US20080177287A1 - Hair harvesting apparatus - Google Patents
Hair harvesting apparatus Download PDFInfo
- Publication number
- US20080177287A1 US20080177287A1 US11/531,862 US53186206A US2008177287A1 US 20080177287 A1 US20080177287 A1 US 20080177287A1 US 53186206 A US53186206 A US 53186206A US 2008177287 A1 US2008177287 A1 US 2008177287A1
- Authority
- US
- United States
- Prior art keywords
- punch
- hollow punch
- hair
- skin
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45D—HAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
- A45D26/00—Hair-singeing apparatus; Apparatus for removing superfluous hair, e.g. tweezers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3203—Fluid jet cutting instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/32053—Punch like cutting instruments, e.g. using a cylindrical or oval knife
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00747—Dermatology
- A61B2017/00752—Hair removal or transplantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/03—Automatic limiting or abutting means, e.g. for safety
- A61B2090/033—Abutting means, stops, e.g. abutting on tissue or skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
Definitions
- This invention relates to hair harvesting apparatus and more particularly to apparatus for extracting single follicular units from a harvesting area of the skin.
- a patch of skin is excised from the rear area of a scalp and the scalp is then sutured. This patch is then dissected under a microscope and hair follicular units are isolated. The process is slow, tedious, exacting and expensive. It would be advantageous to develop a hair graft harvesting technique which would permit the removal of individual hair grafts from a harvesting area of a scalp or hair bearing skin. Not only would such a technique expedite hair graft harvesting and reduce cost, it also would eliminate the surgical procedure of excising a patch of skin and the attending suturing.
- U.S. Pat. No. 6,572,625 demonstrates a mechanism for alignment of hair follicles within a follicular unit so that the follicular unit can be extracted, one follicular unit (FU) at a time.
- the U.S. Pat. No. 6,572,625 sets up a situation where a hollow punch with a sharp or dull cutting edge can be used to remove the follicular unit with reduced damage of cutting or amputating the follicles in the FU with perfect alignment.
- a punch is introduced to surround the FU, the hollow tube gathers the hair follicles as it is advanced deeper into the scalp or hair bearing skin(a distance of about 5-7 mm).
- the anatomy of a follicular unit is not cylindrical in its normal undisturbed state, in vivo.
- the hairs of the FU grow in groups of one, two, threes, and four hairs.
- the hairs of the FU exit at the skin surface in close proximity to one another.
- the hairs of the FU sometimes diverge and cone out in the dermal and fatty layer beneath the skin. Hairs of the FU have a maximal divergence at the location of the bulb.
- the hair follicles are connected to stroma (collagen fibrils) which forms a lattice work of supporting structures, forming a framework holding the hair follicles in place and connecting the hair follicles to the surrounding fat and blood vessels.
- This fibrous framework is made up of collagen and the nature of the collagen varies from person to person. Some collagen fibrils are elastic and some inelastic. These inherent characteristics of the FU make the extraction of the FU uniquely variable on an individual basis.
- the amount of elastic fibrils is disproportionably high in number, while in other individuals they it is disproportionably low in numbers.
- the hollow punch easily ‘gathers’ the hair follicles as it is advanced into the deeper fat, probably tearing at the supporting stroma and breaking it apart.
- the cutting or breaking of these elastic fibrils occurs easily as the hair follicles advance into the descending hollow punch.
- the elastic fibrils are few in number and the inelastic fibrils are high so that the hair and the surrounding structures do not easily cut or tear as the hollow punch is advanced.
- the point of greatest weakness may be the hair shafts and the hair shaft is either cut or torn apart, damaging the FU as attempts are made to remove it.
- the extraction of the follicular unit is a mechanical process and it is heavily influenced by mechanical factors related to the stroma that support each and every hair follicle.
- the results of these anatomical variations make extraction of each hair follicle variable on an individual and even local (different areas of the skin) basis. Variations in successful extraction of hairs within an FU often produce unacceptable variation in the success of FU Extraction.
- the invention is based on the realization that the extraction of individual hair follicular units from a harvest area of the hair bearing skin could be improved by a mechanism which assists an advancing hollow punch as it moves into the hair bearing skin around a target follicular unit.
- Such an assist is provided by applying vibrational energy to the punch as it advances or by cutting the collagen fibrils about the advancing punch preferably by a water jet scalpel controlled to follow an annular path along the annular distal surface of the punch.
- a channel is provided in the wall of the punch.
- a source of water is coupled to the channel and a pump, under the control of the operator, generates a water jet at the distal surface of the punch.
- the water jet follows a circular path as the punch rotates upon entry into the skin.
- a punch with a sharp distal end has been found often to result in the extraction of damaged grafts a consequence which is avoided by a dull punch with an auxiliary instrumentation to separate inelastic collagen fibrils which resist extraction.
- FIG. 1 is a schematic representation of a graft extraction punch in accordance with the principles of this invention
- FIG. 2 is an enlarged end view of the punch of FIG. 1 .
- FIG. 3 is a system block diagram for the operation of the punch of FIG. 1 ;
- FIG. 4 is a schematic representation of an alternative graft extraction punch in accordance with the principles of this invention.
- FIG. 1 is a schematic side view of a punch for extracting hairgrafts from a hair bearing skin in accordance with the principles of this invention.
- FIG. 2 is an enlarged view of the distal end of the punch of FIG. 1 .
- FIG. 3 is a schematic system diagram of apparatus 10 operative for extracting single follicular unit hair grafts from a hair bearing skin in accordance with the principles of this invention.
- the apparatus comprises a hollow punch 11 of FIG. 1 with a channel 12 journalled into the wall of the punch exiting at the distal end 13 as shown in FIG. 2 .
- a second punch 14 is positioned coaxially with respect to the axis of punch 11 .
- Punch 14 has a diameter just larger than the footprint made by the hair of a follicular unit exiting the hair bearing skin.
- Punch 14 has a sharp distal end and punch 11 has a dull distal end. The punches are free to move individually along the common axis but conveniently are coupled to one another.
