US20080083652A1 - Process for conversion of a deasphalted oil - Google Patents

Process for conversion of a deasphalted oil Download PDF

Info

Publication number
US20080083652A1
US20080083652A1 US11/867,922 US86792207A US2008083652A1 US 20080083652 A1 US20080083652 A1 US 20080083652A1 US 86792207 A US86792207 A US 86792207A US 2008083652 A1 US2008083652 A1 US 2008083652A1
Authority
US
United States
Prior art keywords
weight
feedstock
residue
conversion
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/867,922
Inventor
Frederic Morel
Andrea Gragnani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Assigned to IFP reassignment IFP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRAGNANI, ANDREA, MOREL, FREDERIC
Publication of US20080083652A1 publication Critical patent/US20080083652A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects

Definitions

  • the invention relates to a process for hydroconversion of heavy petroleum feedstocks, for example of the residue type such as atmospheric residue (AR) or vacuum residue (VR), to produce gasolines, gas oils, and vacuum gas oils.
  • residue type such as atmospheric residue (AR) or vacuum residue (VR)
  • AR atmospheric residue
  • VR vacuum residue
  • a conventional concatenation of the VR/AR conversion process consists in a stage of deasphalting with solvent (SDA) followed by a hydroconversion stage of the DAO (deasphalted oil), then distillation so as to transform it into products of high added value (gasoline, middle distillates, VGO: vacuum gas oil, vacuum residue).
  • SDA deasphalting with solvent
  • DAO deasphalted oil
  • the invention relates to a process in which the DAO is converted completely to the point of its total extinction by recycling the unconverted residue at the very input of the deasphalting unit.
  • the asphaltenes that are produced in the hydroconversion stage will then be eliminated in the SDA unit and will be found in the asphalt phase, so that the recycled DAO, which is virtually free of asphaltene, will penetrate the hydroconversion unit, mixed with the “straight-run” (SR) DAO and will crack in the hydroconversion unit with, however, a conversion rate that is slightly lower than the SR DAO.
  • the invention relates to a process for conversion of a heavy feedstock that has a boiling point of more than 340° C. for at least 80% by weight of the feedstock, a Conradson carbon content of at least 5% by weight, an asphaltene content of at least 1% by weight, a sulfur content of at least 0.5% by weight, and a metal content of at least 20 ppm, process in which:
  • the feedstock is generally of the residue type. It generally has a Conradson carbon content of at least 5% by weight and generally at least 10% by weight, an asphaltene content (IP143 Standard/with C7) of at least 1%, often at least 2%, and very often at least 5% by weight, and can even equal or exceed 24% by weight.
  • Their sulfur content is generally at least 0.5%, often at least 1%, and very often at least 2%, and even up to 4% or even 10% by weight.
  • the quantities of metals that they contain are generally at least 20 ppm by weight, often at least 50 ppm, and typically at least 100 ppm or at least 200 ppm by weight.
  • Such feedstocks are partially topped, for example stripped, crude oils, atmospheric residues, vacuum residues, atmospheric or vacuum residues that are obtained from the distillation of crude oils (SR) or obtained from a process for primary conversion of an atmospheric or vacuum residue (such as visbreaking, hydroconversion . . . ) or else atmospheric or vacuum residues that are obtained from light to medium or heavy conventional crude oils (for example, Middle East, Ural, West African, . . . ) or extra-heavy crude oils that have, for example, an API of less than 15 (crude oils of Venzuela, Canada, . . . ).
  • SR crude oils
  • the feedstocks are generally characterized by a boiling point of more than 340° C. for at least 80% by weight of the feedstock, and preferably for at least 90% by weight of the feedstock.
  • the process applies particularly to the heavy feedstocks that have a boiling point of more than 500° C., and even 540° C., for at least 80% by weight of the feedstock, or, preferably, for at least 90% of the feedstock.
  • They generally have (fresh feedstocks) a viscosity of less than 100,000 cSt at 100° C., and even less than 40,000 cST, and preferably less than 20,000 cST at 100° C. They should generally be converted to produce finished products such as gas oil, gasoline and GPL, of lower boiling point.
  • the attached drawing is a block flowsheet of a preferred comprehensive embodiment of the convention.
  • the feedstock that comes in via the pipe 1 is sent into the deasphalting unit 2 .
  • the residue that is obtained from the distillation, which will be described later, is added via the pipe 11 to this feedstock.
  • the deasphalting stage using a solvent is carried out under conditions that are well known to one skilled in the art.
  • the deasphalting is usually carried out at a temperature of 60 to 250° C. with at least one hydrocarbon-containing solvent that has 3 to 7 carbon atoms and is optionally diluted with at least one additive.
  • the usable solvents and the additives are extensively described. These are, as indicated above, for example, C4 to C6, and more particularly C5 or C6. It is also possible and advantageous to carry out the recovery of the solvent according to the opticritical process, i.e., by using a solvent under non-supercritical conditions. This process makes it possible in particular to improve significantly the overall economy of the process.
  • This deasphalting can be done in a mixer-decanter or in an extraction column.
  • the technique that uses at least one extraction column and advantageously a single one is preferred.
  • the starting solvent/feedstock ratios of SDA are low, between 4/1 and 6/1.
  • the deasphalting unit produces a DAO (deasphalted oil) that is virtually free of asphaltenes and an asphalt (pipe 13 ) that concentrates the majority of the impurities of the residue and that is drawn off.
  • the management of the solvent that is known to one skilled in the art has not been shown.
  • the DAO yield can vary by less than 50% by weight to more than 90% by weight.
  • the DAO has an asphaltene content that is reduced to less than 1% by weight in general (C7 measurement), preferably to less than 0.5%, most often to less than 0.05% (Solvahl process, for example), and even more preferably to less than 0.3% by weight, measured in C5 insoluble products, and to less than 0.05% by weight, measured in C7 insoluble products (Solvahl process, for example).
  • At least one portion of DAO, and preferably all of it, is sent into a hydroconversion unit 3 .
  • the hydroconversion stage therefore makes possible a partial conversion of the residue into products that are lighter than the feedstock (gas, gasoline, middle distillates, vacuum distillates VGO) by leaving a certain quantity of residue unconverted; it can be used according to various processes, such as the commercial processes below:
  • the fixed-bed or boiling-bed processes are preferred.
  • the conversion is defined as being the ratio (% by weight of residue in the feedstock ⁇ % of residue in the product)/% of residue in the feedstock, for the same feedstock-product fraction point; typically, this fraction point is between 450 and 550° C., and often about 500° C.; in this definition, the residue being the boiling fraction starting from this fraction point (such as 500° C.+, for example).
  • At least one conventional hydroconversion catalyst is used.
  • This catalyst is generally a catalyst that comprises a substrate, generally amorphous, which is preferably an alumina, and at least one metal from Group VIII (for example, nickel and/or cobalt), most often combined with at least one metal from group VIB (for example, molybdenum).
  • a catalyst that comprises 0.5 to 10% by weight of nickel and preferably 1 to 5% by weight of nickel (expressed in terms of nickel oxide NiO) and 1 to 30% by weight of molybdenum, preferably 5 to 20% by weight of molybdenum (expressed in terms of molybdenum oxide MoO 3 ) on a substrate, for example, an alumina substrate.
  • This catalyst is most often in the extrudate or ball form. The mechanical resistance of the substrates is high for the boiling-bed operation.
  • the procedure is usually performed in this stage under an absolute pressure of 5 to 35 MPa and most often from 10 to 25 MPa at a temperature of about 300 to about 500° C. and often from about 350 to 450° C.
  • the VVH of the liquid and the partial hydrogen pressure are selected based on the characteristics of the feedstock to be treated and the desired conversion. Most often, the VVH of the liquid is from about 0.1 to about 5 h ⁇ 1 , and preferably from about 0.15 to about 2 h ⁇ 1 .
  • the waste catalyst is partially replaced by fresh catalyst according to the known methods of one skilled in the art.
  • a catalyst is advantageously used, ensuring both the demetallization and the desulfurization, under conditions that make it possible to obtain a liquid feedstock with a reduced content of metals, Conradson carbon and sulfur and that make it possible to obtain a high conversion.
  • This type of boiling-bed process associated with the SDA is therefore particularly advantageous for treating the DAOs that often contain more than 30 ppm of metals.
  • At least one conventional hydroconversion catalyst fixed bed is used.
  • the procedure is performed usually under an absolute pressure of 5 to 35 MPa and most often from 10 to 20 MPa at a temperature from about 300 to 500° C. and often from about 350 to 450° C.
  • the VVH and the partial pressure of hydrogen are selected based on the characteristics of the feedstock that is to be treated and the desired conversion. Most often, the VVH is in a range that goes from about 0.1 to about 5 h ⁇ 1 and preferably about 0.15 to about 2.
  • the quantity of hydrogen that is mixed with the feedstock is usually from about 100 to about 500 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid feedstock and most often from about 500 to about 3000 Nm 3 /m 3 .
  • the ideal catalyst should have a strong hydrogenating power so as to carry out a deep refining and to obtain a significant reduction in sulfur, Conradson carbon and asphaltene content. It is possible, for example, to use one of the catalysts described by the applicant in the patents EP-B-113297 and EP-B-113284.
  • the catalysts are well known to one skilled in the art and are obtained from the thermal decomposition of catalytic precursors (for example, molybdenum naphthenate, etc . . . ).
  • the effluent that is obtained at the end of the hydroconversion stage (exiting via the pipe 4 ) is distilled in the atmospheric column 5 , and gasoline (pipe 6 ), gas oil (pipe 7 ) and an atmospheric residue (pipe 8 of FIG. 1 ) are obtained.
  • the atmospheric residue is vacuum-distilled (column 9 ), and VGO (vacuum gas oil via the pipe 10 ) and a vacuum residue (pipe 11 ) are obtained.
  • the conditions are generally selected such that the fraction point for the residue is from about 300 to about 400° C. and preferably from about 340 to about 380° C.
  • the distillates [gasoline fraction (pipe 8 ), and gas oil fraction (pipe 9 )] that are thus obtained are usually sent to the corresponding fuel pools.
  • the gas oil that is produced by the process according to the invention is hydrotreated in a subsequent unit 12 , under operating conditions and with catalysts that are usually used and known to one skilled in the art so as to bring the sulfur content to market specifications, which is less than 10 ppm of sulfur, and to improve the cetane index.
  • the gasoline fraction is generally treated by reforming (not shown in the Figure).
  • the atmospheric residue (pipe 8 ) is sent to vacuum distillation.
  • the conditions are generally selected so that the fraction point for the residue is from about 450 to 600° C. and most often from about 500 to 550° C.
  • the vacuum distillate fraction(s) (VGO) obtained exit(s) via the pipe(s) 10 and the vacuum residue via the pipe 11 .
  • the VGO is advantageously sent at least in part into a catalytic cracking unit 13 .
  • the atmospheric residue or preferably the vacuum residue is recycled at least in part, and preferably entirely, into the feedstock that goes into asphalting.
  • the total conversion is at least 20% or at least 30% by weight, and in the case of the boiling beds, at least 60%, and even at least 80%, and in the case of the slurry, most often, at least 80%.
  • the feedstock is an extra-heavy vacuum residue of Canadian origin.
  • the table below records the properties of this residue as well as those of the DAO that is obtained by pentane deasphalting of this residue (Solvahl process): TABLE 1 VR DAO Density 1.07 0.994 Viscosity at 100° C. cSt 30640 192.2 Conradson Carbon % by Weight 21.9 8.5 C7 Asphaltene % by Weight 14.9 Nickel ppm 137 20 Vanadium ppm 337 35 Nitrogen ppm 6000 3249 Sulfur % by Weight 5.4 4.05
  • This DAO is treated, on the one hand, in the conventional scheme by boiling-bed hydroconversion followed by an atmospheric distillation and a vacuum distillation without recycling of the vacuum residue, and, on the other hand, in the scheme according to the invention with recycling of the entire vacuum residue to the deasphalting.
  • the hydroconversion is performed under the same conditions as the 2 cases: 10 MPa of hydrogen and 440° C. in the presence of an NiMo/alumina catalyst.
  • the yields are indicated in % by weight relative to a base 100 of initial VR (Table 2). TABLE 2 % by Weight vs.
  • the quantity of asphalt slightly increases to 38% versus 35% in the conventional scheme, but in contrast, the yields of light products increase significantly, in particular the diesel fraction rises from 18.5% by weight in the conventional scheme to 22.3% of yield in the diagram according to the invention.
  • the VGO fraction rises from 18.8 to 22.7% by weight.
  • the invention therefore makes it possible to obtain gasoline and gas oil fractions with very good yields with good qualities of products with an economic process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The invention relates to a process for conversion of a heavy feedstock that has a boiling point of more than 340° C. for at least 80% by weight of the feedstock, a Conradson carbon content of at least 5% by weight, an asphaltene content of at least 1% by weight, a sulfur content of at least 0.5% by weight, and a metal content of at least 20 ppm, process in which: Said feedstock is subjected to deasphalting, and a deasphalted oil that contains less than 1% by weight of asphaltenes is obtained At least a portion of said oil, and preferably all of it, is subjected directly to hydroconversion in the presence of a supported or dispersed catalyst, and the effluent that is obtained is distilled to separate a residue At least part if not all of said residue is recycled with the feedstock to deasphalting.

Description

  • The invention relates to a process for hydroconversion of heavy petroleum feedstocks, for example of the residue type such as atmospheric residue (AR) or vacuum residue (VR), to produce gasolines, gas oils, and vacuum gas oils.
  • A conventional concatenation of the VR/AR conversion process consists in a stage of deasphalting with solvent (SDA) followed by a hydroconversion stage of the DAO (deasphalted oil), then distillation so as to transform it into products of high added value (gasoline, middle distillates, VGO: vacuum gas oil, vacuum residue).
  • The drawback of this type of scheme is that it is virtually impossible to complete a total conversion of the DAO into converted products, whereby the residue is evacuated outside of the unit. To enhance the conversion, it was recommended to recycle by hydroconversion the hydroconversion residue that was separated by distillation. This approach is limited because of the very refractory nature of the DAO in the total hydroconversion, especially since these are heavy DAOs, i.e., extracts with solvents ranging from C4 (butane) to C6 (hexane). It therefore is not possible to achieve a total conversion of the DAO in a hydroconversion unit that operates in liquid recycling mode.
  • A process has now been sought for the production of gasoline and gas oil with good yields and good qualities by a simple and economical process, in particular with recycling of the DAO to the point of extinction, which eliminates the drawbacks cited above.
  • The invention relates to a process in which the DAO is converted completely to the point of its total extinction by recycling the unconverted residue at the very input of the deasphalting unit. The asphaltenes that are produced in the hydroconversion stage will then be eliminated in the SDA unit and will be found in the asphalt phase, so that the recycled DAO, which is virtually free of asphaltene, will penetrate the hydroconversion unit, mixed with the “straight-run” (SR) DAO and will crack in the hydroconversion unit with, however, a conversion rate that is slightly lower than the SR DAO.
  • Thus, with a conversion per pass of slightly less recycled DAO than that of the SR DAO, a total conversion of the DAO into products of high added value is achieved at the end of several passages. It appears that the asphalt yield increases only slightly relative to the scheme without recycling because of the accumulation of small quantities of asphaltenes that are formed in the hydroconversion stage.
  • More specifically, the invention relates to a process for conversion of a heavy feedstock that has a boiling point of more than 340° C. for at least 80% by weight of the feedstock, a Conradson carbon content of at least 5% by weight, an asphaltene content of at least 1% by weight, a sulfur content of at least 0.5% by weight, and a metal content of at least 20 ppm, process in which:
      • Said feedstock is subjected to deasphalting, and a deasphalted oil that contains less than 1% by weight of asphaltenes is obtained
      • At least a portion, and preferably all, of said oil is subjected directly to hydroconversion in the presence of a supported or dispersed catalyst, and the effluent that is obtained is distilled to separate a residue
      • All of said residue is recycled with the feedstock to deasphalting.
  • The invention is explained with reference to FIG. 1.
  • The feedstock is generally of the residue type. It generally has a Conradson carbon content of at least 5% by weight and generally at least 10% by weight, an asphaltene content (IP143 Standard/with C7) of at least 1%, often at least 2%, and very often at least 5% by weight, and can even equal or exceed 24% by weight. Their sulfur content is generally at least 0.5%, often at least 1%, and very often at least 2%, and even up to 4% or even 10% by weight. The quantities of metals that they contain are generally at least 20 ppm by weight, often at least 50 ppm, and typically at least 100 ppm or at least 200 ppm by weight.
  • Such feedstocks are partially topped, for example stripped, crude oils, atmospheric residues, vacuum residues, atmospheric or vacuum residues that are obtained from the distillation of crude oils (SR) or obtained from a process for primary conversion of an atmospheric or vacuum residue (such as visbreaking, hydroconversion . . . ) or else atmospheric or vacuum residues that are obtained from light to medium or heavy conventional crude oils (for example, Middle East, Ural, West African, . . . ) or extra-heavy crude oils that have, for example, an API of less than 15 (crude oils of Venzuela, Canada, . . . ).
  • It is also possible to include carbons or cokes that are advantageously introduced in suspension.
  • The feedstocks are generally characterized by a boiling point of more than 340° C. for at least 80% by weight of the feedstock, and preferably for at least 90% by weight of the feedstock. The process applies particularly to the heavy feedstocks that have a boiling point of more than 500° C., and even 540° C., for at least 80% by weight of the feedstock, or, preferably, for at least 90% of the feedstock. They generally have (fresh feedstocks) a viscosity of less than 100,000 cSt at 100° C., and even less than 40,000 cST, and preferably less than 20,000 cST at 100° C. They should generally be converted to produce finished products such as gas oil, gasoline and GPL, of lower boiling point.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The attached drawing is a block flowsheet of a preferred comprehensive embodiment of the convention.
  • DETAILED DESCRIPTION OF THE FLOWSHEET
  • The feedstock that comes in via the pipe 1 is sent into the deasphalting unit 2. The residue that is obtained from the distillation, which will be described later, is added via the pipe 11 to this feedstock.
  • The deasphalting stage using a solvent is carried out under conditions that are well known to one skilled in the art.
  • It is possible to use, for example, the processes such as Solvahl, Rose, . . . .
  • The deasphalting is usually carried out at a temperature of 60 to 250° C. with at least one hydrocarbon-containing solvent that has 3 to 7 carbon atoms and is optionally diluted with at least one additive. The usable solvents and the additives are extensively described. These are, as indicated above, for example, C4 to C6, and more particularly C5 or C6. It is also possible and advantageous to carry out the recovery of the solvent according to the opticritical process, i.e., by using a solvent under non-supercritical conditions. This process makes it possible in particular to improve significantly the overall economy of the process. This deasphalting can be done in a mixer-decanter or in an extraction column.
  • Within the scope of this invention, the technique that uses at least one extraction column and advantageously a single one is preferred. Advantageously, as in the Solvahl process with a single extraction column, the starting solvent/feedstock ratios of SDA are low, between 4/1 and 6/1. In addition to an excellent extraction of metals and asphaltenes, this makes it possible to have only very small quantities of solvent in the DAO. The deasphalting unit produces a DAO (deasphalted oil) that is virtually free of asphaltenes and an asphalt (pipe 13) that concentrates the majority of the impurities of the residue and that is drawn off. The management of the solvent that is known to one skilled in the art has not been shown. The DAO yield can vary by less than 50% by weight to more than 90% by weight.
  • The DAO has an asphaltene content that is reduced to less than 1% by weight in general (C7 measurement), preferably to less than 0.5%, most often to less than 0.05% (Solvahl process, for example), and even more preferably to less than 0.3% by weight, measured in C5 insoluble products, and to less than 0.05% by weight, measured in C7 insoluble products (Solvahl process, for example).
  • At least one portion of DAO, and preferably all of it, is sent into a hydroconversion unit 3.
  • The hydroconversion stage therefore makes possible a partial conversion of the residue into products that are lighter than the feedstock (gas, gasoline, middle distillates, vacuum distillates VGO) by leaving a certain quantity of residue unconverted; it can be used according to various processes, such as the commercial processes below:
      • The fixed-bed hydroconversion processes, preferably followed by a visbreaking unit (Hyvahl, preferably followed by a visbreaking unit, Unibon . . . ) that operate with moderate conversions per pass that are typically of less than 50% by weight but at least 20% by weight or else at least 30% by weight
      • The moving-bed hydroconversion processes with semi-continuous addition of supported catalyst that operate with moderate conversions per pass that are typically of less than 50% by weight but at least 20% by weight or else at least 30% by weight.
      • The boiling-bed processes that operate advantageously with a semi-continuous addition of catalyst (H oil, LC fining . . . ) that operate with high conversions per pass, generally of at least 60% by weight. This type of process is preferred.
      • The slurry hydroconversion processes (HDHPLUS, EST . . . ) that operate with generally high conversions per pass of at least 50% by weight or at least 60% and preferably at least 80% by weight
        or their combinations.
  • The fixed-bed or boiling-bed processes are preferred.
  • The conversion is defined as being the ratio (% by weight of residue in the feedstock−% of residue in the product)/% of residue in the feedstock, for the same feedstock-product fraction point; typically, this fraction point is between 450 and 550° C., and often about 500° C.; in this definition, the residue being the boiling fraction starting from this fraction point (such as 500° C.+, for example).
  • For the boiling-bed processes, generally, at least one conventional hydroconversion catalyst is used. This catalyst is generally a catalyst that comprises a substrate, generally amorphous, which is preferably an alumina, and at least one metal from Group VIII (for example, nickel and/or cobalt), most often combined with at least one metal from group VIB (for example, molybdenum). It is possible, for example, to use a catalyst that comprises 0.5 to 10% by weight of nickel and preferably 1 to 5% by weight of nickel (expressed in terms of nickel oxide NiO) and 1 to 30% by weight of molybdenum, preferably 5 to 20% by weight of molybdenum (expressed in terms of molybdenum oxide MoO3) on a substrate, for example, an alumina substrate. This catalyst is most often in the extrudate or ball form. The mechanical resistance of the substrates is high for the boiling-bed operation.
  • The procedure is usually performed in this stage under an absolute pressure of 5 to 35 MPa and most often from 10 to 25 MPa at a temperature of about 300 to about 500° C. and often from about 350 to 450° C. The VVH of the liquid and the partial hydrogen pressure are selected based on the characteristics of the feedstock to be treated and the desired conversion. Most often, the VVH of the liquid is from about 0.1 to about 5 h−1, and preferably from about 0.15 to about 2 h−1. The waste catalyst is partially replaced by fresh catalyst according to the known methods of one skilled in the art.
  • In this stage, a catalyst is advantageously used, ensuring both the demetallization and the desulfurization, under conditions that make it possible to obtain a liquid feedstock with a reduced content of metals, Conradson carbon and sulfur and that make it possible to obtain a high conversion.
  • This type of boiling-bed process associated with the SDA is therefore particularly advantageous for treating the DAOs that often contain more than 30 ppm of metals.
  • In the fixed-bed processes, generally, at least one conventional hydroconversion catalyst fixed bed is used. The procedure is performed usually under an absolute pressure of 5 to 35 MPa and most often from 10 to 20 MPa at a temperature from about 300 to 500° C. and often from about 350 to 450° C. The VVH and the partial pressure of hydrogen are selected based on the characteristics of the feedstock that is to be treated and the desired conversion. Most often, the VVH is in a range that goes from about 0.1 to about 5 h−1 and preferably about 0.15 to about 2. The quantity of hydrogen that is mixed with the feedstock is usually from about 100 to about 500 normal cubic meters (Nm3) per cubic meter (m3) of liquid feedstock and most often from about 500 to about 3000 Nm3/m3.
  • The ideal catalyst should have a strong hydrogenating power so as to carry out a deep refining and to obtain a significant reduction in sulfur, Conradson carbon and asphaltene content. It is possible, for example, to use one of the catalysts described by the applicant in the patents EP-B-113297 and EP-B-113284.
  • Regarding the processes that run on slurry, i.e., in the presence of a circulated, dispersed, catalytic phase, they generally operate under a total pressure of 1-50 MPa, preferably 2-30 MPa, with a partial hydrogen pressure that varies from 1 to 50 MPa, preferably 2 to 30 MPa, with a temperature of 300 to 600° C., preferably 400 to 470° C., whereby the contact is carried out for a certain time that is necessary to the conversion of the residue, ranging from 5 nm to 20 h, preferably between 1 and 10 h.
  • The catalysts are well known to one skilled in the art and are obtained from the thermal decomposition of catalytic precursors (for example, molybdenum naphthenate, etc . . . ).
  • The effluent that is obtained at the end of the hydroconversion stage (exiting via the pipe 4) is distilled in the atmospheric column 5, and gasoline (pipe 6), gas oil (pipe 7) and an atmospheric residue (pipe 8 of FIG. 1) are obtained. Advantageously, the atmospheric residue is vacuum-distilled (column 9), and VGO (vacuum gas oil via the pipe 10) and a vacuum residue (pipe 11) are obtained.
  • In the atmospheric distillation zone 5, the conditions are generally selected such that the fraction point for the residue is from about 300 to about 400° C. and preferably from about 340 to about 380° C. The distillates [gasoline fraction (pipe 8), and gas oil fraction (pipe 9)] that are thus obtained are usually sent to the corresponding fuel pools. Before being sent there, the gas oil that is produced by the process according to the invention is hydrotreated in a subsequent unit 12, under operating conditions and with catalysts that are usually used and known to one skilled in the art so as to bring the sulfur content to market specifications, which is less than 10 ppm of sulfur, and to improve the cetane index. Before being sent to the gasoline pool, the gasoline fraction is generally treated by reforming (not shown in the Figure).
  • Preferably, the atmospheric residue (pipe 8) is sent to vacuum distillation.
  • In the vacuum distillation zone 9, the conditions are generally selected so that the fraction point for the residue is from about 450 to 600° C. and most often from about 500 to 550° C. The vacuum distillate fraction(s) (VGO) obtained exit(s) via the pipe(s) 10 and the vacuum residue via the pipe 11.
  • The VGO is advantageously sent at least in part into a catalytic cracking unit 13.
  • According to the invention, the atmospheric residue or preferably the vacuum residue is recycled at least in part, and preferably entirely, into the feedstock that goes into asphalting.
  • Thus, the total conversion is at least 20% or at least 30% by weight, and in the case of the boiling beds, at least 60%, and even at least 80%, and in the case of the slurry, most often, at least 80%.
  • EXAMPLE
  • The feedstock is an extra-heavy vacuum residue of Canadian origin. The table below records the properties of this residue as well as those of the DAO that is obtained by pentane deasphalting of this residue (Solvahl process):
    TABLE 1
    VR DAO
    Density 1.07 0.994
    Viscosity at 100° C. cSt 30640 192.2
    Conradson Carbon % by Weight 21.9 8.5
    C7 Asphaltene % by Weight 14.9
    Nickel ppm 137 20
    Vanadium ppm 337 35
    Nitrogen ppm 6000 3249
    Sulfur % by Weight 5.4 4.05
  • This DAO is treated, on the one hand, in the conventional scheme by boiling-bed hydroconversion followed by an atmospheric distillation and a vacuum distillation without recycling of the vacuum residue, and, on the other hand, in the scheme according to the invention with recycling of the entire vacuum residue to the deasphalting. The hydroconversion is performed under the same conditions as the 2 cases: 10 MPa of hydrogen and 440° C. in the presence of an NiMo/alumina catalyst. The yields are indicated in % by weight relative to a base 100 of initial VR (Table 2).
    TABLE 2
    % by Weight vs. VR Feed
    SDA + HCK SDA + HCK
    Without Recycling Recycle
    Conventional Scheme Scheme of the Invention
    H2S + NH3 3.0 3.0
    Gas: 3.6 4.3
    Gasoline: 9.7 11.5
    Diesel: 18.5 22.3
    VGO: 18.8 22.7
    VR: 13.0 0.0
    DAO
    SDA Purge 35.0 38.0
    Total 101.5 101.8
    H2 Consumption 1.5 1.8
  • With the conventional scheme, advantageous yields of converted products are obtained, but there remains, however, 13% of vacuum residue that has a very low value. The asphalt that is produced represents 35% by weight of the starting vacuum residue.
  • With the scheme according to the invention with recycling of the unconverted residue in the deasphalting unit, the quantity of asphalt slightly increases to 38% versus 35% in the conventional scheme, but in contrast, the yields of light products increase significantly, in particular the diesel fraction rises from 18.5% by weight in the conventional scheme to 22.3% of yield in the diagram according to the invention. The VGO fraction rises from 18.8 to 22.7% by weight.
  • This example demonstrates that it is possible, contrary to the preconceived idea that one skilled in the art had, of recycling the entire deasphalted hydroconversion vacuum residue by increasing the gas oil and gasoline yields while maintaining suitable product qualities and without reducing the service life of the catalyst, and without large quantities of asphalt being produced.
  • It was demonstrated here that the refractory compounds were eliminated in the deasphalting.
  • The invention therefore makes it possible to obtain gasoline and gas oil fractions with very good yields with good qualities of products with an economic process.
  • Furthermore, with the process according to the invention, it could be noted that it was possible to produce a very good feedstock for the catalytic cracking (FCC) that is the VGO that does not contain refractory asphaltenes with catalytic cracking. Thus, the VGO can be sent directly to the FCC and without pre-treatment.
  • The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.
  • The entire disclosures of all applications, patents and publications, cited herein and of corresponding French application No. 06/08.803, filed Oct. 6, 2006 are incorporated by reference herein.
  • From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims (12)

1. A process for conversion of a heavy feedstock that has a boiling point of more than 340° C. for at least 80% by weight of the feedstock, a Conradson carbon content of at least 5% by weight, an asphaltene content of at least 1% by weight, a sulfur content of at least 0.5% by weight, and a metal content of at least 20 ppm, said process comprising:
subjecting said feedstock to deasphalting, to obtain a deasphalted oil that contains less than 1% by weight of asphaltenes
subjecting at least a portion of said deasphalted oil directly to hydroconversion in the presence of a supported or dispersed catalyst, and distilling the resultant effluent to separate a residue, and
recycling at least part of said residue with the feedstock to said deasphalting.
2. A process according to claim 1, wherein all of the deasphalted oil is subjected to hydroconversion.
3. A process according to claim 1, wherein the feedstock has a boiling point of more than 540° C. for at least 80% by weight of the feedstock and a viscosity that is lower than 100,000 cSt at 100° C.
4. A process according to claim 1, wherein the hydroconversion stage is conducted in a boiling bed with a conversion per pass of at least 60% by weight.
5. A process according to claim 1, wherein the hydroconversion stage is conducted in a fixed bed with a conversion of greater than or equal to 20% by weight and less than 50% by weight.
6. A process according to claim 1, wherein the hydroconversion stage is conducted in a moving bed with a conversion of greater than or equal to 20% by weight and less than 50% by weight.
7. A process according to claim 1, wherein the hydroconversion stage is conducted as a slurry with a conversion of at least 50% by weight.
8. A process according to claim 7, wherein the hydroconversion stage is conducted at a temperature of 400-470° C. and with a conversion of at least 80% by weight.
9. A process according to claim 1, wherein said feedstock is directly subjected to deasphalting.
10. A process according to claim 1, wherein all of the residue is fed to the deasphalting.
11. A process according to claim 2, wherein all of the residue is fed to the deasphalting.
12. A process according to claim 11, wherein said feedstock is directly subjected to deasphalting.
US11/867,922 2006-10-06 2007-10-05 Process for conversion of a deasphalted oil Abandoned US20080083652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR06/08.803 2006-10-06
FR0608803A FR2906814B1 (en) 2006-10-06 2006-10-06 PROCESS FOR CONVERTING DESASPHALTEE OIL

Publications (1)

Publication Number Publication Date
US20080083652A1 true US20080083652A1 (en) 2008-04-10

Family

ID=37998433

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/867,922 Abandoned US20080083652A1 (en) 2006-10-06 2007-10-05 Process for conversion of a deasphalted oil

Country Status (3)

Country Link
US (1) US20080083652A1 (en)
CA (1) CA2605056C (en)
FR (1) FR2906814B1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008290A1 (en) * 2005-12-16 2009-01-08 Goutam Biswas Systems and Methods for Producing a Crude Product
US20090008291A1 (en) * 2005-12-16 2009-01-08 Julie Chabot Systems and Methods for Producing a Crude Product
US7678732B2 (en) 2004-09-10 2010-03-16 Chevron Usa Inc. Highly active slurry catalyst composition
US20100065473A1 (en) * 2008-09-18 2010-03-18 Julie Chabot Systems and Methods for Producing a Crude Product
US20110017636A1 (en) * 2009-07-21 2011-01-27 Nguyen Joseph V Systems and Methods for Producing a Crude Product
US7897035B2 (en) 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7901569B2 (en) 2005-12-16 2011-03-08 Chevron U.S.A. Inc. Process for upgrading heavy oil using a reactor with a novel reactor separation system
US7931797B2 (en) 2009-07-21 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7931796B2 (en) 2008-09-18 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7935243B2 (en) 2008-09-18 2011-05-03 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7943036B2 (en) 2009-07-21 2011-05-17 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7972499B2 (en) 2004-09-10 2011-07-05 Chevron U.S.A. Inc. Process for recycling an active slurry catalyst composition in heavy oil upgrading
US20110210045A1 (en) * 2005-12-16 2011-09-01 c/o Chevron Corporation Systems and Methods for Producing a Crude Product
US20110215030A1 (en) * 2010-03-02 2011-09-08 Meg Energy Corporation Optimal asphaltene conversion and removal for heavy hydrocarbons
US8048292B2 (en) 2005-12-16 2011-11-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8697594B2 (en) 2010-12-30 2014-04-15 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8759242B2 (en) 2009-07-21 2014-06-24 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US20140238898A1 (en) * 2013-02-25 2014-08-28 Foster Wheeler Usa Corporation Increased production of fuels by integration of vacuum distillation with solvent deasphalting
US8927448B2 (en) 2009-07-21 2015-01-06 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9068132B2 (en) 2009-07-21 2015-06-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9150794B2 (en) 2011-09-30 2015-10-06 Meg Energy Corp. Solvent de-asphalting with cyclonic separation
US9200211B2 (en) 2012-01-17 2015-12-01 Meg Energy Corp. Low complexity, high yield conversion of heavy hydrocarbons
US9321037B2 (en) 2012-12-14 2016-04-26 Chevron U.S.A., Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9976093B2 (en) 2013-02-25 2018-05-22 Meg Energy Corp. Separation of solid asphaltenes from heavy liquid hydrocarbons using novel apparatus and process (“IAS”)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969651B1 (en) 2010-12-24 2014-02-21 Total Raffinage Marketing HYDROCARBONATE LOADING CONVERSION METHOD COMPRISING SCIST OIL BY DECONTAMINATION, BOILING BED HYDROCONVERSION, AND ATMOSPHERIC DISTILLATION FRACTIONATION
FR3021326B1 (en) 2014-05-21 2017-12-01 Ifp Energies Now METHOD FOR CONVERTING A HEAVY HYDROCARBON LOAD INTEGRATING SELECTIVE DESASPHALTATION BEFORE THE CONVERSION STEP.
FR3075810B1 (en) 2017-12-21 2020-09-11 Ifp Energies Now IMPROVED RESIDUE CONVERSION PROCESS INTEGRATING DEEP HYDROCONVERSION STAGES AND A DESASPHALTING STAGE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559285A (en) * 1948-01-02 1951-07-03 Phillips Petroleum Co Catalytic cracking and destructive hydrogenation of heavy asphaltic oils
US2700637A (en) * 1951-11-30 1955-01-25 Standard Oil Dev Co Process for the removal of asphaltic constituents from residual oils
US3816295A (en) * 1972-12-14 1974-06-11 Texaco Inc Production of lubricating oils
US3830912A (en) * 1968-07-01 1974-08-20 Dow Corning Method for decreasing the reproductive function of mammals
US4592830A (en) * 1985-03-22 1986-06-03 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
US4686028A (en) * 1985-04-05 1987-08-11 Driesen Roger P Van Upgrading of high boiling hydrocarbons
US6306289B1 (en) * 1998-03-16 2001-10-23 Tonen Corporation Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380912A (en) * 1967-03-01 1968-04-30 Chevron Res Combination extraction-demetalation process for heavy oils
ATE62925T1 (en) * 1987-09-28 1991-05-15 Uop Inc CONTROL OF AROMATIC POLYNUCLEAR BY-PRODUCTS IN A HYDROCRACKING PROCESS.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559285A (en) * 1948-01-02 1951-07-03 Phillips Petroleum Co Catalytic cracking and destructive hydrogenation of heavy asphaltic oils
US2700637A (en) * 1951-11-30 1955-01-25 Standard Oil Dev Co Process for the removal of asphaltic constituents from residual oils
US3830912A (en) * 1968-07-01 1974-08-20 Dow Corning Method for decreasing the reproductive function of mammals
US3816295A (en) * 1972-12-14 1974-06-11 Texaco Inc Production of lubricating oils
US4592830A (en) * 1985-03-22 1986-06-03 Phillips Petroleum Company Hydrovisbreaking process for hydrocarbon containing feed streams
US4686028A (en) * 1985-04-05 1987-08-11 Driesen Roger P Van Upgrading of high boiling hydrocarbons
US6306289B1 (en) * 1998-03-16 2001-10-23 Tonen Corporation Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678732B2 (en) 2004-09-10 2010-03-16 Chevron Usa Inc. Highly active slurry catalyst composition
US7972499B2 (en) 2004-09-10 2011-07-05 Chevron U.S.A. Inc. Process for recycling an active slurry catalyst composition in heavy oil upgrading
US7938954B2 (en) 2005-12-16 2011-05-10 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US20090008291A1 (en) * 2005-12-16 2009-01-08 Julie Chabot Systems and Methods for Producing a Crude Product
US20090008290A1 (en) * 2005-12-16 2009-01-08 Goutam Biswas Systems and Methods for Producing a Crude Product
US8435400B2 (en) 2005-12-16 2013-05-07 Chevron U.S.A. Systems and methods for producing a crude product
US8372266B2 (en) 2005-12-16 2013-02-12 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8048292B2 (en) 2005-12-16 2011-11-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7901569B2 (en) 2005-12-16 2011-03-08 Chevron U.S.A. Inc. Process for upgrading heavy oil using a reactor with a novel reactor separation system
US20110210045A1 (en) * 2005-12-16 2011-09-01 c/o Chevron Corporation Systems and Methods for Producing a Crude Product
US7897036B2 (en) 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7935243B2 (en) 2008-09-18 2011-05-03 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US20100065473A1 (en) * 2008-09-18 2010-03-18 Julie Chabot Systems and Methods for Producing a Crude Product
US7931796B2 (en) 2008-09-18 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7897035B2 (en) 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8236169B2 (en) 2009-07-21 2012-08-07 Chevron U.S.A. Inc Systems and methods for producing a crude product
US8927448B2 (en) 2009-07-21 2015-01-06 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US7931797B2 (en) 2009-07-21 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US20110017636A1 (en) * 2009-07-21 2011-01-27 Nguyen Joseph V Systems and Methods for Producing a Crude Product
US8759242B2 (en) 2009-07-21 2014-06-24 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9068132B2 (en) 2009-07-21 2015-06-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US7943036B2 (en) 2009-07-21 2011-05-17 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US20110215030A1 (en) * 2010-03-02 2011-09-08 Meg Energy Corporation Optimal asphaltene conversion and removal for heavy hydrocarbons
US9890337B2 (en) 2010-03-02 2018-02-13 Meg Energy Corp. Optimal asphaltene conversion and removal for heavy hydrocarbons
US9481835B2 (en) 2010-03-02 2016-11-01 Meg Energy Corp. Optimal asphaltene conversion and removal for heavy hydrocarbons
US8802586B2 (en) 2010-12-30 2014-08-12 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8703637B2 (en) 2010-12-30 2014-04-22 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8809223B2 (en) 2010-12-30 2014-08-19 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8697594B2 (en) 2010-12-30 2014-04-15 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8846560B2 (en) 2010-12-30 2014-09-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8802587B2 (en) 2010-12-30 2014-08-12 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9018124B2 (en) 2010-12-30 2015-04-28 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9040446B2 (en) 2010-12-30 2015-05-26 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9040447B2 (en) 2010-12-30 2015-05-26 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8778828B2 (en) 2010-12-30 2014-07-15 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8809222B2 (en) 2010-12-30 2014-08-19 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9150794B2 (en) 2011-09-30 2015-10-06 Meg Energy Corp. Solvent de-asphalting with cyclonic separation
US9200211B2 (en) 2012-01-17 2015-12-01 Meg Energy Corp. Low complexity, high yield conversion of heavy hydrocarbons
US9944864B2 (en) 2012-01-17 2018-04-17 Meg Energy Corp. Low complexity, high yield conversion of heavy hydrocarbons
US9321037B2 (en) 2012-12-14 2016-04-26 Chevron U.S.A., Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
ES2552736R1 (en) * 2013-02-25 2015-12-21 Foster Wheeler Usa Corporation INCREASE OF FUEL PRODUCTION THROUGH THE INTEGRATION OF VACUUM DISTILLATION WITH DISASSEMBLY WITH SOLVENTS
CN105308158A (en) * 2013-02-25 2016-02-03 福斯特惠勒(美国)公司 Increased production of fuels by integration of vacuum distillation with solvent deasphalting
US9273256B2 (en) * 2013-02-25 2016-03-01 Foster Wheeler Usa Corporation Increased production of fuels by integration of vacuum distillation with solvent deasphalting
US20140238898A1 (en) * 2013-02-25 2014-08-28 Foster Wheeler Usa Corporation Increased production of fuels by integration of vacuum distillation with solvent deasphalting
US9976093B2 (en) 2013-02-25 2018-05-22 Meg Energy Corp. Separation of solid asphaltenes from heavy liquid hydrocarbons using novel apparatus and process (“IAS”)
RU2661875C2 (en) * 2013-02-25 2018-07-20 ФОСТЕР ВИЛЕР ЮЭсЭй КОРПОРЕЙШН Increased production of fuels by integration of vacuum distillation with solvent deasphalting
US10280373B2 (en) 2013-02-25 2019-05-07 Meg Energy Corp. Separation of solid asphaltenes from heavy liquid hydrocarbons using novel apparatus and process (“IAS”)

Also Published As

Publication number Publication date
CA2605056A1 (en) 2008-04-06
CA2605056C (en) 2016-06-21
FR2906814A1 (en) 2008-04-11
FR2906814B1 (en) 2012-09-21

Similar Documents

Publication Publication Date Title
US20080083652A1 (en) Process for conversion of a deasphalted oil
KR102558074B1 (en) Process integrating two-stage hydrocracking and a hydrotreating process
US9873839B2 (en) Multistage resid hydrocracking
US8110091B2 (en) Process for the conversion of feedstocks resulting from renewable sources for producing gas oil fuel bases with a low sulphur content and with an improved cetane number
CA2516562C (en) Process and installation including solvent deasphalting and ebullated-bed processing
US8784646B2 (en) Residue conversion process that includes a deasphalting stage and a hydroconversion stage with recycling of deasphalted oil
US8778169B2 (en) Residue conversion process that includes a deasphalting stage and a hydroconversion stage
EP3221430B1 (en) Process and system to upgrade partially converted vacuum residua
EP3683289A1 (en) Reforming method and reforming system for low quality oil
CN102037100B (en) Selectively heavy gas oil recycle for optimal integration of heavy oil conversion and vaccum gas oil treating
US10385283B2 (en) Hydroprocessing thermally cracked products
US20110198265A1 (en) Innovative heavy crude conversion/upgrading process configuration
KR20030022654A (en) Process for preparation of fuels and lubes in a single integrated hydrocracking system
US20100200459A1 (en) Selective staging hydrocracking
WO2012170082A1 (en) Two-stage, close-coupled, dual-catalytic heavy oil hydroconversion process
US9039890B2 (en) Two-stage, close-coupled, dual-catalytic heavy oil hydroconversion process
US20100193400A1 (en) Method for producing feedstocks of high quality lube base oil from coking gas oil
US20150021234A1 (en) Process for refining a hydrocarbon feedstock of the vacuum residue type using selective deasphalting, a hydrotreatment and a conversion of the vacuum residue for production of gasoline and light olefins
US8597495B2 (en) Partial uprading utilizing solvent deasphalting and DAO hydrocracking
IL226639A (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and liquid/liquid extraction of the heavy fraction
US10563139B2 (en) Flexible hydroprocessing of slurry hydrocracking products
CN110776953B (en) Process for treating heavy hydrocarbon feedstock comprising fixed bed hydroprocessing, two deasphalting operations and hydrocracking of bitumen
US20210171843A1 (en) Two-stage hydrocracking unit with intermediate hpna hydrogenation step
US9683182B2 (en) Two-stage diesel aromatics saturation process utilizing intermediate stripping and base metal catalyst
Arora et al. AM-11-19 Refinery Configurations for Maximum Conversion to Middle Distillates

Legal Events

Date Code Title Description
AS Assignment

Owner name: IFP, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOREL, FREDERIC;GRAGNANI, ANDREA;REEL/FRAME:020304/0588;SIGNING DATES FROM 20071204 TO 20071205

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION