having a linearly actuated plunger assembly
US11/014,767 Active 2025-03-03 US7322671B2 (en) 2004-01-21 2004-12-20 Inkjet printer with replaceable printhead requiring zero-insertion-force
US11/014,739 Active 2024-12-25 US7331660B2 (en) 2004-01-21 2004-12-20 Cradle unit having a cover assembly with ink refill port
US11/014,743 Active 2024-12-30 US7331661B2 (en) 2004-01-21 2004-12-20 Ink refill unit for docking with an ink cartridge
US11/014,714 Active 2024-11-10 US7303252B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly for a cartridge unit
US11/014,729 Active 2025-02-20 US7490927B2 (en) 2004-01-21 2004-12-20 Refill unit for simultaneously engaging with, and opening inlet valve to, an ink cartridge
US11/014,737 Active 2025-01-08 US7488052B2 (en) 2004-01-21 2004-12-20 Cradle unit having an electromagnetic capper actuation system
US11/014,725 Active 2025-11-25 US7384135B2 (en) 2004-01-21 2004-12-20 Cradle unit having pivotal electrical contacts for electrically engaging with a pagewidth printhead cartridge
US11/014,765 Expired - Fee Related US7357493B2 (en) 2004-01-21 2004-12-20 Ink refill unit with sequential valve actuators
US11/014,726 Active 2025-01-12 US7322684B2 (en) 2004-01-21 2004-12-20 Cover assembly for a cradle unit having an ink refilling capabilities
US11/014,715 Active 2025-01-12 US7270405B2 (en) 2004-01-21 2004-12-20 System for priming a pagewidth printhead cartridge
US11/014,724 Active 2024-12-21 US7311382B2 (en) 2004-01-21 2004-12-20 System for securing integrated circuits to a pagewidth printhead assembly
US11/014,720 Active 2024-12-06 US7284816B2 (en) 2004-01-21 2004-12-20 Printer with motor driven maintenance station
US11/014,728 Active 2024-10-17 US7377635B2 (en) 2004-01-21 2004-12-20 Printer unit employing vertically disposed media storage and collection areas
US11/014,760 Active 2025-02-07 US7427121B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead cartridge having multiple ink storage capacity
US11/014,740 Active 2025-02-05 US7380902B2 (en) 2004-01-21 2004-12-20 Printhead maintenance station
US11/014,754 Active 2025-01-08 US7300140B2 (en) 2004-01-21 2004-12-20 Ink refill unit for maintaining negative pressure in negatively pressurized ink storage compartment
US11/014,727 Active 2027-01-24 US7686446B2 (en) 2004-01-21 2004-12-20 Vertical desktop printer
US11/014,712 Active 2024-11-17 US7311381B2 (en) 2004-01-21 2004-12-20 System for priming a pagewidth printhead cartridge
US11/014,717 Active 2024-12-18 US7431424B2 (en) 2004-01-21 2004-12-20 Ink cartridge with printhead maintenance station for inkjet printer
US11/014,733 Active 2025-05-30 US7524043B2 (en) 2004-01-21 2004-12-20 Refill unit for engaging with, and closing the outlet valve from an ink storage compartment
US11/014,747 Expired - Fee Related US7360861B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead cartridge having an integral capper unit associated therewith
US11/014,768 Active - Reinstated 2025-02-23 US7350913B2 (en) 2004-01-21 2004-12-20 Inkjet printer with cradle for unobstructed access to cartridge
US11/014,753 Active 2024-11-21 US7284845B2 (en) 2004-01-21 2004-12-20 Ink refill unit with asymmetrically positioned ink outlet
US11/014,745 Active 2024-12-02 US7322685B2 (en) 2004-01-21 2004-12-20 Cover assembly for a cradle unit having an ink refilling actuator provided therein
US11/014,762 Active 2024-10-27 US7537309B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly having an improved ink distribution structure
US11/014,713 Active 2024-10-30 US7249822B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly having a longitudinally extending electrical connector
US11/014,749 Expired - Fee Related US7588301B2 (en) 2004-01-21 2004-12-20 Method for controlling the ink refilling procedure of a print engine
US11/014,752 Expired - Fee Related US7255430B2 (en) 2004-01-21 2004-12-20 Ink refill unit with cartridge constriction actuators
US11/014,758 Active 2025-01-12 US7429096B2 (en) 2004-01-21 2004-12-20 Cradle unit for electrically engaging with a pagewidth printhead cartridge
US11/014,742 Active 2025-03-07 US7347534B2 (en) 2004-01-21 2004-12-20 Inkjet printhead with apertured sealing film
US11/014,719 Active 2024-12-09 US7393076B2 (en) 2004-01-21 2004-12-20 Control system for controlling the refilling operation of a print engine
US11/014,757 Active - Reinstated 2025-06-02 US7407262B2 (en) 2004-01-21 2004-12-20 Pagewidth printhead assembly having abutting integrated circuits arranged thereon
US11/014,732 Active 2024-11-07 US7585054B2 (en) 2004-01-21 2004-12-20 Inkjet printhead with integrated circuit mounted on polymer sealing film
US11/014,723 Expired - Fee Related US7360860B2 (en) 2004-01-21 2004-12-20 System for mounting a capper assembly to a pagewidth printhead
US11/014,763 Active 2025-02-26 US7669961B2 (en) 2004-01-21 2004-12-20 Print engine for an inkjet printer
US11/014,756 Expired - Fee Related US7364257B2 (en) 2004-01-21 2004-12-20 Capper assembly for a pagewidth printhead cartridge
US11/014,716 Active 2024-10-22 US7470006B2 (en) 2004-01-21 2004-12-20 Inkjet printer with cartridge cradle having interfaces for refill units
US11/592,996 Active 2024-03-17 US7513615B2 (en) 2004-01-21 2006-11-06 Inkjet printer unit utilizing image reading unit for printed media collection
US11/758,640 Expired - Fee Related US7547098B2 (en) 2004-01-21 2007-06-05 Printing fluid supply device
US11/775,143 Active 2025-03-02 US7703886B2 (en) 2004-01-21 2007-07-09 Printhead assembly with pagewidth ink and data distribution
US11/778,567 Expired - Fee Related US7726789B2 (en) 2004-01-21 2007-07-16 Ink refill unit having printer ink storage actuators
US11/838,877 Active US7467860B2 (en) 2004-01-21 2007-08-14 Ink priming system for inkjet printhead having a bypass flow path
US11/852,907 Active 2024-08-01 US7748828B2 (en) 2004-01-21 2007-09-10 Printer print engine with cradled cartridge unit
US11/852,958 Expired - Fee Related US7914140B2 (en) 2004-01-21 2007-09-10 Printer unit with LCD touch screen on lid
US11/872,038 Active 2024-04-01 US7549738B2 (en) 2004-01-21 2007-10-15 Ink refill unit for a negatively pressurized ink reservoir of a printer cartridge
US11/944,453 Active 2024-11-25 US7753507B2 (en) 2004-01-21 2007-11-22 Pagewidth printhead assembly cartridge with micro-capillary feed
US11/944,633 Expired - Fee Related US7467861B2 (en) 2004-01-21 2007-11-25 Ink refill unit with incremental ink ejection for a print cartridge
US11/955,065 Expired - Fee Related US7658466B2 (en) 2004-01-21 2007-12-12 System for priming a cartridge having an ink retaining member
US11/955,093 Active US8079684B2 (en) 2004-01-21 2007-12-12 Ink storage module for a pagewidth printer cartridge
US11/961,578 Expired - Fee Related US7611223B2 (en) 2004-01-21 2007-12-20 Cradle unit having printhead maintenance and wiping arrangements for a print engine
US12/003,952 Active 2025-02-18 US8020976B2 (en) 2004-01-21 2008-01-03 Reservoir assembly for a pagewidth printhead cartridge
US12/003,875 Expired - Fee Related US8109616B2 (en) 2004-01-21 2008-01-03 Cover assembly including an ink refilling actuator member
US12/007,818 Active 2024-05-01 US7771035B2 (en) 2004-01-21 2008-01-16 Reservoir assembly for a pagewidth printhead cartridge
US12/007,817 Expired - Fee Related US7712882B2 (en) 2004-01-21 2008-01-16 Ink cartridge unit with ink suspension characteristics for an inkjet printer
US12/022,023 Active 2025-04-10 US7914136B2 (en) 2004-01-21 2008-01-29 Cartridge unit assembly with ink storage modules and a printhead IC for a printer
US12/023,018 Active 2024-04-17 US7686437B2 (en) 2004-01-21 2008-01-30 Cradle unit for receiving a print cartridge to form a print engine
US12/023,000 Active 2024-08-28 US7762652B2 (en) 2004-01-21 2008-01-30 Print engine with ink storage modules incorporating collapsible bags
US12/068,679 Expired - Fee Related US7771031B2 (en) 2004-01-21 2008-02-11 Ink refill unit with a mechanical tank compression arrangement
US12/031,582 Expired - Fee Related US7806519B2 (en) 2004-01-21 2008-02-14 Printer cartridge refill unit with verification integrated circuit
US12/071,187 Expired - Fee Related US7658479B2 (en) 2004-01-21 2008-02-19 Print engine with a refillable printer cartridge with ink refill ports
US12/043,708 Active 2024-08-04 US7686439B2 (en) 2004-01-21 2008-03-06 Print engine cartridge incorporating a post mounted maintenance assembly
US12/076,666 Expired - Fee Related US7819490B2 (en) 2004-01-21 2008-03-21 Printer unit with print engine that expands compressed image data
US12/076,665 Active US7556359B2 (en) 2004-01-21 2008-03-21 Ink refill unit with a working outlet and other dummy outlets
US12/076,664 Active US7513610B2 (en) 2004-01-21 2008-03-21 Cover assembly for a print engine with push rod for actuating a refill unit
US12/079,897 Active US7588324B2 (en) 2004-01-21 2008-03-31 Ink cartridge having enlarged end reservoirs

Family Applications After (70)

Application Number Title Priority Date Filing Date
US12/121,792 Active US7537315B2 (en) 2004-01-21 2008-05-16 Cradle unit for a print engine having a maintenance drive assembly
US12/122,711 Expired - Fee Related US7748818B2 (en) 2004-01-21 2008-05-18 Inkjet printhead with electrical disconnection of printhead prior to removal
US12/122,712 Active US7658483B2 (en) 2004-01-21 2008-05-18 Ink storage compartment with bypass fluid path structures
US12/123,403 Active 2024-08-26 US7815300B2 (en) 2004-01-21 2008-05-19 Cartridge unit having multiple ink storage capacity
US12/123,371 Expired - Fee Related US7841707B2 (en) 2004-01-21 2008-05-19 Cartridge unit having magnetically capped printhead
US12/123,394 Expired - Fee Related US7780282B2 (en) 2004-01-21 2008-05-19 Cartridge unit having capped printhead with multiple ink storage capacity
US12/138,424 Expired - Fee Related US7802879B2 (en) 2004-01-21 2008-06-13 Ink refill unit for a print engine having a compression arrangement with actuation means operable by a controller of the print engine
US12/138,420 Expired - Fee Related US7806522B2 (en) 2004-01-21 2008-06-13 Printer assembly having a refillable cartridge assembly
US12/138,418 Expired - Fee Related US8007087B2 (en) 2004-01-21 2008-06-13 Inkjet printer having an ink cartridge unit configured to facilitate flow of ink therefrom
US12/138,417 Active 2024-02-06 US7677692B2 (en) 2004-01-21 2008-06-13 Cradle unit for receiving a print cartridge to form a print engine
US12/170,431 Expired - Fee Related US8057023B2 (en) 2004-01-21 2008-07-09 Ink cartridge unit for an inkjet printer with an ink refill facility
US12/177,871 Active 2024-12-01 US7887169B2 (en) 2004-01-21 2008-07-22 Ink refill unit with incremental ink ejection accuated by print cartridge cradle
US12/177,868 Expired - Fee Related US7699448B2 (en) 2004-01-21 2008-07-22 Ink refill unit with threaded incremental ink ejection for print cartridge
US12/177,864 Expired - Fee Related US7699446B2 (en) 2004-01-21 2008-07-22 Ink refill unit with incremental millilitre ink ejection for print cartridge
US12/177,866 Expired - Fee Related US7699447B2 (en) 2004-01-21 2008-07-22 Ink refill unit with controlled incremental ink ejection for print cartridge
US12/190,586 Active 2024-12-01 US7901043B2 (en) 2004-01-21 2008-08-12 Printhead assembly having a ducting assembly and printhead titles
US12/190,561 Active 2024-03-13 US7695125B2 (en) 2004-01-21 2008-08-12 Reservoir assembly for a pagewidth printhead cartridge
US12/194,536 Active 2024-03-03 US7837296B2 (en) 2004-01-21 2008-08-20 Maintenance assembly for a pagewidth printer having a motorized drive
US12/234,695 Abandoned US20090009571A1 (en) 2004-01-21 2008-09-21 Printer receiving cartridge having pagewidth printhead
US12/264,126 Expired - Fee Related US7901062B2 (en) 2004-01-21 2008-11-03 Ink compartment refill unit with inlet valve acutator, outlet valve, actuator, and constrictor mechanism actuator
US12/264,749 Active US7661812B2 (en) 2004-01-21 2008-11-04 Printer unit for assembly with image reader unit
US12/276,384 Expired - Fee Related US7857436B2 (en) 2004-01-21 2008-11-23 Ink refill unit with incremental ink ejection mechanism
US12/276,358 Active 2024-09-27 US7938530B2 (en) 2004-01-21 2008-11-23 Cradle unit for a printer cartridge
US12/276,404 Expired - Fee Related US7695121B2 (en) 2004-01-21 2008-11-23 Method of refilling a printing unit
US12/324,610 Expired - Fee Related US7703885B2 (en) 2004-01-21 2008-11-26 Cradle unit which electromagnetically operates printhead capper
US12/324,573 Active 2024-07-31 US7845782B2 (en) 2004-01-21 2008-11-26 Pivotable PCB retension arrangement for inkjet cartridge cradle
US12/397,249 Expired - Fee Related US7775642B2 (en) 2004-01-21 2009-03-03 Docking port in a cover assembly
US12/422,879 Active US7708392B2 (en) 2004-01-21 2009-04-13 Refill unit for engaging with ink storage compartment, and fluidically isolating printhead
US12/433,862 Active 2024-04-21 US7942502B2 (en) 2004-01-21 2009-04-30 Print engine cradle with maintenance assembly
US12/436,127 Abandoned US20090213176A1 (en) 2004-01-21 2009-05-06 Inkjet Printhead Having Adhered Ink Distribution Structure
US12/436,124 Expired - Fee Related US7874665B2 (en) 2004-01-21 2009-05-06 Printer having nested media trays
US12/475,553 Expired - Fee Related US7946697B2 (en) 2004-01-21 2009-05-31 Printing fluid supply device with channeled absorbent material
US12/475,562 Expired - Fee Related US7938518B2 (en) 2004-01-21 2009-05-31 Ink refill unit for an ink reservoir
US12/480,686 Expired - Fee Related US7938519B2 (en) 2004-01-21 2009-06-09 Refill unit for refilling one of a number of ink compartments
US12/493,236 Active 2024-01-22 US8007065B2 (en) 2004-01-21 2009-06-28 Printer control circuitry for reading ink information from a refill unit
US12/540,360 Expired - Fee Related US8070266B2 (en) 2004-01-21 2009-08-12 Printhead assembly with ink supply to nozzles through polymer sealing film
US12/542,647 Expired - Fee Related US8240825B2 (en) 2004-01-21 2009-08-17 Ink refill unit having a clip arrangement for engaging with the print engine during refilling
US12/542,645 Expired - Fee Related US8251499B2 (en) 2004-01-21 2009-08-17 Securing arrangement for securing a refill unit to a print engine during refilling
US12/542,691 Active US7976137B2 (en) 2004-01-21 2009-08-17 Print cartridge having enlarged end reservoirs
US12/605,365 Active 2025-04-02 US8376533B2 (en) 2004-01-21 2009-10-25 Cradle unit for receiving removable printer cartridge unit
US12/612,660 Abandoned US20100053273A1 (en) 2004-01-21 2009-11-04 Printer Having Simple Connection Printhead
US12/649,311 Expired - Fee Related US8007093B2 (en) 2004-01-21 2009-12-29 Print engine for inkjet printer
US12/694,036 Expired - Fee Related US8025381B2 (en) 2004-01-21 2010-01-26 Priming system for pagewidth print cartridge
US12/696,031 Expired - Fee Related US8002393B2 (en) 2004-01-21 2010-01-28 Print engine with a refillable printer cartridge and ink refill port
US12/697,271 Expired - Fee Related US7971978B2 (en) 2004-01-21 2010-01-31 Refillable ink cartridge with ink bypass channel for refilling
US12/702,103 Active 2024-02-14 US8079700B2 (en) 2004-01-21 2010-02-08 Printer for nesting with image reader
US12/711,258 Active 2025-02-18 US8366244B2 (en) 2004-01-21 2010-02-24 Printhead cartridge cradle having control circuitry
US12/720,665 Active US8042922B2 (en) 2004-01-21 2010-03-09 Dispenser unit for refilling printing unit
US12/720,590 Active 2025-08-27 US8485651B2 (en) 2004-01-21 2010-03-09 Print cartrdge cradle unit incorporating maintenance assembly
US12/720,342 Abandoned US20100165058A1 (en) 2004-01-21 2010-03-09 Ink Refill Unit Having Discretely Incrementable Variable Storage Volume
US12/721,541 Active 2025-01-08 US8251501B2 (en) 2004-01-21 2010-03-10 Inkjet print engine having printer cartridge incorporating maintenance assembly and cradle unit incorporating maintenance drive assembly
US12/749,252 Active 2025-03-12 US8398216B2 (en) 2004-01-21 2010-03-29 Reservoir assembly for supplying fluid to printhead
US12/757,039 Active 2024-02-23 US8047639B2 (en) 2004-01-21 2010-04-09 Refill unit for incremental millilitre fluid refill
US12/758,801 Expired - Fee Related US8002394B2 (en) 2004-01-21 2010-04-13 Refill unit for fluid container
US12/758,800 Expired - Fee Related US8007083B2 (en) 2004-01-21 2010-04-13 Refill unit for incrementally filling fluid container
US12/765,803 Active 2024-10-24 US8348386B2 (en) 2004-01-21 2010-04-22 Pagewidth printhead assembly with ink and data distribution
US12/765,862 Active US8220900B2 (en) 2004-01-21 2010-04-23 Printhead cradle having electromagnetic control of capper
US12/769,533 Active US8075110B2 (en) 2004-01-21 2010-04-28 Refill unit for an ink storage compartment connected to a printhead through an outlet valve
US12/770,709 Abandoned US20100220126A1 (en) 2004-01-21 2010-04-29 Vertical form factor printer
US12/773,655 Active 2025-10-18 US8500259B2 (en) 2004-01-21 2010-05-04 Cartridge for printer having fluid flow arrangement
US12/785,475 Abandoned US20100225714A1 (en) 2004-01-21 2010-05-23 Refill unit having fluid storage actuators
US12/829,260 Active 2024-08-25 US8235502B2 (en) 2004-01-21 2010-07-01 Printer print engine with cradled cartridge unit
US12/829,324 Abandoned US20100271421A1 (en) 2004-01-21 2010-07-01 Maintenance assembly for pagewidth printhead
US12/832,923 Abandoned US20100271427A1 (en) 2004-01-21 2010-07-08 Printhead assembly with capillary channels in fluid chambers
US12/835,493 Abandoned US20100277556A1 (en) 2004-01-21 2010-07-13 Print engine with ink storage modules incorporating collapsible bags
US13/296,197 Abandoned US20120056941A1 (en) 2004-01-21 2011-11-14 Printhead having fluid supply through sealing film
US13/330,255 Active US8439497B2 (en) 2004-01-21 2011-12-19 Image processing apparatus with nested printer and scanner
US13/773,488 Active US8672450B2 (en) 2004-01-21 2013-02-21 Printhead assembly having electrical connector for transmitting power and data
US14/180,585 Active US9044956B2 (en) 2004-01-21 2014-02-14 Pagewidth printhead assembly having ink distribution member
US14/634,226 Abandoned US20150165800A1 (en) 2004-01-21 2015-02-27 Removable printhead assembly

Country Status (10)

Country Link
US (155) US7448734B2 (en)
EP (6) EP1706277B1 (en)
JP (16) JP2007518602A (en)
KR (11) KR100973611B1 (en)
CN (6) CN100586715C (en)
AT (1) AT510696T (en)
AU (8) AU2004314613B2 (en)
CA (5) CA2550790C (en)
SG (21) SG149843A1 (en)
WO (6) WO2005070686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096794A1 (en) * 2008-10-17 2010-04-22 Oki Data Corporation Sheet stacking device and image forming device

Families Citing this family (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738096B1 (en) * 1998-07-10 2004-05-18 Silverbrook Research Pty Ltd Low-cost disposable camera including print media carrying indication of postage paid
US6647270B1 (en) * 1999-09-10 2003-11-11 Richard B. Himmelstein Vehicletalk
US6526658B1 (en) * 2000-05-23 2003-03-04 Silverbrook Research Pty Ltd Method of manufacture of an ink jet printhead having a moving nozzle with an externally arranged actuator
AT367266T (en) * 2000-05-24 2007-08-15 Silverbrook Res Pty Ltd nozzle and method for manufacturing an ink jet printhead having an external moving actuator
AUPS048502A0 (en) 2002-02-13 2002-03-07 Silverbrook Research Pty. Ltd. Methods and systems (ap44)
AR049674A1 (en) * 2003-08-08 2006-08-30 Seiko Epson Corp Container liquid container to supply a consumer appliance of the liquid
US7731327B2 (en) 2004-01-21 2010-06-08 Silverbrook Research Pty Ltd Desktop printer with cartridge incorporating printhead integrated circuit
US7198352B2 (en) * 2004-01-21 2007-04-03 Kia Silverbrook Inkjet printer cradle with cartridge stabilizing mechanism
US7364263B2 (en) * 2004-01-21 2008-04-29 Silverbrook Research Pty Ltd Removable inkjet printer cartridge
US7249838B2 (en) * 2004-01-21 2007-07-31 Silverbrook Research Pty Ltd Self threading wallpaper printer
US7360868B2 (en) 2004-01-21 2008-04-22 Silverbrook Research Pty Ltd Inkjet printer cartridge with infrared ink delivery capabilities
US7156511B2 (en) * 2004-01-21 2007-01-02 Silverbrook Research Pty Ltd Inkjet printer cartridge with integral maintenance station
US7469989B2 (en) 2004-01-21 2008-12-30 Silverbrook Research Pty Ltd Printhead chip having longitudinal ink supply channels interrupted by transverse bridges
US7303255B2 (en) 2004-01-21 2007-12-04 Silverbrook Research Pty Ltd Inkjet printer cartridge with a compressed air port
US20050157112A1 (en) 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Inkjet printer cradle with shaped recess for receiving a printer cartridge
US7364264B2 (en) * 2004-01-21 2008-04-29 Silverbrook Research Pty Ltd Inkjet printer cradle with single drive motor performing multiple functions
US7201468B2 (en) * 2004-01-21 2007-04-10 Silverbrook Research Pty Ltd Inkjet printer cartridge with fixative delivery capabilities
US7097291B2 (en) 2004-01-21 2006-08-29 Silverbrook Research Pty Ltd Inkjet printer cartridge with ink refill port having multiple ink couplings
US7232208B2 (en) * 2004-01-21 2007-06-19 Silverbrook Research Pty Ltd Inkjet printer cartridge refill dispenser with plunge action
US7645025B2 (en) * 2004-01-21 2010-01-12 Silverbrook Research Pty Ltd Inkjet printer cartridge with two printhead integrated circuits
US7328985B2 (en) * 2004-01-21 2008-02-12 Silverbrook Research Pty Ltd Inkjet printer cartridge refill dispenser with security mechanism
US20050157128A1 (en) * 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Pagewidth inkjet printer cartridge with end electrical connectors
US7367647B2 (en) * 2004-01-21 2008-05-06 Silverbrook Research Pty Ltd Pagewidth inkjet printer cartridge with ink delivery member
US7448734B2 (en) * 2004-01-21 2008-11-11 Silverbrook Research Pty Ltd Inkjet printer cartridge with pagewidth printhead
US7121655B2 (en) * 2004-01-21 2006-10-17 Silverbrook Research Pty Ltd Inkjet printer cartridge refill dispenser
US7367650B2 (en) 2004-01-21 2008-05-06 Silverbrook Research Pty Ltd Printhead chip having low aspect ratio ink supply channels
US7441865B2 (en) * 2004-01-21 2008-10-28 Silverbrook Research Pty Ltd Printhead chip having longitudinal ink supply channels
US20050157000A1 (en) * 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Inkjet printer cradle with end data and power contacts
US7083273B2 (en) 2004-01-21 2006-08-01 Silverbrook Research Pty Ltd Inkjet printer cartridge with uniform compressed air distribution
US7425050B2 (en) * 2004-01-21 2008-09-16 Silverbrook Research Pty Ltd Method for facilitating maintenance of an inkjet printer having a pagewidth printhead
US7524016B2 (en) * 2004-01-21 2009-04-28 Silverbrook Research Pty Ltd Cartridge unit having negatively pressurized ink storage
US20050157125A1 (en) * 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Inkjet printer cartridge with integral shield
US7374355B2 (en) * 2004-01-21 2008-05-20 Silverbrook Research Pty Ltd Inkjet printer cradle for receiving a pagewidth printhead cartridge
JP4581531B2 (en) * 2004-07-27 2010-11-17 ソニー株式会社 Paper discharge tray, paper feed and discharge device, an image forming apparatus, and the information display device
KR100612450B1 (en) * 2004-10-14 2006-08-16 삼성전자주식회사 Ink cartridge for the wide array type head
AU2005324288B2 (en) 2005-01-10 2011-02-17 Memjet Technology Limited Inkjet printhead production method
US7296881B2 (en) * 2005-01-21 2007-11-20 Hewlett-Packard Development Company, L.P. Printhead de-priming
US7278720B2 (en) * 2005-01-24 2007-10-09 Hewlett-Packard Develpoment Company, L.P. Ink cartridge with multiple chambers aligned along an axial length
US7468284B2 (en) * 2005-02-28 2008-12-23 Silverbrook Research Pty Ltd Method of bonding substrates
US7425052B2 (en) * 2005-02-28 2008-09-16 Silverbrook Research Pty Ltd Printhead assembly having improved adhesive bond strength
US7372145B2 (en) * 2005-02-28 2008-05-13 Silverbrook Research Pty Ltd Bonded assembly having improved adhesive bond strength
JP4682862B2 (en) * 2005-03-31 2011-05-11 セイコーエプソン株式会社 Liquid container and liquid filling method thereof
KR100694132B1 (en) * 2005-06-28 2007-03-12 삼성전자주식회사 Ink channel unit and method for manufacturing the same
JP2007069435A (en) * 2005-09-06 2007-03-22 Brother Ind Ltd Liquid droplet delivering apparatus
KR100813964B1 (en) * 2005-09-22 2008-03-14 삼성전자주식회사 Array type print head and ink-jet image forming apparatus having the same
US7399057B2 (en) * 2005-10-11 2008-07-15 Silverbrook Research Pty Ltd Printhead maintenance station having cylindrical engagement pad
US7658463B2 (en) * 2005-10-11 2010-02-09 Silverbrook Research Pty Ltd Printhead maintenance assembly comprising first and second rollers
CA2619870C (en) * 2006-03-03 2011-11-08 Silverbrook Research Pty Ltd Pulse damped fluidic architecture
US7669958B2 (en) * 2005-10-11 2010-03-02 Silverbrook Research Pty Ltd Printhead cartridge comprising integral printhead maintenance station with maintenance roller
JP4681654B2 (en) * 2006-03-03 2011-05-11 シルバーブルック リサーチ ピーティワイ リミテッド Inkjet printer
AU2006301900B2 (en) * 2005-10-11 2010-05-27 Memjet Technology Limited Printhead maintenance assembly comprising maintenance roller and cleaning mechanism
US20070104496A1 (en) * 2005-11-10 2007-05-10 Xerox Corporation Illuminated output presence indicator
US7452055B2 (en) * 2005-12-05 2008-11-18 Silverbrook Research Pty Ltd Printing cartridge having self-referencing printhead
US7470002B2 (en) * 2005-12-05 2008-12-30 Silverbrook Research Ptv Ltd Printer having self-reference mounted printhead
US7455383B2 (en) * 2005-12-05 2008-11-25 Silverbrook Research Pty Ltd Printhead maintenance station having maintenance belt with belt-cleaning station
US7475963B2 (en) * 2005-12-05 2009-01-13 Silverbrook Research Pty Ltd Printing cartridge having commonly mounted printhead and capper
US7465042B2 (en) * 2005-12-05 2008-12-16 Silverbrook Research Pty Ltd Method of priming inkjet printhead
US7448735B2 (en) * 2005-12-05 2008-11-11 Silverbrook Research Pty Ltd Ink priming arrangement for inkjet printhead
US7465033B2 (en) * 2005-12-05 2008-12-16 Silverbrook Research Ptv Ltd Self-referencing printhead assembly
US7758038B2 (en) * 2005-12-05 2010-07-20 Silverbrook Research Pty Ltd Printer having compact media pick-up device
US7448739B2 (en) * 2005-12-05 2008-11-11 Silverbrook Research Pty Ltd Constant negative pressure head ink supply arrangement for inkjet printhead
US7681876B2 (en) * 2005-12-05 2010-03-23 Silverbrook Research Pty Ltd Printer having disengageably gear driven media pick-up roller
US7722161B2 (en) * 2005-12-05 2010-05-25 Silverbrook Research Pty Ltd Method of locating printhead on printer
US7632032B2 (en) * 2005-12-05 2009-12-15 Silverbrook Research Pty Ltd Method of assembling printer media transport arrangement
US7735955B2 (en) 2005-12-05 2010-06-15 Silverbrook Research Pty Ltd Method of assembling printhead capping mechanism
US7448724B2 (en) * 2005-12-05 2008-11-11 Silverbrook Research Pty Ltd Method of maintaining a printhead using a maintenance belt
US7445311B2 (en) * 2005-12-05 2008-11-04 Silverbrook Research Pty Ltd Printhead maintenance station having maintenance belt
US7721441B2 (en) * 2006-03-03 2010-05-25 Silverbrook Research Pty Ltd Method of fabricating a printhead integrated circuit attachment film
US7837297B2 (en) * 2006-03-03 2010-11-23 Silverbrook Research Pty Ltd Printhead with non-priming cavities for pulse damping
GB2436293A (en) * 2006-03-24 2007-09-26 Galley Geoffrey H Spinous processes insertion device
KR100754212B1 (en) * 2006-03-25 2007-09-03 삼성전자주식회사 Ink set, ink catridge including the same, and inkjet recording apparatus employing the same
US7726791B2 (en) * 2006-03-31 2010-06-01 Lexmark International, Inc. Conduit construction using films
JP4725394B2 (en) * 2006-03-31 2011-07-13 富士フイルム株式会社 Inkjet recording device
US7992961B2 (en) * 2006-03-31 2011-08-09 Brother Kogyo Kabushiki Kaisha Ink-jet head
JP2007290137A (en) * 2006-04-20 2007-11-08 Seiko Epson Corp Liquid cartridge and its manufacturing method
US20080062452A1 (en) * 2006-09-11 2008-03-13 Silverbrook Research Pty Ltd PictBridge printer with photo-sized display screen
US7663784B2 (en) * 2006-09-11 2010-02-16 Silverbrook Research Pty Ltd Method of storing and displaying photos on a digital photo frame
US20080062445A1 (en) * 2006-09-11 2008-03-13 Silverbrook Research Pty Ltd Method of printing photos from a printer
JP4946751B2 (en) * 2006-11-06 2012-06-06 セイコーエプソン株式会社 Container holder, liquid consumption apparatus, and liquid container
TWI488753B (en) * 2006-11-06 2015-06-21 Seiko Epson Corp A liquid container, a container holder, and a liquid consuming device
CN101535054B (en) * 2006-11-06 2011-11-16 精工爱普生株式会社 Liquid container
US7568694B2 (en) 2006-11-27 2009-08-04 Eastman Kodak Company Printed medium collector
DE102006059084A1 (en) * 2006-12-14 2008-06-19 Robert Bosch Gmbh Micromechanical element for use in miniaturized sensors, particularly in safety systems of motor vehicles, includes substrate with micromechanical functional element, where shift sequence is arranged
EP1939790B1 (en) * 2006-12-28 2009-07-22 Seiko Epson Corporation Media processing device
US20080157405A1 (en) * 2007-01-03 2008-07-03 International Business Machines Corporation Chip stack with precision alignment, high yield assembly and thermal conductivity
US7605009B2 (en) 2007-03-12 2009-10-20 Silverbrook Research Pty Ltd Method of fabrication MEMS integrated circuits
JP5214635B2 (en) * 2007-03-21 2013-06-19 ザムテック・リミテッドZamtec Limited Fluid damping print head
US7758177B2 (en) * 2007-03-21 2010-07-20 Silverbrook Research Pty Ltd High flowrate filter for inkjet printhead
JP4962092B2 (en) 2007-03-30 2012-06-27 ブラザー工業株式会社 Image forming apparatus
JP4962094B2 (en) * 2007-03-30 2012-06-27 ブラザー工業株式会社 Image forming apparatus
JP5056163B2 (en) * 2007-05-25 2012-10-24 ブラザー工業株式会社 Ink cartridge determination device and determination method
US7819503B2 (en) * 2007-06-15 2010-10-26 Silverbrook Research Pty Ltd Printhead integrated circuit comprising inkjet nozzle assemblies having connector posts
US7866795B2 (en) * 2007-06-15 2011-01-11 Silverbrook Research Pty Ltd Method of forming connection between electrode and actuator in an inkjet nozzle assembly
US8789905B2 (en) 2007-07-02 2014-07-29 Seiko Epson Corporation Liquid discharging apparatus and method of discharging liquid
JP2009029112A (en) * 2007-07-02 2009-02-12 Seiko Epson Corp Liquid discharging apparatus and method of discharging liquid
US20090009541A1 (en) 2007-07-02 2009-01-08 Seiko Epson Corporation Liquid discharging apparatus and method of discharging liquid
US8128210B2 (en) * 2007-07-20 2012-03-06 Seiko Epson Corporation Fluid ejecting apparatus and fluid filling method of fluid ejecting apparatus
CA2596123A1 (en) 2007-08-03 2009-02-03 Carlo Fascio Refillable ink cartridge
JP2009051046A (en) * 2007-08-24 2009-03-12 Canon Inc Inkjet recording head and bubble removal method
US7914132B2 (en) * 2007-10-16 2011-03-29 Silverbrook Research Pty Ltd Inkjet printer with selectively isolatable pump
US20090179967A1 (en) * 2008-01-16 2009-07-16 Silverbrook Research Pty Ltd Multiple conduit fluid coupling with leakage flow control
US7845778B2 (en) * 2008-01-16 2010-12-07 Silverbrook Research Pty Ltd Printer with zero insertion force printhead cartridge
WO2009089567A1 (en) * 2008-01-16 2009-07-23 Silverbrook Research Pty Ltd Printhead cartridge with two fluid couplings
WO2009089564A1 (en) * 2008-01-16 2009-07-23 Silverbrook Research Pty Ltd Multiple conduit fluid coupling with leakage flow control
US7922279B2 (en) * 2008-01-16 2011-04-12 Silverbrook Research Pty Ltd Printhead maintenance facility with ink storage and driven vacuum drainage coupling
WO2009114893A1 (en) * 2008-03-17 2009-09-24 Silverbrook Research Pty Ltd Fabrication of a printhead integrated circuit attachment film by photopatterning
US7845755B2 (en) * 2008-03-17 2010-12-07 Silverbrook Research Pty Ltd Printhead integrated circuit attachment film having differentiated adhesive layers
US20090233050A1 (en) * 2008-03-17 2009-09-17 Silverbrook Research Pty Ltd Fabrication of a printhead integrated circuit attachment film by photopatterning
JP4692567B2 (en) * 2008-03-29 2011-06-01 ブラザー工業株式会社 Image forming apparatus
US7815273B2 (en) * 2008-04-01 2010-10-19 Hewlett-Packard Development Company, L.P. Fluid ejection device
US8206353B2 (en) * 2008-04-11 2012-06-26 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
US9295776B2 (en) * 2008-04-11 2016-03-29 Medtronic Minimed, Inc. Reservoir plunger head systems and methods
US8858501B2 (en) * 2008-04-11 2014-10-14 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
US8293338B2 (en) * 2008-04-15 2012-10-23 Xerox Corporation Applying a transparent protective coating to marked media in a print engine
US8496320B2 (en) * 2008-05-08 2013-07-30 Hewlett-Packard Development Company, L.P. Ink cartridge having a staked vent sealing member
US8091993B2 (en) * 2008-05-22 2012-01-10 Videojet Technologies Inc. Ink containment system and ink level sensing system for an inkjet cartridge
US8272704B2 (en) 2008-05-22 2012-09-25 Zipher Limited Ink containment system and ink level sensing system for an inkjet cartridge
JP5511096B2 (en) * 2008-05-23 2014-06-04 富士フイルム株式会社 Method and apparatus for mounting fluid ejection module
JP4687745B2 (en) * 2008-05-23 2011-05-25 富士ゼロックス株式会社 Image processing apparatus, image recording system, and program
WO2009142889A1 (en) * 2008-05-23 2009-11-26 Fujifilm Corporation Circulating fluid for fluid droplet ejecting
US7631864B1 (en) * 2008-12-17 2009-12-15 Xerox Corporation Catch tray for document production device
US8342391B2 (en) * 2008-12-18 2013-01-01 Ncr Corporation Travel kiosk
US8025374B2 (en) * 2008-12-19 2011-09-27 Silverbrook Research Pty Ltd Ink manifold with multiple conduit shut off valve
CA2742314C (en) * 2008-12-19 2013-10-22 Silverbrook Research Pty Ltd Ink manifold with multiple conduit shut off valve
US8236247B2 (en) * 2008-12-23 2012-08-07 Intercat Equipment, Inc. Material withdrawal apparatus and methods of regulating material inventory in one or more units
KR20100081555A (en) * 2009-01-06 2010-07-15 삼성전자주식회사 Nozzle capping apparatus for ink-jet printer
KR20100081867A (en) * 2009-01-07 2010-07-15 삼성전자주식회사 Ink cartridge and ink circulation system
EP2835262B1 (en) * 2009-02-27 2018-06-13 Hewlett-Packard Development Company, L.P. Fluid cartridge for a printing device
US20100228090A1 (en) * 2009-03-06 2010-09-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
EP2228226B1 (en) * 2009-03-12 2012-06-27 Fujifilm Corporation Image forming method
KR20120017431A (en) 2009-05-17 2012-02-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Fluid-ejection printhead die having mixing barrier
US8323993B2 (en) * 2009-07-27 2012-12-04 Zamtec Limited Method of fabricating inkjet printhead assembly having backside electrical connections
US8567898B2 (en) 2009-07-31 2013-10-29 Zamtec Ltd Printing system with input roller and movable media engagement output
US9048802B2 (en) 2009-08-17 2015-06-02 Skyworks Solutions, Inc. Radio frequency power amplifier with linearizing predistorter
WO2011023629A1 (en) * 2009-08-27 2011-03-03 Sanofi-Aventis Deutschland Gmbh Injector device
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
US8388096B2 (en) * 2009-12-17 2013-03-05 Hewlett-Packard Development Company, L.P. Detecting and removing fibers
JP5458922B2 (en) * 2010-02-03 2014-04-02 富士ゼロックス株式会社 Image processing apparatus and program
JP5077381B2 (en) * 2010-03-29 2012-11-21 ブラザー工業株式会社 Liquid ejection device
US8256876B2 (en) * 2010-03-31 2012-09-04 Eastman Kodak Company Ink passageways connecting inlet ports and chambers
JP5577827B2 (en) * 2010-04-28 2014-08-27 ブラザー工業株式会社 Inkjet recording device
US8313179B2 (en) 2010-04-29 2012-11-20 Hewlett-Packard Development Company, L.P. Liquid delivery for a printhead
WO2011140469A1 (en) 2010-05-06 2011-11-10 Zakaryae Fathi Adhesive bonding composition and method of use
US9226760B2 (en) 2010-05-07 2016-01-05 Ethicon Endo-Surgery, Inc. Laparoscopic devices with flexible actuation mechanisms
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
CN105667095B (en) 2010-05-17 2017-09-01 麦捷特技术有限公司 A system for dispensing a fluid and gas in the printer
US20110279567A1 (en) 2010-05-17 2011-11-17 Silverbrook Research Pty Ltd Fluid distribution system having printhead bypass
US8460337B2 (en) 2010-06-09 2013-06-11 Ethicon Endo-Surgery, Inc. Selectable handle biasing
JP5545058B2 (en) * 2010-06-17 2014-07-09 ブラザー工業株式会社 Image recording device
US20110312067A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Dialysis device for separating pathogens from a biological sample
US8205965B2 (en) * 2010-07-20 2012-06-26 Hewlett-Packard Development Company, L.P. Print bar structure
JP5736702B2 (en) * 2010-09-21 2015-06-17 セイコーエプソン株式会社 Recording device
JP5621495B2 (en) * 2010-10-14 2014-11-12 セイコーエプソン株式会社 Printer control apparatus, printing system, printer control method and program
US8235376B2 (en) * 2010-10-29 2012-08-07 Lexmark International, Inc. Removable input tray assembly having an integrated roller nip for an image forming device
US8020850B1 (en) * 2010-10-29 2011-09-20 Lexmark International, Inc. Removable input tray assembly having a dual function roller for feeding media and separating media in an image forming device
US20120127246A1 (en) * 2010-11-18 2012-05-24 Chi-Chang Liu Ink cartridge structure
USD665842S1 (en) * 2010-11-19 2012-08-21 Domino Printing Sciences Plc Printer service module
CN103347699B (en) * 2010-11-19 2015-06-24 多米诺印刷科学有限公司 Improvements in or relating to inkjet printers
JP2012121168A (en) * 2010-12-06 2012-06-28 Canon Inc Liquid ejection head, and method of producing the same
JP5724398B2 (en) * 2011-01-14 2015-05-27 セイコーエプソン株式会社 Container unit and liquid jet system
JP5343994B2 (en) * 2011-03-31 2013-11-13 ブラザー工業株式会社 Recording device
US9275842B2 (en) * 2011-05-27 2016-03-01 Dsa Detection Llc Multi-dopant permeation tube
US8814327B2 (en) * 2011-07-01 2014-08-26 Canon Kabushiki Kaisha Power supply apparatus and printing apparatus
US20130025125A1 (en) * 2011-07-27 2013-01-31 Petruchik Dwight J Method of fabricating a layered ceramic substrate
US8897629B1 (en) 2012-01-27 2014-11-25 Scent Sciences Corporation Scent delivery apparatus
JP6045227B2 (en) * 2012-07-05 2016-12-14 キヤノン株式会社 Inkjet recording device
US8905528B2 (en) * 2012-07-24 2014-12-09 Eastman Kodak Company Ink tank with a compliant wick
JP6135073B2 (en) 2012-09-01 2017-05-31 株式会社リコー Image forming apparatus
US9421781B2 (en) * 2012-10-15 2016-08-23 Seiko Epson Corporation Recording apparatus
JP5794221B2 (en) * 2012-12-19 2015-10-14 コニカミノルタ株式会社 image forming apparatus
JP2014151976A (en) * 2013-02-05 2014-08-25 Seiko Epson Corp Medium transport device and recording apparatus
JP5692265B2 (en) * 2013-03-07 2015-04-01 セイコーエプソン株式会社 Liquid ejecting apparatus, liquid supply apparatus, and liquid container
US8851617B1 (en) 2013-03-25 2014-10-07 Hewlett-Packard Development Company, L.P. Provide printing fluid to printhead
US10105901B2 (en) 2013-09-13 2018-10-23 Microjet Technology Co., Ltd. Rapid prototyping apparatus with page-width array printing module
US9015903B2 (en) * 2013-09-20 2015-04-28 Hewlett-Packard Development Company, L.P. Pin connector
US9676189B2 (en) * 2013-09-25 2017-06-13 Hewlett-Packard Development Company, L.P. Printhead assembly with one-piece printhead support
JP6221566B2 (en) * 2013-09-26 2017-11-01 セイコーエプソン株式会社 Method for regenerating liquid container and liquid container
KR20160087837A (en) 2013-11-19 2016-07-22 멤젯 테크놀로지 엘티디 Method of printing pigment-based inks, ink set, inks and printers therefor
GB2520745A (en) * 2013-11-29 2015-06-03 Ingegneria Ceramica S R L An improved support bar for a printhead
US9420503B2 (en) 2014-01-21 2016-08-16 Cisco Technology, Inc. System and method for seamless mobility in a network environment
CN108583020A (en) 2014-01-31 2018-09-28 惠普发展公司,有限责任合伙企业 For ink supply and its preparation method
CN103832080B (en) * 2014-03-20 2015-10-28 北京美科艺数码科技发展有限公司 Sub tank, an ink supply system and ink jet printing apparatus
JP6361861B2 (en) * 2014-03-25 2018-07-25 セイコーエプソン株式会社 Recording device
JP6187364B2 (en) * 2014-03-31 2017-08-30 ブラザー工業株式会社 Printing device
CN103862889A (en) * 2014-04-04 2014-06-18 晏石英 Dust-free printing system
CN104044373A (en) * 2014-06-20 2014-09-17 张晓玲 Printer with automatic alarming function
DE102014213874A1 (en) * 2014-07-16 2016-01-21 Siemens Aktiengesellschaft Preconcentrator for adsorbing and / or desorbing at least one component of a gas
CN106660369B (en) * 2014-07-17 2019-01-15 惠普发展公司,有限责任合伙企业 Print rod structure
USD763140S1 (en) * 2014-07-25 2016-08-09 Inter-Power Corporation Billet push rod
USD761338S1 (en) * 2014-07-25 2016-07-12 Inter-Power Corporation Billet push rod
USD763331S1 (en) * 2014-07-25 2016-08-09 Inter-Power Corporation Billet push rod
JP6394185B2 (en) * 2014-08-28 2018-09-26 セイコーエプソン株式会社 Printing device
US9546292B2 (en) 2014-11-19 2017-01-17 Memjet Technology Limited Ink additive combinations for improving printhead lifetime
TWI633018B (en) * 2014-12-19 2018-08-21 研能科技股份有限公司 Rapid prototyping device using page-width array printing
TWI579151B (en) * 2014-12-19 2017-04-21 Microjet Technology Co Ltd Rapid prototyping apparatus of pagewidth printing
US10377556B2 (en) 2015-02-04 2019-08-13 S.C. Johnson & Son, Inc. Retaining apparatus
USD763332S1 (en) * 2015-05-31 2016-08-09 Huai Wu 3D printhead
JP2017056629A (en) * 2015-09-16 2017-03-23 船井電機株式会社 Image formation device
CN108472961A (en) * 2015-10-28 2018-08-31 惠普发展公司,有限责任合伙企业 Ink-cases of printers with multiple back pressure chambers
CN106739525A (en) * 2015-11-25 2017-05-31 周利平 Novel cartridge
CN106808802A (en) * 2015-11-28 2017-06-09 周利军 Environment-friendly intelligent external ink supply system
US9969165B2 (en) 2016-01-08 2018-05-15 Canon Kabushiki Kaisha Liquid discharge head and liquid discharge apparatus
US10022979B2 (en) 2016-01-08 2018-07-17 Canon Kabushiki Kaisha Liquid ejection head, liquid ejection apparatus, and manufacturing method
TW201803735A (en) * 2016-05-02 2018-02-01 滿捷特科技公司 Monochrome inkjet printhead configured for high-speed printing
US20170341443A1 (en) * 2016-05-24 2017-11-30 Electronics For Imaging, Inc. Replication Alignment of Components for Use in Inkjet Printing Applications
US10076902B2 (en) 2016-05-27 2018-09-18 Canon Kabushiki Kaisha Print element substrate, liquid ejection head, and printing device
JP2017213730A (en) 2016-05-30 2017-12-07 キヤノン株式会社 Recording element substrate, liquid discharge head, and liquid discharge device
JP2017219962A (en) * 2016-06-06 2017-12-14 キヤノン株式会社 Control device and control method
JP2018020887A (en) * 2016-08-03 2018-02-08 富士通コンポーネント株式会社 Printer
JP2018052109A (en) 2016-09-27 2018-04-05 キヤノン株式会社 Recording head, element substrates, and recording apparatus
JP2018103527A (en) * 2016-12-27 2018-07-05 セイコーエプソン株式会社 Printing apparatus
TW201838829A (en) 2017-02-06 2018-11-01 愛爾蘭商滿捷特科技公司 Inkjet printhead for full color pagewide printing
WO2018188806A1 (en) 2017-04-13 2018-10-18 Memjet Technology Limited Low toxicity ink formulations with improved printhead lifetime
CN107415477A (en) * 2017-09-12 2017-12-01 陆永添 High-speed spinning inkjet machine with spray head cleaning and moisturizing mechanism
CN107757131B (en) * 2017-09-28 2019-06-25 北京盛通印刷股份有限公司 A kind of ink storage device of improved cartridge of ink-jet printer
JP2019084754A (en) * 2017-11-07 2019-06-06 エスアイアイ・プリンテック株式会社 Liquid jet head and liquid jet recording device
WO2019117937A1 (en) * 2017-12-15 2019-06-20 Hewlett-Packard Development Company, L.P. Fluidic ejection controllers with selectively removable ejection boards
CN108099412A (en) * 2017-12-28 2018-06-01 南宁远卓新能源科技有限公司 Bubble-preventing ink box
TWI657036B (en) * 2018-07-18 2019-04-21 信紘科技股份有限公司 Automatic slot filling docking device

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868698A (en) * 1973-10-24 1975-02-25 Mead Corp Stimulation control apparatus for an ink jet recorder
US4580148A (en) * 1985-02-19 1986-04-01 Xerox Corporation Thermal ink jet printer with droplet ejection by bubble collapse
US4594597A (en) * 1985-08-13 1986-06-10 Sanders Associates, Inc. Thermal printer
US4727387A (en) * 1987-06-24 1988-02-23 Blaser Industries, Inc. Paper-handling mechanism for laser printer
US4985710A (en) * 1989-11-29 1991-01-15 Xerox Corporation Buttable subunits for pagewidth "Roofshooter" printheads
US5160945A (en) * 1991-05-10 1992-11-03 Xerox Corporation Pagewidth thermal ink jet printhead
US5221397A (en) * 1992-11-02 1993-06-22 Xerox Corporation Fabrication of reading or writing bar arrays assembled from subunits
US5376957A (en) * 1992-06-08 1994-12-27 Signtech Usa, Ltd. Ink jet printer
US5577613A (en) * 1995-09-06 1996-11-26 Hewlett-Packard Company Integrated carry handle and accessory interlock system
US5659275A (en) * 1993-12-24 1997-08-19 Murata Manufacturing Co., Ltd. TM dual mode dielectric resonator apparatus with a method for adjusting the coupling coefficients
US5682186A (en) * 1994-03-10 1997-10-28 Hewlett-Packard Company Protective capping apparatus for an ink-jet pen
US5825378A (en) * 1993-04-30 1998-10-20 Hewlett-Packard Company Calibration of media advancement to avoid banding in a swath printer
US5982969A (en) * 1997-04-24 1999-11-09 Bridgestone Corporation Optical transmission tube, making method, and linear illuminant system
US6017117A (en) * 1995-10-31 2000-01-25 Hewlett-Packard Company Printhead with pump driven ink circulation
US6045214A (en) * 1997-03-28 2000-04-04 Lexmark International, Inc. Ink jet printer nozzle plate having improved flow feature design and method of making nozzle plates
US6084622A (en) * 1993-04-28 2000-07-04 Canon Kabushiki Kaisha Frame structure and an image forming apparatus using such a frame structure
US6238044B1 (en) * 2000-06-30 2001-05-29 Silverbrook Research Pty Ltd Print cartridge
US6257713B1 (en) * 1996-03-29 2001-07-10 Samsung Electronics Co., Ltd. Device for refilling color inks in an ink-jet printer
US20010007463A1 (en) * 1999-12-06 2001-07-12 Hiroki Hayashi Surface reformed fiber body, liquid container using fiber absorber, and method of producing fiber absorber for use in liquid ejection
US6270177B1 (en) * 1998-11-09 2001-08-07 Silverbrook Research Pty Ltd Printer unit for PC disk drive bay
US6276787B1 (en) * 1997-09-26 2001-08-21 Brother Kogyo Kabushiki Kaisha Ink supplying device
US6281912B1 (en) * 2000-05-23 2001-08-28 Silverbrook Research Pty Ltd Air supply arrangement for a printer
US6290349B1 (en) * 1999-05-25 2001-09-18 Silverbrook Research Pty Ltd Printer consumable cartridge
US6318920B1 (en) * 2000-05-23 2001-11-20 Silverbrook Research Pty Ltd Rotating platen member
US6347864B1 (en) * 2000-06-30 2002-02-19 Silverbrook Research Pty Ltd Print engine including an air pump
US6349908B1 (en) * 1999-02-17 2002-02-26 Eagle Electric Manufacturing Co., Inc. Standoff assembly and method for supporting an electrical component
US20020030712A1 (en) * 1997-07-12 2002-03-14 Kia Silverbrook Printing cartridge with an integrated circuit device
US6382769B1 (en) * 1997-07-15 2002-05-07 Silverbrook Research Pty Ltd Method of tab alignment in an integrated circuit type device
US6386535B1 (en) * 2000-09-15 2002-05-14 Silverbrook Research Pty Ltd Loading mechanism for a modular commercial printer
US20020056962A1 (en) * 2000-11-13 2002-05-16 Brother Kogyo Kabushiki Kaisha Image forming apparatus and recording medium feeding apparatus for the same
US6397035B2 (en) * 1998-10-16 2002-05-28 Canon Kabushiki Kaisha Image forming apparatus with control of conveying speeds
US6439908B1 (en) * 1999-12-09 2002-08-27 Silverbrook Research Pty Ltd Power supply for a four color modular printhead
US6443555B1 (en) * 1999-03-16 2002-09-03 Silverbrook Research Pty Ltd Pagewidth wide format printer
US6457810B1 (en) * 2000-10-20 2002-10-01 Silverbrook Research Pty Ltd. Method of assembly of six color inkjet modular printhead
US6502614B1 (en) * 1999-05-25 2003-01-07 Silverbrook Research Pty Ltd Printed media transverse binder
US6554398B2 (en) * 2001-03-08 2003-04-29 Agfa-Gevaert Ink-jet printer equipped for aligning the printheads
US6557976B2 (en) * 2001-02-14 2003-05-06 Hewlett-Packard Development Company, L.P. Electrical circuit for wide-array inkjet printhead assembly
US20030160853A1 (en) * 2002-02-28 2003-08-28 Fetherolf Will G. Vertical mount printing device
US20030181097A1 (en) * 2002-03-06 2003-09-25 Tetsuya Hattori Connector and fixing structure of connector and board
US6631967B1 (en) * 1998-11-26 2003-10-14 Seiko Epson Corporation Printer and ink cartridge attached thereto
US6634746B2 (en) * 2000-03-02 2003-10-21 Canon Kabushiki Kaisha Recording apparatus
US6637871B1 (en) * 1999-07-14 2003-10-28 Videojet Technologies, Inc. Droplet generator for a continuous stream ink jet print head
US6652082B2 (en) * 1998-10-16 2003-11-25 Silverbrook Research Pty Ltd Printhead assembly for an ink jet printer
US6672706B2 (en) * 1997-07-15 2004-01-06 Silverbrook Research Pty Ltd Wide format pagewidth inkjet printer
US6679584B2 (en) * 1997-07-15 2004-01-20 Silverbrook Research Pty Ltd. High volume pagewidth printing
US20040061765A1 (en) * 2002-09-30 2004-04-01 Shoichi Kan Image forming apparatus
US20040196341A1 (en) * 2003-04-04 2004-10-07 Canon Kabushiki Kaisha Liquid container, liquid using device, printing apparatus, and method of manufacturing liquid container
US20040212647A1 (en) * 2000-01-20 2004-10-28 Yuji Yakura Method for driving recording head, recording head, and ink jet printer
US20050035998A1 (en) * 2001-05-11 2005-02-17 Makoto Ando Ink jet print head, inkjet printer including the inkjet print head, and method of manufacturing inkjet print head
US6988840B2 (en) * 2000-05-23 2006-01-24 Silverbrook Research Pty Ltd Printhead chassis assembly
US7144106B2 (en) * 2001-10-17 2006-12-05 Seiko Epson Corporation Fixed material transportation apparatus and liquid fixing apparatus using the transportation apparatus
US7306309B2 (en) * 2003-02-27 2007-12-11 Sony Corporation Liquid discharge apparatus and method for discharging liquid
US7306325B2 (en) * 2004-01-21 2007-12-11 Silverbrook Research Pty Ltd Inkjet printer having ink distribution to fixedly attached printhead ICS
US7467861B2 (en) * 2004-01-21 2008-12-23 Silverbrook Research Pty Ltd Ink refill unit with incremental ink ejection for a print cartridge
US7530662B2 (en) * 2004-01-21 2009-05-12 Silverbrook Research Pty Ltd Driven mechanism with an air compressor for a printer cradle unit
US7645025B2 (en) * 2004-01-21 2010-01-12 Silverbrook Research Pty Ltd Inkjet printer cartridge with two printhead integrated circuits
US7735986B2 (en) * 2004-01-21 2010-06-15 Silverbrook Research Pty Ltd Ink storage module

Family Cites Families (682)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US485435A (en) * 1892-11-01 Combined easy
US10A (en) * 1836-08-10 Gtttlslto andi
US270177A (en) * 1883-01-02 brooks
US86467A (en) * 1869-02-02 Egbert w
US620651A (en) * 1899-03-07 Dress-guard for bicycles
US386898A (en) * 1888-07-31 Secondary battery
US590669A (en) * 1897-09-28 Horse-collar pad
US450148A (en) * 1891-04-14 Rotary fan
US587788A (en) * 1897-08-10 Morton
US656198A (en) * 1897-03-10 1900-08-21 James R Maccoll Lappet-loom.
US644355A (en) * 1898-04-02 1900-02-27 George B Haycock Fountain-cuspidor.
US628912A (en) * 1898-07-29 1899-07-18 George William Bayley Acetylene-gas lamp.
US654398A (en) * 1899-04-15 1900-07-24 Ernest Hollings Guncotton-press.
US667584A (en) * 1900-05-01 1901-02-05 Sterling Arc Lamp Company Electric-arc lamp.
US655976A (en) * 1900-06-16 1900-08-14 Henry S Jacobs Bait or other net.
US1880354A (en) 1931-07-30 1932-10-04 Herman C Mueller Fluid gun
US3214067A (en) 1962-09-11 1965-10-26 Thomas R Linington Fluid dispenser
US3270182A (en) * 1964-03-26 1966-08-30 Hynes Electric Heating Company High temperature fluid heater
GB1051747A (en) 1964-08-28
US3403679A (en) 1964-12-11 1968-10-01 Secr Defence Brit Hypodermic injection apparatus with a secondary capsule-collapsing means
US3950761A (en) 1973-01-04 1976-04-13 Casio Computer Co., Ltd. Ink pressurizing apparatus for an ink jet recorder
US3948259A (en) 1973-03-09 1976-04-06 Population Research Incorporated Dispensing instrument
US3886938A (en) * 1973-10-23 1975-06-03 Scala Anthony Power operated fluid infusion device
DE2460573A1 (en) 1974-12-20 1976-07-01 Siemens Ag Apparatus for ink jet printers for the supply of piezoelectrically operated schreibduesen with schreibfluessigkeit
US4007465A (en) * 1975-11-17 1977-02-08 International Business Machines Corporation System for self-cleaning ink jet head
DE2607313C3 (en) 1976-02-23 1979-01-25 Siemens Ag, 1000 Berlin Und 8000 Muenchen
DE2610518C3 (en) 1976-03-12 1983-04-07 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4183031A (en) 1976-06-07 1980-01-08 Silonics, Inc. Ink supply system
JPS54103351A (en) * 1978-01-31 1979-08-14 Sharp Corp Fluid feed mechanism
JPS5746745B2 (en) 1978-03-17 1982-10-05
JPS55158975A (en) * 1979-05-26 1980-12-10 Ricoh Co Ltd Ink supplying mechanism of ink jet recording device
DE3022128C2 (en) * 1980-06-10 1983-12-08 Mannesmann Ag, 4000 Duesseldorf, De
DE3021913A1 (en) 1980-06-11 1981-12-17 Siemens Ag Swiveling tintenabweisblende for the screibkopf an ink-writing means
US4342042A (en) 1980-12-19 1982-07-27 Pitney Bowes Inc. Ink supply system for an array of ink jet heads
US4329698A (en) 1980-12-19 1982-05-11 International Business Machines Corporation Disposable cartridge for ink drop printer
US4333456A (en) 1981-02-09 1982-06-08 Sterling Drug Inc. Self-aspirating hypodermic syringe and self-aspirating assembly therefor
JPS57159658A (en) 1981-03-27 1982-10-01 Fujitsu Ltd Ink jet recording head
JPH0351587B2 (en) 1981-06-08 1991-08-07 Canon Kk
US4415101A (en) * 1982-01-22 1983-11-15 Shapiro Justin J Incremental liquid dispensing device
NZ203203A (en) 1982-02-16 1985-09-13 Commw Scient Ind Res Org Controlled release device:gas diffusion limited
US4558326A (en) * 1982-09-07 1985-12-10 Konishiroku Photo Industry Co., Ltd. Purging system for ink jet recording apparatus
US4500148A (en) * 1983-01-31 1985-02-19 H. King & Associates, Ltd. Display and storage unit
US4594697A (en) * 1983-05-25 1986-06-10 Pascouet Adrien P Pneumatically-operated liquid slug projector apparatus
US6238042B1 (en) 1994-09-16 2001-05-29 Seiko Epson Corporation Ink cartridge for ink jet printer and method of charging ink into said cartridge
US6247803B1 (en) 1983-10-13 2001-06-19 Seiko Epson Corporation Ink jet recording apparatus and method for replenishing ink in the tank cartridge
DE3401071A1 (en) 1984-01-13 1985-07-25 Siemens Ag Device for refilling ink containers in inking apparatuses
JPH0626886B2 (en) * 1984-01-30 1994-04-13 キヤノン株式会社 Liquid jet recording apparatus
JPH0753450B2 (en) * 1984-03-31 1995-06-07 キヤノン株式会社 Liquid jet recording apparatus
EP0168592B1 (en) * 1984-05-29 1988-08-03 Siemens Aktiengesellschaft Device for reading and/or for printing on record carriers
US5202702A (en) * 1985-04-08 1993-04-13 Canon Kabushiki Kaisha Ink jet recording apparatus and a method of cleaning a recording head used in the apparatus
US4591869A (en) 1985-04-12 1986-05-27 Eastman Kodak Company Ink jet printing apparatus and method providing an induced, clean-air region
US4719474A (en) 1985-07-19 1988-01-12 Rudolf Hell Gmbh Apparatus for imaging text and graphics on photosensitive material
US4612010A (en) 1985-08-14 1986-09-16 Hamacher Edward N Infiltration pump
US4694597A (en) * 1985-10-15 1987-09-22 Kuei Wen Sheu Electric perpetual calendar
US4855764A (en) 1986-02-25 1989-08-08 Siemens Aktiengesellschaft Apparatus for sealing and cleaning the ink discharge openings at an ink printing head
US4832918A (en) 1986-06-12 1989-05-23 Inpal Co., Ltd. Rotary ozonizer
US4771295B1 (en) * 1986-07-01 1995-08-01 Hewlett Packard Co Thermal ink jet pen body construction having improved ink storage and feed capability
US4727378A (en) * 1986-07-11 1988-02-23 Tektronix, Inc. Method and apparatus for purging an ink jet head
US4728969A (en) * 1986-07-11 1988-03-01 Tektronix, Inc. Air assisted ink jet head with single compartment ink chamber
GB2197751A (en) * 1986-11-24 1988-05-25 Philips Electronic Associated Variable shaped spot electron beam pattern generator
US5019839A (en) * 1986-12-25 1991-05-28 Canon Kabushiki Kaisha Recording apparatus having a movable sheet guide member
EP0315947B1 (en) * 1987-11-10 1994-02-16 Mita Industrial Co. Ltd. Image-forming machine
US4831389A (en) * 1987-12-21 1989-05-16 Hewlett-Packard Company Off board ink supply system and process for operating an ink jet printer
CH678169A5 (en) * 1988-03-07 1991-08-15 Rutishauser Data Ag
JPH01231755A (en) * 1988-03-08 1989-09-18 Fuji Xerox Co Ltd Device for detecting number of sheet of discharged paper
US4971527A (en) * 1988-03-30 1990-11-20 Videojet Systems International, Inc. Regulator valve for an ink marking system
DE3814720A1 (en) * 1988-04-30 1989-11-09 Olympia Aeg A method for producing a base plate by etching made by crimp, for an ink print head
US5182581A (en) * 1988-07-26 1993-01-26 Canon Kabushiki Kaisha Ink jet recording unit having an ink tank section containing porous material and a recording head section
US5184178A (en) 1988-09-13 1993-02-02 Canon Kabushiki Kaisha Image recording apparatus having an interchangeable cartridge
JPH02132026A (en) 1988-10-20 1990-05-21 Ricoh Co Ltd Image forming device
US6097407A (en) * 1988-11-09 2000-08-01 Canon Kabushiki Kaisha Package for ink jet head
US4992802A (en) 1988-12-22 1991-02-12 Hewlett-Packard Company Method and apparatus for extending the environmental operating range of an ink jet print cartridge
JP2683126B2 (en) 1988-12-28 1997-11-26 キヤノン株式会社 An ink jet recording apparatus
JP2575205B2 (en) * 1989-01-13 1997-01-22 キヤノン株式会社 Ink tank
US4959667A (en) * 1989-02-14 1990-09-25 Hewlett-Packard Company Refillable ink bag
US5049898A (en) * 1989-03-20 1991-09-17 Hewlett-Packard Company Printhead having memory element
US4907019A (en) * 1989-03-27 1990-03-06 Tektronix, Inc. Ink jet cartridges and ink cartridge mounting system
US5006002A (en) 1989-04-11 1991-04-09 Clancy Systems International, Inc. Portable printing apparatus with movable paper feed gate
JP2810701B2 (en) * 1989-05-31 1998-10-15 キヤノン株式会社 An ink jet recording head and an ink jet recording apparatus
US4973993A (en) 1989-07-11 1990-11-27 Hewlett-Packard Company Ink-quantity and low ink sensing for ink-jet printers
US4968998A (en) * 1989-07-26 1990-11-06 Hewlett-Packard Company Refillable ink jet print system
US4967207A (en) * 1989-07-26 1990-10-30 Hewlett-Packard Company Ink jet printer with self-regulating refilling system
US4935750A (en) 1989-08-31 1990-06-19 Xerox Corporation Sealing means for thermal ink jet printheads
US5027134A (en) * 1989-09-01 1991-06-25 Hewlett-Packard Company Non-clogging cap and service station for ink-jet printheads
JP2771278B2 (en) * 1989-09-20 1998-07-02 株式会社日立製作所 Facsimile machine
US4935751A (en) * 1989-09-21 1990-06-19 Hewlett-Packard Company Level sensor for ink bag
WO1991005667A1 (en) * 1989-10-13 1991-05-02 Siemens Aktiengesellschaft Printer
CA2019290A1 (en) * 1990-01-12 1991-07-12 Bruce Cowger Pressure-sensitive accumulator for ink-jet pens
US4978343A (en) * 1990-01-16 1990-12-18 Dysarz Edward D Trap in barrel one handed retractable safety syringe
DE69116176D1 (en) * 1990-01-17 1996-02-22 Canon Kk A liquid jet recording head
US5186449A (en) * 1990-01-23 1993-02-16 Mita Industrial Co., Ltd. Sheet feeder unit
ES2080246T3 (en) 1990-02-02 1996-02-01 Canon Kk Method and apparatus.
EP0450287B1 (en) * 1990-02-13 1996-10-09 Canon Kabushiki Kaisha Capping means and ink jet recording apparatus using the same
JP2752495B2 (en) 1990-02-13 1998-05-18 キヤノン株式会社 An ink jet recording apparatus
US5221935A (en) * 1990-02-15 1993-06-22 Canon Kabushiki Kaisha Waste ink receiving cartridge and ink recording apparatus using said cartridge
US5717444A (en) 1990-04-11 1998-02-10 Canon Kabushiki Kaisha Suction recovery device and ink jet recording apparatus using the device
GB9010289D0 (en) 1990-05-08 1990-06-27 Xaar Ltd Drop-on-demand printing apparatus and method of manufacture
US5051761A (en) 1990-05-09 1991-09-24 Xerox Corporation Ink jet printer having a paper handling and maintenance station assembly
JPH0427556A (en) * 1990-05-23 1992-01-30 Canon Inc Ink jet recorder
US5469199A (en) * 1990-08-16 1995-11-21 Hewlett-Packard Company Wide inkjet printhead
JP2713811B2 (en) * 1990-10-03 1998-02-16 キヤノン株式会社 Recording medium feeding device and a recording apparatus
US6249481B1 (en) * 1991-10-15 2001-06-19 Kabushiki Kaisha Toshiba Semiconductor memory device
US5138332A (en) * 1990-10-29 1992-08-11 Xerox Corporation Ink jet printing apparatus
US5159348A (en) * 1990-10-29 1992-10-27 Xerox Corporation Ink jet printing apparatus
JP2752793B2 (en) * 1990-12-10 1998-05-18 キヤノン株式会社 An ink tank cartridge for an ink jet recording apparatus and the apparatus
US5233369A (en) 1990-12-27 1993-08-03 Xerox Corporation Method and apparatus for supplying ink to an ink jet printer
CA2059198C (en) * 1991-01-11 1997-12-16 Kazuyoshi Takahashi Ink jet recording apparatus
US5477963A (en) * 1992-01-28 1995-12-26 Seiko Epson Corporation Ink-jet recording apparatus and ink tank cartridge therefor
JP2962838B2 (en) 1991-01-18 1999-10-12 キヤノン株式会社 An ink jet recording apparatus
US6019457A (en) * 1991-01-30 2000-02-01 Canon Information Systems Research Australia Pty Ltd. Ink jet print device and print head or print apparatus using the same
JP3054208B2 (en) * 1991-03-01 2000-06-19 帝人製機株式会社 Magnetic field measurement device
JPH04288261A (en) 1991-03-18 1992-10-13 Canon Inc Recording apparatus
US5624196A (en) * 1991-04-16 1997-04-29 Hewlett-Packard Company Method and apparatus for paper control including kickers
US5185614A (en) * 1991-04-17 1993-02-09 Hewlett-Packard Company Priming apparatus and process for multi-color ink-jet pens
US5191382A (en) * 1991-04-22 1993-03-02 Canon Kabushiki Kaisha Image forming system
JP2955384B2 (en) * 1991-04-26 1999-10-04 キヤノン株式会社 Image recording device
US6264314B1 (en) 1991-05-27 2001-07-24 Seiko Epson Corporation Ink cartridge for ink jet recording apparatus
US5192959A (en) 1991-06-03 1993-03-09 Xerox Corporation Alignment of pagewidth bars
US5992985A (en) 1995-05-31 1999-11-30 Hewlett-Packard Company Variable pressure control for ink replenishment of on-carriage print cartridge
US5748216A (en) * 1991-06-19 1998-05-05 Hewlett-Packard Company Inkjet print cartridge having valve connectable to an external ink reservoir for recharging the print cartridge
US5793387A (en) * 1991-06-19 1998-08-11 Hewlett-Packard Company Method and apparatus for ink-jet ink level detection
US5963238A (en) * 1991-06-19 1999-10-05 Hewlett-Packard Company Intermittent refilling of print cartridge installed in an inkjet printer
US5359353A (en) 1991-06-19 1994-10-25 Hewlett-Packard Company Spring-bag printer ink cartridge with volume indicator
US5187498A (en) * 1991-07-24 1993-02-16 Xerox Corporation Ink supply container and system
US5155497A (en) 1991-07-30 1992-10-13 Hewlett-Packard Company Service station for ink-jet printer
JP3012043B2 (en) * 1991-08-20 2000-02-21 三田工業株式会社 Optional Equipment
JP3351436B2 (en) 1991-08-21 2002-11-25 セイコーエプソン株式会社 Adhesive of the two members having a pore sheet - DOO material
JPH0584919A (en) * 1991-09-27 1993-04-06 Seiko Epson Corp Ink jet head
JP3009764B2 (en) 1991-10-03 2000-02-14 キヤノン株式会社 An ink jet recording apparatus
JP2761685B2 (en) * 1991-10-17 1998-06-04 三菱電機株式会社 A method of manufacturing a semiconductor device
KR940003112B1 (en) * 1991-10-25 1994-04-13 정용문 Cassette for feeding papers in a copier
US5216442A (en) * 1991-11-14 1993-06-01 Xerox Corporation Moving platen architecture for an ink jet printer
US5222186A (en) * 1991-12-06 1993-06-22 Globol Gmbh Electrical apparatus for vaporizing of active substances
US5613952A (en) 1991-12-23 1997-03-25 Syringe Develpoment Partners Safety syringe
CN1096943C (en) 1992-02-26 2002-12-25 佳能株式会社 Ink-jet fabric printing method and material obtained thereby
DE69325532D1 (en) 1992-03-09 1999-08-12 Canon Kk Multiple recording device by means of a monochrome printer
US5406320A (en) * 1992-03-10 1995-04-11 Scitex Digital Printing, Inc. Ink replenishment assemblies for ink jet printers
US5396268A (en) * 1992-03-27 1995-03-07 Scitex Digital Printing, Inc. Refill apparatus and method
EP0573256B1 (en) * 1992-06-04 1997-03-26 Tektronix, Inc. Drop-on-demand ink jet print head having improved purging performance
IT1256844B (en) * 1992-06-08 1995-12-21 Olivetti & Co Spa Method and device for the recognition of the end-ink in a printhead inkjet.
US5757390A (en) * 1992-08-12 1998-05-26 Hewlett-Packard Company Ink volume sensing and replenishing system
US5754207A (en) * 1992-08-12 1998-05-19 Hewlett-Packard Company Volume indicating ink reservoir cartridge system
US5745137A (en) 1992-08-12 1998-04-28 Hewlett-Packard Company Continuous refill of spring bag reservoir in an ink-jet swath printer/plotter
JPH06125141A (en) * 1992-08-25 1994-05-06 Olympus Optical Co Ltd Semiconductor quantum well optical element
US5561450A (en) 1992-09-30 1996-10-01 Pitney Bowes Inc. Apparatus for mounting an ink jet cartridge on a support therefor
US5359356A (en) 1992-09-30 1994-10-25 Ecklund Joel E Collapsible jet-ink container assembly and method
US5455609A (en) 1992-09-30 1995-10-03 Hewlett-Packard Company Printhead servicing station for printers
US5238044A (en) * 1992-10-20 1993-08-24 Gilley Paul D Window treatment support device
US5404158A (en) 1992-11-12 1995-04-04 Xerox Corporation Ink jet printer maintenance system
US5450112A (en) 1992-12-23 1995-09-12 Hewlett-Packard Company Laminated film for ink reservoir
CA2112182C (en) 1992-12-25 2000-06-27 Masami Ikeda Detachable ink jet unit and ink jet apparatus
US5527871A (en) * 1992-12-28 1996-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Layered inorganic-organic polymer shaped article thereof and process for producing the same
JP3356818B2 (en) * 1993-03-09 2002-12-16 富士ゼロックス株式会社 The ink supply apparatus of an ink jet recording apparatus
US5365645A (en) 1993-03-19 1994-11-22 Compaq Computer Corporation Methods of fabricating a page wide piezoelectric ink jet printhead assembly
US5392063A (en) * 1993-04-30 1995-02-21 Hewlett-Packard Company Spring cartridge clamp for inkjet printer carriage
US6206513B1 (en) * 1993-06-29 2001-03-27 Canon Kabushiki Kaisha Ink tank unit, an ink jet cartridge having said ink tank unit and an ink jet apparatus having said ink jet cartridge
JPH0728392A (en) * 1993-07-12 1995-01-31 Omron Corp Programmable controller
US5891086A (en) 1993-07-31 1999-04-06 Weston Medical Limited Needle-less injector
JPH0749463A (en) * 1993-08-05 1995-02-21 Fuji Xerox Co Ltd Optical deflector
JP3155667B2 (en) 1993-08-10 2001-04-16 キヤノン株式会社 Recording device
JP3133906B2 (en) * 1993-08-19 2001-02-13 キヤノン株式会社 Ink tank cartridge
SG72660A1 (en) * 1993-08-23 2000-05-23 Canon Kk Exchangeable ink cartridge
US5532825A (en) * 1993-08-30 1996-07-02 Hewlett-Packard Company Add-on scanner for existing ink jet printer
JP3217610B2 (en) * 1993-09-03 2001-10-09 キヤノン株式会社 An ink jet recording apparatus and an information processing system
IT1272050B (en) 1993-11-10 1997-06-11 Olivetti Canon Ind Spa parallel printer device with modular structure and its manufacturing method.
US5696546A (en) * 1993-11-15 1997-12-09 Xerox Corporation Ink supply cartridge with ink jet printhead having improved fluid seal therebetween
JP3219609B2 (en) * 1993-11-29 2001-10-15 キヤノン株式会社 Ink refill unit and the ink refilling method
US5619239A (en) 1993-11-29 1997-04-08 Canon Kabushiki Kaisha Replaceable ink tank
US5400573A (en) * 1993-12-14 1995-03-28 Crystal; Richard G. Kit and method for opening, refilling and sealing a cartridge
US5467118A (en) 1993-12-21 1995-11-14 Hewlett-Packard Company Ink cartridge for a hard copy printing or plotting apparatus
US5657065A (en) * 1994-01-03 1997-08-12 Xerox Corporation Porous medium for ink delivery systems
US5565900A (en) 1994-02-04 1996-10-15 Hewlett-Packard Company Unit print head assembly for ink-jet printing
US5369017A (en) * 1994-02-04 1994-11-29 The Scripps Research Institute Process for solid phase glycopeptide synthesis
US5572245A (en) 1994-03-10 1996-11-05 Hewlett-Packard Company Protective cover apparatus for an ink-jet pen
US5712668A (en) * 1994-03-25 1998-01-27 Hewlett-Packard Company Rotary Multi-ridge capping system for inkjet printheads
US5574489A (en) * 1994-03-30 1996-11-12 Hewlett-Packard Company Ink cartridge system for ink-jet printer
US5515663A (en) 1994-04-06 1996-05-14 Nu-Kote International, Inc. Method of refilling ink-jet printer cartridges
JPH07311058A (en) 1994-05-20 1995-11-28 Citizen Watch Co Ltd Ink cartridge
US5640644A (en) * 1994-06-07 1997-06-17 Konica Corporation Image forming apparatus having toner replenishment device
US5581287A (en) 1994-06-30 1996-12-03 Jetfill, Inc. Inkjet printer ink cartridge refilling structure
US5572244A (en) 1994-07-27 1996-11-05 Xerox Corporation Adhesive-free edge butting for printhead elements
AU3241795A (en) * 1994-08-09 1996-03-07 Encad, Inc. Printer ink cartridge
AU688545B2 (en) 1994-08-24 1998-03-12 Canon Kabushiki Kaisha Ink container for ink jet printer, holder for the container carriage for the holder and ink jet printer
US5530463A (en) * 1994-08-25 1996-06-25 Xerox Corporation Integral seal for ink jet printheads
US5431389A (en) * 1994-08-26 1995-07-11 Wensink; Gary L. Hand scanner support and paper guide apparatus
US5673073A (en) * 1994-09-29 1997-09-30 Hewlett-Packard Company Syringe for filling print cartridge and establishing correct back pressure
US5585528A (en) * 1994-09-30 1996-12-17 Shell Oil Company Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic tertiary amine promoter
US5587730A (en) 1994-09-30 1996-12-24 Xerox Corporation Redundant full width array thermal ink jet printing for improved reliability
JP3230948B2 (en) * 1994-10-03 2001-11-19 キヤノン株式会社 Image forming apparatus
JPH08174860A (en) * 1994-10-26 1996-07-09 Seiko Epson Corp Ink cartridge for ink jet printer
US5852459A (en) 1994-10-31 1998-12-22 Hewlett-Packard Company Printer using print cartridge with internal pressure regulator
US6367918B1 (en) 1994-10-31 2002-04-09 Hewlett-Packard Company Unitary latching device for secure positioning of print cartridge during printing, priming and replenishment
US5673072A (en) 1994-10-31 1997-09-30 Hewlett-Packard Company Method and apparatus for refilling a print cartridge having a spherical stopper
US5980032A (en) 1994-10-31 1999-11-09 Hewlett-Packard Company Compliant ink interconnect between print cartridge and carriage
EP0710568B1 (en) * 1994-11-02 2000-01-19 Seiko Epson Corporation Ink jet type recording unit, and printer with it
US6010213A (en) 1994-11-18 2000-01-04 Seiko Epson Corporation Ink supply device for use in ink jet printer and ink tank for use in the same device
US5575466A (en) * 1994-11-21 1996-11-19 Unisys Corporation Document transport with variable pinch-roll force for gap adjust
US5585825A (en) * 1994-11-25 1996-12-17 Xerox Corporation Ink jet printer having temperature sensor for replaceable printheads
US5581284A (en) 1994-11-25 1996-12-03 Xerox Corporation Method of extending the life of a printbar of a color ink jet printer
US5680164A (en) * 1994-11-29 1997-10-21 Hewlett-Packard Company Refill method and apparatus for ink cartridge units
US5699091A (en) 1994-12-22 1997-12-16 Hewlett-Packard Company Replaceable part with integral memory for usage, calibration and other data
JP3417434B2 (en) 1995-01-05 2003-06-16 セイコーエプソン株式会社 An ink cartridge for an ink jet printer
US5620269A (en) 1995-01-17 1997-04-15 Hewlett-Packard Company Print media transport apparatus for moving print media through a printer from a high volume input tray accessory
EP0722839A3 (en) 1995-01-17 1998-01-07 Hewlett-Packard Company Inkjet printer system with auxiliary high volume input tray
US5742305A (en) * 1995-01-20 1998-04-21 Hewlett-Packard PWA inkjet printer element with resident memory
JPH08267871A (en) 1995-02-03 1996-10-15 Alps Electric Co Ltd Thermal printer
JPH08230260A (en) * 1995-03-01 1996-09-10 Seiko Epson Corp Image forming device
JP3324629B2 (en) 1995-03-13 2002-09-17 セイコーエプソン株式会社 Storage case of an ink jet printing unit
US5631681A (en) * 1995-03-29 1997-05-20 Hewlett-Packard Company Ink replenishing system and method for ink-jet printers
US5984446A (en) * 1995-04-12 1999-11-16 Eastman Kodak Company Color office printer with a high capacity digital page image store
US6053598A (en) 1995-04-13 2000-04-25 Pitney Bowes Inc. Multiple print head packaging for ink jet printer
US5900896A (en) * 1995-04-27 1999-05-04 Hewlett-Packard Company Ink cartridge adapters
US6318850B1 (en) 1995-12-04 2001-11-20 Hewlett-Packard Company Ink container refurbishment system
US7249831B2 (en) 1995-04-27 2007-07-31 Hewlett-Packard Development Company, L.P. Ink container refurbishment system
US6322207B1 (en) * 1995-04-27 2001-11-27 Hewlett-Packard Company Replaceable pump module for receiving replaceable ink supplies to provide ink to an ink jet printing system
US5877788A (en) * 1995-05-09 1999-03-02 Moore Business Forms, Inc. Cleaning fluid apparatus and method for continuous printing ink-jet nozzle
US6120132A (en) * 1996-10-07 2000-09-19 Hewlett-Packard Company Assembly technique using modular ink delivery components for installation in an inkjet printer
US6168255B1 (en) * 1995-06-07 2001-01-02 Citizen Watch Co., Ltd. Ink jet head method of production thereof, and jig for producing ink jet head
US5736957A (en) * 1995-06-30 1998-04-07 The Johns Hopkins University Delay compensated doppler radar altimeter
US5711516A (en) * 1995-07-05 1998-01-27 Storm Technology Inc. Sheet feeder having sloping sheet support side for use with detachable image scanner
JP3376216B2 (en) 1995-07-18 2003-02-10 キヤノン株式会社 Image forming apparatus
JPH0939265A (en) * 1995-07-29 1997-02-10 Seiko Epson Corp Ink cartridge for printer and identifying device therefor
US5623876A (en) 1995-08-23 1997-04-29 Pitney Bowes Inc. Apparatus and method for positioning a printing mechanism between stations in a mail handling apparatus
US7415050B2 (en) * 2006-09-18 2008-08-19 Biolase Technology, Inc. Electromagnetic energy distributions for electromagnetically induced mechanical cutting
DE69602573T2 (en) * 1995-10-26 1999-09-23 Hewlett Packard Co Ink restraint device for ink jet printers
US6135586A (en) 1995-10-31 2000-10-24 Hewlett-Packard Company Large area inkjet printhead
EP0773109B1 (en) 1995-11-08 2002-10-02 Canon Kabushiki Kaisha Ink refilling method and apparatus, ink container refilled therewith and ink jet apparatus comprising ink refilling apparatus
JP3653833B2 (en) * 1995-11-18 2005-06-02 ブラザー工業株式会社 Ink-jet printer
US5785308A (en) * 1995-11-28 1998-07-28 Lexmark International, Inc. Media pass through configuration for printers
US5900895A (en) * 1995-12-04 1999-05-04 Hewlett-Packard Company Method for refilling an ink supply for an ink-jet printer
US5790146A (en) * 1995-12-04 1998-08-04 Xerox Corporation Fluid applicator for maintenance of liquid ink printers
DE19545775C2 (en) * 1995-12-07 1999-03-25 Pelikan Produktions Ag Liquid cartridge, in particular ink cartridge for a print head of an inkjet printer
US5997121A (en) 1995-12-14 1999-12-07 Xerox Corporation Sensing system for detecting presence of an ink container and level of ink therein
US5676475A (en) * 1995-12-15 1997-10-14 Encad, Inc. Smart print carriage incorporating circuitry for processing data
KR100200965B1 (en) * 1995-12-30 1999-06-15 윤종용 A second cassette feeder using electrographic method
DE69733176D1 (en) 1996-02-21 2005-06-09 Seiko Epson Corp ink cartridge
US5886719A (en) * 1996-03-14 1999-03-23 Hewlett-Packard Company Ink valve having a releasable tip for a print cartridge recharge system
JP3467676B2 (en) 1996-03-14 2003-11-17 セイコーエプソン株式会社 Jet recording apparatus and an ink cartridge
JP3366522B2 (en) * 1996-03-16 2003-01-14 京セラミタ株式会社 Positioning mechanism of the image forming apparatus
US5751311A (en) * 1996-03-29 1998-05-12 Xerox Corporation Hybrid ink jet printer with alignment of scanning printheads to pagewidth printbar
DE19613945C2 (en) 1996-04-06 1999-04-22 Francotyp Postalia Gmbh Reusability lock for a container for ink supply
FI961649A0 (en) * 1996-04-15 1996-04-15 Labsystems Oy Spaerrpipett
JP3450643B2 (en) 1996-04-25 2003-09-29 キヤノン株式会社 Liquid refilling method into a liquid container, a liquid discharge recording apparatus using the replenishment method, a liquid refilling container, the liquid container and the head cartridge
KR100174668B1 (en) * 1996-05-22 1999-05-15 Samsung Electronics Co Ltd Head cartridge of ink jet printer
US5877795A (en) * 1996-05-24 1999-03-02 Hewlett-Packard Co. Methods and designs to purge air from ink tubes during initial startup
FR2750642B1 (en) 1996-07-05 1999-11-26 Seiko Epson Corp ink cartridge and its loading mechanism
EP0819533A3 (en) 1996-07-12 1998-11-25 Canon Kabushiki Kaisha A method for standardizing an ink jet jet recording head and an ink jet recording head for attaining such standardization, ink jet recording method, and information processing apparatus, and host apparatus
JPH1024582A (en) * 1996-07-12 1998-01-27 Canon Inc Liquid discharge head, recovery of liquid discharge head, manufacture thereof, and liquid discharge device using liquid discharge head
US6290343B1 (en) * 1996-07-15 2001-09-18 Hewlett-Packard Company Monitoring and controlling ink pressurization in a modular ink delivery system for an inkjet printer
JPH1044418A (en)