- Punch 11 is secured to a positioning device 30 for aligning punch 11 with a target hair graft for extraction.
- the positioning device is operative under the control of a controller which conveniently comprises a computer 31 .
- An imaging device such as an optical fiber 32 is positioned to capture the image of target grafts as is disclosed in U.S. Pat. No. 6,572,625, issued Jun. 3, 2003 and also in co pending patent application Hair Extraction Device and Method for its Use filed Aug. 3, 2006. The image is displayed on monitor 34 of computer 31 .
- the positioning device is positioned to move punch 11 about the surface of a hair bearing skin 35 as indicated in FIG. 1 .
- An operator observes an image on monitor 34 and selects a target graft. Both punch 11 and Punch 14 are now properly positioned for excising a hair graft.
- the operator activates the positioning assembly to advance Punch 14 to penetrate or score the skin at the target site. Punch 14 is then withdrawn.
- the operator then activates the positioning device to move punch 11 into the hair bearing skin and to rotate punch 11 as it advances.
- the advance of the punch may be controlled to be limited to a depth of approximately 7 mm by the position of a shoulder 36 positioned to abut the hair bearing skin surface when the maximum penetration is reached.
- the rotation of the advancing punch is indicated by curved arrow 37 in FIG. 3 . This rotation may be cycled or oscillated in the clockwise and counter-clockwise direction for optimal effect, conveniently controlled by the controller ( 31 ).
- Channel 12 in punch 11 is connected to fluid source 40 to supply fluid to the channel.
- the pressure, pulse frequency and pulse duration are determined by pump 41 also conveniently controlled by the controller ( 31 ).
- the number of rotations or oscillations of the punch also is controlled by the controller.
- the diameter of the punch is selected to be slightly larger than a follicular unit which is approximately 0.7 mm and the diameter of the channel 12 typically range 120 microns or less
- an advancing punch ( 11 ) with micro water jet stream under a pressure of up/to (but not limited to) 150 bar with or without pulsations rotating along the perimeter of the punch may be sufficient to achieve successful dissection and extraction of the most resistant grafts in a single rotation.
- the punch with an inner diameter of approximately 0.8 mm to 1.0 mm, typically has a dull distal end but it may also have a sharp cutting edge. In either case, a micro water jet increases the success rate of undamaged graft extraction.
- the fluid employed may be normal saline water. But other fluids such as lactated ringers solution may be used.
- FIG. 4 shows an alternative embodiment where a vibratory device is attached to a punch and activated as the punch is (rotationally) advanced about a target follicular unit.
- FIG. 4 shows a punch 50 illustratively with a shoulder 51 with a transducer 52 coupled to the punch.
- the transducer is activated when an operator activates a positioning assembly for advancing the punch into the hair bearing skin at a target graft.
- the vibration of the punch produces successful extraction of undamaged grafts and may be implemented by an ultrasonic micro-vibration device such as those used in electric tooth brushes or those used in dental offices.
- controller 31 is adapted to move punch 14 into the scalp or skin in a manner to pierce the skin and to then withdraw the punch.
- the punch may be fixed to the interior wall of another hollow punch 11 by attachment arms or by a nest of telescoping tubes operative to move punch 14 along the z axis when hollow punch 11 is positioned at a target graft.
- the telescoping tubes may be operative to move punch 14 along the coaxial path in response to the rotation of the outermost cylinder of the nest.
- the rotation of the outermost cylinder is produced conveniently by a belt (not shown) coupled to a reversible motor under the control of the controller such as 31 of FIG. 3 .
- punch 14 may not be necessary.
- punch 11 is rotated or oscillated relatively slowly to allow the fluid jet to cut the soft tissue surrounding a target graft to lesser the damage which typically is caused by the sharp cutting edge.
- the rotation of the punch may be achieved by a worm gear, a belt arrangement, manual rotation, or a mechanical attachment.
- the shoulder ( 36 ) may be adjustable along the coaxial path of the punch and pre-positioned prior or even during a set of extraction procedures.
- the imaging instrumentation may be implemented by a high power video camera, computer assisted visual system, or direct visualization along with or instead of the optical fiber illustrated.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
- Dentistry (AREA)
- Mechanical Engineering (AREA)
Abstract
The extraction of a hair graft from a harvesting area of a scalp employs a hollow punch fitted with an auxiliary instrumentation for separating a target graft from collagen fibrils which resist extraction. A water jet which follows the annular path of the punch as it rotates into the scalp is described as well as a vibrating punch alternative embodiment for achieving the desired separation.
Description
- This invention relates to hair harvesting apparatus and more particularly to apparatus for extracting single follicular units from a harvesting area of the skin.
- Presently, a patch of skin is excised from the rear area of a scalp and the scalp is then sutured. This patch is then dissected under a microscope and hair follicular units are isolated. The process is slow, tedious, exacting and expensive. It would be advantageous to develop a hair graft harvesting technique which would permit the removal of individual hair grafts from a harvesting area of a scalp or hair bearing skin. Not only would such a technique expedite hair graft harvesting and reduce cost, it also would eliminate the surgical procedure of excising a patch of skin and the attending suturing.
- But the harvesting of individual hair follicular units or grafts has its own problems:
- U.S. Pat. No. 6,572,625 demonstrates a mechanism for alignment of hair follicles within a follicular unit so that the follicular unit can be extracted, one follicular unit (FU) at a time. The U.S. Pat. No. 6,572,625 sets up a situation where a hollow punch with a sharp or dull cutting edge can be used to remove the follicular unit with reduced damage of cutting or amputating the follicles in the FU with perfect alignment. When a punch is introduced to surround the FU, the hollow tube gathers the hair follicles as it is advanced deeper into the scalp or hair bearing skin(a distance of about 5-7 mm).
- The anatomy of a follicular unit is not cylindrical in its normal undisturbed state, in vivo. The hairs of the FU grow in groups of one, two, threes, and four hairs. The hairs of the FU exit at the skin surface in close proximity to one another. However, the hairs of the FU sometimes diverge and cone out in the dermal and fatty layer beneath the skin. Hairs of the FU have a maximal divergence at the location of the bulb.
- The hair follicles are connected to stroma (collagen fibrils) which forms a lattice work of supporting structures, forming a framework holding the hair follicles in place and connecting the hair follicles to the surrounding fat and blood vessels. This fibrous framework is made up of collagen and the nature of the collagen varies from person to person. Some collagen fibrils are elastic and some inelastic. These inherent characteristics of the FU make the extraction of the FU uniquely variable on an individual basis.
- In some people, the amount of elastic fibrils is disproportionably high in number, while in other individuals they it is disproportionably low in numbers. During the coring of an FU, it is theorized that if the number of elastic fibrils is high, the hollow punch easily ‘gathers’ the hair follicles as it is advanced into the deeper fat, probably tearing at the supporting stroma and breaking it apart. In those with a high elastic content, the cutting or breaking of these elastic fibrils occurs easily as the hair follicles advance into the descending hollow punch.
- In some people, however, the elastic fibrils are few in number and the inelastic fibrils are high so that the hair and the surrounding structures do not easily cut or tear as the hollow punch is advanced. When this happens, the point of greatest weakness may be the hair shafts and the hair shaft is either cut or torn apart, damaging the FU as attempts are made to remove it.
- The extraction of the follicular unit is a mechanical process and it is heavily influenced by mechanical factors related to the stroma that support each and every hair follicle. The results of these anatomical variations make extraction of each hair follicle variable on an individual and even local (different areas of the skin) basis. Variations in successful extraction of hairs within an FU often produce unacceptable variation in the success of FU Extraction.
- The invention is based on the realization that the extraction of individual hair follicular units from a harvest area of the hair bearing skin could be improved by a mechanism which assists an advancing hollow punch as it moves into the hair bearing skin around a target follicular unit. Such an assist is provided by applying vibrational energy to the punch as it advances or by cutting the collagen fibrils about the advancing punch preferably by a water jet scalpel controlled to follow an annular path along the annular distal surface of the punch. In one embodiment, a channel is provided in the wall of the punch. A source of water is coupled to the channel and a pump, under the control of the operator, generates a water jet at the distal surface of the punch. The water jet follows a circular path as the punch rotates upon entry into the skin. A punch with a sharp distal end has been found often to result in the extraction of damaged grafts a consequence which is avoided by a dull punch with an auxiliary instrumentation to separate inelastic collagen fibrils which resist extraction.
-
FIG. 1 is a schematic representation of a graft extraction punch in accordance with the principles of this invention; -
FIG. 2 is an enlarged end view of the punch ofFIG. 1 . -
FIG. 3 is a system block diagram for the operation of the punch ofFIG. 1 ; -
FIG. 4 is a schematic representation of an alternative graft extraction punch in accordance with the principles of this invention. -
FIG. 1 is a schematic side view of a punch for extracting hairgrafts from a hair bearing skin in accordance with the principles of this invention.FIG. 2 is an enlarged view of the distal end of the punch ofFIG. 1 . -
FIG. 3 is a schematic system diagram ofapparatus 10 operative for extracting single follicular unit hair grafts from a hair bearing skin in accordance with the principles of this invention. The apparatus comprises ahollow punch 11 ofFIG. 1 with achannel 12 journalled into the wall of the punch exiting at thedistal end 13 as shown inFIG. 2 . - A
second punch 14 is positioned coaxially with respect to the axis ofpunch 11.Punch 14 has a diameter just larger than the footprint made by the hair of a follicular unit exiting the hair bearing skin.Punch 14 has a sharp distal end andpunch 11 has a dull distal end. The punches are free to move individually along the common axis but conveniently are coupled to one another. -
Punch 11 is secured to apositioning device 30 for aligningpunch 11 with a target hair graft for extraction. The positioning device is operative under the control of a controller which conveniently comprises acomputer 31. An imaging device such as anoptical fiber 32 is positioned to capture the image of target grafts as is disclosed in U.S. Pat. No. 6,572,625, issued Jun. 3, 2003 and also in co pending patent application Hair Extraction Device and Method for its Use filed Aug. 3, 2006. The image is displayed onmonitor 34 ofcomputer 31. - The positioning device is positioned to move
punch 11 about the surface of ahair bearing skin 35 as indicated inFIG. 1 . An operator observes an image onmonitor 34 and selects a target graft. Bothpunch 11 and Punch 14 are now properly positioned for excising a hair graft. The operator activates the positioning assembly to advancePunch 14 to penetrate or score the skin at the target site. Punch 14 is then withdrawn. The operator then activates the positioning device to movepunch 11 into the hair bearing skin and to rotatepunch 11 as it advances. The advance of the punch may be controlled to be limited to a depth of approximately 7 mm by the position of ashoulder 36 positioned to abut the hair bearing skin surface when the maximum penetration is reached. The rotation of the advancing punch is indicated bycurved arrow 37 inFIG. 3 . This rotation may be cycled or oscillated in the clockwise and counter-clockwise direction for optimal effect, conveniently controlled by the controller (31). -
Channel 12 inpunch 11 is connected tofluid source 40 to supply fluid to the channel. The pressure, pulse frequency and pulse duration are determined bypump 41 also conveniently controlled by the controller (31). The number of rotations or oscillations of the punch also is controlled by the controller. The diameter of the punch is selected to be slightly larger than a follicular unit which is approximately 0.7 mm and the diameter of thechannel 12 typically range 120 microns or less - In operation, an advancing punch (11) with micro water jet stream under a pressure of up/to (but not limited to) 150 bar with or without pulsations rotating along the perimeter of the punch may be sufficient to achieve successful dissection and extraction of the most resistant grafts in a single rotation.
- The punch, with an inner diameter of approximately 0.8 mm to 1.0 mm, typically has a dull distal end but it may also have a sharp cutting edge. In either case, a micro water jet increases the success rate of undamaged graft extraction.
- The fluid employed may be normal saline water. But other fluids such as lactated ringers solution may be used.
-
FIG. 4 shows an alternative embodiment where a vibratory device is attached to a punch and activated as the punch is (rotationally) advanced about a target follicular unit. Specifically,FIG. 4 shows apunch 50 illustratively with ashoulder 51 with atransducer 52 coupled to the punch. In the embodiment ofFIG. 4 , the transducer is activated when an operator activates a positioning assembly for advancing the punch into the hair bearing skin at a target graft. The vibration of the punch produces successful extraction of undamaged grafts and may be implemented by an ultrasonic micro-vibration device such as those used in electric tooth brushes or those used in dental offices. - In an embodiment where a hollow punch with a sharp distal end is positioned within
hollow punch 11 and moveable along the center axis of the punch,controller 31 is adapted to movepunch 14 into the scalp or skin in a manner to pierce the skin and to then withdraw the punch. The punch may be fixed to the interior wall of anotherhollow punch 11 by attachment arms or by a nest of telescoping tubes operative to movepunch 14 along the z axis whenhollow punch 11 is positioned at a target graft. The telescoping tubes may be operative to movepunch 14 along the coaxial path in response to the rotation of the outermost cylinder of the nest. The rotation of the outermost cylinder is produced conveniently by a belt (not shown) coupled to a reversible motor under the control of the controller such as 31 ofFIG. 3 . - In embodiments where
punch 11 has a sharp distal end, punch 14 may not be necessary. In such embodiments punch 11 is rotated or oscillated relatively slowly to allow the fluid jet to cut the soft tissue surrounding a target graft to lesser the damage which typically is caused by the sharp cutting edge. - What has been described herein is merely illustrative of the principles of this invention and various modifications thereof may be generated by those skilled in the art within the spirit and scope of the invention as encompassed by the following claims: For example, the rotation of the punch may be achieved by a worm gear, a belt arrangement, manual rotation, or a mechanical attachment. The shoulder (36) may be adjustable along the coaxial path of the punch and pre-positioned prior or even during a set of extraction procedures. Also, the imaging instrumentation may be implemented by a high power video camera, computer assisted visual system, or direct visualization along with or instead of the optical fiber illustrated.
Claims (19)
1. Apparatus for extracting a follicular unit of hair including the bulb, from a harvest area of hair bearing skin, said apparatus comprising means for locating a follicular unit for extraction, means for aligning a coring device with the follicular units, means for advancing the coring device in a manner to encompass the follicular unit to the base of the bulb and means coupled to said coring device for cutting the surrounding anatomical structures preferentially as said coring device advances.
2. Apparatus as in claim 1 wherein said means for cutting comprises transducer coupled to said coring device and control means for activating said transducer responsive to the advance of said coring device.
3. Apparatus as in claim 1 wherein said means for cutting comprises a water jet scalpel and control means for activating said water jet scalpel in a manner to direct a water jet along an annular path at the distal surface of said coring device.
4. Apparatus as in claim 1 wherein said coring device comprises a dull distal surface and said apparatus comprises means for rotating said coring device as it advances into the hair bearing skin.
5. Apparatus for extracting a hair graft from a harvesting area of hair bearing skin, said apparatus comprising a hollow punch having a cylindrical wall and a distal end, said cylindrical wall including a channel having an opening at said distal end, said channel being coupled to a source of fluid, said apparatus also including a pump for providing a fluid jet at said opening and a means for advancing said punch and for rotating said punch as it advances.
6. Apparatus as in claim 5 also including means for aligning said punch with a target hair graft.
7. Apparatus as in claim 6 also including a controller for selecting the fluid pressure of said fluid jet.
8. Apparatus for extracting a follicular unit of hair from a hair bearing skin, said apparatus comprising first and second cutting assemblies, said first cutting assembly comprising a first hollow punch having a dull distal surface with an interior diameter larger than the diameter of the bulb of a follicular unit, said second cutting assembly being coupled to said first cutting assembly and being operative to cut preferentially collagen fibril tissue which holds follicular units in place.
9. Apparatus as in claim 8 comprising means for controllably positioning said first hollow punch at a hair bearing skin surface in alignment with a target follicular unit.
10. Apparatus as in claim 9 also comprising means for controllably advancing said first hollow punch into said hair bearing skin simultaneously rotating said first hollow punch.
11. Apparatus as in claim 10 wherein said second cutting assembly comprising means for providing a jet fluid stream at said dull distal surface.
12. Apparatus as in claim 11 wherein said means for providing a jet fluid stream comprises a channel in the wall of said hollow punch, said channel having an output at said distal surface, said channel being connected to a source of fluid, said apparatus also comprising a controller operative to apply pressure to said fluid source in a manner of generate a fluid jet.
13. Apparatus as in claim 12 wherein said fluid comprises saline.
14. Apparatus as in claim 13 wherein said controller is responsive to the rotation of said first hollow punch for applying pressure to said fluid source.
15. Apparatus as in claim 9 comprising a third cutting assembly, said third cutting assembly comprising a second hollow punch coaxial with said first hollow punch, said second hollow punch having a sharp distal end, said apparatus comprising means for controllably advancing said second hollow punch in a manner to pierce the skin at the skin surface of a target follicular unit and then to withdraw said second hollow punch.
16. Apparatus as in claim 15 also comprising means for controllably advancing said first hollow punch into said scalp simultaneously rotating said first hollow punch responsive to the withdrawal of said second hollow punch.
17. Apparatus as in claim 10 wherein said second cutting assembly comprises a vibratory device attached to said first hollow punch and a controller for activating said vibratory device responsive to the advance of said first hollow punch.
18. A method of extracting a follicular unit of hair from hair bearing skin, said method comprising the steps of aligning a first hollow punch with a dull distal end with a target follicular unit, preserving the skin at the said target follicular unit, advancing said hollow punch into the perforation, rotating said first hollow punch as it is advanced into the skin and providing water jet stream at said distal end in a manner to follow a circular path as said first hollow punch rotates.
19. A method as in claim 18 wherein the step of perforating the skin comprises the steps of advancing a second hollow punch with a sharp distal end and withdrawing the second hollow punch.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/531,862 US20080177287A1 (en) | 2006-09-14 | 2006-09-14 | Hair harvesting apparatus |
US12/780,834 US8317804B1 (en) | 2006-09-14 | 2010-05-14 | Hair harvesting apparatus |
US13/681,374 US9420866B1 (en) | 2006-09-14 | 2012-11-19 | Hair harvesting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/531,862 US20080177287A1 (en) | 2006-09-14 | 2006-09-14 | Hair harvesting apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/780,834 Division US8317804B1 (en) | 2006-09-14 | 2010-05-14 | Hair harvesting apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080177287A1 true US20080177287A1 (en) | 2008-07-24 |
Family
ID=39642012
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/531,862 Abandoned US20080177287A1 (en) | 2006-09-14 | 2006-09-14 | Hair harvesting apparatus |
US12/780,834 Active 2027-01-04 US8317804B1 (en) | 2006-09-14 | 2010-05-14 | Hair harvesting apparatus |
US13/681,374 Active 2027-07-12 US9420866B1 (en) | 2006-09-14 | 2012-11-19 | Hair harvesting apparatus |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/780,834 Active 2027-01-04 US8317804B1 (en) | 2006-09-14 | 2010-05-14 | Hair harvesting apparatus |
US13/681,374 Active 2027-07-12 US9420866B1 (en) | 2006-09-14 | 2012-11-19 | Hair harvesting apparatus |
Country Status (1)
Country | Link |
---|---|
US (3) | US20080177287A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110060321A1 (en) * | 2009-09-04 | 2011-03-10 | Chandler Paul E | Follicular unit harvesting tool |
US20120215231A1 (en) * | 2009-09-17 | 2012-08-23 | Wesley Carlos K | Hair restoration surgery |
US8747427B2 (en) | 2011-01-18 | 2014-06-10 | Restoration Robotics, Inc. | Automated delivery of fluid |
US8882784B2 (en) | 2007-03-19 | 2014-11-11 | Restoration Robotics, Inc. | Biological unit removal tools with concentric tubes |
US8998931B2 (en) | 2011-10-17 | 2015-04-07 | Pilofocus, Inc. | Hair restoration |
US20150305472A1 (en) * | 2011-04-20 | 2015-10-29 | Sanusi Umar | Follicular Unit Extraction System |
US20160001453A1 (en) * | 2008-12-30 | 2016-01-07 | May Patents Ltd. | Electric shaver with imaging capability |
US9314082B2 (en) | 2009-09-17 | 2016-04-19 | Pilofocus, Inc. | System and method for extraction of hair follicle |
US9420866B1 (en) * | 2006-09-14 | 2016-08-23 | William Rassman | Hair harvesting apparatus |
US9693799B2 (en) | 2009-09-17 | 2017-07-04 | Pilofocus, Inc. | System and method for aligning hair follicle |
US10736654B2 (en) * | 2010-05-07 | 2020-08-11 | The General Hospital Corporation | Method and apparatus for tissue grafting and copying |
US11045306B1 (en) | 2020-08-31 | 2021-06-29 | Boudjema-Rassman Partnership | Automated staging of hair grafts |
US11103273B2 (en) * | 2018-12-14 | 2021-08-31 | Rasim Kakony | Powered hair restoration and surgical assembly |
US11464954B2 (en) | 2016-09-21 | 2022-10-11 | Cytrellis Biosystems, Inc. | Devices and methods for cosmetic skin resurfacing |
US11510744B2 (en) | 2010-12-21 | 2022-11-29 | Venus Concept Inc. | Methods and systems for directing movement of a tool in hair transplantation procedures |
US11534344B2 (en) | 2013-02-20 | 2022-12-27 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
US11896261B2 (en) | 2014-11-14 | 2024-02-13 | Cytrellis Biosystems, Inc. | Devices and methods for ablation of the skin |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011075676A2 (en) | 2009-12-18 | 2011-06-23 | Knowlton Edward W | A skin treatment and drug delivery device |
US10368904B2 (en) * | 2013-12-06 | 2019-08-06 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11612410B2 (en) | 2010-12-17 | 2023-03-28 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10702684B2 (en) | 2010-12-17 | 2020-07-07 | Srgi Holdings, Llc | Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal |
US11103275B2 (en) | 2010-12-17 | 2021-08-31 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10695546B2 (en) | 2010-12-17 | 2020-06-30 | Srgi Holdings, Llc | Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal |
US11000310B2 (en) | 2010-12-17 | 2021-05-11 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11278309B2 (en) | 2010-12-17 | 2022-03-22 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10736653B2 (en) | 2013-12-06 | 2020-08-11 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US10661063B2 (en) | 2010-12-17 | 2020-05-26 | Srgi Holdings, Llc | Systems, devices and methods for fractional resection, fractional skin grafting, fractional scar reduction and fractional tattoo removal |
CA2926322C (en) | 2013-10-02 | 2022-10-18 | Srgi Holdings, Llc | Pixel array medical devices and methods |
ES2827049T3 (en) | 2013-10-02 | 2021-05-19 | Srgi Holdings Llc | Pixel Set Medical Devices |
US11229452B2 (en) | 2013-12-06 | 2022-01-25 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11937846B2 (en) | 2013-12-06 | 2024-03-26 | Srgi Holdings Llc | Pixel array medical systems, devices and methods |
WO2016127091A1 (en) | 2015-02-05 | 2016-08-11 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11751903B2 (en) | 2015-08-31 | 2023-09-12 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
US11490952B2 (en) | 2015-08-31 | 2022-11-08 | Srgi Holdings, Llc | Pixel array medical devices and methods |
US11564706B2 (en) | 2019-10-28 | 2023-01-31 | Srgi Holdings, Llc | Pixel array medical systems, devices and methods |
WO2020086915A2 (en) | 2017-05-03 | 2020-04-30 | Srgi Holdings Llc | Handed spiral slotted scalpet array |
CN109330665B (en) * | 2018-08-29 | 2020-09-01 | 南京新生医疗科技有限公司 | Gem knife with hair counting function |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4785826A (en) * | 1987-03-02 | 1988-11-22 | Ward John L | Biopsy instrument |
US5339799A (en) * | 1991-04-23 | 1994-08-23 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
US5464389A (en) * | 1993-08-10 | 1995-11-07 | Stahl; Norman O. | Working tip for fragmenting and aspirating ocular tissue |
US5628743A (en) * | 1994-12-21 | 1997-05-13 | Valleylab Inc. | Dual mode ultrasonic surgical apparatus |
US5782851A (en) * | 1996-04-10 | 1998-07-21 | Rassman; William R. | Hair transplantation system |
US6572625B1 (en) * | 1998-09-13 | 2003-06-03 | William R. Rassman | Hair transplant harvesting device and method for its use |
US6585746B2 (en) * | 2000-04-20 | 2003-07-01 | Philip L. Gildenberg | Hair transplantation method and apparatus |
US6689086B1 (en) * | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US20040116942A1 (en) * | 2002-12-16 | 2004-06-17 | Feller Alan S. | Method and apparatus for follicular extraction and transplantation |
US20060161179A1 (en) * | 2004-12-23 | 2006-07-20 | Kachenmeister Robert M | Follicular transplantation device and method |
US20060178677A1 (en) * | 2005-02-10 | 2006-08-10 | Technical Innovations, L.L.C. | Hair punch |
US20060216781A1 (en) * | 2005-03-23 | 2006-09-28 | Gebing Ronald A | Microarrayer with coaxial multiple punches |
US20080033455A1 (en) * | 2006-08-03 | 2008-02-07 | Rassman William R | Hair extraction device and method for its use |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4476864A (en) * | 1982-09-29 | 1984-10-16 | Jirayr Tezel | Combined multiple punch and single punch hair transplant cutting device |
DE3715418A1 (en) * | 1986-05-08 | 1987-11-12 | Olympus Optical Co | LITHOTOM |
US5205816A (en) * | 1992-04-13 | 1993-04-27 | O. R. Concepts, Inc. | Laparoscopic irrigator-aspirator blunt dissector |
FR2696334B1 (en) * | 1992-10-01 | 1994-12-02 | Boudjema J Pascal | Device for transplanting small diameter hair grafts. |
US5980545A (en) * | 1996-05-13 | 1999-11-09 | United States Surgical Corporation | Coring device and method |
US6168590B1 (en) | 1997-08-12 | 2001-01-02 | Y-Beam Technologies, Inc. | Method for permanent hair removal |
FR2776180B1 (en) * | 1998-03-17 | 2000-08-11 | Pascal Boudjema | DEVICE FOR IMPLANTING SMALL DIAMETER HAIR GRAFTS |
US6589201B1 (en) * | 1998-06-04 | 2003-07-08 | Alcon Manufacturing, Ltd. | Liquefracture handpiece tip |
US6200326B1 (en) | 1999-04-28 | 2001-03-13 | Krishna Narayanan | Method and apparatus for hair removal using ultrasonic energy |
US20030097079A1 (en) * | 2001-10-19 | 2003-05-22 | Garcia Maurice M. | Biopsy needle sheath |
US7156856B2 (en) * | 2003-04-29 | 2007-01-02 | Feller Alan S | Method and apparatus for follicular extraction and transplantation |
US20050075651A1 (en) * | 2003-06-30 | 2005-04-07 | Ortiz Alvaro Ernesto | Safe cut callus remover |
WO2005109799A2 (en) * | 2004-04-08 | 2005-11-17 | Hsc Development Llc | Follicular extraction method and device |
US20060184190A1 (en) * | 2005-02-14 | 2006-08-17 | Feiler Ernest M | Trans-myocardial fluid-jet revascularization arrangement |
US20070106307A1 (en) * | 2005-09-30 | 2007-05-10 | Restoration Robotics, Inc. | Methods for implanting follicular units using an automated system |
US20070078466A1 (en) * | 2005-09-30 | 2007-04-05 | Restoration Robotics, Inc. | Methods for harvesting follicular units using an automated system |
US7962192B2 (en) * | 2005-09-30 | 2011-06-14 | Restoration Robotics, Inc. | Systems and methods for aligning a tool with a desired location or object |
US8366723B2 (en) * | 2006-08-03 | 2013-02-05 | Rassman Licensing, Llc | Hair harvesting device and method with localized subsurface dermal fluid insertion |
US20080177287A1 (en) * | 2006-09-14 | 2008-07-24 | William Rassman | Hair harvesting apparatus |
US20080234709A1 (en) * | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US9271751B2 (en) * | 2007-05-29 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical system |
WO2009002677A1 (en) * | 2007-06-26 | 2008-12-31 | Restoration Robotics, Inc. | Follicular unit harvesting tools including devices and their use for severing connective tissue |
US8882791B2 (en) * | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8348967B2 (en) * | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9107697B2 (en) * | 2008-06-04 | 2015-08-18 | Restoration Robotics, Inc. | System and method for selecting follicular units for harvesting |
US8545517B2 (en) * | 2008-06-06 | 2013-10-01 | Restoration Robotics, Inc. | Systems and methods for improving follicular unit harvesting |
US8911453B2 (en) * | 2010-12-21 | 2014-12-16 | Restoration Robotics, Inc. | Methods and systems for directing movement of a tool in hair transplantation procedures |
-
2006
- 2006-09-14 US US11/531,862 patent/US20080177287A1/en not_active Abandoned
-
2010
- 2010-05-14 US US12/780,834 patent/US8317804B1/en active Active
-
2012
- 2012-11-19 US US13/681,374 patent/US9420866B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4785826A (en) * | 1987-03-02 | 1988-11-22 | Ward John L | Biopsy instrument |
US5339799A (en) * | 1991-04-23 | 1994-08-23 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
US5464389A (en) * | 1993-08-10 | 1995-11-07 | Stahl; Norman O. | Working tip for fragmenting and aspirating ocular tissue |
US6689086B1 (en) * | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US5628743A (en) * | 1994-12-21 | 1997-05-13 | Valleylab Inc. | Dual mode ultrasonic surgical apparatus |
US5782851A (en) * | 1996-04-10 | 1998-07-21 | Rassman; William R. | Hair transplantation system |
US6572625B1 (en) * | 1998-09-13 | 2003-06-03 | William R. Rassman | Hair transplant harvesting device and method for its use |
US6585746B2 (en) * | 2000-04-20 | 2003-07-01 | Philip L. Gildenberg | Hair transplantation method and apparatus |
US20040116942A1 (en) * | 2002-12-16 | 2004-06-17 | Feller Alan S. | Method and apparatus for follicular extraction and transplantation |
US20060161179A1 (en) * | 2004-12-23 | 2006-07-20 | Kachenmeister Robert M | Follicular transplantation device and method |
US20060178677A1 (en) * | 2005-02-10 | 2006-08-10 | Technical Innovations, L.L.C. | Hair punch |
US20060216781A1 (en) * | 2005-03-23 | 2006-09-28 | Gebing Ronald A | Microarrayer with coaxial multiple punches |
US20080033455A1 (en) * | 2006-08-03 | 2008-02-07 | Rassman William R | Hair extraction device and method for its use |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9420866B1 (en) * | 2006-09-14 | 2016-08-23 | William Rassman | Hair harvesting apparatus |
US8882784B2 (en) | 2007-03-19 | 2014-11-11 | Restoration Robotics, Inc. | Biological unit removal tools with concentric tubes |
US9084465B2 (en) | 2007-03-19 | 2015-07-21 | Restoration Robotics, Inc. | Biological unit removal tools and methods |
US11006029B2 (en) | 2008-12-30 | 2021-05-11 | May Patents Ltd. | Electric shaver with imaging capability |
US11570347B2 (en) | 2008-12-30 | 2023-01-31 | May Patents Ltd. | Non-visible spectrum line-powered camera |
US12081847B2 (en) | 2008-12-30 | 2024-09-03 | May Patents Ltd. | Electric shaver with imaging capability |
US12075139B2 (en) | 2008-12-30 | 2024-08-27 | May Patents Ltd. | Electric shaver with imaging capability |
US20160001453A1 (en) * | 2008-12-30 | 2016-01-07 | May Patents Ltd. | Electric shaver with imaging capability |
US11985397B2 (en) | 2008-12-30 | 2024-05-14 | May Patents Ltd. | Electric shaver with imaging capability |
US11838607B2 (en) | 2008-12-30 | 2023-12-05 | May Patents Ltd. | Electric shaver with imaging capability |
US11800207B2 (en) | 2008-12-30 | 2023-10-24 | May Patents Ltd. | Electric shaver with imaging capability |
US11778290B2 (en) | 2008-12-30 | 2023-10-03 | May Patents Ltd. | Electric shaver with imaging capability |
US11758249B2 (en) | 2008-12-30 | 2023-09-12 | May Patents Ltd. | Electric shaver with imaging capability |
US9848174B2 (en) | 2008-12-30 | 2017-12-19 | May Patents Ltd. | Electric shaver with imaging capability |
US11716523B2 (en) | 2008-12-30 | 2023-08-01 | Volteon Llc | Electric shaver with imaging capability |
US9950434B2 (en) | 2008-12-30 | 2018-04-24 | May Patents Ltd. | Electric shaver with imaging capability |
US9950435B2 (en) * | 2008-12-30 | 2018-04-24 | May Patents Ltd. | Electric shaver with imaging capability |
US11616898B2 (en) | 2008-12-30 | 2023-03-28 | May Patents Ltd. | Oral hygiene device with wireless connectivity |
US10220529B2 (en) | 2008-12-30 | 2019-03-05 | May Patents Ltd. | Electric hygiene device with imaging capability |
US10449681B2 (en) | 2008-12-30 | 2019-10-22 | May Patents Ltd. | Electric shaver with imaging capability |
US10456933B2 (en) | 2008-12-30 | 2019-10-29 | May Patents Ltd. | Electric shaver with imaging capability |
US10456934B2 (en) | 2008-12-30 | 2019-10-29 | May Patents Ltd. | Electric hygiene device with imaging capability |
US10500741B2 (en) | 2008-12-30 | 2019-12-10 | May Patents Ltd. | Electric shaver with imaging capability |
US10661458B2 (en) | 2008-12-30 | 2020-05-26 | May Patents Ltd. | Electric shaver with imaging capability |
US10695922B2 (en) | 2008-12-30 | 2020-06-30 | May Patents Ltd. | Electric shaver with imaging capability |
US10730196B2 (en) | 2008-12-30 | 2020-08-04 | May Patents Ltd. | Electric shaver with imaging capability |
US11575817B2 (en) | 2008-12-30 | 2023-02-07 | May Patents Ltd. | Electric shaver with imaging capability |
US10863071B2 (en) | 2008-12-30 | 2020-12-08 | May Patents Ltd. | Electric shaver with imaging capability |
US10868948B2 (en) | 2008-12-30 | 2020-12-15 | May Patents Ltd. | Electric shaver with imaging capability |
US10958819B2 (en) | 2008-12-30 | 2021-03-23 | May Patents Ltd. | Electric shaver with imaging capability |
US10986259B2 (en) | 2008-12-30 | 2021-04-20 | May Patents Ltd. | Electric shaver with imaging capability |
US10999484B2 (en) | 2008-12-30 | 2021-05-04 | May Patents Ltd. | Electric shaver with imaging capability |
US11575818B2 (en) | 2008-12-30 | 2023-02-07 | May Patents Ltd. | Electric shaver with imaging capability |
US11206342B2 (en) | 2008-12-30 | 2021-12-21 | May Patents Ltd. | Electric shaver with imaging capability |
US11563878B2 (en) | 2008-12-30 | 2023-01-24 | May Patents Ltd. | Method for non-visible spectrum images capturing and manipulating thereof |
US11509808B2 (en) | 2008-12-30 | 2022-11-22 | May Patents Ltd. | Electric shaver with imaging capability |
US11206343B2 (en) | 2008-12-30 | 2021-12-21 | May Patents Ltd. | Electric shaver with imaging capability |
US11297216B2 (en) | 2008-12-30 | 2022-04-05 | May Patents Ltd. | Electric shaver with imaging capabtility |
US11303792B2 (en) | 2008-12-30 | 2022-04-12 | May Patents Ltd. | Electric shaver with imaging capability |
US11303791B2 (en) | 2008-12-30 | 2022-04-12 | May Patents Ltd. | Electric shaver with imaging capability |
US11336809B2 (en) | 2008-12-30 | 2022-05-17 | May Patents Ltd. | Electric shaver with imaging capability |
US11356588B2 (en) | 2008-12-30 | 2022-06-07 | May Patents Ltd. | Electric shaver with imaging capability |
US11438495B2 (en) | 2008-12-30 | 2022-09-06 | May Patents Ltd. | Electric shaver with imaging capability |
US11445100B2 (en) | 2008-12-30 | 2022-09-13 | May Patents Ltd. | Electric shaver with imaging capability |
US9414889B2 (en) * | 2009-09-04 | 2016-08-16 | Restoration Robotics, Inc. | Follicular unit harvesting tool |
US10010369B2 (en) | 2009-09-04 | 2018-07-03 | Restoration Robotics, Inc. | Follicular unit harvesting tool |
US20110060321A1 (en) * | 2009-09-04 | 2011-03-10 | Chandler Paul E | Follicular unit harvesting tool |
US9693799B2 (en) | 2009-09-17 | 2017-07-04 | Pilofocus, Inc. | System and method for aligning hair follicle |
US20120215231A1 (en) * | 2009-09-17 | 2012-08-23 | Wesley Carlos K | Hair restoration surgery |
US9364252B2 (en) * | 2009-09-17 | 2016-06-14 | Pilofocus, Inc. | Hair restoration surgery |
US9314082B2 (en) | 2009-09-17 | 2016-04-19 | Pilofocus, Inc. | System and method for extraction of hair follicle |
US10736654B2 (en) * | 2010-05-07 | 2020-08-11 | The General Hospital Corporation | Method and apparatus for tissue grafting and copying |
US11832845B2 (en) | 2010-05-07 | 2023-12-05 | The General Hospital Corporation | Method and apparatus for tissue grafting and copying |
US11510744B2 (en) | 2010-12-21 | 2022-11-29 | Venus Concept Inc. | Methods and systems for directing movement of a tool in hair transplantation procedures |
US8747427B2 (en) | 2011-01-18 | 2014-06-10 | Restoration Robotics, Inc. | Automated delivery of fluid |
US20150305472A1 (en) * | 2011-04-20 | 2015-10-29 | Sanusi Umar | Follicular Unit Extraction System |
US8998931B2 (en) | 2011-10-17 | 2015-04-07 | Pilofocus, Inc. | Hair restoration |
US9861386B2 (en) | 2011-10-17 | 2018-01-09 | Pilofocus, Inc. | Hair restoration |
US11534344B2 (en) | 2013-02-20 | 2022-12-27 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
US12023226B2 (en) | 2013-02-20 | 2024-07-02 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
US11896261B2 (en) | 2014-11-14 | 2024-02-13 | Cytrellis Biosystems, Inc. | Devices and methods for ablation of the skin |
US11464954B2 (en) | 2016-09-21 | 2022-10-11 | Cytrellis Biosystems, Inc. | Devices and methods for cosmetic skin resurfacing |
US11103273B2 (en) * | 2018-12-14 | 2021-08-31 | Rasim Kakony | Powered hair restoration and surgical assembly |
US11045306B1 (en) | 2020-08-31 | 2021-06-29 | Boudjema-Rassman Partnership | Automated staging of hair grafts |
Also Published As
Publication number | Publication date |
---|---|
US8317804B1 (en) | 2012-11-27 |
US9420866B1 (en) | 2016-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9420866B1 (en) | Hair harvesting apparatus | |
US6572625B1 (en) | Hair transplant harvesting device and method for its use | |
US5217459A (en) | Method and instrument for performing eye surgery | |
US9259236B1 (en) | Hair harvesting device and method with localized subsurface dermal fluid insertion | |
DE69738485T2 (en) | NEEDLE FOR PHAKO-EMULSIFICATION | |
EP3212138B1 (en) | Vitrectomy probe with an optical fiber scanner | |
US3659607A (en) | Method for performing surgical procedures on the eye | |
US20080033455A1 (en) | Hair extraction device and method for its use | |
DE68916339T2 (en) | Device for removing cataracts. | |
JP6074422B2 (en) | Eyepiece cutting device | |
JP5242585B2 (en) | Endoscopic endoscopic treatment device, surgical equipment and bone tissue cutting tool | |
US3528425A (en) | Apparatus for performing surgical procedures on the eye | |
DE2605968A1 (en) | DEVICE FOR SURGICAL PURPOSES | |
US20110144638A1 (en) | Localized Shockwave-Induced Tissue Disruption | |
WO2014082093A1 (en) | Ultrasonic follicle unit extraction device and method | |
WO2009123635A1 (en) | Hair harvesting apparatus | |
JP2008194457A (en) | Ultrasonic treatment system | |
US20180214308A1 (en) | Posterior capsulotomy using laser techniques | |
EP3620124A1 (en) | Punching needle and handpiece for extracting hair | |
Lipshitz et al. | Cutting the cornea with a waterjet keratome | |
GB2519409A (en) | Single-pass endoscopic vessel harvesting | |
US9867636B2 (en) | Method, apparatus, and a system for a water jet | |
JP2018117975A (en) | Small-diameter endoscope operation device | |
KR20100023419A (en) | Medical automatic twist punch system | |
US5730156A (en) | Method for cutting and removing wrapping from an intraocular lens implant within an eye |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |