US20080073248A1 - Heat transfer oil with high auto ignition temperature - Google Patents

Heat transfer oil with high auto ignition temperature Download PDF

Info

Publication number
US20080073248A1
US20080073248A1 US11/535,165 US53516506A US2008073248A1 US 20080073248 A1 US20080073248 A1 US 20080073248A1 US 53516506 A US53516506 A US 53516506A US 2008073248 A1 US2008073248 A1 US 2008073248A1
Authority
US
United States
Prior art keywords
heat transfer
transfer oil
oil
iso
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/535,165
Other languages
English (en)
Inventor
Ravindra Shah
John M. Rosenbaum
Nancy J. Bertrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron USA Inc filed Critical Chevron USA Inc
Priority to US11/535,165 priority Critical patent/US20080073248A1/en
Assigned to CHEVRON U.S.A. INC. reassignment CHEVRON U.S.A. INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHAH, RAVINDRA, MR., ROSENBAUM, JOHN M., MR., BERTRAND, NANCY J., MS.
Priority to GB0903621A priority patent/GB2454152B/en
Priority to CN2007800356550A priority patent/CN101679843B/zh
Priority to AU2007300155A priority patent/AU2007300155B2/en
Priority to JP2009530561A priority patent/JP2010511734A/ja
Priority to PCT/US2007/079437 priority patent/WO2008039788A2/en
Publication of US20080073248A1 publication Critical patent/US20080073248A1/en
Priority to US12/504,556 priority patent/US7972497B2/en
Priority to US12/504,570 priority patent/US7862743B2/en
Priority to US12/504,585 priority patent/US7972999B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/051Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/015Distillation range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/18Anti-foaming property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/95Processing of "fischer-tropsch" crude

Definitions

  • This invention is directed to a heat transfer oil having a high auto ignition temperature made using a base oil made from a waxy feed, a process to prepare a heat transfer oil, and a method to use a heat transfer oil.
  • Heat transfer oils should never be used above their auto ignition temperature (AIT).
  • AIT is the temperature at which the fluid will ignite spontaneously in contact with air.
  • Highly paraffinic heat transfer oils such as Caloria HT43, Mobiltherm 603, and Duratherm 630 have AITs of 632° F., 670° F., and 693° F. respectively.
  • These known heat transfer oils are made with highly refined, severely hydrotreated, petroleum-based paraffin oils that do not have the high viscosity index and preferred molecular composition that are desired.
  • Conventional heat transfer oils made by Chevron using petroleum derived neutral oils have AIT's of approximately 599° F.
  • a heat transfer oil, made using a base oil made from a waxy feed, and having a higher auto ignition temperature and higher viscosity index is desired; and processes to make and use it are also desired.
  • a heat transfer oil comprising a base oil made from a waxy feed.
  • the base oil has a pour point less than ⁇ 9° C., less than 0.3 wt % aromatics, greater than 10 weight percent and less than 70 weight percent total molecules with cycloparaffinic functionality, and a ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality greater than 15.
  • the heat transfer oil has an AIT greater than 329° C. (625° F.), a viscosity index greater than 28 ⁇ Ln(Kinematic Viscosity at 100° C., in cSt), and is selected from the group consisting of ISO 10, ISO 15, ISO 22, ISO 46, ISO 68 ISO 100, ISO 150 and ISO 220.
  • a process to prepare a heat transfer oil comprising: dewaxing a substantially paraffinic wax feed by hydroisomerization dewaxing using a shape selective intermediate pore size molecular sieve under hydroisomerization conditions including a hydrogen to feed ratio from about 712.4 to about 3562 liter H 2 /liter oil (about 4 to about 20 MSCF/bbl), whereby a lubricating base oil is produced,
  • a heat transfer oil comprising:
  • FIG. 1 illustrates the plot of Kinematic Viscosity at 40° C. in cSt vs. Auto Ignition Temperature by ASTM E659-78 (Reapproved 2005) in degrees Celsius. It shows the line for the auto ignition temperature equal to 1.6 ⁇ (Kinematic Viscosity at 40° C.)+300.
  • FIG. 2 illustrates the plot of ISO Viscosity Grade vs. 5 wt % boiling point by ASTM D6352-04, in degrees Celsius. It shows the line for the 5 wt % boiling point equal to 1.3 ⁇ (ISO Viscosity Grade)+360.
  • FIG. 3 illustrates the plots of Kinematic Viscosity at 100° C. in cSt vs. two preferred viscosity index lines, one being the equation for viscosity index equal to 28 ⁇ Ln(Kinematic Viscosity at 100° C.)+80 and the other being the equation for viscosity index equal to 28 ⁇ Ln(Kinematic Viscosity at 100° C.)+95.
  • heat transfer oils made using base oil having low pour point, low aromatic content, defined cycloparaffinic content, and a high ratio of monocycloparaffins to multicycloparaffins have an exceptionally high viscosity index (VI) and auto ignition temperature (AIT).
  • VI viscosity index
  • AIT auto ignition temperature
  • Weight percent Ramsbottom carbon residue is measured by ASTM D 524-04.
  • the carbon residue is the residue formed by evaporation and thermal degradation of a carbon containing material.
  • a low Ramsbottom carbon residue is an indication of the relative coke-forming propensity of a heat transfer oil, and is desired to be as low as possible in the heat transfer oil while still retaining a low auto ignition temperature.
  • n in the context of equations in this disclosure refers to the natural logarithm with base ‘e’.
  • Fischer-Tropsch derived or “FT derived” means that the product, fraction, or feed originates from or is produced at some stage by a Fischer-Tropsch process.
  • substantially paraffinic means containing a high level of n-paraffins, generally greater than 40 wt %, preferably greater than 50 wt %, more preferably greater than 75 wt %.
  • the feedstock for the Fischer-Tropsch process may come from a wide variety of hydrocarbonaceous resources, including biomass, natural gas, coal, shale oil, petroleum, municipal waste, derivatives of these and combinations thereof.
  • Slack wax can be obtained from conventional petroleum derived feedstocks by either hydrocracking or by solvent refining of the lube oil fraction. Typically, slack wax is recovered from solvent dewaxing feedstocks prepared by one of these processes. Hydrocracking is usually preferred because hydrocracking will also reduce the nitrogen content to a low value. With slack wax derived from solvent refined oils, deoiling may be used to reduce the nitrogen content. Hydrotreating of the slack wax can be used to lower the nitrogen and sulfur content. Slack waxes posses a very high viscosity index, normally in the range of from about 140 to 200, depending on the oil content and the starting material from which the slack wax was prepared. Therefore, slack waxes are suitable for the preparation of base oils made from a waxy feed used in the heat transfer oils of this invention.
  • the waxy feed useful in this invention preferably has less than 25 ppm total combined nitrogen and sulfur.
  • Nitrogen is measured by melting the waxy feed prior to oxidative combustion and chemiluminescence detection by ASTM D 4629-02. The test method is further described in U.S. Pat. No. 6,503,956, incorporated herein.
  • Sulfur is measured by melting the waxy feed prior to ultraviolet fluorescence by ASTM D 5453-00. The test method is further described in U.S. Pat. No. 6,503,956, incorporated herein.
  • Determination of normal paraffins (n-paraffins) in wax-containing samples should use a method that can determine the content of individual C7 to C110 n-paraffins with a limit of detection of 0.1 wt %. The preferred method used is described later in this disclosure.
  • Fischer-Tropsch wax represents an excellent feed for preparing high quality base oils according to the process of the invention.
  • Fischer-Tropsch wax is normally solid at room temperature and, consequently, displays poor low temperature properties, such as pour point and cloud point.
  • Fischer-Tropsch derived base oils having excellent low temperature properties may be prepared.
  • a general description of suitable hydroisomerization dewaxing processes may be found in U.S. Pat. Nos. 5,135,638 and 5,282,958; and US Patent Application 20050133409, incorporated herein.
  • the hydroisomerization is achieved by contacting the waxy feed with a hydroisomerization catalyst in an isomerization zone under hydroisomerizing conditions.
  • the hydroisomerization catalyst preferably comprises a shape selective intermediate pore size molecular sieve, a noble metal hydrogenation component, and a refractory oxide support.
  • the shape selective intermediate pore size molecular sieve is preferably selected from the group consisting of SAPO-11, SAPO-31, SAPO-41, SM-3, ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-57, SSZ-32, offretite, ferrierite, and combinations thereof.
  • SAPO-11, SM-3, SSZ-32, ZSM-23, and combinations thereof are more preferred.
  • the noble metal hydrogenation component is platinum, palladium, or combinations thereof.
  • hydroisomerizing conditions depend on the waxy feed used, the hydroisomerization catalyst used, whether or not the catalyst is sulfided, the desired yield, and the desired properties of the base oil.
  • Preferred hydroisomerizing conditions useful in the current invention include temperatures of 260 degrees C. to about 413 degrees C. (500 to about 775 degrees F.), a total pressure of 15 to 3000 psig, and a hydrogen to feed ratio from about 2 to 30 MSCF/bbl, preferably from about 4 to 20 MSCF/bbl (about 712.4 to about 3562 liter H 2 /liter oil), more preferably from about 4.5 or 5 to about 110 MSCF/bbl most preferably from about 5 to about 8 MSCF/bbl.
  • hydrogen will be separated from the product and recycled to the isomerization zone. Note that a feed rate of 10 MSCF/bbl is equivalent to 1781 liter H2/liter feed. Generally, hydrogen will be separated from the product and recycled to the isomerization zone.
  • the base oil produced by hydroisomerization dewaxing may be hydrofinished.
  • the hydrofinishing may occur in one or more steps, either before or after fractionating of the base oil into one or more fractions.
  • the hydrofinishing is intended to improve the oxidation stability, UV stability, and appearance of the product by removing aromatics, olefins, color bodies, and solvents.
  • a general description of hydrofinishing may be found in U.S. Pat. Nos. 3,852,207 and 4,673,487, incorporated herein.
  • the hydrofinishing step may be needed to reduce the weight percent olefins in the base oil to less than 10, preferably less than 5 or 2, more preferably less than 1, even more preferably less than 0.5, and most preferably less than 0.05 or 0.01.
  • the hydrofinishing step may also be needed to reduce the weight percent aromatics to less than 0.3 or 0.1, preferably less than 0.05, more preferably less than 0.02, and most preferably less than 0.01.
  • the lubricating base oil is typically separated into fractions, whereby one or more of the fractions will have a pour point less than ⁇ 9° C., a total weight percent of molecules with cycloparaffinic functionality greater than 10 and a ratio of weight percent molecules with monocycloparaffinic functionality to weight percent molecules with multicycloparaffinic functionality greater than 15.
  • the base oil is optionally fractionated into different viscosity grades of base oil.
  • “different viscosity grades of base oil” is defined as two or more base oils differing in kinematic viscosity at 100 degrees C. from each other by at least 1.0 cSt. Kinematic viscosity is measured using ASTM D 445-04. Fractionating is done using a vacuum distillation unit to yield cuts with pre selected boiling ranges. One of the fractions may be a distillation bottoms product.
  • the hydroisomerization dewaxing and fractionating conditions in the process of this invention are tailored to produce one or more selected fractions of base oil having greater than 10 weight percent total molecules with cycloparaffinic functionality, preferably greater than 20 weight percent, more preferably greater than 35 or greater than 40; and a viscosity index greater than 150.
  • the one or more selected fractions of base oils will usually have less than 70 weight percent total molecules with cycloparaffinic functionality.
  • the one or more selected fractions of base oil will additionally have a ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality greater than 2.1, more preferably greater than 15. In some preferred embodiments there may be no molecules with multicycloparaffinic functionality, such that the ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality is greater than 100.
  • the viscosity indexes of the lubricating base oils used in the heat transfer oils of this invention will be high. They will generally have viscosity indexes greater than 28 ⁇ Ln(Kinematic Viscosity at 100° C.)+80. In a preferred embodiment they will have viscosity indexes greater than 28 ⁇ Ln(Kinematic Viscosity at 100° C.)+95. Plots for the lines that define the two lower limits for the viscosity indexes described above are shown in FIG. 3 .
  • a 4.5 cSt oil will have a viscosity index greater than 122, preferably greater than 137, and a 6.5 cSt oil will have a viscosity index greater than 132, preferably greater than 147.
  • the test method used to measure viscosity index is ASTM D 2270-04.
  • the presence of predominantly cycloparaffinic molecules with monocycloparaffinic functionality in the base oil fractions of this invention provides excellent oxidation stability, low Noack volatility, as well as desired additive solubility and elastomer compatibility.
  • the base oil fractions have a weight percent olefins less than 10, preferably less than 5, more preferably less than 1, even more preferably less than 0.5, and most preferably less than 0.05 or 0.01.
  • the base oil fractions preferably have a weight percent aromatics less than 0.1, more preferably less than 0.05, and most preferably less than 0.02. Heat transfer oils made with a base oil with low olefin and aromatic contents would also have higher oxidation stabilities and should give longer service lives than heat transfer oils made with other paraffinic base oils.
  • the base oil fractions have a traction coefficient less than 0.023, preferably less than or equal to 0.021, more preferably less than or equal to 0.019, when measured at a kinematic viscosity of 15 cSt and at a slide to roll ratio of 40 percent.
  • the base oil fractions have a traction coefficient less than 0.015 or 0.011, when measured at a kinematic viscosity of 15 cSt and at a slide to roll ratio of 40 percent. Examples of these preferred base oil fractions with low traction coefficients are taught in U.S. Pat. No. 7,045,055 and U.S. patent application Ser. No. 11/400,570, filed Apr. 7, 2006.
  • the Oxidator BN of the selected base oil fraction will be greater than 25 hours, preferably greater than 35 hours, more preferably greater than 40 or even 41 hours.
  • the Oxidator BN of the selected base oil fraction will typically be less than 65 hours.
  • Oxidator BN is a convenient way to measure the oxidation stability of base oils. The Oxidator BN test is described by Stangeland et al. in U.S. Pat. No. 3,852,207. The Oxidator BN test measures the resistance to oxidation by means of a Dornte-type oxygen absorption apparatus. See R. W.
  • the additive package is 80 millimoles of zinc bispolypropylenephenyldithio-phosphate per 100 grams of oil, or approximately 1.1 grams of OLOA 260.
  • the Oxidator BN test measures the response of a lubricating base oil in a simulated application. High values, or long times to absorb one liter of oxygen, indicate good oxidation stability.
  • OLOA is an acronym for Oronite Lubricating Oil Additive, which is a registered trademark of Chevron Oronite.
  • Foam tendency and stability are measured by ASTM D 892-03.
  • ASTM D 892-03 measures the foaming characteristics of a lubricating base oil or finished lubricant at 24 degrees C. and 93.5 degrees C. It provides a means of empirically rating the foaming tendency and stability of the foam.
  • the test oil maintained at a temperature of 24 degrees C., is blown with air at a constant rate for 5 minutes then allowed to settle for 10 minutes.
  • the volume of foam, in ml is measured at the end of both periods (sequence I).
  • the foaming tendency is provided by the first measurement, the foam stability by the second measurement.
  • the test is repeated using a new portion of the test oil at 93.5 degrees C. (sequence II); however the settling time is reduced to one minute.
  • the heat transfer oils of this invention have much lower foaming tendency than typical heat transfer oils. They preferably have a sequence I foam tendency less than 50 ml; they have a sequence II foam tendency less than 50 ml, preferably less than 30 ml; and they preferably have a sequence III foam tendency less than 50 ml.
  • Foaming will vary in different base oils but can be controlled by the addition of antifoam agents.
  • the heat transfer oils of this invention will be blended little to no antifoam agent, typically less than 0.2 wt %.
  • heat transfer oils of a higher viscosity or additionally comprising other base oils may exhibit foaming.
  • antifoam agents are silicone oils, polyacrylates, acrylic polymers, and fluorosilicones.
  • antifoam agents in the heat transfer oils of this invention are antifoam agents that when blended into the heat transfer oil will exhibit spreading coefficients of at least 2 mN/m at both 24 degrees C. and 93.5 degrees C.
  • Various types of antifoam agents are taught in U.S. Pat. No. 6,090,758. When used, the antifoam agents should not significantly increase the air release time of the heat transfer oil.
  • One preferred antifoam agent is high molecular weight polydimethyl siloxane, a type of silicone antifoam agent.
  • Another preferred choice of antifoam agent in the heat transfer oils of this invention are acrylate antifoam agents, as they are less likely to adversely effect air release properties compared to lower molecular weight silicone antifoam agents.
  • the heat transfer oils of this invention may have ISO viscosity grades of 10 to 220.
  • the ISO viscosity grades are defined by ASTM D 2422-97 (Reapproved 2002).
  • the heat transfer oils of this invention also have 5 wt % boiling points relative to their ISO viscosity grades that are higher than other earlier known paraffinic type heat transfer oils.
  • the heat transfer oil will have a 5 wt % boiling point greater than 1.3 ⁇ (ISO Grade of Heat Transfer Oil)+360, in ° C.
  • a plot of the line defining this preferred lower limit of the 5 wt % boiling point of this embodiment of the heat transfer oils of this invention is shown in FIG. 2 .
  • an ISO 22 heat transfer oil will have a 5 wt % boiling point greater than 389° C. (732° F.), an ISO 32 heat transfer oil will have a 5 Wt % boiling point greater than 405° C. (761° F.), an ISO 46 heat transfer oil will have a 5 wt % boiling point greater than 440° C. (824° F.), an ISO 68 heat transfer oil will have a 5 wt % boiling point greater than 468° C. (875° F.).
  • an ISO 100 heat transfer oil of this invention will have a 5 wt % boiling point greater than 482° C. (900° F.), more preferably greater than 496° C. (925° F.). Wt % boiling points are determined by ASTM D6352-04.
  • Embodiments of the heat transfer oils of this invention may also comprise metals or metal oxides dispersed in them, and optionally a dispersant.
  • Metals, and optionally a dispersant, in the composition provide enhanced thermal conductivity based on the presence of fine particles.
  • Preferred metals and dispersants for use in heat transfer oils are taught in U.S. Patent Publication US20060027484.
  • Preferred embodiments of dispersant are anionic dispersant and/or nonionic dispersant, preferably sulfo succinate, alkoxylated polyaromatics, 12-hydroxy stearic acid and/or polyhydroxy stearic, acid.
  • antioxidants or mixtures of antioxidants, metal deactivators, and seal and gasket swell agents.
  • a method to use a heat transfer oil comprising selecting a heat transfer oil having an auto ignition temperature greater than 329° C. (625° F.) and a viscosity index greater than 28 ⁇ Ln(Kinematic Viscosity at 100° C.)+80, wherein the heat transfer oil comprises a base oil made from a waxy feed, providing the heat transfer oil to a mechanical system, and transferring heat in the mechanical system from a heat source to a heat sink.
  • Examples of mechanical systems where the use of the heat transfer oil of this invention with an especially high auto ignition temperature are valuable are heat pumps, batch reactors (especially constant heat flux batch reactors), refrigerators, air conditioners, chemical & pharmaceutical manufacturing equipment, and secondary loop systems.
  • GC gas chromatography
  • the waxy feed is melted to obtain a 0.1 g homogeneous sample.
  • the sample is immediately dissolved in carbon disulfide to give a 2 wt % solution. If necessary, the solution is heated until visually clear and free of solids, and then injected into the GC.
  • the methyl silicone column is heated using the following temperature program:
  • the column then effectively separates, in the order of rising carbon number, the normal paraffins from the non-normal paraffins.
  • a known reference standard is analyzed in the same manner to establish elution times of the specific normal-paraffin peaks.
  • the standard is ASTM D2887 n-paraffin standard, purchased from a vendor (Agilent or Supelco), spiked with 5 wt % Polywax 500 polyethylene (purchased from Petrolite Corporation in Oklahoma). The standard is melted prior to injection. Historical data collected from the analysis of the reference standard also guarantees the resolving efficiency of the capillary column.
  • normal paraffin peaks are well separated and easily identifiable from other hydrocarbon types present in the sample. Those peaks eluting outside the retention time of the normal paraffins are called non-normal paraffins.
  • the total sample is integrated using baseline hold from start to end of run, N-paraffins are skimmed from the total area end are integrated from valley to valley. All peaks detected are normalized to 100%. EZChrom is used for the peak identification and calculation of results.
  • the Wt % Olefins in the base oils of this invention is determined by proton-NMR by the following steps, A-D:
  • the wt % olefins by proton NMR calculation procedure, D works best when the % olefins result is low, less than about 15 weight percent.
  • the olefins must be “conventional” olefins; i.e. a distributed mixture of those olefin types having hydrogens attached to the double bond carbons such as: alpha, vinylidene, cis, trans, and trisubstituted. These olefin types will have a detectable allylic to olefin integral ratio between 1 and about 2.5. When this ratio exceeds about 3, it indicates a higher percentage of tri or tetra substituted olefins are present and that different assumptions must be made to calculate the number of double bonds in the sample.
  • the method used to measure low levels of molecules with at least one aromatic function in the lubricant base oils of this invention uses a Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography (HPLC) system coupled with a HP 1050 Diode-Array UV-Vis detector interfaced to an HP Chem-station. Identification of the individual aromatic classes in the highly saturated Base oils was made on the basis of their UV spectral pattern and their elution time. The amino column used for this analysis differentiates aromatic molecules largely on the basis of their ring-number (or more correctly, double-bond number). Thus, the single ring aromatic containing molecules elute first, followed by the polycyclic aromatics in order of increasing double bond number per molecule. For aromatics with similar double bond character, those with only alkyl substitution on the ring elute sooner than those with naphthenic substitution.
  • HPLC Hewlett Packard 1050 Series Quaternary Gradient High Performance Liquid Chromatography
  • Quantitation of the eluting aromatic compounds was made by integrating chromatograms made from wavelengths optimized for each general class of compounds over the appropriate retention time window for that aromatic. Retention time window limits for each aromatic class were determined by manually evaluating the individual absorbance spectra of eluting compounds at different times and assigning them to the appropriate aromatic class based on their qualitative similarity to model compound absorption spectra. With few exceptions, only five classes of aromatic compounds were observed in highly saturated API Group II and III lubricant base oils
  • HPLC-UV is used for identifying these classes of aromatic compounds even at very low levels.
  • Multi-ring aromatics typically absorb 10 to 200 times more strongly than single-ring aromatics.
  • Alkyl-substitution also affected absorption by about 20%. Therefore, it is important to use HPLC to separate and identify the various species of aromatics and know how efficiently they absorb.
  • alkyl-cyclohexylbenzene molecules in base oils exhibit a distinct peak absorbance at 272 nm that corresponds to the same (forbidden) transition that unsubstituted tetralin model compounds do at 268 nm.
  • concentration of alkyl-1-ring aromatic naphthenes in base oil samples was calculated by assuming that its molar absorptivity response factor at 272 nm was approximately equal to tetralin's molar absorptivity at 268 nm, calculated from Beer's law plots. Weight percent concentrations of aromatics were calculated by assuming that the average molecular weight for each aromatic class was approximately equal to the average molecular weight for the whole base oil sample.
  • This calibration method was further improved by isolating the 1-ring aromatics directly from the lubricant base oils via exhaustive HPLC chromatography. Calibrating directly with these aromatics eliminated the assumptions and uncertainties associated with the model compounds. As expected, the isolated aromatic sample had a lower response factor than the model compound because it was more highly substituted.
  • the substituted benzene aromatics were separated from the bulk of the lubricant base oil using a Waters semi-preparative HPLC unit. 10 grams of sample was diluted 1:1 in n-hexane and injected onto an amino-bonded silica column, a 5 cm ⁇ 22.4 mm ID guard, followed by two 25 cm ⁇ 22.4 mm ID columns of 8-12 micron amino-bonded silica particles, manufactured by Rainin Instruments, Emeryville, Calif., with n-hexane as the mobile phase at a flow rate of 18 mls/min. Column eluent was fractionated based on the detector response from a dual wavelength UV detector set at 265 nm and 295 nm.
  • the weight percent of all molecules with at least one aromatic function in the purified mono-aromatic standard was confirmed via long-duration carbon 13 NMR analysis. NMR was easier to calibrate than HPLC UV because it simply measured aromatic carbon so the response did not depend on the class of aromatics being analyzed. The NMR results were translated from % aromatic carbon to % aromatic molecules (to be consistent with HPLC-UV and D 2007) by knowing that 95-99% of the aromatics in highly saturated lubricant base oils were single-ring aromatics.
  • the standard D 5292-99 method was modified to give a minimum carbon sensitivity of 500:1 (by ASTM standard practice E 386)
  • A15-hour duration run on a 400-500 MHz NMR with a 10-12 mm Nalorac probe was used.
  • Acorn PC integration software was used to define the shape of the baseline and consistently integrate.
  • the carrier frequency was changed once during the run to avoid artifacts from imaging the aliphatic peak into the aromatic region. By taking spectra on either side of the carrier spectra, the resolution was improved significantly.
  • the lubricant base oils of this invention were characterized by Field Ionization Mass Spectroscopy (FIMS) into alkanes and molecules with different numbers of unsaturations. The distribution of the molecules in the oil fractions was determined by FIMS.
  • the samples were introduced via solid probe, preferably by placing a small amount (about 0.1 mg.) of the base oil to be tested in a glass capillary tube.
  • the capillary tube was placed at the tip of a solids probe for a mass spectrometer, and the probe was heated from about 40 to 50° C. up to 500 or 600° C. at a rate between 50° C. and 100° C. per minute in a mass spectrometer operating at about 10 ⁇ 6 torr.
  • the mass spectrometer was scanned from m/z 40 to m/z 1000 at a rate of 5 seconds per decade.
  • the mass spectrometer used was a Micromass Time-of-Flight. Response factors for all compound types were assumed to be 1.0, such that weight percent was determined from area percent. The acquired mass spectra were summed to generate one “averaged” spectrum.
  • the lubricant base oils of this invention were characterized by FIMS into alkanes and molecules with different numbers of unsaturations.
  • the molecules with different numbers of unsaturations may be comprised of cycloparaffins, olefins, and aromatics. If aromatics were present in significant amounts in the lubricant base oil they would be identified in the FIMS analysis as 4-unsaturations. When olefins were present in significant amounts in the lubricant base oil they would be identified in the FIMS analysis as 1-unsaturations.
  • the total of the 1-unsaturations, 2-unsaturations, 3-unsaturations, 4-unsaturations, 5-unsaturations, and 6-unsaturations from the FIMS analysis, minus the wt % olefins by proton NMR, and minus the wt % aromatics by HPLC-UV is the total weight percent of molecules with cycloparaffinic functionality in the lubricant base oils of this invention. Note that if the aromatics content was not measured, it was assumed to be less than 0.1 wt % and not included in the calculation for total weight percent of molecules with cycloparaffinic functionality.
  • Molecules with cycloparaffinic functionality mean any molecule that is, or contains as one or more substituents, a monocyclic or a fused multicyclic saturated hydrocarbon group.
  • the cycloparaffinic group may be optionally substituted with one or more substituents.
  • Representative examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, decahydronaphthalene, octahydropentalene, (pentadecan-6-yl)cyclohexane, 3,7,10-tricyclohexylpentadecane, decahydro-1-(pentadecan-6-yl)naphthalene, and the like.
  • Molecules with monocycloparaffinic functionality mean any molecule that is a monocyclic saturated hydrocarbon group of three to seven ring carbons or any molecule that is substituted with a single monocyclic saturated hydrocarbon group of three to seven ring carbons.
  • the cycloparaffinic group may be optionally substituted with one or more substituents. Representative examples include, but are not limited to, cyclopropyl, cyclobutyl cyclopentyl, cyclohexyl, cycloheptyl, (pentadecan-6-yl) cyclohexane, and the like.
  • Molecules with multicycloparaffinic functionality mean any molecule that is a fused multicyclic saturated hydrocarbon ring group of two or more fused rings, any molecule that is substituted with one or more fused multicyclic saturated hydrocarbon ring groups of to or more fused rings, or any molecule that is substituted with more than one monocyclic saturated hydrocarbon group of three to seven ring carbons.
  • the fused multicyclic saturated hydrocarbon ring group preferably is of two fused rings.
  • the cycloparaffinic group may be optionally substituted with one or more substituents.
  • Representative examples include, but are not limited to, decahydronaphthalene, octahydropentalene, 3,7,10-tricyclohexylpentadecane, decahydro-1-(pentadecan-6-yl)naphthalene, and the like.
  • a wax sample composed of several different batches of hydrotreated Fischer-Tropsch wax, all made using a Co-based Fischer-Tropsch catalyst was prepared.
  • the different batches of wax composing the wax sample were analyzed and all found to have the properties as shown in Table VIII.
  • the Co-based Fischer-Tropsch wax was hydroisomerized over a Pt/SAPO-11 catalyst with an alumina binder. Operating conditions included temperatures between 635° F. and 675° F. (335° C. and 358° C.), LHSV of 1.0 hr ⁇ 1 , reactor pressure of about 500 psig, and once-through hydrogen rates of between 5 and 6 MSCF/bbl.
  • the reactor effluent passed directly to a second reactor containing a Pd on silica-alumina hydrofinishing catalyst also operated at 500 psig. Conditions in the second reactor included a temperature of about 350° F. (177° C.) and an LHSV of 2.0 hr ⁇ 1 .
  • the products boiling above 650° F. were fractionated by vacuum distillation to produce distillate fractions of different viscosity grades.
  • Three Fischer-Tropsch derived lubricant base oils were obtained. Two were distillate side-cut fractions (FT-4.5 and FT-6.4) and one was a distillate bottoms fraction (FT-14).
  • the FIMS analysis was conducted on a Micromass Time-of-Flight spectrophotometer. The emitter on the Micromass Time-of-Flight was a Carbotec 5 um emitter designed for FI operation. A constant flow of pentaflourochlorobenzene, used as lock mass, was delivered into the mass spectrometer via a thin capillary tube. The probe was heated from about 50° C. up to 600° C. at a rate of 100° C. per minute. Test data on the three Fischer-Tropsch derived lubricant base oils are shown in Table II, below.
  • HEATA and HEATB are examples of the heat transfer oils of this invention having an auto ignition temperature greater than 625° F. (329° C.). They both comprise a base oil, made from a waxy feed, having a pour point less than ⁇ 9° C., less than 0.3 wt % aromatics, greater than 10 wt % total molecules with cycloparaffinic functionality, and a ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality greater than 15, and optionally one or more lubricant additives.
  • a plot of the line that defines this preferred lower limit of auto ignition temperatures for the heat transfer oils of this invention is shown in FIG. 1 .
  • Comp HEATC and Comp HEATD Two comparative heat transfer oil blends, Comp HEATC and Comp HEATD, were made using conventional Group II base oils.
  • Comp HEATE is a typical sample of Duratherm 630, of which the exact formulation is not known other than it contains a number of additives including a dual-stage antioxidant, metal deactivators, antifoam agent, seal & gasket extender, and particle suspension agents.
  • the formulations and properties of these comparison blends are summarized in Table V.
  • Comparative sample HEATE although having a high AIT, had a lower viscosity index and lower 5 wt % boiling point than the heat transfer oils of our invention. Also the comparative sample HEATE, being petroleum derived, did not have the preferred molecular composition of the heat transfer oils of our invention.
  • Three base oils made by hydroisomerizing paraffinic Co-based Fischer-Tropsch wax over a Pt/SAPO-11 catalyst, hydrotreating, and distillation, were selected for blending into heat transfer oils.
  • the properties of the three base oils are summarized in Table VI, below.
  • All three of these base oils have between 10 and 70 wt % total molecules with cycloparaffinic functionality and a ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality greater than 15.
  • FT-HN is also an example of an isomerized Fischer-Tropsch derived base oil fraction have a traction coefficient less than or equal to 0.015, when measured at a kinematic viscosity of 15 cSt and at a slide to roll ratio of 40 percent.
  • Example 4 The three base oils in Example 4 were blended into heat transfer oil oils over a range of ISO viscosity grades from ISO 22 to ISO 100. The formulations and properties of these heat transfer oils are shown in Table VII.
  • HEATF HEATG HEATH HEATJ Component, Wt % ISO 22 ISO 46 ISO 68 ISO 100 FT-LN 63.72 0.00 0.00 0.00 FT-MN 36.28 90.995 42.784 4.348 FT-HN 0.00 8.967 57.178 95.614 Antifoam Agent 0.00 0.038 0.038 0.038 Total 100.000 100.000 100.000 100.000 100.000 Formulation Properties Kinematic Viscosity at 41.13 65.75 95.28 40° C., cSt 23.19 Kinematic Viscosity at 5.029 7.606 10.91 14.46 100° C., cSt Viscosity Index 150 155 158 157 Ramsbottom carbon 0.03 0.04 0.04 0.04 residue, Wt % Auto Ignition, E659, 700 (371) 685 (363) 739 (393) 750 (399) ° F.
  • the different grades of heat transfer oil were blended with base oils made from Fischer-Tropsch wax and either with or without 0.038 wt % antifoam agent.
  • the Fischer-Tropsch derived base oils that were used had weight percent aromatics less than 0.06 and weight percent olefins less than 2.5.
  • the Fischer-Tropsch derived base oils had Oxidator BNs between 30 and 60 hours.
  • the ISO 22 heat transfer oil had an AIT greater than 357° C. and a 5 wt % boiling point greater than 389° C. (731° F.).
  • the ISO 46 heat transfer oil had an AIT greater than 357° C. and a 5 wt % boiling point greater than 420° C. (788° F.).
  • the ISO 68 heat transfer oil had an AIT greater than 357° C. and a 5 wt % boiling point greater than 448° C. (839° F.).
  • the ISO 100 heat transfer oil had an AIT greater than 357° C. and a 5 wt % boiling point greater than 482° C. (900° F.).
  • HEATG, HEATH and HEATJ were surprising in that even though they contained a base oil, FT-HN, having a relatively high 50 wt % boiling point (greater than 566° C. [1050° F.]), they still were colorless by the ASTM Color test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)
  • Developing Agents For Electrophotography (AREA)
US11/535,165 2006-09-26 2006-09-26 Heat transfer oil with high auto ignition temperature Abandoned US20080073248A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US11/535,165 US20080073248A1 (en) 2006-09-26 2006-09-26 Heat transfer oil with high auto ignition temperature
PCT/US2007/079437 WO2008039788A2 (en) 2006-09-26 2007-09-25 Heat transfer oil with high auto ignition temperature
JP2009530561A JP2010511734A (ja) 2006-09-26 2007-09-25 高い自己点火温度を有する伝熱油
CN2007800356550A CN101679843B (zh) 2006-09-26 2007-09-25 具有高自燃温度的传热油
AU2007300155A AU2007300155B2 (en) 2006-09-26 2007-09-25 Heat transfer oil with high auto ignition temperature
GB0903621A GB2454152B (en) 2006-09-26 2007-09-25 Heat transfer oil with high auto ignition temperature
US12/504,556 US7972497B2 (en) 2006-09-26 2009-07-16 Process to prepare a heat transfer oil
US12/504,570 US7862743B2 (en) 2006-09-26 2009-07-16 Method of using heat transfer oil with high auto ignition temperature
US12/504,585 US7972999B2 (en) 2006-09-26 2009-07-16 Heat transfer oil comprising a base oil having a low traction coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/535,165 US20080073248A1 (en) 2006-09-26 2006-09-26 Heat transfer oil with high auto ignition temperature

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/504,570 Division US7862743B2 (en) 2006-09-26 2009-07-16 Method of using heat transfer oil with high auto ignition temperature
US12/504,556 Division US7972497B2 (en) 2006-09-26 2009-07-16 Process to prepare a heat transfer oil
US12/504,585 Division US7972999B2 (en) 2006-09-26 2009-07-16 Heat transfer oil comprising a base oil having a low traction coefficient

Publications (1)

Publication Number Publication Date
US20080073248A1 true US20080073248A1 (en) 2008-03-27

Family

ID=39223772

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/535,165 Abandoned US20080073248A1 (en) 2006-09-26 2006-09-26 Heat transfer oil with high auto ignition temperature
US12/504,585 Active US7972999B2 (en) 2006-09-26 2009-07-16 Heat transfer oil comprising a base oil having a low traction coefficient
US12/504,556 Expired - Fee Related US7972497B2 (en) 2006-09-26 2009-07-16 Process to prepare a heat transfer oil
US12/504,570 Expired - Fee Related US7862743B2 (en) 2006-09-26 2009-07-16 Method of using heat transfer oil with high auto ignition temperature

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/504,585 Active US7972999B2 (en) 2006-09-26 2009-07-16 Heat transfer oil comprising a base oil having a low traction coefficient
US12/504,556 Expired - Fee Related US7972497B2 (en) 2006-09-26 2009-07-16 Process to prepare a heat transfer oil
US12/504,570 Expired - Fee Related US7862743B2 (en) 2006-09-26 2009-07-16 Method of using heat transfer oil with high auto ignition temperature

Country Status (5)

Country Link
US (4) US20080073248A1 (ja)
JP (1) JP2010511734A (ja)
CN (1) CN101679843B (ja)
GB (1) GB2454152B (ja)
WO (1) WO2008039788A2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276808A1 (en) * 2007-05-08 2008-11-13 Sus Gerald A Thin film cooking devices and methods
EP2100946A1 (en) * 2008-09-08 2009-09-16 Shell Internationale Researchmaatschappij B.V. Oil formulations
US20090320475A1 (en) * 2008-06-13 2009-12-31 Parrella Michael J System and method of capturing geothermal heat from within a drilled well to generate electricity
US20100269501A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
US20100270001A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing grout heat conductibility and increasing caustic resistance
US20100270002A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing performance of a solid-state closed loop well heat exchanger
US20100276115A1 (en) * 2008-08-05 2010-11-04 Parrella Michael J System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
US20110012053A1 (en) * 2009-07-16 2011-01-20 Chevron U.S.A. Inc. Heat transfer oil with a high auto ignition temperature
WO2012151487A1 (en) * 2011-05-04 2012-11-08 Gtherm Inc. Swegs adapted for use in cooling, heating, voc remediation, mining, pasteurization and brewing applications
US8702968B2 (en) 2011-04-05 2014-04-22 Chevron Oronite Technology B.V. Low viscosity marine cylinder lubricating oil compositions
EP2576735A4 (en) * 2010-05-25 2017-06-14 Avantherm AB Heat exchange medium
CN110317639A (zh) * 2019-07-29 2019-10-11 海南汉地阳光石油化工有限公司 一种导热油的加工工艺及加工装置
CN111004611A (zh) * 2019-12-14 2020-04-14 江苏曼拓化学有限公司 一种重烷基苯导热油的制备方法
US11193082B2 (en) * 2018-03-27 2021-12-07 Eneos Corporation Wax isomerized oil
CN115340850A (zh) * 2021-10-15 2022-11-15 福斯润滑油(中国)有限公司 一种用于电池和充电桩的热管理流体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0615192A2 (pt) * 2005-08-22 2011-05-10 Shell Int Research combustÍvel diesel, e, mÉtodos para operar um motor a diesel e para reduzir a emissço de àxidos de nitrogÊnio
ES2425002B1 (es) * 2012-04-04 2014-10-01 Fundacion Cener-Ciemat Método de detección y cuantificación de hidrógeno en un aceite caloportador
CN103387819B (zh) * 2012-05-07 2016-03-30 山东英可利化工有限公司 化学合成芳烃热传导液及其制备方法
CN103387821B (zh) * 2012-05-07 2016-01-20 山东英可利化工有限公司 加氢合成热传导液及其制备方法
CN103387820B (zh) * 2012-05-07 2016-03-30 山东英可利化工有限公司 高级化学合成二苄基甲苯热传导液及其制备方法
CN102703036B (zh) * 2012-07-04 2015-01-21 江苏快捷士润滑油有限公司 一种半合成型有机热载体
ES2472447B1 (es) 2012-11-30 2015-07-09 Abengoa Solar New Technologies S.A. Plataforma portátil de mezcla para la producción de un fluido caloportador y procedimiento de producción del mismo
JP6182028B2 (ja) * 2013-09-11 2017-08-16 昭和シェル石油株式会社 熱媒体油組成物
EP3315586A1 (en) * 2016-10-27 2018-05-02 Total Marketing Services Use of biodegradable hydrocarbon fluids as heat-transfer media
FR3136476A1 (fr) 2022-06-13 2023-12-15 Totalenergies Onetech Fluides caloporteurs à base d’huiles lubrifiantes au moins en partie re-raffinées

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133408A1 (en) * 2003-12-23 2005-06-23 Chevron U.S.A. Inc. Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7045055B2 (en) * 2004-04-29 2006-05-16 Chevron U.S.A. Inc. Method of operating a wormgear drive at high energy efficiency

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678860A (en) * 1985-10-04 1987-07-07 Arizona Board Of Regents Process of producing liquid hydrocarbon fuels from biomass
US5378349A (en) * 1993-05-26 1995-01-03 Phillips Petroleum Company Passivated catalysts for cracking process
US5466364A (en) * 1993-07-02 1995-11-14 Exxon Research & Engineering Co. Performance of contaminated wax isomerate oil and hydrocarbon synthesis liquid products by silica adsorption
US6916766B2 (en) * 2002-02-05 2005-07-12 Exxonmobil Research And Engineering Company Circulating oil compositions
US7436328B2 (en) * 2003-07-09 2008-10-14 Texas Instruments Incorporated Video coding with start code emulation prevention
US7763161B2 (en) 2003-12-23 2010-07-27 Chevron U.S.A. Inc. Process for making lubricating base oils with high ratio of monocycloparaffins to multicycloparaffins
WO2005066319A1 (en) * 2003-12-23 2005-07-21 Chevron U.S.A. Inc. Lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7282134B2 (en) 2003-12-23 2007-10-16 Chevron Usa, Inc. Process for manufacturing lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7195706B2 (en) * 2003-12-23 2007-03-27 Chevron U.S.A. Inc. Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins
GB2415435B (en) * 2004-05-19 2007-09-05 Chevron Usa Inc Lubricant blends with low brookfield viscosities
US7273834B2 (en) * 2004-05-19 2007-09-25 Chevron U.S.A. Inc. Lubricant blends with low brookfield viscosities
US7435327B2 (en) * 2004-12-16 2008-10-14 Chevron U.S.A. Inc. Hydraulic oil with excellent air release and low foaming tendency
US7547666B2 (en) * 2005-12-21 2009-06-16 Chevron U.S.A. Inc. Ashless lubricating oil with high oxidation stability
US7662271B2 (en) * 2005-12-21 2010-02-16 Chevron U.S.A. Inc. Lubricating oil with high oxidation stability
US7374658B2 (en) * 2005-04-29 2008-05-20 Chevron Corporation Medium speed diesel engine oil
US7438228B2 (en) 2005-05-05 2008-10-21 Scott Robertson Systems and methods for managing electronic prescriptions
US7687445B2 (en) * 2005-06-22 2010-03-30 Chevron U.S.A. Inc. Lower ash lubricating oil with low cold cranking simulator viscosity
US7582591B2 (en) * 2006-04-07 2009-09-01 Chevron U.S.A. Inc. Gear lubricant with low Brookfield ratio
US7425524B2 (en) * 2006-04-07 2008-09-16 Chevron U.S.A. Inc. Gear lubricant with a base oil having a low traction coefficient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133408A1 (en) * 2003-12-23 2005-06-23 Chevron U.S.A. Inc. Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7045055B2 (en) * 2004-04-29 2006-05-16 Chevron U.S.A. Inc. Method of operating a wormgear drive at high energy efficiency

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276808A1 (en) * 2007-05-08 2008-11-13 Sus Gerald A Thin film cooking devices and methods
US9404480B2 (en) 2008-06-13 2016-08-02 Pardev, Llc System and method of capturing geothermal heat from within a drilled well to generate electricity
US20090320475A1 (en) * 2008-06-13 2009-12-31 Parrella Michael J System and method of capturing geothermal heat from within a drilled well to generate electricity
US8616000B2 (en) 2008-06-13 2013-12-31 Michael J. Parrella System and method of capturing geothermal heat from within a drilled well to generate electricity
US20100270002A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing performance of a solid-state closed loop well heat exchanger
US20100276115A1 (en) * 2008-08-05 2010-11-04 Parrella Michael J System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
US8534069B2 (en) 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
US20100269501A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
US20100270001A1 (en) * 2008-08-05 2010-10-28 Parrella Michael J System and method of maximizing grout heat conductibility and increasing caustic resistance
US9423158B2 (en) 2008-08-05 2016-08-23 Michael J. Parrella System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
EP2100946A1 (en) * 2008-09-08 2009-09-16 Shell Internationale Researchmaatschappij B.V. Oil formulations
US20110012053A1 (en) * 2009-07-16 2011-01-20 Chevron U.S.A. Inc. Heat transfer oil with a high auto ignition temperature
EP2576735A4 (en) * 2010-05-25 2017-06-14 Avantherm AB Heat exchange medium
US8702968B2 (en) 2011-04-05 2014-04-22 Chevron Oronite Technology B.V. Low viscosity marine cylinder lubricating oil compositions
US20150159918A1 (en) * 2011-05-04 2015-06-11 Gtherm Inc. Swegs adapted for use in cooling, heating, voc remediation, mining, pasteurization and brewing applications
WO2012151487A1 (en) * 2011-05-04 2012-11-08 Gtherm Inc. Swegs adapted for use in cooling, heating, voc remediation, mining, pasteurization and brewing applications
US11193082B2 (en) * 2018-03-27 2021-12-07 Eneos Corporation Wax isomerized oil
CN110317639A (zh) * 2019-07-29 2019-10-11 海南汉地阳光石油化工有限公司 一种导热油的加工工艺及加工装置
CN111004611A (zh) * 2019-12-14 2020-04-14 江苏曼拓化学有限公司 一种重烷基苯导热油的制备方法
CN115340850A (zh) * 2021-10-15 2022-11-15 福斯润滑油(中国)有限公司 一种用于电池和充电桩的热管理流体

Also Published As

Publication number Publication date
GB0903621D0 (en) 2009-04-15
JP2010511734A (ja) 2010-04-15
CN101679843A (zh) 2010-03-24
US20090278077A1 (en) 2009-11-12
US20090272936A1 (en) 2009-11-05
CN101679843B (zh) 2013-12-04
GB2454152B (en) 2011-07-27
US20090278079A1 (en) 2009-11-12
WO2008039788A2 (en) 2008-04-03
AU2007300155A1 (en) 2008-04-03
WO2008039788A3 (en) 2008-05-15
US7862743B2 (en) 2011-01-04
US7972999B2 (en) 2011-07-05
US7972497B2 (en) 2011-07-05
GB2454152A (en) 2009-04-29
GB2454152A8 (en) 2009-04-29

Similar Documents

Publication Publication Date Title
US7862743B2 (en) Method of using heat transfer oil with high auto ignition temperature
US7994104B2 (en) Process to make a light base oil fraction having low Noack volatility
US7435327B2 (en) Hydraulic oil with excellent air release and low foaming tendency
US8658018B2 (en) Lubricant base oil blend having low wt% noack volatility
US8882989B2 (en) Lubricating base oil manufacturing plant for producing base oils having desired cycloparafinic functionality
US7473346B2 (en) Method for using medium-speed diesel engine oil
US7956018B2 (en) Lubricant composition
US7732391B1 (en) Manual transmission fluid made with lubricating base oil having high monocycloparaffins and low multicycloparaffins
US20110012053A1 (en) Heat transfer oil with a high auto ignition temperature
AU2007300155B2 (en) Heat transfer oil with high auto ignition temperature

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEVRON U.S.A. INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAH, RAVINDRA, MR.;ROSENBAUM, JOHN M., MR.;BERTRAND, NANCY J., MS.;REEL/FRAME:018455/0079;SIGNING DATES FROM 20060914 TO 20060925

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION