US20080104950A1 - Exhaust Gas Heat Exchanger, Especially for Motor Vehicles - Google Patents

Exhaust Gas Heat Exchanger, Especially for Motor Vehicles Download PDF

Info

Publication number
US20080104950A1
US20080104950A1 US11/883,590 US88359006A US2008104950A1 US 20080104950 A1 US20080104950 A1 US 20080104950A1 US 88359006 A US88359006 A US 88359006A US 2008104950 A1 US2008104950 A1 US 2008104950A1
Authority
US
United States
Prior art keywords
exhaust gas
valve
shaft
heat exchanger
flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/883,590
Inventor
Herve Palanchon
Martin Stiegler
Dieter Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Assigned to BEHR GMBH & CO. KG reassignment BEHR GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PALANCHON, HERVE, STIEGLER, MARTIN, WERNER, DIETER
Publication of US20080104950A1 publication Critical patent/US20080104950A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/16Silencing apparatus characterised by method of silencing by using movable parts
    • F01N1/166Silencing apparatus characterised by method of silencing by using movable parts for changing gas flow path through the silencer or for adjusting the dimensions of a chamber or a pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/51EGR valves combined with other devices, e.g. with intake valves or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention concerns an exhaust gas heat, as disclosed in DE 102 03 003 A1, as well as an exhaust gas valve for exhaust gas heat exchangers.
  • Exhaust gas heat exchangers in particular exhaust gas coolers as well as exhaust gas valves are well-known in exhaust gas recirculation systems, known as EGR systems, for motor vehicles.
  • the recirculation of exhaust gases serves to reduce pollutants and fuel consumption in internal-combustion engines of motor vehicles.
  • Exhaust gas heat exchangers can also be used for heating purposes, in particular with consumption-optimized engines, such as diesel engines—such a heat exchanger is described in DE 199 62 863 A1 of the applicant.
  • the known exhaust gas heat exchanger comprises an integrated bypass, wherein the exhaust gas flow is directed by means of a control element through the heat exchanger part or through the bypass channel.
  • the control element is operated by an actuator.
  • An exhaust gas heat exchanger constructed as an exhaust gas cooler is known from DE 198 41 927 A1.
  • a bundle of U-shaped bent exhaust pipes with a coolant flowing around them forms the exhaust gas heat exchanger, with which a valve mechanism is associated for controlling the exhaust gas flow.
  • a pivoting flap located on a flap shaft controls the exhaust gas stream in such a way that there is either a flow through the exhaust gas heat exchanger or it is circumvented by means of a bypass channel.
  • the exhaust gas stream supplies its heat to the coolant only if necessary.
  • Known pivotable exhaust gas flaps are preferably operated via an actuator arranged outside the valve mechanism, preferably a so-called vacuum control.
  • the negative pressure derived from the suction tract of the internal-combustion engine acts against a diaphragm to which a control rod is fastened, and thus carries out an actuating motion, transmitted to the flap shaft, against the force of a reset spring.
  • An exhaust recirculation system with an exhaust gas cooler cooled by a liquid coolant, with which a bypass line circumventing the exhaust gas cooler is associated, is known from EP 1 030,050 A1.
  • a valve mechanism Upstream of the exhaust gas cooler is arranged a valve mechanism, which operates as a switch for the exhaust gas stream and directs it either through the exhaust gas cooler or the bypass channel.
  • the valve mechanism has a valve closing member, constructed either as a poppet valve or as a pivoting flap, wherein the valve closing member is driven in each case via a pneumatic control element, which comprises a reset spring in its remote cylinder.
  • An exhaust gas heat exchanger in particular an exhaust gas cooler, in which—similarly to the above-mentioned patent DE 199 62 863 A1—a bypass channel is integrated into the housing of the exhaust gas cooler, is known from DE 102 03 003 AI, from which the invention proceeds.
  • a valve mechanism In the exhaust gas stream—upstream or downstream of the exhaust gas cooler—a valve mechanism is provided with a valve closing member, which operates as switch for the exhaust gas stream and is driven by an actuator arranged outside the housing, in particular a so-called vacuum control.
  • the known valve mechanism is described in different versions: as a so-called half flap, in which the flap shaft is arranged eccentrically to the flap, or as a pivoting flap with a centric flap shaft arrangement.
  • a so-called angle flap with a centrically arranged pivot axis and/or flap shaft is provided.
  • the flap shaft is led out of the respective housing and connected via a suitable transmission mechanism to the vacuum control, wherein the translational movement of the vacuum control is converted into a rotational or pivoting motion of the flap shaft.
  • the resetting of the exhaust gas valve is performed by the vacuum control, which in turn comprises a reset spring.
  • the actuator the components of the transmission mechanism, e.g. the control rod, as well as the exhaust gas valve must be positioned exactly relative to one another, since otherwise no exact positioning for the flap results. This can result in unwanted clatter and premature wear.
  • the exhaust gas valve does not assume a defined position without an installed actuator, since it is not fixed due to the lack of a reset spring. This is a hindrance in shipping.
  • the problem of the present invention is to create an improved control drive, which leads to an increased fatigue strength for the valve closing member, in particular the flap, the flap shaft and the transmission mechanism.
  • the shaft of the valve closing member in particular the flap shaft of the exhaust gas valve
  • a torsion spring is to be understood as a spring element that is suitable for imparting a torque to the valve shaft or the flap shaft, so that the flap is moved into an end position and held there.
  • Such a torsion spring element can thus have different constructional configurations, in particular, a helical torsion spring, for example. It is advantageous for the valve closing member or the exhaust gas valve to be brought into a defined preferred position, even if the actuator is not installed or fails in operation. In both cases, rattling or vibration and premature wear are thus avoided.
  • the maximum possible retaining forces for the exhaust gas valve are achieved due to the torsion spring, which is particularly important due to the high frequency excitation of the flap by the pulsating exhaust gas stream.
  • This stable fail-safe position achieves the advantage that the frictional wear on the flap shaft in the shaft guide that is due to vibration is substantially reduced.
  • the transmission mechanism between valve shaft and actuator or vacuum control is relieved, from which a reduction of material fatigue for these parts results.
  • the reset spring in the actuator particularly in a vacuum control, can be eliminated since the bias force on the flap is already applied by the torsion spring according to invention. Beyond that, the assembly tolerances thereby improve substantially.
  • the torsion spring exerts primarily a torque on the valve shaft, i.e., a force in the circumferential direction
  • an axial force i.e. one in the direction of the flap shaft
  • the torsion spring is wound helically from a spring wire, i.e., formed as a so-called leg spring clip with two projecting spring legs.
  • leg springs which are guided on a mandrel, are well-known as a mechanical component.
  • the torsion spring can be arranged coaxially to the valve or flap shaft, a guide sleeve advantageously being arranged on the valve shaft.
  • the leg spring it is also advantageous with the leg spring that its legs can be supported in a relatively simple way on the housing, on the one hand, and on the valve shaft on the other.
  • a pivoted lever, on which one leg of the leg spring acts and thus introduces the torque into the flap shaft, is advantageously mounted on the valve shaft for this purpose.
  • the actuator is constructed as a pneumatically operated actuator, i.e. as a so-called vacuum control, which uses the negative pressure of the intake system of the internal-combustion engine as its operating medium. Due to the torsion spring according to invention and its arrangement on the valve shaft, the advantage results that the reset spring in the vacuum control can be omitted.
  • the vacuum control thus acts against the force of the inventive torsion spring and adjusts the valve closing member or the flap into another end position. For fail-safe reasons, this will usually be the position in which the exhaust gas stream flows through the bypass channel, that is, during the warming-up phase of the engine.
  • the negative pressure supply is switched off, whereby the flap is transferred by torque of the torsion spring into its operating position, i.e., into the position in which the exhaust gas stream is steered trough the exhaust gas cooler and thus cooled by the coolant.
  • the actuator in question in particular a vacuum control, can thus be manufactured more simply and more economically.
  • the problem of the invention is also solved for an exhaust gas valve.
  • the invention is thus not limited to exhaust gas heat exchangers with a bypass channel, whether integrated or formed as a separate bypass channel, but also extends generally to exhaust gas channels controlled by exhaust gas valves.
  • the same advantages mentioned above apply to this configuration, in particular a secure fail-safe position of the exhaust gas valve and the omission of a reset spring for the actuator.
  • the exhaust gas valve comprises at least one torsion spring, which winds up when actuated.
  • the exhaust gas valve comprises at least one torsion spring, which unwinds when actuated.
  • the heat exchanger comprises a valve device ( 3 ) which is used to control the exhaust gas flow and can be actuated by a servomotor ( 4 ) by means of a transmission device ( 8 , 6 ), the valve device ( 3 ) comprising a valve closing member fixed to a valve shaft (a).
  • the valve shaft (a) can be loaded by a torsion spring ( 5 ) which can be supported on the valve shaft and on the valve device ( 3 , 3 a ).
  • FIG. 1 shows an exhaust gas cooler with flap control drive according to the invention as a front view.
  • FIG. 2 shows the exhaust gas cooler in accordance with FIG. 1 as a plan view.
  • FIG. 3 shows a section along the line III-III in FIG. 2 .
  • FIG. 1 shows an exhaust cooling device 1 , which can be used in an exhaust recirculation system, not shown, of a motor vehicle.
  • Exhaust cooling device 1 comprises an exhaust gas cooler 2 and a valve mechanism 3 , which can be driven by an actuator constructed as a vacuum control 4 .
  • Exhaust gas cooler 2 c comprises a housing 2 a with a coolant inlet connector 2 b and a coolant inlet connector 2 c , by which exhaust gas cooler 2 is connected to a coolant circulation, not shown, of an internal-combustion engine of the motor vehicle.
  • housing 2 a Within housing 2 a , a bundle of exhaust tubes, not represented, is arranged, through which an exhaust gas flows and around which coolant flows.
  • Coolant inlet 2 b and coolant outlet 2 c can be exchanged, i.e., the coolant circulation can be performed in the reverse direction if required, i.e., in co-current or counter-current flow relative to the exhaust gas.
  • Exhaust gas cooler 2 includes, in addition to the bundle of exhaust tubes, not shown, an integrated bypass channel, likewise not shown, according to the above-mentioned DE 102 03 003 A1, whose contents are hereby incorporated in full by reference into the disclosure of the present application.
  • the exhaust gas which is fed through an EGR line, not shown, enters according to arrow E into an opening of valve mechanism 3 and exits from the exhaust gas cooler 2 according to arrow A.
  • the valve mechanism 3 has a housing 3 a that is connected, preferably welded, to housing 2 a of exhaust gas cooler 2 , and accommodates inside itself an exhaust gas valve, not shown, for controlling the exhaust gas flow.
  • the exhaust or valve flap has a pivot axis a, which is represented as a broken line and at the same time constitutes the shaft of a helically wound torsion spring 5 , which is arranged outside valve housing 3 a .
  • Torsion spring 5 also known as a leg spring, has two spring legs 5 a , 5 b , which are braced on the one hand against a pivoted lever 6 rotatable about axis a, and against a pin 3 b of housing 3 a on the other.
  • a vacuum control 4 is mounted by means of a holder 7 on housing 2 a , and is connected via a control rod 8 to pivoted lever 6 .
  • FIG. 2 shows exhaust cooling device 1 according to FIG. 1 in a view from above, wherein identical reference numbers are used for identical parts.
  • Pivotable lever 6 pivotable about an axis is fixedly connected to a flap shaft 9 led out of valve housing 3 a .
  • a translational movement of control rod 8 of vacuum control 4 is converted into a rotational or pivoting movement of flap shaft 9 .
  • the other spring leg 5 a acts with a lever arm in reference to pivot axis a at pivoted lever 6 and acts against the actuating movement of control rod 8 .
  • FIG. 3 shows a section in the plane III-III, as drawn in FIG. 2 .
  • Flap shaft 9 has one shaft section 9 a arranged substantially inside valve housing 3 a and one shaft section 9 b arranged outside valve housing 3 a , to whose end 9 c pivoted lever 6 is fastened without rotational play, preferably by welding.
  • An exhaust gas valve 10 (shown in abbreviated form) is arranged co-rotating on internal shaft section 9 a .
  • Exhaust gas valve 10 operates as a switch and directs the exhaust gas stream entering housing 3 a either through the bundle of tubes of the exhaust gas cooler or through the bypass, which are not visible in this representation, but correspond in construction to the publication mentioned above and incorporated into the present disclosure.
  • torsion spring 5 is constructed as a spiral spring wound from a spring wire, which—not visible here—is braced against pivoted lever 6 and housing 3 a .
  • a torque is exerted on flap shaft 9 by the pre-stressed torsion spring 5 and exhaust gas valve 10 is pressed into an end position, which preferably corresponds to a closed bypass channel.
  • a bushing 11 is arranged on section 9 b of flap shaft 9 , which causes a guidance of torsion spring 5 .
  • a pivot pin 12 with a ball head 12 a that is enclosed by ball cap 8 a of control rod 8 is fastened to pivoted lever 6 at a distance from pivot axis a. Articulated pin 12 and control rod 8 thus form a ball joint via ball 12 a and ball cap 8 a.
  • the mode of operation of the flap drive is the following: If the negative pressure control drive 4 (vacuum control) is deactivated, i.e., no negative pressure is present, torsion spring 5 actuates flap shaft 9 due to its bias force, and thus moves exhaust flap 10 into a base or fail-safe position. This preferably corresponds to a position in which the bypass channel is closed off, i.e., the exhaust gas stream flows through the exhaust gas cooler and is thus cooled.
  • the flap 10 can be constructed in accordance with the designs of the state of the art as mentioned above.
  • vacuum control 4 is activated, i.e., subjected to negative pressure, then control rod 8 is moved contrary to the direction of action of torsion spring 5 , so that a rotation movement is imparted to flap shaft 9 and exhaust gas valve 10 is actuated into a position that corresponds to an opening of the bypass channel. This happens, for example, during the warming-up phase of the engine when cooling of the exhaust gases is not necessary.
  • Torsion spring 5 is designed in such a manner with regard to its spring travel and spring force that a firm contact of exhaust gas valve 10 against the housing 3 a results in case of a deactivated control drive 4 , i.e., fluttering of the flap due to the pulsating exhaust gas flow is avoided.
  • a reset spring normally used in actuating drives of the state of the art, in particular, vacuum controls can be omitted for vacuum control 4 .
  • the torsion spring according to the invention for biasing the flap shaft of an exhaust gas valve is not limited to use in an exhaust gas heat exchanger with a bypass channel, whether integrated or constructed as a separate channel.
  • the invention can also advantageously be applied to exhaust gas valves arranged in an exhaust channel and driven by a flap shaft and an actuator. For example this could be the case in a valve mechanism according to the state of the art mentioned above according to DE 198 41 927 A1.

Abstract

The invention relates to an exhaust gas heat exchanger (2), especially for motor vehicles, comprising a main flow path and a secondary flow path (bypass) for the exhaust gas. Said heat exchanger comprises a valve device (3) which is used to control the exhaust gas flow and can be actuated by a servomotor (4) by means of a transmission device (8, 6), the valve device (3) comprising a valve closing member fixed to a valve shaft (a). According to the invention, the valve shaft (a) can be loaded by a torsion spring (5) which can be supported on the valve shaft and on the valve device (3, 3 a).

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a National Stage filing of International Application PCT/EP2006/000906, filed Feb. 2, 2006, claiming priority to German Application No. 10 2005 005 189.8, filed Feb. 3, 2005, entitled “EXHAUST GAS HEAT EXCHANGER, ESPECIALLY FOR MOTOR VEHICLES”. The present application claims priority to PCT/EP2006/000906, and to German Application No. 10 2005 005 189.8, and both references are expressly incorporated by reference herein, in their entireties.
  • The invention concerns an exhaust gas heat, as disclosed in DE 102 03 003 A1, as well as an exhaust gas valve for exhaust gas heat exchangers.
  • Exhaust gas heat exchangers, in particular exhaust gas coolers as well as exhaust gas valves are well-known in exhaust gas recirculation systems, known as EGR systems, for motor vehicles. The recirculation of exhaust gases serves to reduce pollutants and fuel consumption in internal-combustion engines of motor vehicles. Exhaust gas heat exchangers can also be used for heating purposes, in particular with consumption-optimized engines, such as diesel engines—such a heat exchanger is described in DE 199 62 863 A1 of the applicant. The known exhaust gas heat exchanger comprises an integrated bypass, wherein the exhaust gas flow is directed by means of a control element through the heat exchanger part or through the bypass channel. Thus the amount of heat produced can be adapted to the need. The control element is operated by an actuator. An exhaust gas heat exchanger constructed as an exhaust gas cooler is known from DE 198 41 927 A1. A bundle of U-shaped bent exhaust pipes with a coolant flowing around them forms the exhaust gas heat exchanger, with which a valve mechanism is associated for controlling the exhaust gas flow. A pivoting flap located on a flap shaft controls the exhaust gas stream in such a way that there is either a flow through the exhaust gas heat exchanger or it is circumvented by means of a bypass channel. Thus the exhaust gas stream supplies its heat to the coolant only if necessary. Known pivotable exhaust gas flaps are preferably operated via an actuator arranged outside the valve mechanism, preferably a so-called vacuum control. Here the negative pressure derived from the suction tract of the internal-combustion engine acts against a diaphragm to which a control rod is fastened, and thus carries out an actuating motion, transmitted to the flap shaft, against the force of a reset spring.
  • An exhaust recirculation system with an exhaust gas cooler cooled by a liquid coolant, with which a bypass line circumventing the exhaust gas cooler is associated, is known from EP 1 030,050 A1. Upstream of the exhaust gas cooler is arranged a valve mechanism, which operates as a switch for the exhaust gas stream and directs it either through the exhaust gas cooler or the bypass channel. The valve mechanism has a valve closing member, constructed either as a poppet valve or as a pivoting flap, wherein the valve closing member is driven in each case via a pneumatic control element, which comprises a reset spring in its remote cylinder. When the regulating unit is vented (removal of the negative pressure) the reset spring in the regulating unit causes a resetting of the valve and/or the flap into a preferred starting position.
  • An exhaust gas heat exchanger, in particular an exhaust gas cooler, in which—similarly to the above-mentioned patent DE 199 62 863 A1—a bypass channel is integrated into the housing of the exhaust gas cooler, is known from DE 102 03 003 AI, from which the invention proceeds. In the exhaust gas stream—upstream or downstream of the exhaust gas cooler—a valve mechanism is provided with a valve closing member, which operates as switch for the exhaust gas stream and is driven by an actuator arranged outside the housing, in particular a so-called vacuum control. The known valve mechanism is described in different versions: as a so-called half flap, in which the flap shaft is arranged eccentrically to the flap, or as a pivoting flap with a centric flap shaft arrangement. In addition, a so-called angle flap with a centrically arranged pivot axis and/or flap shaft is provided. The flap shaft is led out of the respective housing and connected via a suitable transmission mechanism to the vacuum control, wherein the translational movement of the vacuum control is converted into a rotational or pivoting motion of the flap shaft. The resetting of the exhaust gas valve is performed by the vacuum control, which in turn comprises a reset spring.
  • In the known flap drives it is disadvantageous that the actuator, the components of the transmission mechanism, e.g. the control rod, as well as the exhaust gas valve must be positioned exactly relative to one another, since otherwise no exact positioning for the flap results. This can result in unwanted clatter and premature wear. Beyond that, it is disadvantageous that the exhaust gas valve does not assume a defined position without an installed actuator, since it is not fixed due to the lack of a reset spring. This is a hindrance in shipping.
  • For an exhaust gas heat exchanger of the kind mentioned above and also for an exhaust gas valve, the problem of the present invention is to create an improved control drive, which leads to an increased fatigue strength for the valve closing member, in particular the flap, the flap shaft and the transmission mechanism.
  • This problem is solved first of all by the characteristics of the disclosed invention. It is provided according to the invention that the shaft of the valve closing member, in particular the flap shaft of the exhaust gas valve, is loaded by a torsion spring. The term torsion spring is to be understood as a spring element that is suitable for imparting a torque to the valve shaft or the flap shaft, so that the flap is moved into an end position and held there. Such a torsion spring element can thus have different constructional configurations, in particular, a helical torsion spring, for example. It is advantageous for the valve closing member or the exhaust gas valve to be brought into a defined preferred position, even if the actuator is not installed or fails in operation. In both cases, rattling or vibration and premature wear are thus avoided. According to the invention, the maximum possible retaining forces for the exhaust gas valve are achieved due to the torsion spring, which is particularly important due to the high frequency excitation of the flap by the pulsating exhaust gas stream. This stable fail-safe position achieves the advantage that the frictional wear on the flap shaft in the shaft guide that is due to vibration is substantially reduced. In the fail-safe position, it is additionally advantageous that the transmission mechanism between valve shaft and actuator or vacuum control is relieved, from which a reduction of material fatigue for these parts results. Finally it is of advantage that the reset spring in the actuator, particularly in a vacuum control, can be eliminated since the bias force on the flap is already applied by the torsion spring according to invention. Beyond that, the assembly tolerances thereby improve substantially. Although the torsion spring exerts primarily a torque on the valve shaft, i.e., a force in the circumferential direction, an axial force, i.e. one in the direction of the flap shaft, is also possible depending on the construction of the torsion spring. This yields the advantage that an unambiguous fixation of the shaft in the axial direction and a reduction of the axial tolerances are possible.
  • According to an advantageous configuration of the invention, the torsion spring is wound helically from a spring wire, i.e., formed as a so-called leg spring clip with two projecting spring legs. Such leg springs, which are guided on a mandrel, are well-known as a mechanical component. It is advantageous that a favorable spring rigidity results, in particular, a large spring travel, which can be influenced, by the number of the turns, among other things. Moreover the torsion spring can be arranged coaxially to the valve or flap shaft, a guide sleeve advantageously being arranged on the valve shaft. It is also advantageous with the leg spring that its legs can be supported in a relatively simple way on the housing, on the one hand, and on the valve shaft on the other. A pivoted lever, on which one leg of the leg spring acts and thus introduces the torque into the flap shaft, is advantageously mounted on the valve shaft for this purpose.
  • In a further advantageous configuration of the invention, the actuator is constructed as a pneumatically operated actuator, i.e. as a so-called vacuum control, which uses the negative pressure of the intake system of the internal-combustion engine as its operating medium. Due to the torsion spring according to invention and its arrangement on the valve shaft, the advantage results that the reset spring in the vacuum control can be omitted. The vacuum control thus acts against the force of the inventive torsion spring and adjusts the valve closing member or the flap into another end position. For fail-safe reasons, this will usually be the position in which the exhaust gas stream flows through the bypass channel, that is, during the warming-up phase of the engine. After reaching the end of the warming-up phase, the negative pressure supply is switched off, whereby the flap is transferred by torque of the torsion spring into its operating position, i.e., into the position in which the exhaust gas stream is steered trough the exhaust gas cooler and thus cooled by the coolant. The actuator in question, in particular a vacuum control, can thus be manufactured more simply and more economically.
  • The problem of the invention is also solved for an exhaust gas valve. The invention is thus not limited to exhaust gas heat exchangers with a bypass channel, whether integrated or formed as a separate bypass channel, but also extends generally to exhaust gas channels controlled by exhaust gas valves. The same advantages mentioned above apply to this configuration, in particular a secure fail-safe position of the exhaust gas valve and the omission of a reset spring for the actuator.
  • Advantageous arrangements of the exhaust gas valve according to the invention result from the additional subordinate claims.
  • In another advantageous configuration of the invention, the exhaust gas valve comprises at least one torsion spring, which winds up when actuated.
  • In another advantageous configuration of the invention, the exhaust gas valve comprises at least one torsion spring, which unwinds when actuated.
  • An embodiment of the invention is represented in the drawings and described in detail below.
  • BRIEF SUMMARY
  • An exhaust gas heat exchanger (2), especially for motor vehicles, comprising a main flow path and a secondary flow path (bypass) for the exhaust gas. The heat exchanger comprises a valve device (3) which is used to control the exhaust gas flow and can be actuated by a servomotor (4) by means of a transmission device (8, 6), the valve device (3) comprising a valve closing member fixed to a valve shaft (a). The valve shaft (a) can be loaded by a torsion spring (5) which can be supported on the valve shaft and on the valve device (3, 3 a).
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 shows an exhaust gas cooler with flap control drive according to the invention as a front view.
  • FIG. 2 shows the exhaust gas cooler in accordance with FIG. 1 as a plan view.
  • FIG. 3 shows a section along the line III-III in FIG. 2.
  • DETAILED DESCRIPTION
  • For the purposes of promoting an understanding of the disclosure, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended, such alterations and further modifications in the illustrated device and its use, and such further applications of the principles of the disclosure as illustrated therein being contemplated as would normally occur to one skilled in the art to which the disclosure relates.
  • FIG. 1 shows an exhaust cooling device 1, which can be used in an exhaust recirculation system, not shown, of a motor vehicle. Exhaust cooling device 1 comprises an exhaust gas cooler 2 and a valve mechanism 3, which can be driven by an actuator constructed as a vacuum control 4. Exhaust gas cooler 2 c comprises a housing 2 a with a coolant inlet connector 2 b and a coolant inlet connector 2 c, by which exhaust gas cooler 2 is connected to a coolant circulation, not shown, of an internal-combustion engine of the motor vehicle. Within housing 2 a, a bundle of exhaust tubes, not represented, is arranged, through which an exhaust gas flows and around which coolant flows. Coolant inlet 2 b and coolant outlet 2 c can be exchanged, i.e., the coolant circulation can be performed in the reverse direction if required, i.e., in co-current or counter-current flow relative to the exhaust gas. Exhaust gas cooler 2 includes, in addition to the bundle of exhaust tubes, not shown, an integrated bypass channel, likewise not shown, according to the above-mentioned DE 102 03 003 A1, whose contents are hereby incorporated in full by reference into the disclosure of the present application. The exhaust gas, which is fed through an EGR line, not shown, enters according to arrow E into an opening of valve mechanism 3 and exits from the exhaust gas cooler 2 according to arrow A. The valve mechanism 3 has a housing 3 a that is connected, preferably welded, to housing 2 a of exhaust gas cooler 2, and accommodates inside itself an exhaust gas valve, not shown, for controlling the exhaust gas flow. The exhaust or valve flap has a pivot axis a, which is represented as a broken line and at the same time constitutes the shaft of a helically wound torsion spring 5, which is arranged outside valve housing 3 a. Torsion spring 5, also known as a leg spring, has two spring legs 5 a, 5 b, which are braced on the one hand against a pivoted lever 6 rotatable about axis a, and against a pin 3 b of housing 3 a on the other. A vacuum control 4 is mounted by means of a holder 7 on housing 2 a, and is connected via a control rod 8 to pivoted lever 6.
  • FIG. 2 shows exhaust cooling device 1 according to FIG. 1 in a view from above, wherein identical reference numbers are used for identical parts. Pivotable lever 6 pivotable about an axis is fixedly connected to a flap shaft 9 led out of valve housing 3 a. Thus a translational movement of control rod 8 of vacuum control 4 is converted into a rotational or pivoting movement of flap shaft 9. One also sees clearly in this plan view how lower spring leg 5 b of leg spring 5 is braced against pin 3 b of housing 3 a. The other spring leg 5 a, not visible in the plan view, acts with a lever arm in reference to pivot axis a at pivoted lever 6 and acts against the actuating movement of control rod 8.
  • FIG. 3 shows a section in the plane III-III, as drawn in FIG. 2. Flap shaft 9 has one shaft section 9 a arranged substantially inside valve housing 3 a and one shaft section 9 b arranged outside valve housing 3 a, to whose end 9 c pivoted lever 6 is fastened without rotational play, preferably by welding. An exhaust gas valve 10 (shown in abbreviated form) is arranged co-rotating on internal shaft section 9 a. Exhaust gas valve 10 operates as a switch and directs the exhaust gas stream entering housing 3 a either through the bundle of tubes of the exhaust gas cooler or through the bypass, which are not visible in this representation, but correspond in construction to the publication mentioned above and incorporated into the present disclosure. As previously mentioned, torsion spring 5 is constructed as a spiral spring wound from a spring wire, which—not visible here—is braced against pivoted lever 6 and housing 3 a. Thus a torque is exerted on flap shaft 9 by the pre-stressed torsion spring 5 and exhaust gas valve 10 is pressed into an end position, which preferably corresponds to a closed bypass channel. A bushing 11 is arranged on section 9 b of flap shaft 9, which causes a guidance of torsion spring 5. A pivot pin 12 with a ball head 12 a that is enclosed by ball cap 8 a of control rod 8 is fastened to pivoted lever 6 at a distance from pivot axis a. Articulated pin 12 and control rod 8 thus form a ball joint via ball 12 a and ball cap 8 a.
  • The mode of operation of the flap drive is the following: If the negative pressure control drive 4 (vacuum control) is deactivated, i.e., no negative pressure is present, torsion spring 5 actuates flap shaft 9 due to its bias force, and thus moves exhaust flap 10 into a base or fail-safe position. This preferably corresponds to a position in which the bypass channel is closed off, i.e., the exhaust gas stream flows through the exhaust gas cooler and is thus cooled. The flap 10 can be constructed in accordance with the designs of the state of the art as mentioned above. If vacuum control 4 is activated, i.e., subjected to negative pressure, then control rod 8 is moved contrary to the direction of action of torsion spring 5, so that a rotation movement is imparted to flap shaft 9 and exhaust gas valve 10 is actuated into a position that corresponds to an opening of the bypass channel. This happens, for example, during the warming-up phase of the engine when cooling of the exhaust gases is not necessary. Torsion spring 5 is designed in such a manner with regard to its spring travel and spring force that a firm contact of exhaust gas valve 10 against the housing 3 a results in case of a deactivated control drive 4, i.e., fluttering of the flap due to the pulsating exhaust gas flow is avoided. A reset spring normally used in actuating drives of the state of the art, in particular, vacuum controls can be omitted for vacuum control 4.
  • The torsion spring according to the invention for biasing the flap shaft of an exhaust gas valve is not limited to use in an exhaust gas heat exchanger with a bypass channel, whether integrated or constructed as a separate channel. On the contrary the invention can also advantageously be applied to exhaust gas valves arranged in an exhaust channel and driven by a flap shaft and an actuator. For example this could be the case in a valve mechanism according to the state of the art mentioned above according to DE 198 41 927 A1.
  • While the preferred embodiment of the invention has been illustrated and described in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that all changes and modifications that come within the spirit of the invention are desired to be protected.

Claims (22)

1-17. (canceled)
18. An exhaust gas heat exchanger (2), in particular for motor vehicles, with a main flow path and an alternate flow path (bypass) for the exhaust gas, with a valve mechanism (3) controlling an exhaust gas flow, operable by an actuator (4) via a transmission mechanism (8, 6), wherein valve mechanism (3) comprises a valve closing member (10) mounted on a valve shaft (9), characterized in that valve shaft (9) can be loaded by a torsion spring (5), which is braced on the one hand against valve mechanism (3, 3 a) and against valve shaft (9) on the other.
19. The exhaust gas heat exchanger according to claim 18, characterized in that the torsion spring is constructed as a helically wound spiral spring (leg spring 5) with two spring legs (5 a, 5 b) or as a spiral spring.
20. The exhaust gas heat exchanger according to claim 19, characterized in that valve shaft (9) has a shaft section (9 b) led out of valve mechanism (3, 3 a), and that torsion spring (5) is arranged coaxially on shaft section (9 b).
21. The exhaust gas heat exchanger according to claim 20, characterized in that a bushing (11) is arranged inside torsion spring (5) on shaft section (9 b).
22. The exhaust gas heat exchanger according to claim 21, characterized in that a pivoted lever (6) that is articulated to a control rod (8) is fastened to an end (9 c) of shaft section (9 b).
23. The exhaust gas heat exchanger according to claim 22, characterized in that the actuator is constructed as a negative pressure actuator (4).
24. The exhaust gas heat exchanger according to claim 23, characterized in that torsion spring (5) is constructed as a reset spring for the negative pressure actuator (4).
25. The exhaust gas heat exchanger according to claim 24, characterized in that actuator (4) is fastened to a housing (2 a) of exhaust gas heat exchanger (2).
26. The exhaust gas heat exchanger according to claim 25, characterized in that the valve closing member is constructed as a flap (10) and the valve shaft is constructed as a flap shaft (9).
27. The exhaust gas heat exchanger according to claim 26, characterized in that flap shaft (9) is arranged centrically or off center with respect to flap (10).
28. The exhaust gas valve according to claim 18, characterized in that valve shaft (9) has a shaft section (9 b) led out of valve mechanism (3, 3 a), and that torsion spring (5) is arranged coaxially on shaft section (9 b).
29. The exhaust gas valve according to claim 18, characterized in that the actuator is constructed as a negative pressure actuator (4).
30. The exhaust gas valve according to claim 18, characterized in that torsion spring (5) is constructed as a reset spring for a negative pressure actuator (4).
31. The exhaust gas valve according to claim 18, characterized in that the valve closing member is constructed as a flap (10) and the valve shaft is constructed as a flap shaft (9).
32. An exhaust gas valve for an exhaust gas heat exchanger, in particular for motor vehicles, wherein exhaust gas valve (10) is pivotably seated on a flap shaft (9) that is in a housing (3 a) and that is led out of housing (3 a) and is operable by an actuator (4), characterized in that a torsion spring (5) biases flap shaft (9) in the pivoting direction and is arranged coaxially to flap shaft (9).
33. The exhaust gas valve according to claim 32, characterized in that torsion spring (5) is arranged outside housing (3 a) on flap shaft (9).
34. The exhaust gas valve according to claim 33, characterized in that the torsion spring is constructed as a leg spring (5) with two spring legs (5 a, 5 b), which act in the circumferential direction on flap shaft (9) and are braced on housing (3 a).
35. The exhaust gas valve according to claim 34, characterized in that torsion spring (5) is constructed and arranged to be used as a reset spring for the actuator, said actuator being a pneumatic actuator (4).
36. The exhaust gas valve according to claim 35, characterized in that at least one torsion spring (5) winds up when actuated.
37. The exhaust gas valve according to claim 35, characterized in that at least one torsion spring (5) unwinds when actuated.
38. The heat exchanger with a flap according to claim 32.
US11/883,590 2005-02-03 2006-02-02 Exhaust Gas Heat Exchanger, Especially for Motor Vehicles Abandoned US20080104950A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005005189.8 2005-02-03
DE102005005189 2005-02-03
PCT/EP2006/000906 WO2006082049A1 (en) 2005-02-03 2006-02-02 Exhaust gas heat exchanger, especially for motor vehicles

Publications (1)

Publication Number Publication Date
US20080104950A1 true US20080104950A1 (en) 2008-05-08

Family

ID=36128503

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/883,590 Abandoned US20080104950A1 (en) 2005-02-03 2006-02-02 Exhaust Gas Heat Exchanger, Especially for Motor Vehicles

Country Status (4)

Country Link
US (1) US20080104950A1 (en)
EP (1) EP1846720B1 (en)
JP (1) JP2008528874A (en)
WO (1) WO2006082049A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260868A1 (en) * 2005-05-18 2006-11-23 Honda Motor Co., Ltd. Exhaust flow rate control valve
US20090139502A1 (en) * 2007-07-30 2009-06-04 Bernhard Klipfel Exhaust gas recirculation system technical field
US20100025146A1 (en) * 2008-07-31 2010-02-04 Shu-Li Ho Baffle plate operating mechanism for muffler
GB2494015A (en) * 2011-08-23 2013-02-27 Gm Global Tech Operations Inc An Exhaust System with Gas Flow directed through a Heat Exchanger and/or a Bypass Branch.
CN103867346A (en) * 2012-12-17 2014-06-18 现代自动车株式会社 Exhaust gas recirculation valve for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610949B2 (en) 2006-11-13 2009-11-03 Dana Canada Corporation Heat exchanger with bypass
FR3000139B1 (en) * 2012-12-21 2017-12-15 Valeo Systemes Thermiques DEVICE FOR MANAGING THE AIR INTAKE AIR TEMPERATURE

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751917A (en) * 1970-10-24 1973-08-14 Alfa Romeo Spa Exhaust chamber for a motor vehicle provided with an internal combustion engine
US3856485A (en) * 1967-11-11 1974-12-24 Meps Inc Apparatus and methods for treating exhaust gases of combustion
US4458642A (en) * 1981-05-02 1984-07-10 Honda Giken Kogyo Kabushiki Kaisha Lubricant heating system for internal combustion engine
US5762044A (en) * 1995-03-02 1998-06-09 Ford Motor Company Throttle valve return mechanism for engine throttle valve
US6141961A (en) * 1998-03-11 2000-11-07 Ecia-Equipments Et Composants Pour L'industrie Automobile Exhaust element with heat exchanger
US6702190B1 (en) * 2001-07-02 2004-03-09 Arvin Technologies, Inc. Heat transfer system for a vehicle
US20050109024A1 (en) * 2003-11-26 2005-05-26 John Nohl Electrically controlled exhaust valve
US20050199381A1 (en) * 2002-05-15 2005-09-15 Behr Gmbh & Co. Kg Switchable waste gas exchanger
US7032577B2 (en) * 2002-01-26 2006-04-25 Behr Gmbh & Co. Kg Exhaust gas heat exchanger
US7077114B2 (en) * 2004-04-22 2006-07-18 Pierburg Gmbh Exhaust gas recirculation system for a combustion engine
US7150147B2 (en) * 2002-12-26 2006-12-19 Toyota Jidosha Kabushiki Kaisha Exhaust system
US7374147B2 (en) * 2005-10-14 2008-05-20 Et Us Holdings Llc Valve assembly with overstroke device and associated method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294198A (en) * 1964-01-06 1966-12-27 Lab Pristroje Spring-operated constant torque transmission for electric clocks
US4828235A (en) * 1987-07-29 1989-05-09 Michigan Spring Company Torsion spring assembly
JPH0325830U (en) * 1989-07-24 1991-03-18
JP3044963B2 (en) * 1993-02-19 2000-05-22 トヨタ自動車株式会社 Silencer for internal combustion engine
JP3017888U (en) * 1995-02-08 1995-11-07 株式会社ジャムコ Torque damper
JPH0913998A (en) * 1995-07-04 1997-01-14 Jidosha Kiki Co Ltd Exhaust brake device
DE19961756C1 (en) * 1999-12-21 2001-04-19 Siebe Automotive Deutschland Gmbh Exhaust gas feedback valve for automobile engine has valve element rotated about its axis at least during inital part of its linear movement
JP2002004846A (en) * 2000-06-27 2002-01-09 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
PT2017456E (en) * 2001-07-11 2010-12-02 Cooper standard automotive deutschland gmbh Exhaust gas recirculation system
US6976480B2 (en) * 2002-01-16 2005-12-20 Mitsubishi Denki Kabushiki Kaisha Exhaust gas recirculating device
JP4007029B2 (en) * 2002-03-22 2007-11-14 株式会社デンソー Exhaust heat exchanger
ATE385540T1 (en) * 2002-05-15 2008-02-15 Behr Gmbh & Co Kg EXHAUST GAS HEAT EXCHANGER WITH VALVE
JP2004190693A (en) * 2002-12-06 2004-07-08 Aisan Ind Co Ltd Flow passage switching valve

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856485A (en) * 1967-11-11 1974-12-24 Meps Inc Apparatus and methods for treating exhaust gases of combustion
US3751917A (en) * 1970-10-24 1973-08-14 Alfa Romeo Spa Exhaust chamber for a motor vehicle provided with an internal combustion engine
US4458642A (en) * 1981-05-02 1984-07-10 Honda Giken Kogyo Kabushiki Kaisha Lubricant heating system for internal combustion engine
US5762044A (en) * 1995-03-02 1998-06-09 Ford Motor Company Throttle valve return mechanism for engine throttle valve
US6141961A (en) * 1998-03-11 2000-11-07 Ecia-Equipments Et Composants Pour L'industrie Automobile Exhaust element with heat exchanger
US6702190B1 (en) * 2001-07-02 2004-03-09 Arvin Technologies, Inc. Heat transfer system for a vehicle
US7032577B2 (en) * 2002-01-26 2006-04-25 Behr Gmbh & Co. Kg Exhaust gas heat exchanger
US7168419B2 (en) * 2002-01-26 2007-01-30 Behr Gmbh & Co. Kg Exhaust gas heat exchanger
US20050199381A1 (en) * 2002-05-15 2005-09-15 Behr Gmbh & Co. Kg Switchable waste gas exchanger
US7150147B2 (en) * 2002-12-26 2006-12-19 Toyota Jidosha Kabushiki Kaisha Exhaust system
US20050109024A1 (en) * 2003-11-26 2005-05-26 John Nohl Electrically controlled exhaust valve
US7077114B2 (en) * 2004-04-22 2006-07-18 Pierburg Gmbh Exhaust gas recirculation system for a combustion engine
US7374147B2 (en) * 2005-10-14 2008-05-20 Et Us Holdings Llc Valve assembly with overstroke device and associated method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260868A1 (en) * 2005-05-18 2006-11-23 Honda Motor Co., Ltd. Exhaust flow rate control valve
US7451854B2 (en) * 2005-05-18 2008-11-18 Honda Motor Co., Ltd. Exhaust flow rate control valve
US20090139502A1 (en) * 2007-07-30 2009-06-04 Bernhard Klipfel Exhaust gas recirculation system technical field
US8353274B2 (en) * 2007-07-30 2013-01-15 Cooper-Standard Automotive (Deutschland) Gmbh Exhaust gas recirculation system
US20100025146A1 (en) * 2008-07-31 2010-02-04 Shu-Li Ho Baffle plate operating mechanism for muffler
GB2494015A (en) * 2011-08-23 2013-02-27 Gm Global Tech Operations Inc An Exhaust System with Gas Flow directed through a Heat Exchanger and/or a Bypass Branch.
US9097153B2 (en) 2011-08-23 2015-08-04 GM Global Technology Operations LLC Combustion engine exhaust system with device for heat recovery, and method for operating such an exhaust system
CN103867346A (en) * 2012-12-17 2014-06-18 现代自动车株式会社 Exhaust gas recirculation valve for vehicle
US20140165975A1 (en) * 2012-12-17 2014-06-19 Kia Motors Corporation Exhaust gas recirculation valve for vehicle
US9534568B2 (en) * 2012-12-17 2017-01-03 Hyundai Motor Company Exhaust gas recirculation valve for vehicle

Also Published As

Publication number Publication date
WO2006082049A1 (en) 2006-08-10
EP1846720B1 (en) 2020-12-23
JP2008528874A (en) 2008-07-31
EP1846720A1 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US20080104950A1 (en) Exhaust Gas Heat Exchanger, Especially for Motor Vehicles
US9103268B2 (en) Intake pipe for a combustion engine
US8074628B2 (en) Air intake device for a heat engine with a cooled main circulation system and a bypass system equipped with a heating mechanism
US7533659B2 (en) Exhaust-gas recirculation valve
US7353811B2 (en) Exhaust gas recirculation device
US9709009B2 (en) Low pressure exhaust gas recirculation apparatus
US7032577B2 (en) Exhaust gas heat exchanger
US5669363A (en) Turbocharger intercooler control means
US20070068500A1 (en) Exhaust throttle-EGR valve module for a diesel engine
US20100199957A1 (en) High-pressure egr apparatus
EP1103715B1 (en) Exhaust gas re-circulation device for an internal combustion engine
WO2008035670A1 (en) Valve assembly
KR20190027028A (en) Exhaust gas recirculation valve for vehicle
US9109713B2 (en) Control device and use thereof
US20120230814A1 (en) Diffuser for a turbocharger having an adjustable turbine geometry and turbocharger for an internal combustion engine
US9217395B2 (en) Control valve for an internal combustion engine exhaust gas recirculation system
US6886546B1 (en) Rotary-actuator EGR valve having compliant seal/bushing
US11359534B2 (en) Heat recovery component for an exhaust gas system
EP2227646B1 (en) Valve arrangement
US20030075159A1 (en) EGR valve apparatus
US6557346B1 (en) Gas conducting device
DE102006005246A1 (en) Exhaust gas heat exchanger e.g. exhaust gas cooler, for motor vehicle, has valve device, controlling exhaust gas flow, including valve closing unit fixed to valve shaft that is loadable by torsion spring supported on shaft and valve device
JP2000136760A (en) Exhaust gas recirculating device
JP6970070B2 (en) Exhaust heat recovery device
JP2007154666A (en) Valve drive device

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEHR GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PALANCHON, HERVE;STIEGLER, MARTIN;WERNER, DIETER;REEL/FRAME:020211/0629;SIGNING DATES FROM 20070803 TO 20070810

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE