US20080091262A1 - Drug delivery after biodegradation of the stent scaffolding - Google Patents
Drug delivery after biodegradation of the stent scaffolding Download PDFInfo
- Publication number
- US20080091262A1 US20080091262A1 US11/582,706 US58270606A US2008091262A1 US 20080091262 A1 US20080091262 A1 US 20080091262A1 US 58270606 A US58270606 A US 58270606A US 2008091262 A1 US2008091262 A1 US 2008091262A1
- Authority
- US
- United States
- Prior art keywords
- stent
- scaffolding
- coating
- drug
- inflammatory agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
Definitions
- This invention generally relates to a stent for treating a disorder with a drug over a period of time extending beyond biodegradation of the stent scaffolding.
- the invention relates to radially expandable endoprostheses that are adapted to be implanted in a bodily lumen.
- An “endoprosthesis” corresponds to an artificial device that is placed inside the body.
- a “lumen” refers to a cavity of a tubular organ such as a body lumen.
- a stent is an example of such an endoprosthesis.
- Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a body lumen or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in body lumens.
- Step refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty. “Restenosis” refers to the reoccurrence of stenosis in a body lumen or heart valve after it has been subjected to angioplasty or valvuloplasty.
- the treatment of a diseased site or lesion with a stent involves both delivery and deployment of the stent.
- Delivery refers to introducing and transporting the stent through a bodily lumen to the treatment area in a body lumen.
- Delivery corresponds to the expanding of the stent within the lumen at the treatment area. Delivery and deployment of a stent are accomplished by positioning the stent at one end of a catheter, inserting the end of the catheter through the skin into a bodily lumen, advancing the catheter in the bodily lumen to a desired treatment location, expanding the stent at the treatment location, and removing the catheter from the lumen.
- the stent In the case of a balloon expandable stent, the stent is mounted about a balloon disposed on the catheter. Mounting the stent typically involves compressing or crimping the stent onto the balloon. The stent is then expanded by inflating the balloon. The balloon may then be deflated and the catheter withdrawn. In the case of a self-expanding stent, the stent may be secured to the catheter via a retractable sheath or a sock.
- the sheath When the stent is in a desired bodily location, the sheath may be withdrawn allowing the stent to self-expand. This requires a sufficient degree of strength and rigidity or stiffness. In addition to having adequate radial strength, the stent should be longitudinally flexible to allow it to be maneuvered through a tortuous vascular path.
- a stent is typically composed of scaffolding that includes a pattern or network of interconnecting structural elements or struts.
- the scaffolding can be formed of tubes, or sheets of material rolled into a cylindrical shape.
- the scaffolding is designed to allow the stent to be radially expandable.
- the pattern is generally designed to maintain the longitudinal flexibility and radial rigidity required of the stent. Longitudinal flexibility facilitates delivery of the stent and radial rigidity is needed to hold open a bodily lumen.
- a medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier that includes a bioactive agent.
- the polymeric scaffolding may also serve as a carrier of bioactive agent.
- stents In many treatment applications of stents, the presence of a stent in a body may be necessary for a limited period of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished.
- stents are often fabricated from biodegradable, bioabsorbable, and/or bioerodable materials such that they completely erode only after the clinical need for them has ended.
- a stent should also be capable of satisfying the mechanical requirements discussed above during the desired treatment time.
- a polymeric stent should be mechanically stable throughout the range of stress experienced during use. In addition to mechanical stability, a stent should have a sufficient rate of biodegradability or erosion as dictated by a treatment regimen. However, one of the major clinical challenges of bioabsorbable stents is adequately suppressing inflammatory responses triggered by the degradation of the stent. The embodiments of the invention address this and other concerns.
- a stent comprising: a bioabsorbable polymeric scaffolding; and a coating comprising a bioabsorbable material on at least a portion of the scaffolding, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating.
- Also disclosed herein is a method treating a body lumen, the method comprising: providing a stent comprising a scaffolding that degrades at a faster rate than a coating on the scaffolding; and deploying the stent at a treatment area in a body lumen.
- a method of treating a body lumen comprising: deploying a first stent at a treatment area, wherein the first stent includes a bioabsorbable polymeric scaffolding and a coating having a bioabsorbable material on at least a portion of the scaffolding, and wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating; and deploying a second stent in at least a portion of the treatment area.
- FIG. 1 depicts a stent.
- FIG. 2( a ) depicts a cross-section of a stent implanted in a body lumen, the stent having a scaffolding and a coating.
- FIG. 2( b ) depicts the stent after endothelialization of the stent in the body lumen.
- FIG. 2( c ) depicts the stent after endothelialization of the stent and degradation of the scaffolding.
- FIG. 3 depicts a second stent that is implanted at a treatment area of a first stent.
- a common disorder associated with mechanical modification of a vessel, such as by a balloon or stenting is restenosis.
- a number of cellular mechanisms have been proposed that lead to restenosis of a vessel, such as inflammatory response to injury and foreign body presence.
- Inflammation is a defensive, biological response to injury, infection, or an abrupt change in tissue homeostasis. In nature, inflammatory responses are designed to destroy, dilute and isolate injurious agents and then lead to recovery and repair of the affected tissue. Vascular inflammation is the first stage of the inflammatory response, developing after the initial contact with the stimulus and continuing sometimes for several days. The presence of a stimulatory agent in the blood or in the tissue triggers the body's response through endothelial cells. The endothelial cell layer is the innermost layer of larger vessels and the only cell layer of the smallest vessels, the capillaries.
- Biodegradation refers generally to changes in physical and chemical properties that occur (e.g., in a polymer) upon exposure to bodily fluids as in a vascular environment.
- the changes in properties may include a decrease in molecular weight, deterioration of mechanical properties, and decrease in mass due to erosion or absorption.
- the decrease in molecular weight may be caused by chemical reactions of bodily fluids with the polymer, for example, hydrolysis and/or metabolic processes. By-products of such degradation reactions can be responsible for inciting inflammation.
- by-products of hydrolysis are produced when polymer molecules are cleaved into component parts by the addition of water.
- Various byproducts of degradation of biodegradable polymers are known to incite an inflammatory response.
- lactic acid a degradation by-product of poly(lactic acid) polymers, is known to cause an inflammatory response.
- the release of by-products into the body from a biodegradable stent occurs continuously from the time of first exposure to bodily fluids to a time when the stent is either completely degraded and eliminated or removed from the body. It follows that throughout this time frame, the body is continuously exposed to inflammation-inciting by-products. Therefore, it is desirable for the stent to degrade rapidly once the need for support of the lumen has expired.
- Described herein is a drug-delivery stent that allows delivery of drug even after the stent scaffolding has degraded.
- the stent scaffolding need not remain in the body lumen to deliver drug.
- the stent scaffolding may be made to degrade rapidly and completely or substantially completely disappear once the need for support of the lumen has expired.
- the drug-delivery stent described herein includes one or more drugs for treating a vascular disorder or a related disorder.
- the drugs for example, can be a combination of at least one anti-proliferative agent, at least one anti-inflammatory agent, and optionally other types of bioactive agents.
- a biodegradable stent and drug delivery can remain in the body for a duration of time at least until its intended function of, for example, maintaining vascular patency and drug delivery is accomplished.
- Biodegradable polymers are used to form the stent, such that the entire stent can be made to disappear after the process of degradation, erosion, or absorption. In some embodiments, very negligible traces of polymer or residue are left behind.
- the duration is typically in the range of 6-12, 6-18, or 6-24 months, for example.
- the time needed to maintain vascular patency can be shorter than the drug delivery time.
- stent is intended to include, but is not limited to, self-expandable stents, balloon-expandable stents, stent-grafts, and grafts.
- the structure of the stent can be of virtually any design.
- a stent for example, may include a pattern or network of interconnecting structural elements or struts.
- FIG. 1 depicts an example of a three-dimensional view of a stent 100 .
- the stent may have any pattern that includes a number of interconnecting elements or struts 110 . As shown in FIG. 1 the geometry or shape of stents vary throughout its structure.
- a stent may be formed from a tube by laser cutting the pattern of struts into the tube.
- the stent may also be formed by laser cutting a polymeric sheet, rolling the pattern into the shape of the cylindrical stent, and providing a longitudinal weld to form the stent.
- a stent 200 includes a bioabsorbable polymeric scaffolding 210 and a coating material 220 on at least a portion of the scaffolding 210 , as depicted in FIG. 2( a ).
- Coating material 220 may include a drug and a bioabsorbable polymer.
- the degradation rate of at least a portion of scaffolding 210 is faster than the degradation rate of coating material 220 .
- the degradation rate of all or substantially all of scaffolding 210 is faster than the degradation rate of all or substantially all of coating material 220 .
- the degradation time of all or substantially all scaffolding 210 is shorter than the degradation time of all or substantially all coating material 220 .
- FIG. 2( b ) depicts a cross-section of a stent implanted in body lumen 230 .
- FIG. 2( b ) depicts stent 200 after endothelialization of stent 200 in lumen wall 240 .
- all or substantially all of coating material 220 degrades faster than all or substantially all of scaffolding 210 .
- coating material 220 continues to elute drugs even after vascular patency has expired. The coating layer remains after there is no longer any stent vascular patency.
- coating material 220 remains lodged in lumen wall 240 after scaffolding 210 substantially degrades. Because coating material 220 can be made to deliver drug even after the disintegration of scaffolding 210 , the invention enables stent 200 to release drug for an extended period of time throughout the life of stent 200 while scaffolding 210 degrades, and if desired, long after scaffolding 210 degrades. In one embodiment, stent 200 delivers drug for over 50% of the life of scaffolding 210 . In another embodiment, stent 200 delivers drug for over 80% of the life of scaffolding 210 .
- stent 200 delivers drug for the entire life of scaffolding 210 , or 100% of the life of scaffolding 210 .
- coating material 220 may be designed to continue to deliver drug, as depicted in FIG. 2( c ).
- scaffolding 210 upon deployment of stent 200 in treatment area, substantially or completely degrades from treatment area before coating 220 substantially or completely degrades.
- coating 220 delivers a drug to the lumen 240 during degradation of scaffolding 210 and after substantial or complete degradation of scaffolding 210 .
- coating 220 becomes endothelialized in a wall of lumen 240 and delivers a drug after scaffolding 210 has substantially or completely degraded.
- the stent includes an anti-proliferative agent that includes, but is not limited to, Everolimus, Rapamycin, and/or derivatives thereof.
- Everolimus is available under the trade name CerticanTM, Novartis Pharma AG, Germany.
- the anti-proliferative agent may be included within the coating material's polymer matrix and/or in the scaffolding's polymer matrix.
- the anti-proliferative agent is intermixed or dispersed within the coating material's polymer matrix and/or intermixed or dispersed in the scaffolding's polymer matrix.
- the anti-proliferative agent is included in depots within the coating and/or the scaffolding.
- the stent may also include an anti-inflammatory agent.
- Clobetasol is available under the trade name TemovateTM, Glaxosmithkline, UK.
- the anti-inflammatory agent may be included within the coating material's polymer matrix and/or in the scaffolding's polymer matrix. In one embodiment, the anti-inflammatory agent is intermixed or dispersed within the coating material's polymer matrix and/or intermixed or dispersed within the scaffolding's polymer matrix. In certain embodiments, the anti-inflammatory agent is included in depots within the coating and/or the scaffolding.
- the release of inflammation-inciting by-products into the body from a biodegradable device can occur continuously while the scaffolding is degrading within the body.
- An anti-inflammatory included within the scaffolding may allow for sustained release of the inflammatory agent throughout the scaffolding's degradation.
- the drug-delivery stent disclosed herein may include a sustained release of an anti-inflammatory agent from the scaffolding. After the scaffolding absorbs, the coating material remains in the lumen wall.
- the underlying stent scaffolding is made from a polymeric material that degrades more rapidly than the polymer used to form the coating material.
- the polymer used to form the scaffolding is faster degrading than the coating material. Any biodegradable polymer may be used to the form the scaffolding and the coating material, as long as the polymer used to make all or substantially all the scaffolding degrades faster than the polymer used to make all or substantially all the coating material.
- the scaffolding can be formed of a copolymer that includes two functional groups or units. One of the units tends to increase the degradation rate compared to a homopolymer including the other unit. Thus, glycolide has a faster degradation rate and is more hydrolytically active.
- the stent scaffolding is formed of poly(D,L-lactide-co-glycolide), where 10% of the copolymer is D,L-lactide and 90% of the copolymer is glycolide.
- the stent scaffolding is formed of poly(L-lactide-co-glycolide), where 10% of the copolymer is D,L-lactide and 90% of the copolymer is glycolide.
- any polymer that degrades at a slower rate than poly(D,L-lactide-co-glycolide) may be used to form the coating material.
- PLLA can be used to form a coating material because PLLA is slower degrading than poly(D,L-lactide-co-glycolide).
- the stent scaffolding is formed of poly(D,L-lactide-co-glycolide), where 5-45% of the copolymer is D,L-lactide and 55-95% of the copolymer is glycolide.
- 1:1 Everolimus and poly(D,L-lactide) is used to form the coating material, which degrades at about 12 months and has the ability to deliver drug for 3 months. Thus, the drug will be delivered even after the scaffolding has degraded, or has been absorbed into the body, or no longer has vascular patency.
- the scaffolding is made to degrade rapidly, thereby reducing the risk of a negative reaction to the presence of a degrading stent.
- Certain embodiments provide for a rapidly degrading scaffolding, one that degrades within 6 months, within 3 months, or more narrowly within 2 months.
- the stent scaffolding may be fabricated to include an erodible metal, such as magnesium.
- Other material may also be used to fabricate the stent scaffolding, so long as all or substantially all of the scaffolding degrades at a faster rate than all or substantially all of the coating material.
- the coating material includes Everolimus and poly(D,L-lactide) of a 1:1 ratio
- the scaffolding includes D,L-lactide and glycolide monomers of a 1:9 ratio, or poly(D,L-lactide-co-glycolide).
- an anti-inflammatory agent may be included within the coating and is delivered from a surface of the coating.
- the coating material may be configured to sustain delivery of anti-inflammatory agent throughout the degradation of a stent scaffolding to counteract the inflammatory effect of the degradation of by-products.
- an anti-inflammatory agent is included in both the coating and the scaffolding.
- An anti-inflammatory agent may be delivered from the coating as well as the scaffolding to suppress inflammation of a body lumen during all or a majority of the degradation of the scaffolding.
- a first stent is deployed at a treatment area, and a second stent is deployed in at least a portion of the treatment area, or the treatment area is “re-stented”.
- the first stent includes a bioabsorbable polymeric scaffolding and a coating having a bioabsorbable material on at least a portion of the scaffolding.
- the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating;
- the second stent is deployed when the scaffolding of the first stent has at least partially degraded, has substantially degraded, or has completely degraded.
- embodiments disclosed herein may prove advantageous to methods for re-stenting a lumen.
- Certain embodiments provide for a rapidly degrading scaffolding, that degrades within 6 months, within 3 months, or more narrowly within 2 months. Re-stenting is facilitated by rapid degradation of the first stent's scaffolding, enabling a second stent to be implanted in the stented area or treatment area within only a few months after the first stent has been implanted.
- the functional lumen diameter is not reduced as is the case when a second stent is deployed at an treatment area of a first stent that has only partially degraded. In the latter case, the reduced functional diameter causes the blood flow to fall significantly and possibly congest the lumen.
- FIG. 3 Depicted in FIG. 3 is a second stent 300 that has been implanted in the same treatment area 310 as a first stent 320 .
- second stent 300 is implanted in lumen 330 after endothelialization of first stent 320 .
- second stent 300 is implanted in lumen 330 after a scaffolding (not depicted) of a first stent 320 is at least partially degraded, substantially degraded, or more narrowly, completely degraded in lumen 330 .
- second stent 300 is deployed in treatment area 310 when scaffolding (not pictured) of the first stent is greater than 50% degraded, greater than 75% degraded, and more narrowly, greater than 95% degraded as known of those skilled in the art.
- second stent 300 may be implanted in treatment area 310 after all or substantially all of scaffolding of first stent 320 has is degraded, such that only a coating material 340 of first stent 320 remains in the lumen. In certain embodiments, coating material 320 of first stent 340 continues to deliver drug when second stent 300 is implanted.
- a drug(s) may be included in the coating or scaffolding of the first stent.
- the first stent may deliver drug from at least a portion of the coating material of the first stent while the second stent is implanted.
- an anti-inflammatory agent may be included within the coating material of the first stent, such that when the scaffolding of the second stent is implanted, the anti-inflammatory agent continues to deliver drug to prevent inflammation.
- the anti-inflammatory agent that is delivered from the coating material of the first stent may also effectively suppress inflammation of a lumen during all or a majority of the degradation of the scaffolding of the first stent.
- an anti-inflammatory drug and/or an anti-proliferative drug is included in the coating and/or the scaffolding of the stent and is designed to have release parameters for drugs included.
- the second stent may have a biostable or biodegradable scaffolding made from a metal, polymer, or combination thereof.
- the second stent may or may not include a coating or a drug.
- the drug mixed or dispersed within a biodegradable scaffolding may be delivered into a lumen at substantially the same, a faster rate, or a slower rate as the scaffolding degrades.
- the drug may be incorporated within the scaffolding during fabrication of the stent according to the general skill in the art.
- an anti-inflammatory agent may be incorporated in the scaffolding, and configured to be delivered through the coating material to treat inflamed portions of lumens.
- the properties of the coating may influence the rate of release of the drug(s) from the stent.
- Some embodiments may include controlling the release rate of the drug by modifying the properties of the coating.
- the stent includes a scaffolding and depots having drug.
- the coating described above includes depots.
- one or more drugs may be contained within at least one depot or cavity on at least a portion of a surface of the scaffolding.
- the drug in the depot may be pure or substantially pure drug.
- the drug in the depot may be mixed or dispersed in a polymer matrix, which degrades at a faster rate than the scaffolding.
- the scaffolding may degrade first, while the drug/polymer mixture within the depots continues to deliver drug long after the scaffolding has degraded.
- Depots may be placed at one or more arbitrary locations on a stent.
- a stent may include depots or more depots in regions of a stent adjacent portions of a lesion having more inflammation.
- the anti-proliferative agent can be a natural proteineous agent such as a cytotoxin or a synthetic molecule.
- the active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis.
- actinomycin D include dactinomycin, actinomycin IV, actinomycin I 1 , actinomycin X 1 , and actinomycin C 1 ), all taxoids such as taxols, docetaxel, and paclitaxel, paclitaxel derivatives, all olimus drugs such as macrolide antibiotics, rapamycin, Everolimus, structural derivatives and functional analogues of rapamycin, structural derivatives and functional analogues of Everolimus, FKBP-12 mediated mTOR inhibitors, biolimus, perfenidone, prodrugs thereof, co-drugs thereof, and combinations thereof.
- rapamycin derivatives include 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, or 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578 manufactured by Abbot Laboratories, Abbot Park, Ill.), prodrugs thereof, co-drugs thereof, and combinations thereof.
- anti-inflammatory drugs can be a steroidal anti-inflammatory agent, a nonsteroidal anti-inflammatory agent, or a combination thereof.
- anti-inflammatory drugs include, but are not limited to, alclofenac, alclometasone dipropionate, algestone acetonide, alpha amylase, amcinafal, amcinafide, amfenac sodium, amiprilose hydrochloride, anakinra, anirolac, anitrazafen, apazone, balsalazide disodium, bendazac, benoxaprofen, benzydamine hydrochloride, bromelains, broperamole, budesonide, carprofen, cicloprofen, cintazone, cliprofen, Clobetasol propionate, clobetasone butyrate, clopirac, cloticasone propionate, cormethasone acetate,
- the relative amount of the anti-proliferative agent and/or anti-inflammatory agent in the stent can be determined by the lumen to be treated.
- the relative amount of Everolimus and Clobetasol can be varied for different types of lesions, that is, the relative amount of Everolimus can be higher for more proliferative lesions, and on the other hand, the relative amount of Clobetasol can be higher for more inflammatory lesions.
- bioactive agents can be any agent which is a therapeutic, prophylactic, or diagnostic agent. These agents can also have anti-proliferative and/or anti-inflammmatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents.
- suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities.
- Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes.
- Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy.
- antineoplastics and/or antimitotics examples include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.).
- antiplatelets examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax a (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co.,
- cytostatic substance examples include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.).
- captopril e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.
- cilazapril or lisinopril e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.
- An example of an antiallergic agent is permirolast potassium.
- Other therapeutic substances or agents which may be appropriate include alpha-interferon, and genetically engineered epithelial cells. The foregoing substances are listed by way
- polymers that may be used to fabricate the scaffolding, the coating, or to provide a drug delivery particle with the anti-proliferative drug and/or anti-inflammatory drug include, but are not limited to, poly(N-acetylglucosamine) (Chitin), Chitosan, poly(3-hydroxyvalerate), poly(lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), poly(glycolide), poly
- PEO/PLA polyphosphazenes
- biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid
- polyurethanes silicones
- polyesters polyolefins, polyisobutylene and ethylene-alphaolefin copolymers
- acrylic polymers and copolymers other than polyacrylates vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides,
- polymers that may be especially well suited for use in fabricating embodiments of stents disclosed herein include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluoropropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), ethylene-vinyl acetate copolymers, poly(vinyl acetate), styrene-isobutylene-styrene triblock copolymers, and polyethylene glycol.
- EVAL ethylene vinyl alcohol copolymer
- poly(butyl methacrylate) poly(vinylidene fluoride-co-hexafluoropropene)
- the coating material described herein can be formed by spray coating or any other coating process available in the art.
- the coating material involves dissolving or suspending the coating material, or one or more components thereof, in a solvent or solvent mixture to form a solution, suspension, or dispersion of the coating material or one or more components thereof, applying the solution or suspension to an implantable stent, and removing the solvent or solvent mixture to form a coating or a layer of coating.
- solvent refers to a liquid substance or coating material that is compatible with the polymer and is capable of dissolving or suspending the polymeric coating material or one or more components thereof at a desired concentration.
- the coating can include a primer layer and/or topcoat layers or sub-layers.
- the primer layer will be beneath the drug/therapeutic substance layer and the topcoat layer above it. Both the primer layer and the topcoat layer can be without any drugs/therapeutic substances. In some embodiments, some drug may incidentally migrate into the primer layer or region.
- the topcoat layer reduces the rate of release of the drug and/or provides for bio-beneficial properties.
- embodiments disclosed herein are focused on stents, the embodiments may be applied to any implantable medical device that has a coating and a substrate.
- the stent or drug-delivery system disclosed herein can be used to treat or prevent a disorder including but not limited to thrombosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, restenosis and progression of atherosclerosis in patient subsets including type I diabetics, type II diabetics, metabolic syndrome and syndrome X, vulnerable lesions including those with thin-capped fibroatheromatous lesions, systemic infections including gingivitis, hellobacteria, and cytomegalovirus, and combinations thereof.
- a disorder including but not limited to thrombosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial
- a stent having the above-described coating material is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways.
- a stent having the above-described coating material is particularly useful for treating occluded regions of body lumens caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis.
- Stents may be placed in a wide array of body lumens, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
Abstract
Disclosed herein is a stent comprising: a bioabsorbable polymeric scaffolding; and a coating comprising a bioabsorbable material on at least a portion of the scaffolding, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating.
Description
- 1. Field of the Invention
- This invention generally relates to a stent for treating a disorder with a drug over a period of time extending beyond biodegradation of the stent scaffolding.
- 2. Description of the Background
- In particular, the invention relates to radially expandable endoprostheses that are adapted to be implanted in a bodily lumen. An “endoprosthesis” corresponds to an artificial device that is placed inside the body. A “lumen” refers to a cavity of a tubular organ such as a body lumen. A stent is an example of such an endoprosthesis. Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a body lumen or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in body lumens. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty. “Restenosis” refers to the reoccurrence of stenosis in a body lumen or heart valve after it has been subjected to angioplasty or valvuloplasty.
- The treatment of a diseased site or lesion with a stent involves both delivery and deployment of the stent. “Delivery” refers to introducing and transporting the stent through a bodily lumen to the treatment area in a body lumen. “Deployment” corresponds to the expanding of the stent within the lumen at the treatment area. Delivery and deployment of a stent are accomplished by positioning the stent at one end of a catheter, inserting the end of the catheter through the skin into a bodily lumen, advancing the catheter in the bodily lumen to a desired treatment location, expanding the stent at the treatment location, and removing the catheter from the lumen. In the case of a balloon expandable stent, the stent is mounted about a balloon disposed on the catheter. Mounting the stent typically involves compressing or crimping the stent onto the balloon. The stent is then expanded by inflating the balloon. The balloon may then be deflated and the catheter withdrawn. In the case of a self-expanding stent, the stent may be secured to the catheter via a retractable sheath or a sock.
- When the stent is in a desired bodily location, the sheath may be withdrawn allowing the stent to self-expand. This requires a sufficient degree of strength and rigidity or stiffness. In addition to having adequate radial strength, the stent should be longitudinally flexible to allow it to be maneuvered through a tortuous vascular path.
- Thus, a stent is typically composed of scaffolding that includes a pattern or network of interconnecting structural elements or struts. The scaffolding can be formed of tubes, or sheets of material rolled into a cylindrical shape. The scaffolding is designed to allow the stent to be radially expandable. The pattern is generally designed to maintain the longitudinal flexibility and radial rigidity required of the stent. Longitudinal flexibility facilitates delivery of the stent and radial rigidity is needed to hold open a bodily lumen. A medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier that includes a bioactive agent. The polymeric scaffolding may also serve as a carrier of bioactive agent.
- In many treatment applications of stents, the presence of a stent in a body may be necessary for a limited period of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished. Thus, stents are often fabricated from biodegradable, bioabsorbable, and/or bioerodable materials such that they completely erode only after the clinical need for them has ended. In addition, a stent should also be capable of satisfying the mechanical requirements discussed above during the desired treatment time.
- A polymeric stent should be mechanically stable throughout the range of stress experienced during use. In addition to mechanical stability, a stent should have a sufficient rate of biodegradability or erosion as dictated by a treatment regimen. However, one of the major clinical challenges of bioabsorbable stents is adequately suppressing inflammatory responses triggered by the degradation of the stent. The embodiments of the invention address this and other concerns.
- Disclosed herein is a stent comprising: a bioabsorbable polymeric scaffolding; and a coating comprising a bioabsorbable material on at least a portion of the scaffolding, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating.
- Also disclosed herein is a method treating a body lumen, the method comprising: providing a stent comprising a scaffolding that degrades at a faster rate than a coating on the scaffolding; and deploying the stent at a treatment area in a body lumen.
- Further, disclosed herein is a method of treating a body lumen, the method comprising: deploying a first stent at a treatment area, wherein the first stent includes a bioabsorbable polymeric scaffolding and a coating having a bioabsorbable material on at least a portion of the scaffolding, and wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating; and deploying a second stent in at least a portion of the treatment area.
-
FIG. 1 depicts a stent. -
FIG. 2( a) depicts a cross-section of a stent implanted in a body lumen, the stent having a scaffolding and a coating. -
FIG. 2( b) depicts the stent after endothelialization of the stent in the body lumen. -
FIG. 2( c) depicts the stent after endothelialization of the stent and degradation of the scaffolding. -
FIG. 3 depicts a second stent that is implanted at a treatment area of a first stent. - A common disorder associated with mechanical modification of a vessel, such as by a balloon or stenting is restenosis. A number of cellular mechanisms have been proposed that lead to restenosis of a vessel, such as inflammatory response to injury and foreign body presence.
- Inflammation is a defensive, biological response to injury, infection, or an abrupt change in tissue homeostasis. In nature, inflammatory responses are designed to destroy, dilute and isolate injurious agents and then lead to recovery and repair of the affected tissue. Vascular inflammation is the first stage of the inflammatory response, developing after the initial contact with the stimulus and continuing sometimes for several days. The presence of a stimulatory agent in the blood or in the tissue triggers the body's response through endothelial cells. The endothelial cell layer is the innermost layer of larger vessels and the only cell layer of the smallest vessels, the capillaries.
- Additionally, the presence of a biodegradable foreign body, such as a biodegradable stent in a vessel can lead to or aggravate an inflammatory response, thus leading to more aggressive restenosis. Biodegradation refers generally to changes in physical and chemical properties that occur (e.g., in a polymer) upon exposure to bodily fluids as in a vascular environment. The changes in properties may include a decrease in molecular weight, deterioration of mechanical properties, and decrease in mass due to erosion or absorption. The decrease in molecular weight may be caused by chemical reactions of bodily fluids with the polymer, for example, hydrolysis and/or metabolic processes. By-products of such degradation reactions can be responsible for inciting inflammation. For example, by-products of hydrolysis are produced when polymer molecules are cleaved into component parts by the addition of water. Various byproducts of degradation of biodegradable polymers are known to incite an inflammatory response. For example, lactic acid, a degradation by-product of poly(lactic acid) polymers, is known to cause an inflammatory response.
- Furthermore, the release of by-products into the body from a biodegradable stent occurs continuously from the time of first exposure to bodily fluids to a time when the stent is either completely degraded and eliminated or removed from the body. It follows that throughout this time frame, the body is continuously exposed to inflammation-inciting by-products. Therefore, it is desirable for the stent to degrade rapidly once the need for support of the lumen has expired.
- Described herein is a drug-delivery stent that allows delivery of drug even after the stent scaffolding has degraded. Thus, the stent scaffolding need not remain in the body lumen to deliver drug. The stent scaffolding may be made to degrade rapidly and completely or substantially completely disappear once the need for support of the lumen has expired. The drug-delivery stent described herein includes one or more drugs for treating a vascular disorder or a related disorder. The drugs, for example, can be a combination of at least one anti-proliferative agent, at least one anti-inflammatory agent, and optionally other types of bioactive agents.
- A biodegradable stent and drug delivery can remain in the body for a duration of time at least until its intended function of, for example, maintaining vascular patency and drug delivery is accomplished. Biodegradable polymers are used to form the stent, such that the entire stent can be made to disappear after the process of degradation, erosion, or absorption. In some embodiments, very negligible traces of polymer or residue are left behind. The duration is typically in the range of 6-12, 6-18, or 6-24 months, for example. The time needed to maintain vascular patency can be shorter than the drug delivery time.
- The term “stent” is intended to include, but is not limited to, self-expandable stents, balloon-expandable stents, stent-grafts, and grafts. The structure of the stent can be of virtually any design. A stent, for example, may include a pattern or network of interconnecting structural elements or struts.
FIG. 1 depicts an example of a three-dimensional view of astent 100. The stent may have any pattern that includes a number of interconnecting elements or struts 110. As shown inFIG. 1 the geometry or shape of stents vary throughout its structure. In some embodiments, a stent may be formed from a tube by laser cutting the pattern of struts into the tube. The stent may also be formed by laser cutting a polymeric sheet, rolling the pattern into the shape of the cylindrical stent, and providing a longitudinal weld to form the stent. - A
stent 200 according to one embodiment of the invention includes abioabsorbable polymeric scaffolding 210 and acoating material 220 on at least a portion of thescaffolding 210, as depicted inFIG. 2( a).Coating material 220 may include a drug and a bioabsorbable polymer. The degradation rate of at least a portion ofscaffolding 210 is faster than the degradation rate ofcoating material 220. In one embodiment, the degradation rate of all or substantially all ofscaffolding 210 is faster than the degradation rate of all or substantially all ofcoating material 220. Thus, the degradation time of all or substantially allscaffolding 210 is shorter than the degradation time of all or substantially all coatingmaterial 220. By providing ascaffolding 210 that has a faster degradation rate than itscoating 220, thescaffolding 210 degrades first, while coatingmaterial 220 continues to deliver drug. In one embodiment,coating material 220 continues to deliver drug after scaffolding 210 has completely degraded.FIG. 2( b) depicts a cross-section of a stent implanted inbody lumen 230.FIG. 2( b) depictsstent 200 after endothelialization ofstent 200 inlumen wall 240. In one embodiment, all or substantially all ofcoating material 220 degrades faster than all or substantially all ofscaffolding 210. In another embodiment,coating material 220 continues to elute drugs even after vascular patency has expired. The coating layer remains after there is no longer any stent vascular patency. - Turning now to
FIG. 2( c), with continual reference toFIG. 2( b),coating material 220 remains lodged inlumen wall 240 after scaffolding 210 substantially degrades. Becausecoating material 220 can be made to deliver drug even after the disintegration ofscaffolding 210, the invention enablesstent 200 to release drug for an extended period of time throughout the life ofstent 200 while scaffolding 210 degrades, and if desired, long after scaffolding 210 degrades. In one embodiment,stent 200 delivers drug for over 50% of the life ofscaffolding 210. In another embodiment,stent 200 delivers drug for over 80% of the life ofscaffolding 210. In yet another embodiment,stent 200 delivers drug for the entire life ofscaffolding scaffolding 210. Thus, after theentire scaffolding 210 has completely degraded,coating material 220 may be designed to continue to deliver drug, as depicted inFIG. 2( c). - In one embodiment, upon deployment of
stent 200 in treatment area,scaffolding 210 substantially or completely degrades from treatment area before coating 220 substantially or completely degrades. In another embodiment, coating 220 delivers a drug to thelumen 240 during degradation ofscaffolding 210 and after substantial or complete degradation ofscaffolding 210. In yet another embodiment, coating 220 becomes endothelialized in a wall oflumen 240 and delivers a drug after scaffolding 210 has substantially or completely degraded. - In one embodiment, the stent includes an anti-proliferative agent that includes, but is not limited to, Everolimus, Rapamycin, and/or derivatives thereof. Everolimus is available under the trade name Certican™, Novartis Pharma AG, Germany. The anti-proliferative agent may be included within the coating material's polymer matrix and/or in the scaffolding's polymer matrix. In one embodiment, the anti-proliferative agent is intermixed or dispersed within the coating material's polymer matrix and/or intermixed or dispersed in the scaffolding's polymer matrix. In certain embodiments, the anti-proliferative agent is included in depots within the coating and/or the scaffolding.
- The stent may also include an anti-inflammatory agent. Clobetasol is available under the trade name Temovate™, Glaxosmithkline, UK. The anti-inflammatory agent may be included within the coating material's polymer matrix and/or in the scaffolding's polymer matrix. In one embodiment, the anti-inflammatory agent is intermixed or dispersed within the coating material's polymer matrix and/or intermixed or dispersed within the scaffolding's polymer matrix. In certain embodiments, the anti-inflammatory agent is included in depots within the coating and/or the scaffolding.
- The release of inflammation-inciting by-products into the body from a biodegradable device can occur continuously while the scaffolding is degrading within the body. An anti-inflammatory included within the scaffolding may allow for sustained release of the inflammatory agent throughout the scaffolding's degradation. The drug-delivery stent disclosed herein may include a sustained release of an anti-inflammatory agent from the scaffolding. After the scaffolding absorbs, the coating material remains in the lumen wall.
- The underlying stent scaffolding is made from a polymeric material that degrades more rapidly than the polymer used to form the coating material. The polymer used to form the scaffolding is faster degrading than the coating material. Any biodegradable polymer may be used to the form the scaffolding and the coating material, as long as the polymer used to make all or substantially all the scaffolding degrades faster than the polymer used to make all or substantially all the coating material. In some embodiments, the scaffolding can be formed of a copolymer that includes two functional groups or units. One of the units tends to increase the degradation rate compared to a homopolymer including the other unit. Thus, glycolide has a faster degradation rate and is more hydrolytically active.
- In one embodiment, the stent scaffolding is formed of poly(D,L-lactide-co-glycolide), where 10% of the copolymer is D,L-lactide and 90% of the copolymer is glycolide. In another embodiment, the stent scaffolding is formed of poly(L-lactide-co-glycolide), where 10% of the copolymer is D,L-lactide and 90% of the copolymer is glycolide. In this embodiment, any polymer that degrades at a slower rate than poly(D,L-lactide-co-glycolide) may be used to form the coating material. For example; PLLA can be used to form a coating material because PLLA is slower degrading than poly(D,L-lactide-co-glycolide). In another embodiment, the stent scaffolding is formed of poly(D,L-lactide-co-glycolide), where 5-45% of the copolymer is D,L-lactide and 55-95% of the copolymer is glycolide. In yet another embodiment, 1:1 Everolimus and poly(D,L-lactide) is used to form the coating material, which degrades at about 12 months and has the ability to deliver drug for 3 months. Thus, the drug will be delivered even after the scaffolding has degraded, or has been absorbed into the body, or no longer has vascular patency.
- In one embodiment, the scaffolding is made to degrade rapidly, thereby reducing the risk of a negative reaction to the presence of a degrading stent. Certain embodiments provide for a rapidly degrading scaffolding, one that degrades within 6 months, within 3 months, or more narrowly within 2 months.
- In one embodiment, the stent scaffolding may be fabricated to include an erodible metal, such as magnesium. Other material may also be used to fabricate the stent scaffolding, so long as all or substantially all of the scaffolding degrades at a faster rate than all or substantially all of the coating material. In one embodiment, the coating material includes Everolimus and poly(D,L-lactide) of a 1:1 ratio, and the scaffolding includes D,L-lactide and glycolide monomers of a 1:9 ratio, or poly(D,L-lactide-co-glycolide).
- As described above, it is also possible to have a sustained release of an anti-inflammatory agent from the coating material. The anti-inflammatory agent may be included within the coating and is delivered from a surface of the coating. The coating material may be configured to sustain delivery of anti-inflammatory agent throughout the degradation of a stent scaffolding to counteract the inflammatory effect of the degradation of by-products.
- In one embodiment, an anti-inflammatory agent is included in both the coating and the scaffolding. An anti-inflammatory agent may be delivered from the coating as well as the scaffolding to suppress inflammation of a body lumen during all or a majority of the degradation of the scaffolding.
- In one embodiment, a first stent is deployed at a treatment area, and a second stent is deployed in at least a portion of the treatment area, or the treatment area is “re-stented”.
- The first stent includes a bioabsorbable polymeric scaffolding and a coating having a bioabsorbable material on at least a portion of the scaffolding. The degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating;
- The second stent is deployed when the scaffolding of the first stent has at least partially degraded, has substantially degraded, or has completely degraded. Thus, embodiments disclosed herein may prove advantageous to methods for re-stenting a lumen. Certain embodiments provide for a rapidly degrading scaffolding, that degrades within 6 months, within 3 months, or more narrowly within 2 months. Re-stenting is facilitated by rapid degradation of the first stent's scaffolding, enabling a second stent to be implanted in the stented area or treatment area within only a few months after the first stent has been implanted. When the second stent is deployed in the treatment area, the functional lumen diameter is not reduced as is the case when a second stent is deployed at an treatment area of a first stent that has only partially degraded. In the latter case, the reduced functional diameter causes the blood flow to fall significantly and possibly congest the lumen.
- Depicted in
FIG. 3 is asecond stent 300 that has been implanted in thesame treatment area 310 as afirst stent 320. In some embodiments,second stent 300 is implanted inlumen 330 after endothelialization offirst stent 320. In some embodiments,second stent 300 is implanted inlumen 330 after a scaffolding (not depicted) of afirst stent 320 is at least partially degraded, substantially degraded, or more narrowly, completely degraded inlumen 330. In some embodiments,second stent 300 is deployed intreatment area 310 when scaffolding (not pictured) of the first stent is greater than 50% degraded, greater than 75% degraded, and more narrowly, greater than 95% degraded as known of those skilled in the art. - In one embodiment,
second stent 300 may be implanted intreatment area 310 after all or substantially all of scaffolding offirst stent 320 has is degraded, such that only acoating material 340 offirst stent 320 remains in the lumen. In certain embodiments,coating material 320 offirst stent 340 continues to deliver drug whensecond stent 300 is implanted. - As discussed above, a drug(s) may be included in the coating or scaffolding of the first stent. Thus, when the second stent is implanted, the first stent may deliver drug from at least a portion of the coating material of the first stent while the second stent is implanted. For example, an anti-inflammatory agent may be included within the coating material of the first stent, such that when the scaffolding of the second stent is implanted, the anti-inflammatory agent continues to deliver drug to prevent inflammation. As mentioned above, the anti-inflammatory agent that is delivered from the coating material of the first stent may also effectively suppress inflammation of a lumen during all or a majority of the degradation of the scaffolding of the first stent.
- In a further embodiment, an anti-inflammatory drug and/or an anti-proliferative drug is included in the coating and/or the scaffolding of the stent and is designed to have release parameters for drugs included. The second stent may have a biostable or biodegradable scaffolding made from a metal, polymer, or combination thereof. The second stent may or may not include a coating or a drug.
- The drug mixed or dispersed within a biodegradable scaffolding may be delivered into a lumen at substantially the same, a faster rate, or a slower rate as the scaffolding degrades. In one embodiment, the drug may be incorporated within the scaffolding during fabrication of the stent according to the general skill in the art. For example, an anti-inflammatory agent may be incorporated in the scaffolding, and configured to be delivered through the coating material to treat inflamed portions of lumens.
- Moreover, the properties of the coating, such as thickness and porosity, may influence the rate of release of the drug(s) from the stent. Some embodiments may include controlling the release rate of the drug by modifying the properties of the coating.
- In one embodiment, the stent includes a scaffolding and depots having drug. As used herein, the coating described above includes depots. In one embodiment, one or more drugs may be contained within at least one depot or cavity on at least a portion of a surface of the scaffolding. The drug in the depot may be pure or substantially pure drug. Alternatively, the drug in the depot may be mixed or dispersed in a polymer matrix, which degrades at a faster rate than the scaffolding. Thus, the scaffolding may degrade first, while the drug/polymer mixture within the depots continues to deliver drug long after the scaffolding has degraded. Numerous embodiments of a stent with depots configured to hold a drug are possible. Depots may be placed at one or more arbitrary locations on a stent. The greater inflammation may arise from a larger concentration of degradation products closer to the center of the stent than the ends of the stent. Thus, the center of the lesion may require more anti-inflammatory agent than the ends of the lesion. Alternatively, the ends of the lesion may be more inflamed due to mechanical stresses causing irritation or injury to the ends of the lesion. Thus, a stent may include depots or more depots in regions of a stent adjacent portions of a lesion having more inflammation.
- The anti-proliferative agent can be a natural proteineous agent such as a cytotoxin or a synthetic molecule. Preferably, the active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck) (synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1), all taxoids such as taxols, docetaxel, and paclitaxel, paclitaxel derivatives, all olimus drugs such as macrolide antibiotics, rapamycin, Everolimus, structural derivatives and functional analogues of rapamycin, structural derivatives and functional analogues of Everolimus, FKBP-12 mediated mTOR inhibitors, biolimus, perfenidone, prodrugs thereof, co-drugs thereof, and combinations thereof. Representative rapamycin derivatives include 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, or 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578 manufactured by Abbot Laboratories, Abbot Park, Ill.), prodrugs thereof, co-drugs thereof, and combinations thereof.
- Any drugs having anti-inflammatory effects can be used in the present invention. The anti-inflammatory drug can be a steroidal anti-inflammatory agent, a nonsteroidal anti-inflammatory agent, or a combination thereof. In some embodiments, anti-inflammatory drugs include, but are not limited to, alclofenac, alclometasone dipropionate, algestone acetonide, alpha amylase, amcinafal, amcinafide, amfenac sodium, amiprilose hydrochloride, anakinra, anirolac, anitrazafen, apazone, balsalazide disodium, bendazac, benoxaprofen, benzydamine hydrochloride, bromelains, broperamole, budesonide, carprofen, cicloprofen, cintazone, cliprofen, Clobetasol propionate, clobetasone butyrate, clopirac, cloticasone propionate, cormethasone acetate, cortodoxone, deflazacort, desonide, desoximetasone, dexamethasone dipropionate, diclofenac potassium, diclofenac sodium, diflorasone diacetate, diflumidone sodium, diflunisal, difluprednate, diftalone, dimethyl sulfoxide, drocinonide, endrysone, enlimomab, enolicam sodium, epirizole, etodolac, etofenamate, felbinac, fenamole, fenbufen, fenclofenac, fenclorac, fendosal, fenpipalone, fentiazac, flazalone, fluazacort, flufenamic acid, flumizole, flunisolide acetate, flunixin, flunixin meglumine, fluocortin butyl, fluorometholone acetate, fluquazone, flurbiprofen, fluretofen, fluticasone propionate, fuiraprofen, furobufen, halcinonide, halobetasol propionate, halopredone acetate, ibufenac, ibuprofen, ibuprofen aluminum, ibuprofen piconol, ilonidap, indomethacin, indomethacin sodium, indoprofen, indoxole, intrazole, isoflupredone acetate, isoxepac, isoxicam, ketoprofen, lofemizole hydrochloride, lomoxicam, loteprednol etabonate, meclofenamate sodium, meclofenamic acid, meclorisone dibutyrate, mefenamic acid, mesalamine, meseclazone, methylprednisolone suleptanate, momiflumate, nabumetone, naproxen, naproxen sodium, naproxol, nimazone, olsalazine sodium, orgotein, orpanoxin, oxaprozin, oxyphenbutazone, paranyline hydrochloride, pentosan polysulfate sodium, phenbutazone sodium glycerate, pirfenidone, piroxicam, piroxicam cinnamate, piroxicam olamine, pirprofen, prednazate, prifelone, prodolic acid, proquazone, proxazole, proxazole citrate, rimexolone, romazarit, salcolex, salnacedin, salsalate, sanguinarium chloride, seclazone, sermetacin, sudoxicam, sulindac, suprofen, talmetacin, talniflumate, talosalate, tebufelone, tenidap, tenidap sodium, tenoxicam, tesicam, tesimide, tetrydamine, tiopinac, tixocortol pivalate, tolmetin, tolmetin sodium, triclonide, triflumidate, zidometacin, zomepirac sodium, aspirin (acetylsalicylic acid), salicylic acid, corticosteroids, glucocorticoids, tacrolimus, pimecorlimus, prodrugs thereof, co-drugs thereof, and combinations thereof.
- The relative amount of the anti-proliferative agent and/or anti-inflammatory agent in the stent can be determined by the lumen to be treated. For example, where Everolimus is used as the anti-proliferative agent and Clobetasol is used as the anti-inflammatory agent, the relative amount of Everolimus and Clobetasol can be varied for different types of lesions, that is, the relative amount of Everolimus can be higher for more proliferative lesions, and on the other hand, the relative amount of Clobetasol can be higher for more inflammatory lesions.
- In some embodiments, other agents can be used in combination with the anti-proliferative agent and the anti-inflammatory agents. These bioactive agents can be any agent which is a therapeutic, prophylactic, or diagnostic agent. These agents can also have anti-proliferative and/or anti-inflammmatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax a (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, and genetically engineered epithelial cells. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
- Representative examples of polymers that may be used to fabricate the scaffolding, the coating, or to provide a drug delivery particle with the anti-proliferative drug and/or anti-inflammatory drug include, but are not limited to, poly(N-acetylglucosamine) (Chitin), Chitosan, poly(3-hydroxyvalerate), poly(lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Additional representative examples of polymers that may be especially well suited for use in fabricating embodiments of stents disclosed herein include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluoropropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), ethylene-vinyl acetate copolymers, poly(vinyl acetate), styrene-isobutylene-styrene triblock copolymers, and polyethylene glycol.
- The coating material described herein can be formed by spray coating or any other coating process available in the art. Generally, the coating material involves dissolving or suspending the coating material, or one or more components thereof, in a solvent or solvent mixture to form a solution, suspension, or dispersion of the coating material or one or more components thereof, applying the solution or suspension to an implantable stent, and removing the solvent or solvent mixture to form a coating or a layer of coating. As used herein, the term “solvent” refers to a liquid substance or coating material that is compatible with the polymer and is capable of dissolving or suspending the polymeric coating material or one or more components thereof at a desired concentration.
- In some embodiments, the coating can include a primer layer and/or topcoat layers or sub-layers. The primer layer will be beneath the drug/therapeutic substance layer and the topcoat layer above it. Both the primer layer and the topcoat layer can be without any drugs/therapeutic substances. In some embodiments, some drug may incidentally migrate into the primer layer or region. The topcoat layer reduces the rate of release of the drug and/or provides for bio-beneficial properties.
- Although embodiments disclosed herein are focused on stents, the embodiments may be applied to any implantable medical device that has a coating and a substrate.
- The stent or drug-delivery system disclosed herein can be used to treat or prevent a disorder including but not limited to thrombosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, restenosis and progression of atherosclerosis in patient subsets including type I diabetics, type II diabetics, metabolic syndrome and syndrome X, vulnerable lesions including those with thin-capped fibroatheromatous lesions, systemic infections including gingivitis, hellobacteria, and cytomegalovirus, and combinations thereof.
- A stent having the above-described coating material is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating material is particularly useful for treating occluded regions of body lumens caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of body lumens, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
- While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects.
Claims (32)
1. A stent comprising:
a bioabsorbable polymeric scaffolding; and
a coating comprising a bioabsorbable material on at least a portion of the scaffolding, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating.
2. The stent according to claim 1 , wherein the stent includes an anti-proliferative agent, an anti-inflammatory agent, or a mixture thereof.
3. The stent according to claim 2 , wherein the anti-proliferative agent is selected from the group consisting of Everolimus, Rapamycin, and/or derivatives thereof.
4. The stent according to claim 2 , wherein the anti-inflammatory agent is Clobetasol.
5. The stent according to claim 1 , wherein the coating material comprises Everolimus and poly(D,L-lactide) of a 1:1 ratio, and the scaffolding comprises D,L-lactide and glycolide monomers of a 1:9 ratio.
6. A method treating a body lumen, the method comprising:
providing a stent comprising a scaffolding that degrades at a faster rate than a coating on the scaffolding; and
deploying the stent at a treatment area in a body lumen.
7. The method according to claim 6 , wherein the stent includes an anti-proliferative agent, an anti-inflammatory agent, or a mixture thereof.
8. The method according to claim 6 , wherein an anti-inflammatory agent is mixed or dispersed within the scaffolding.
9. The method according to claim 6 , wherein an anti-inflammatory agent and the anti-proliferative agent is delivered from at least a portion of the coating.
10. The method according to claim 6 , wherein an anti-inflammatory agent is delivered from the scaffolding and suppresses inflammation of the lumen during all or a majority of the degradation of the scaffolding.
11. The method according to claim 6 , wherein the coating in the stent comprises Everolimus and poly(D,L-lactide) of a 1:1 ratio, and the scaffolding comprises D,L-lactide and glycolide monomers of a 1:9 ratio.
12. The method according to claim 6 , wherein the stent includes Everolimus, Rapamycin, and/or derivatives thereof.
13. The method according to claim 6 , wherein the stent includes Clobetasol.
14. The method according to claim 6 , wherein upon deployment of the stent in the treatment area, the scaffolding substantially or completely degrades from the treatment area before the coating substantially or completely degrades.
15. The method according to claim 6 , wherein the coating delivers a drug to the lumen during degradation of the scaffolding and after substantial or complete degradation of the scaffolding.
16. The method according to claim 6 , wherein the coating becomes endothelialized in a wall of the lumen and delivers a drug after the scaffolding has substantially or completely degraded.
17. A method of treating a body lumen, the method comprising:
deploying a first stent at a treatment area, wherein the first stent includes a bioabsorbable polymeric scaffolding and a coating having a bioabsorbable material on at least a portion of the scaffolding, and wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating; and
deploying a second stent in at least a portion of the treatment area.
18. The method according to claim 17 , wherein an anti-inflammatory agent is mixed or dispersed within the scaffolding.
19. The method according to claim 17 , wherein an anti-inflammatory agent is delivered from at least a portion of the coating material of the first stent, wherein the coating material comprises an anti-proliferative agent.
20. The method according to claim 17 , wherein an anti-inflammatory agent is delivered from the scaffolding of the first stent and suppresses inflammation of the body lumen during substantial or complete degradation of the scaffolding.
21. The method according to claim 17 , wherein the stent includes an anti-proliferative agent.
22. The method according to claim 21 , wherein the anti-proliferative agent in the first stent is Everolimus, Rapamycin, and/or derivatives thereof.
23. The method according to claim 17 , wherein the first stent includes an anti-inflammatory agent.
24. The method according to claim 23 , wherein the anti-inflammatory agent in the first stent is Clobetasol.
25. The method according to claim 17 , wherein the coating material in the first stent comprises Everolimus and poly(D,L-lactide) of a 1:1 ratio, and the scaffolding comprises D,L-lactide and glycolide monomers of a 1:9 ratio.
26. The method according to claim 17 , wherein the second stent is deployed when the scaffolding has substantially or completely degraded.
27. The method according to claim 17 , wherein the coating material of the first stent is capable of at least partially eluting a drug when the second stent is deployed.
28. The method according to claim 17 , wherein the first stent includes Everolimus, Rapamycin, and/or derivatives thereof.
29. The method according to claim 17 , wherein the first stent includes Clobetasol.
30. The method according to claim 17 , wherein upon deployment of the stent in the treatment area, the scaffolding substantially or completely degrades from the treatment area before the coating substantially or completely degrades.
31. The method according to claim 17 , wherein the coating delivers a drug to the lumen during degradation of the scaffolding and after substantial or complete degradation of the scaffolding.
32. The method according to claim 17 , wherein the coating becomes endothelialized in a wall of the lumen and delivers a drug after the scaffolding has substantially or completely degraded.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/582,706 US20080091262A1 (en) | 2006-10-17 | 2006-10-17 | Drug delivery after biodegradation of the stent scaffolding |
US11/823,703 US8016879B2 (en) | 2006-08-01 | 2007-06-27 | Drug delivery after biodegradation of the stent scaffolding |
PCT/US2007/016772 WO2008016528A2 (en) | 2006-08-01 | 2007-07-25 | Drug delivery after biodegradation of the stent scaffolding |
US13/086,308 US8398706B2 (en) | 2006-10-17 | 2011-04-13 | Drug delivery after biodegradation of the stent scaffolding |
US13/185,370 US8469968B2 (en) | 2006-08-01 | 2011-07-18 | Methods of treatment with drug delivery after biodegradation of the stent scaffolding |
US13/925,750 US8876890B2 (en) | 2006-08-01 | 2013-06-24 | Methods of treatment with biodegradation of a stent scaffolding |
US14/531,744 US9345816B2 (en) | 2006-08-01 | 2014-11-03 | Methods of treatment with drug delivery after biodegradation of the stent scaffolding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/582,706 US20080091262A1 (en) | 2006-10-17 | 2006-10-17 | Drug delivery after biodegradation of the stent scaffolding |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/823,703 Continuation-In-Part US8016879B2 (en) | 2006-08-01 | 2007-06-27 | Drug delivery after biodegradation of the stent scaffolding |
US13/086,308 Division US8398706B2 (en) | 2006-10-17 | 2011-04-13 | Drug delivery after biodegradation of the stent scaffolding |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080091262A1 true US20080091262A1 (en) | 2008-04-17 |
Family
ID=39303985
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/582,706 Abandoned US20080091262A1 (en) | 2006-08-01 | 2006-10-17 | Drug delivery after biodegradation of the stent scaffolding |
US13/086,308 Expired - Fee Related US8398706B2 (en) | 2006-10-17 | 2011-04-13 | Drug delivery after biodegradation of the stent scaffolding |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/086,308 Expired - Fee Related US8398706B2 (en) | 2006-10-17 | 2011-04-13 | Drug delivery after biodegradation of the stent scaffolding |
Country Status (1)
Country | Link |
---|---|
US (2) | US20080091262A1 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090110713A1 (en) * | 2007-10-31 | 2009-04-30 | Florencia Lim | Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices |
US20090291111A1 (en) * | 2008-05-21 | 2009-11-26 | Florencia Lim | Coating comprising an amorphous primer layer and a semi-crystalline reservoir layer |
US20100070013A1 (en) * | 2008-09-18 | 2010-03-18 | Medtronic Vascular, Inc. | Medical Device With Microsphere Drug Delivery System |
US20100298952A1 (en) * | 2009-05-20 | 2010-11-25 | Arsenal Medical | Medical implant |
US20110190875A1 (en) * | 2006-10-17 | 2011-08-04 | Advanced Cardiovascular Systems, Inc. | Drug Delivery After Biodegradation Of The Stent Scaffolding |
US20130138219A1 (en) * | 2011-11-28 | 2013-05-30 | Cook Medical Technologies Llc | Biodegradable stents having one or more coverings |
US8469968B2 (en) | 2006-08-01 | 2013-06-25 | Abbott Cardiovascular Systems Inc. | Methods of treatment with drug delivery after biodegradation of the stent scaffolding |
US8540765B2 (en) | 2009-05-20 | 2013-09-24 | 480 Biomedical, Inc. | Medical implant |
US20140242144A1 (en) * | 2012-02-10 | 2014-08-28 | Abbott Cardiovascular Systems Inc. | Drug eluting scaffold for kidney-related disease |
US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US9090745B2 (en) | 2007-06-29 | 2015-07-28 | Abbott Cardiovascular Systems Inc. | Biodegradable triblock copolymers for implantable devices |
WO2015160501A1 (en) | 2014-04-18 | 2015-10-22 | Auburn University | Particulate vaccine formulations for inducing innate and adaptive immunity |
US20150359943A1 (en) * | 2001-06-27 | 2015-12-17 | Abbott Cardiovascular Systems Inc. | Pdlla stent coating |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
WO2017049284A1 (en) * | 2015-09-17 | 2017-03-23 | Hollister Incorporated | Scaffold-based wound care delivery system and method |
US10076591B2 (en) | 2010-03-31 | 2018-09-18 | Abbott Cardiovascular Systems Inc. | Absorbable coating for implantable device |
US20180296736A1 (en) * | 2009-05-20 | 2018-10-18 | 48 Biomedical, Inc. | Drug eluting medical implant |
US10293044B2 (en) | 2014-04-18 | 2019-05-21 | Auburn University | Particulate formulations for improving feed conversion rate in a subject |
US10583199B2 (en) | 2016-04-26 | 2020-03-10 | Northwestern University | Nanocarriers having surface conjugated peptides and uses thereof for sustained local release of drugs |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321711A (en) * | 1978-10-18 | 1982-03-30 | Sumitomo Electric Industries, Ltd. | Vascular prosthesis |
US4633873A (en) * | 1984-04-26 | 1987-01-06 | American Cyanamid Company | Surgical repair mesh |
US4656083A (en) * | 1983-08-01 | 1987-04-07 | Washington Research Foundation | Plasma gas discharge treatment for improving the biocompatibility of biomaterials |
US4718907A (en) * | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US4722335A (en) * | 1986-10-20 | 1988-02-02 | Vilasi Joseph A | Expandable endotracheal tube |
US4723549A (en) * | 1986-09-18 | 1988-02-09 | Wholey Mark H | Method and apparatus for dilating blood vessels |
US4732152A (en) * | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4740207A (en) * | 1986-09-10 | 1988-04-26 | Kreamer Jeffry W | Intralumenal graft |
US4800882A (en) * | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4816339A (en) * | 1987-04-28 | 1989-03-28 | Baxter International Inc. | Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation |
US4818559A (en) * | 1985-08-08 | 1989-04-04 | Sumitomo Chemical Company, Limited | Method for producing endosseous implants |
US4902289A (en) * | 1982-04-19 | 1990-02-20 | Massachusetts Institute Of Technology | Multilayer bioreplaceable blood vessel prosthesis |
US4994298A (en) * | 1988-06-07 | 1991-02-19 | Biogold Inc. | Method of making a biocompatible prosthesis |
US5084065A (en) * | 1989-07-10 | 1992-01-28 | Corvita Corporation | Reinforced graft assembly |
US5085629A (en) * | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US5100429A (en) * | 1989-04-28 | 1992-03-31 | C. R. Bard, Inc. | Endovascular stent and delivery system |
US5104410A (en) * | 1990-10-22 | 1992-04-14 | Intermedics Orthopedics, Inc | Surgical implant having multiple layers of sintered porous coating and method |
US5108755A (en) * | 1989-04-27 | 1992-04-28 | Sri International | Biodegradable composites for internal medical use |
US5108417A (en) * | 1990-09-14 | 1992-04-28 | Interface Biomedical Laboratories Corp. | Anti-turbulent, anti-thrombogenic intravascular stent |
US5192311A (en) * | 1988-04-25 | 1993-03-09 | Angeion Corporation | Medical implant and method of making |
US5197977A (en) * | 1984-01-30 | 1993-03-30 | Meadox Medicals, Inc. | Drug delivery collagen-impregnated synthetic vascular graft |
US5279594A (en) * | 1990-05-23 | 1994-01-18 | Jackson Richard R | Intubation devices with local anesthetic effect for medical use |
US5282860A (en) * | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
US5289831A (en) * | 1989-03-09 | 1994-03-01 | Vance Products Incorporated | Surface-treated stent, catheter, cannula, and the like |
US5290271A (en) * | 1990-05-14 | 1994-03-01 | Jernberg Gary R | Surgical implant and method for controlled release of chemotherapeutic agents |
US5306286A (en) * | 1987-06-25 | 1994-04-26 | Duke University | Absorbable stent |
US5306294A (en) * | 1992-08-05 | 1994-04-26 | Ultrasonic Sensing And Monitoring Systems, Inc. | Stent construction of rolled configuration |
US5383925A (en) * | 1992-09-14 | 1995-01-24 | Meadox Medicals, Inc. | Three-dimensional braided soft tissue prosthesis |
US5385580A (en) * | 1990-08-28 | 1995-01-31 | Meadox Medicals, Inc. | Self-supporting woven vascular graft |
US5389106A (en) * | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5399666A (en) * | 1994-04-21 | 1995-03-21 | E. I. Du Pont De Nemours And Company | Easily degradable star-block copolymers |
US5502158A (en) * | 1988-08-08 | 1996-03-26 | Ecopol, Llc | Degradable polymer composition |
US5591607A (en) * | 1994-03-18 | 1997-01-07 | Lynx Therapeutics, Inc. | Oligonucleotide N3→P5' phosphoramidates: triplex DNA formation |
US5591199A (en) * | 1995-06-07 | 1997-01-07 | Porter; Christopher H. | Curable fiber composite stent and delivery system |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5593403A (en) * | 1994-09-14 | 1997-01-14 | Scimed Life Systems Inc. | Method for modifying a stent in an implanted site |
US5599301A (en) * | 1993-11-22 | 1997-02-04 | Advanced Cardiovascular Systems, Inc. | Motor control system for an automatic catheter inflation system |
US5605696A (en) * | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US5607442A (en) * | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
US5607467A (en) * | 1990-09-14 | 1997-03-04 | Froix; Michael | Expandable polymeric stent with memory and delivery apparatus and method |
US5618299A (en) * | 1993-04-23 | 1997-04-08 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5707385A (en) * | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
US5711763A (en) * | 1991-02-20 | 1998-01-27 | Tdk Corporation | Composite biological implant of a ceramic material in a metal substrate |
US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5725549A (en) * | 1994-03-11 | 1998-03-10 | Advanced Cardiovascular Systems, Inc. | Coiled stent with locking ends |
US5726297A (en) * | 1994-03-18 | 1998-03-10 | Lynx Therapeutics, Inc. | Oligodeoxyribonucleotide N3' P5' phosphoramidates |
US5728751A (en) * | 1996-11-25 | 1998-03-17 | Meadox Medicals, Inc. | Bonding bio-active materials to substrate surfaces |
US5733925A (en) * | 1993-01-28 | 1998-03-31 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5733330A (en) * | 1997-01-13 | 1998-03-31 | Advanced Cardiovascular Systems, Inc. | Balloon-expandable, crush-resistant locking stent |
US5733564A (en) * | 1993-04-14 | 1998-03-31 | Leiras Oy | Method of treating endo-osteal materials with a bisphosphonate solution |
US5733326A (en) * | 1996-05-28 | 1998-03-31 | Cordis Corporation | Composite material endoprosthesis |
US5741881A (en) * | 1996-11-25 | 1998-04-21 | Meadox Medicals, Inc. | Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions |
US5855612A (en) * | 1995-05-12 | 1999-01-05 | Ohta Inc. | Biocompatible titanium implant |
US5855618A (en) * | 1996-09-13 | 1999-01-05 | Meadox Medicals, Inc. | Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin |
US5858746A (en) * | 1992-04-20 | 1999-01-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
US5865814A (en) * | 1995-06-07 | 1999-02-02 | Medtronic, Inc. | Blood contacting medical device and method |
US5868781A (en) * | 1996-10-22 | 1999-02-09 | Scimed Life Systems, Inc. | Locking stent |
US5874101A (en) * | 1997-04-14 | 1999-02-23 | Usbiomaterials Corp. | Bioactive-gel compositions and methods |
US5874165A (en) * | 1996-06-03 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Materials and method for the immobilization of bioactive species onto polymeric subtrates |
US5873904A (en) * | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US5874109A (en) * | 1994-07-27 | 1999-02-23 | The Trustees Of The University Of Pennsylvania | Incorporation of biological molecules into bioactive glasses |
US5877263A (en) * | 1996-11-25 | 1999-03-02 | Meadox Medicals, Inc. | Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents |
US5876743A (en) * | 1995-03-21 | 1999-03-02 | Den-Mat Corporation | Biocompatible adhesion in tissue repair |
US5879713A (en) * | 1994-10-12 | 1999-03-09 | Focal, Inc. | Targeted delivery via biodegradable polymers |
US5888533A (en) * | 1995-10-27 | 1999-03-30 | Atrix Laboratories, Inc. | Non-polymeric sustained release delivery system |
US5891192A (en) * | 1997-05-22 | 1999-04-06 | The Regents Of The University Of California | Ion-implanted protein-coated intralumenal implants |
US6010445A (en) * | 1997-09-11 | 2000-01-04 | Implant Sciences Corporation | Radioactive medical device and process |
US6015541A (en) * | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US6042875A (en) * | 1997-04-30 | 2000-03-28 | Schneider (Usa) Inc. | Drug-releasing coatings for medical devices |
US6171609B1 (en) * | 1995-02-15 | 2001-01-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6177523B1 (en) * | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
US6183505B1 (en) * | 1999-03-11 | 2001-02-06 | Medtronic Ave, Inc. | Method of stent retention to a delivery catheter balloon-braided retainers |
US6187045B1 (en) * | 1999-02-10 | 2001-02-13 | Thomas K. Fehring | Enhanced biocompatible implants and alloys |
US20020002399A1 (en) * | 1999-12-22 | 2002-01-03 | Huxel Shawn Thayer | Removable stent for body lumens |
US20020004060A1 (en) * | 1997-07-18 | 2002-01-10 | Bernd Heublein | Metallic implant which is degradable in vivo |
US20020004101A1 (en) * | 1995-04-19 | 2002-01-10 | Schneider (Usa) Inc. | Drug coating with topcoat |
US6511748B1 (en) * | 1998-01-06 | 2003-01-28 | Aderans Research Institute, Inc. | Bioabsorbable fibers and reinforced composites produced therefrom |
US6517888B1 (en) * | 2000-11-28 | 2003-02-11 | Scimed Life Systems, Inc. | Method for manufacturing a medical device having a coated portion by laser ablation |
US20030033001A1 (en) * | 2001-02-27 | 2003-02-13 | Keiji Igaki | Stent holding member and stent feeding system |
US20030039689A1 (en) * | 2001-04-26 | 2003-02-27 | Jianbing Chen | Polymer-based, sustained release drug delivery system |
US6527801B1 (en) * | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
US6537589B1 (en) * | 2000-04-03 | 2003-03-25 | Kyung Won Medical Co., Ltd. | Calcium phosphate artificial bone as osteoconductive and biodegradable bone substitute material |
US6676697B1 (en) * | 1996-09-19 | 2004-01-13 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US6679980B1 (en) * | 2001-06-13 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Apparatus for electropolishing a stent |
US6689375B1 (en) * | 1999-11-09 | 2004-02-10 | Coripharm Medizinprodukte Gmbh & Co. Kg | Resorbable bone implant material and method for producing the same |
US20040030380A1 (en) * | 2002-04-24 | 2004-02-12 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US6695920B1 (en) * | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
US20040039441A1 (en) * | 2002-05-20 | 2004-02-26 | Rowland Stephen Maxwell | Drug eluting implantable medical device |
US6706273B1 (en) * | 1999-08-14 | 2004-03-16 | Ivoclar Vivadent Ag | Composition for implantation into the human and animal body |
US6709379B1 (en) * | 1998-11-02 | 2004-03-23 | Alcove Surfaces Gmbh | Implant with cavities containing therapeutic agents |
US6846323B2 (en) * | 2003-05-15 | 2005-01-25 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US20050033412A1 (en) * | 2000-09-28 | 2005-02-10 | Wu Steven Z. | Method of making an implantable medical device |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993006792A1 (en) | 1991-10-04 | 1993-04-15 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
WO1994021196A2 (en) * | 1993-03-18 | 1994-09-29 | C.R. Bard, Inc. | Endovascular stents |
US6419945B1 (en) * | 1996-01-17 | 2002-07-16 | Cambridge Scientific, Inc. | Buffered resorbable internal fixation devices and methods for making material therefore |
WO1998056312A1 (en) | 1997-06-13 | 1998-12-17 | Scimed Life Systems, Inc. | Stents having multiple layers of biodegradable polymeric composition |
JP4583597B2 (en) * | 1998-05-05 | 2010-11-17 | ボストン サイエンティフィック リミテッド | Smooth end stent |
US6368346B1 (en) * | 1999-06-03 | 2002-04-09 | American Medical Systems, Inc. | Bioresorbable stent |
US6338739B1 (en) * | 1999-12-22 | 2002-01-15 | Ethicon, Inc. | Biodegradable stent |
US7083642B2 (en) * | 2000-12-22 | 2006-08-01 | Avantec Vascular Corporation | Delivery of therapeutic capable agents |
US20040220660A1 (en) * | 2001-02-05 | 2004-11-04 | Shanley John F. | Bioresorbable stent with beneficial agent reservoirs |
DE10150995A1 (en) | 2001-10-08 | 2003-04-10 | Biotronik Mess & Therapieg | Implant e.g. a stent, comprises a decomposable substance which allows contact between the cell proliferation inhibitor and the stent surroundings only after a specified time |
US6939376B2 (en) * | 2001-11-05 | 2005-09-06 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US20050019404A1 (en) | 2003-06-30 | 2005-01-27 | Hsing-Wen Sung | Drug-eluting biodegradable stent |
WO2004110502A2 (en) * | 2003-06-09 | 2004-12-23 | Macropore Biosurgery, Inc. | Helical endoluminal stent and related methods |
US7435256B2 (en) * | 2003-11-06 | 2008-10-14 | Boston Scientific Scimed, Inc. | Method and apparatus for controlled delivery of active substance |
AU2004289270A1 (en) * | 2003-11-07 | 2005-05-26 | Gp Medical, Inc. | Drug-eluting biodegradable stent |
US7785615B2 (en) * | 2004-05-28 | 2010-08-31 | Cordis Corporation | Biodegradable medical implant with encapsulated buffering agent |
US8518100B2 (en) * | 2005-12-19 | 2013-08-27 | Advanced Cardiovascular Systems, Inc. | Drug eluting stent for the treatment of dialysis graft stenoses |
US20080091262A1 (en) * | 2006-10-17 | 2008-04-17 | Gale David C | Drug delivery after biodegradation of the stent scaffolding |
US8394488B2 (en) * | 2006-10-06 | 2013-03-12 | Cordis Corporation | Bioabsorbable device having composite structure for accelerating degradation |
-
2006
- 2006-10-17 US US11/582,706 patent/US20080091262A1/en not_active Abandoned
-
2011
- 2011-04-13 US US13/086,308 patent/US8398706B2/en not_active Expired - Fee Related
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321711A (en) * | 1978-10-18 | 1982-03-30 | Sumitomo Electric Industries, Ltd. | Vascular prosthesis |
US4902289A (en) * | 1982-04-19 | 1990-02-20 | Massachusetts Institute Of Technology | Multilayer bioreplaceable blood vessel prosthesis |
US4656083A (en) * | 1983-08-01 | 1987-04-07 | Washington Research Foundation | Plasma gas discharge treatment for improving the biocompatibility of biomaterials |
US5197977A (en) * | 1984-01-30 | 1993-03-30 | Meadox Medicals, Inc. | Drug delivery collagen-impregnated synthetic vascular graft |
US4633873A (en) * | 1984-04-26 | 1987-01-06 | American Cyanamid Company | Surgical repair mesh |
US4732152A (en) * | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US4718907A (en) * | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US4818559A (en) * | 1985-08-08 | 1989-04-04 | Sumitomo Chemical Company, Limited | Method for producing endosseous implants |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4739762B1 (en) * | 1985-11-07 | 1998-10-27 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4739762A (en) * | 1985-11-07 | 1988-04-26 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665A (en) * | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665B1 (en) * | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US4740207A (en) * | 1986-09-10 | 1988-04-26 | Kreamer Jeffry W | Intralumenal graft |
US4723549A (en) * | 1986-09-18 | 1988-02-09 | Wholey Mark H | Method and apparatus for dilating blood vessels |
US4722335A (en) * | 1986-10-20 | 1988-02-02 | Vilasi Joseph A | Expandable endotracheal tube |
US4800882A (en) * | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4816339A (en) * | 1987-04-28 | 1989-03-28 | Baxter International Inc. | Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation |
US5306286A (en) * | 1987-06-25 | 1994-04-26 | Duke University | Absorbable stent |
US5192311A (en) * | 1988-04-25 | 1993-03-09 | Angeion Corporation | Medical implant and method of making |
US4994298A (en) * | 1988-06-07 | 1991-02-19 | Biogold Inc. | Method of making a biocompatible prosthesis |
US5502158A (en) * | 1988-08-08 | 1996-03-26 | Ecopol, Llc | Degradable polymer composition |
US5085629A (en) * | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US5289831A (en) * | 1989-03-09 | 1994-03-01 | Vance Products Incorporated | Surface-treated stent, catheter, cannula, and the like |
US5108755A (en) * | 1989-04-27 | 1992-04-28 | Sri International | Biodegradable composites for internal medical use |
US5100429A (en) * | 1989-04-28 | 1992-03-31 | C. R. Bard, Inc. | Endovascular stent and delivery system |
US5084065A (en) * | 1989-07-10 | 1992-01-28 | Corvita Corporation | Reinforced graft assembly |
US5290271A (en) * | 1990-05-14 | 1994-03-01 | Jernberg Gary R | Surgical implant and method for controlled release of chemotherapeutic agents |
US5279594A (en) * | 1990-05-23 | 1994-01-18 | Jackson Richard R | Intubation devices with local anesthetic effect for medical use |
US5385580A (en) * | 1990-08-28 | 1995-01-31 | Meadox Medicals, Inc. | Self-supporting woven vascular graft |
US5108417A (en) * | 1990-09-14 | 1992-04-28 | Interface Biomedical Laboratories Corp. | Anti-turbulent, anti-thrombogenic intravascular stent |
US5607467A (en) * | 1990-09-14 | 1997-03-04 | Froix; Michael | Expandable polymeric stent with memory and delivery apparatus and method |
US5104410A (en) * | 1990-10-22 | 1992-04-14 | Intermedics Orthopedics, Inc | Surgical implant having multiple layers of sintered porous coating and method |
US5711763A (en) * | 1991-02-20 | 1998-01-27 | Tdk Corporation | Composite biological implant of a ceramic material in a metal substrate |
US5282860A (en) * | 1991-10-16 | 1994-02-01 | Olympus Optical Co., Ltd. | Stent tube for medical use |
US5593434A (en) * | 1992-01-31 | 1997-01-14 | Advanced Cardiovascular Systems, Inc. | Stent capable of attachment within a body lumen |
US5858746A (en) * | 1992-04-20 | 1999-01-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
US5306294A (en) * | 1992-08-05 | 1994-04-26 | Ultrasonic Sensing And Monitoring Systems, Inc. | Stent construction of rolled configuration |
US5383925A (en) * | 1992-09-14 | 1995-01-24 | Meadox Medicals, Inc. | Three-dimensional braided soft tissue prosthesis |
US5733925A (en) * | 1993-01-28 | 1998-03-31 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5733564A (en) * | 1993-04-14 | 1998-03-31 | Leiras Oy | Method of treating endo-osteal materials with a bisphosphonate solution |
US5618299A (en) * | 1993-04-23 | 1997-04-08 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5389106A (en) * | 1993-10-29 | 1995-02-14 | Numed, Inc. | Impermeable expandable intravascular stent |
US5599301A (en) * | 1993-11-22 | 1997-02-04 | Advanced Cardiovascular Systems, Inc. | Motor control system for an automatic catheter inflation system |
US5725549A (en) * | 1994-03-11 | 1998-03-10 | Advanced Cardiovascular Systems, Inc. | Coiled stent with locking ends |
US5726297A (en) * | 1994-03-18 | 1998-03-10 | Lynx Therapeutics, Inc. | Oligodeoxyribonucleotide N3' P5' phosphoramidates |
US5591607A (en) * | 1994-03-18 | 1997-01-07 | Lynx Therapeutics, Inc. | Oligonucleotide N3→P5' phosphoramidates: triplex DNA formation |
US5599922A (en) * | 1994-03-18 | 1997-02-04 | Lynx Therapeutics, Inc. | Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties |
US6169170B1 (en) * | 1994-03-18 | 2001-01-02 | Lynx Therapeutics, Inc. | Oligonucleotide N3′→N5′Phosphoramidate Duplexes |
US5399666A (en) * | 1994-04-21 | 1995-03-21 | E. I. Du Pont De Nemours And Company | Easily degradable star-block copolymers |
US5874109A (en) * | 1994-07-27 | 1999-02-23 | The Trustees Of The University Of Pennsylvania | Incorporation of biological molecules into bioactive glasses |
US5593403A (en) * | 1994-09-14 | 1997-01-14 | Scimed Life Systems Inc. | Method for modifying a stent in an implanted site |
US5879713A (en) * | 1994-10-12 | 1999-03-09 | Focal, Inc. | Targeted delivery via biodegradable polymers |
US5707385A (en) * | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
US6171609B1 (en) * | 1995-02-15 | 2001-01-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5876743A (en) * | 1995-03-21 | 1999-03-02 | Den-Mat Corporation | Biocompatible adhesion in tissue repair |
US5605696A (en) * | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US20020004101A1 (en) * | 1995-04-19 | 2002-01-10 | Schneider (Usa) Inc. | Drug coating with topcoat |
US5855612A (en) * | 1995-05-12 | 1999-01-05 | Ohta Inc. | Biocompatible titanium implant |
US5591199A (en) * | 1995-06-07 | 1997-01-07 | Porter; Christopher H. | Curable fiber composite stent and delivery system |
US5865814A (en) * | 1995-06-07 | 1999-02-02 | Medtronic, Inc. | Blood contacting medical device and method |
US5873904A (en) * | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US5888533A (en) * | 1995-10-27 | 1999-03-30 | Atrix Laboratories, Inc. | Non-polymeric sustained release delivery system |
US5607442A (en) * | 1995-11-13 | 1997-03-04 | Isostent, Inc. | Stent with improved radiopacity and appearance characteristics |
US5733326A (en) * | 1996-05-28 | 1998-03-31 | Cordis Corporation | Composite material endoprosthesis |
US5874165A (en) * | 1996-06-03 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Materials and method for the immobilization of bioactive species onto polymeric subtrates |
US5855618A (en) * | 1996-09-13 | 1999-01-05 | Meadox Medicals, Inc. | Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin |
US6676697B1 (en) * | 1996-09-19 | 2004-01-13 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US5868781A (en) * | 1996-10-22 | 1999-02-09 | Scimed Life Systems, Inc. | Locking stent |
US5877263A (en) * | 1996-11-25 | 1999-03-02 | Meadox Medicals, Inc. | Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents |
US5741881A (en) * | 1996-11-25 | 1998-04-21 | Meadox Medicals, Inc. | Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions |
US5728751A (en) * | 1996-11-25 | 1998-03-17 | Meadox Medicals, Inc. | Bonding bio-active materials to substrate surfaces |
US5733330A (en) * | 1997-01-13 | 1998-03-31 | Advanced Cardiovascular Systems, Inc. | Balloon-expandable, crush-resistant locking stent |
US5874101A (en) * | 1997-04-14 | 1999-02-23 | Usbiomaterials Corp. | Bioactive-gel compositions and methods |
US6042875A (en) * | 1997-04-30 | 2000-03-28 | Schneider (Usa) Inc. | Drug-releasing coatings for medical devices |
US5891192A (en) * | 1997-05-22 | 1999-04-06 | The Regents Of The University Of California | Ion-implanted protein-coated intralumenal implants |
US20020004060A1 (en) * | 1997-07-18 | 2002-01-10 | Bernd Heublein | Metallic implant which is degradable in vivo |
US6174330B1 (en) * | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6010445A (en) * | 1997-09-11 | 2000-01-04 | Implant Sciences Corporation | Radioactive medical device and process |
US6015541A (en) * | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US6511748B1 (en) * | 1998-01-06 | 2003-01-28 | Aderans Research Institute, Inc. | Bioabsorbable fibers and reinforced composites produced therefrom |
US6709379B1 (en) * | 1998-11-02 | 2004-03-23 | Alcove Surfaces Gmbh | Implant with cavities containing therapeutic agents |
US6187045B1 (en) * | 1999-02-10 | 2001-02-13 | Thomas K. Fehring | Enhanced biocompatible implants and alloys |
US6183505B1 (en) * | 1999-03-11 | 2001-02-06 | Medtronic Ave, Inc. | Method of stent retention to a delivery catheter balloon-braided retainers |
US6177523B1 (en) * | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
US6706273B1 (en) * | 1999-08-14 | 2004-03-16 | Ivoclar Vivadent Ag | Composition for implantation into the human and animal body |
US6689375B1 (en) * | 1999-11-09 | 2004-02-10 | Coripharm Medizinprodukte Gmbh & Co. Kg | Resorbable bone implant material and method for producing the same |
US20020002399A1 (en) * | 1999-12-22 | 2002-01-03 | Huxel Shawn Thayer | Removable stent for body lumens |
US6537589B1 (en) * | 2000-04-03 | 2003-03-25 | Kyung Won Medical Co., Ltd. | Calcium phosphate artificial bone as osteoconductive and biodegradable bone substitute material |
US6527801B1 (en) * | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
US20050033412A1 (en) * | 2000-09-28 | 2005-02-10 | Wu Steven Z. | Method of making an implantable medical device |
US7335314B2 (en) * | 2000-09-28 | 2008-02-26 | Advanced Cardiovascular Systems Inc. | Method of making an implantable medical device |
US6517888B1 (en) * | 2000-11-28 | 2003-02-11 | Scimed Life Systems, Inc. | Method for manufacturing a medical device having a coated portion by laser ablation |
US20030033001A1 (en) * | 2001-02-27 | 2003-02-13 | Keiji Igaki | Stent holding member and stent feeding system |
US20030039689A1 (en) * | 2001-04-26 | 2003-02-27 | Jianbing Chen | Polymer-based, sustained release drug delivery system |
US6679980B1 (en) * | 2001-06-13 | 2004-01-20 | Advanced Cardiovascular Systems, Inc. | Apparatus for electropolishing a stent |
US6695920B1 (en) * | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
US20040030380A1 (en) * | 2002-04-24 | 2004-02-12 | Sun Biomedical, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
US20040039441A1 (en) * | 2002-05-20 | 2004-02-26 | Rowland Stephen Maxwell | Drug eluting implantable medical device |
US6846323B2 (en) * | 2003-05-15 | 2005-01-25 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10064982B2 (en) * | 2001-06-27 | 2018-09-04 | Abbott Cardiovascular Systems Inc. | PDLLA stent coating |
US20150359943A1 (en) * | 2001-06-27 | 2015-12-17 | Abbott Cardiovascular Systems Inc. | Pdlla stent coating |
US8469968B2 (en) | 2006-08-01 | 2013-06-25 | Abbott Cardiovascular Systems Inc. | Methods of treatment with drug delivery after biodegradation of the stent scaffolding |
US20110190875A1 (en) * | 2006-10-17 | 2011-08-04 | Advanced Cardiovascular Systems, Inc. | Drug Delivery After Biodegradation Of The Stent Scaffolding |
US8398706B2 (en) | 2006-10-17 | 2013-03-19 | Advanced Cardiovascular Systems, Inc. | Drug delivery after biodegradation of the stent scaffolding |
US9468707B2 (en) | 2007-06-29 | 2016-10-18 | Abbott Cardiovascular Systems Inc. | Biodegradable triblock copolymers for implantable devices |
US9090745B2 (en) | 2007-06-29 | 2015-07-28 | Abbott Cardiovascular Systems Inc. | Biodegradable triblock copolymers for implantable devices |
US20090110713A1 (en) * | 2007-10-31 | 2009-04-30 | Florencia Lim | Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices |
US20090291111A1 (en) * | 2008-05-21 | 2009-11-26 | Florencia Lim | Coating comprising an amorphous primer layer and a semi-crystalline reservoir layer |
US9592323B2 (en) | 2008-05-21 | 2017-03-14 | Abbott Cardiovascular Systems Inc. | Coating comprising an amorphous primer layer and a semi-crystalline reservoir layer |
US8661630B2 (en) | 2008-05-21 | 2014-03-04 | Abbott Cardiovascular Systems Inc. | Coating comprising an amorphous primer layer and a semi-crystalline reservoir layer |
US20100070013A1 (en) * | 2008-09-18 | 2010-03-18 | Medtronic Vascular, Inc. | Medical Device With Microsphere Drug Delivery System |
US10617796B2 (en) * | 2009-05-20 | 2020-04-14 | Lyra Therapeutics, Inc. | Drug eluting medical implant |
US10568994B2 (en) | 2009-05-20 | 2020-02-25 | 480 Biomedical Inc. | Drug-eluting medical implants |
US8888840B2 (en) * | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant |
US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants |
US8540765B2 (en) | 2009-05-20 | 2013-09-24 | 480 Biomedical, Inc. | Medical implant |
US9155638B2 (en) * | 2009-05-20 | 2015-10-13 | 480 Biomedical, Inc. | Drug eluting medical implant |
US20180296736A1 (en) * | 2009-05-20 | 2018-10-18 | 48 Biomedical, Inc. | Drug eluting medical implant |
US8137396B2 (en) * | 2009-05-20 | 2012-03-20 | 480 Biomedical, Inc | Medical implant |
US9278016B2 (en) | 2009-05-20 | 2016-03-08 | 480 Biomedical, Inc. | Medical implant |
US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers |
US20110238162A1 (en) * | 2009-05-20 | 2011-09-29 | Arsenal Medical | Medical implant |
US20100298952A1 (en) * | 2009-05-20 | 2010-11-25 | Arsenal Medical | Medical implant |
US10076591B2 (en) | 2010-03-31 | 2018-09-18 | Abbott Cardiovascular Systems Inc. | Absorbable coating for implantable device |
US20130138219A1 (en) * | 2011-11-28 | 2013-05-30 | Cook Medical Technologies Llc | Biodegradable stents having one or more coverings |
US8840678B2 (en) * | 2012-02-10 | 2014-09-23 | Abbott Cardiovascular Systems Inc. | Drug-eluting bioabsorbable renal artery stent for renal cancer and inflammatory disorders |
US20140242144A1 (en) * | 2012-02-10 | 2014-08-28 | Abbott Cardiovascular Systems Inc. | Drug eluting scaffold for kidney-related disease |
WO2015160501A1 (en) | 2014-04-18 | 2015-10-22 | Auburn University | Particulate vaccine formulations for inducing innate and adaptive immunity |
US10293044B2 (en) | 2014-04-18 | 2019-05-21 | Auburn University | Particulate formulations for improving feed conversion rate in a subject |
EP3693011A1 (en) | 2014-04-18 | 2020-08-12 | Auburn University | Particulate vaccine formulations for inducing innate and adaptive immunity |
US11135288B2 (en) | 2014-04-18 | 2021-10-05 | Auburn University | Particulate formulations for enhancing growth in animals |
WO2017049284A1 (en) * | 2015-09-17 | 2017-03-23 | Hollister Incorporated | Scaffold-based wound care delivery system and method |
US10583199B2 (en) | 2016-04-26 | 2020-03-10 | Northwestern University | Nanocarriers having surface conjugated peptides and uses thereof for sustained local release of drugs |
US11207423B2 (en) | 2016-04-26 | 2021-12-28 | Northwestern University | Nanocarriers having surface conjugated peptides and uses thereof for sustained local release of drugs |
Also Published As
Publication number | Publication date |
---|---|
US20110190875A1 (en) | 2011-08-04 |
US8398706B2 (en) | 2013-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9345816B2 (en) | Methods of treatment with drug delivery after biodegradation of the stent scaffolding | |
US8398706B2 (en) | Drug delivery after biodegradation of the stent scaffolding | |
US9005276B2 (en) | Bioabsorbable stent with prohealing layer | |
US7951194B2 (en) | Bioabsorbable stent with radiopaque coating | |
US7758881B2 (en) | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device | |
US8435550B2 (en) | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device | |
EP2276517B1 (en) | A coating comprising poly (ethylene glycol)-poly (lactide-glycolide-caprolactone) interpenetrating network | |
US20080306584A1 (en) | Implantable medical devices for local and regional treatment | |
US20070055364A1 (en) | Controlled disintegrating implantable medical devices | |
US20070254012A1 (en) | Controlled degradation and drug release in stents | |
US8252361B2 (en) | Implantable medical devices for local and regional treatment | |
US20110137243A1 (en) | Coating On A Balloon Device | |
ES2576107T3 (en) | Coating comprising an amorphous primer layer and a semi-crystalline reservoir layer | |
US9669137B2 (en) | Modified polylactide polymers | |
US9566373B2 (en) | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device | |
US20080306582A1 (en) | Implantable medical devices with elastomeric copolymer coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED CARDIOVASCULAR SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GALE, DAVID C.;HUANG, BIN;REEL/FRAME:018805/0969 Effective date: 20070108 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |