New! View global litigation for patent families

US20080063931A1 - printed battery - Google Patents

printed battery Download PDF

Info

Publication number
US20080063931A1
US20080063931A1 US11938414 US93841407A US2008063931A1 US 20080063931 A1 US20080063931 A1 US 20080063931A1 US 11938414 US11938414 US 11938414 US 93841407 A US93841407 A US 93841407A US 2008063931 A1 US2008063931 A1 US 2008063931A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
layer
printed
battery
electrode
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11938414
Inventor
Jerry Zucker
Original Assignee
Jerry Zucker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries portable equipment
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2/00Constructional details or processes of manufacture of the non-active parts
    • H01M2/10Mountings; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M2/1016Cabinets, cases, fixing devices, adapters, racks or battery packs
    • H01M2/1022Cabinets, cases, fixing devices, adapters, racks or battery packs for miniature batteries or batteries for portable equipment
    • H01M2/1061Cabinets, cases, fixing devices, adapters, racks or battery packs for miniature batteries or batteries for portable equipment for cells of prismatic configuration or for sheet-like batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Abstract

A printed battery has a flexible backing sheet, a first conductive layer printed on said sheet; a first conductive layer printed on the first conductive layer; a second electrode layer printed on said first electrode layer; and a second conductive layer printed on said second electrode layer.

Description

    FIELD OF THE INVENTION
  • [0001]
    This invention is directed to a thin, flexible battery in which all active components are printed.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Thin, flexible batteries, in which some but not all of the components are printed, are known. For example, in U.S. Pat. No. 5,652,043, a thin flexible battery is made by printing some of the components. This battery is not completely printed because it requires a porous insoluble substance as part of its aqueous electrolyte layer. That aqueous electrolyte layer comprises a deliquescent material, an electro-active soluble material and adhesive (or water soluble polymer) for binding the electrodes to the electrolyte layer, and the porous insoluble substance. The porous insoluble substance is described as filter paper, plastic membrane, cellulose membrane, and cloth. The negative and positive electrodes are then printed on either side of the electrolyte layer. Conductive layers of graphite paper or carbon cloth may be added over the electrolytes. Terminals, applied by printing, may be included in the battery.
  • [0003]
    U.S. Pat. No. 5,019,467 discloses a flexible battery comprising a flexible insulating material, a positive current collection layer, a positive active layer, a solid polyelectrolyte layer, and a thin metallic film layer as the anode. In this battery, the positive current collection layer, positive active layer, and solid polymer electrolyte layer are coated on the flexible insulating material. The thin metallic layer is formed by vacuum deposition, sputtering, ion-plating, or non-electrolytic plating (i.e., not printed).
  • [0004]
    U.S. Pat. No. 5,747,191 discloses that polymer film inks may be used to form a conductive layer (current collector) for a thin flexible battery. This battery, however, requires an anode foil, which is formed by “wave-soldering-like” method.
  • [0005]
    In U.S. Pat. No. 5,558,957, a thin flexible battery requires the use of metal foils to form the current collectors, and anode and cathode layers.
  • [0006]
    There is a need for a relatively inexpensive, thin, flexible battery with a low energy density. Such a battery could be used in transdermal delivery systems for pharmaceuticals to provide an additional driving force to facilitate the diffusion of the drug across the skin. Such a battery could be used in a skin sensor, such as those used to monitor blood sugar levels or control insulin pumps. These batteries could be used to power smart (transmitting) baggage tags, ID's, and the like. Such a battery could also be used to power certain novelty devices such as greeting cards.
  • [0007]
    Accordingly, there is a need for relatively inexpensive, thin, flexible, disposable low energy density battery.
  • SUMMARY OF THE INVENTION
  • [0008]
    A printed battery comprising a flexible backing sheet, a first conductive layer printed on said sheet; a first conductive layer printed on the first conductive layer; a second electrode layer printed on said first electrode layer; and a second conductive layer printed on said second electrode layer.
  • [0009]
    A method of making a printed battery comprises the steps of: printing a first conductive layer on a flexible backing sheet; printing a first electrode layer on the first conductive layer; printing a second electrode layer on the second conductive layer; and printing a second conductive layer on the second electrode layer.
  • DESCRIPTION OF THE DRAWINGS
  • [0010]
    For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
  • [0011]
    FIG. 1 illustrates a first embodiment of the printed battery.
  • [0012]
    FIG. 2 illustrates a second embodiment of the printed battery.
  • DESCRIPTION OF THE INVENTION
  • [0013]
    Referring to the drawings, wherein like numerals indicate like elements, there is shown in FIG. 1 a first embodiment of the printed battery 10. Printed battery 10 includes a flexible substrate 12. A first conductive layer 14 is printed on substrate 12. A first electrode layer 16 is then printed on first conductive layer 14. A second electrode layer 18 is then printed on the first electrode layer. Finally, a second conductive layer 20 is printed on the second electrode layer 18.
  • [0014]
    In FIG. 2, a second embodiment of the printed battery 30 is illustrated. Printed battery 30 is substantially the same as printed battery 10 except that a separator/electrolyte layer 32 has been printed between the first electrode layer 16 and the second electrode layer 18.
  • [0015]
    In the printed battery, the current collectors or conductive layers 14, 20, the first and second electrode layers 16, 18, and the separator/electrolyte layer 32 are each printed onto the flexible substrate 12. Printing is a process of transferring with machinery an ink to a surface. Printing processes include screen-printing, stenciling, pad printing, offset printing, jet printing, block printing, engraved roll printing, flat screen-printing, rotary screen-printing, and heat transfer type printing.
  • [0016]
    Printing inks are a viscous to semi-solid suspension of finely divided particles. The suspension may be in a drying oil or a volatile solvent. The inks are dried in any conventional manner, e.g., catalyzed, forced air or forced hot air. Drying oils include, but are not limited to: linseed oil, alkyd, phenol-formaldehyde, and other synthetic resins and hydrocarbon emulsions. Suitable inks may have an acrylic base, an alkyd base, alginate base, latex base, or polyurethane base. The acrylic based inks are preferred. In these inks, the active material (finely divided particles discussed below) and the ink base are mixed. For example, in the conductive layers, an electrically conductive carbon and the ink base are mixed. Preferably, the conductive carbon comprises at least 60% by weight of the ink, and most preferably, at least 75%. Preferred carbons have particle sizes less than or equal to 0.1 micron.
  • [0017]
    The battery chemistry used is not limited. Exemplary chemistries include, but are not limited to: Leclanché (zinc-anode, manganese dioxide-cathode), Magnesium (Mg-anode, MnO2-cathode) Alkaline MnO2 (Zn-anode, MnO2-cathode), Mercury (Zn-anode, HgO-cathode), Mercad (Cd-anode, Ag2O-cathode), and Li/MnO2 (Li-anode, MnO2-cathode). Particles of the anode material are mixed into the ink base. The anode active materials are preferably selected from the group consisting of zinc, magnesium, cadmium, and lithium. The anode particles comprise at least 80% by weight of the ink; preferably, at least 90%; and most preferred, at least 95%. The anode particle sizes are, preferably, less than or equal to 0.5 micron. Particles of the cathode material are mixed into the ink base. The cathode active materials are preferably selected from the group consisting of manganese dioxide, mercury oxide, silver oxide and other electro-active oxides. The cathode particles comprise at least 80% by weight of the ink base; preferably, at least 90%; and most preferred, at least 95%. The cathode particle sizes are, preferably, less than or equal to 0.5 micron.
  • [0018]
    A separator may be interposed between the electrodes. The separator is used to facilitate ion conduction between the anode and the cathode and to separate the anode form the cathode. The separator includes electrolyte salts and a matrix material. The electrolyte salts are dictated by the choice of battery chemistry, as is well known. The matrix material must not unduly hinder ion conduction between the electrodes. The matrix material may be porous or thinly printed. The matrix material include, for example, highly filled aqueous acrylics, polyvinylidene fluoride (PVDF), PVDF copolymers (e.g., PVDF:HFP), polyacrylonitrile (PAN), and PAN copolymers. The preferred matrix material is the highly filled aqueous acrylics (such as calcium sulfate or calcium carbonate), which are inherently porous due to discontinuities in the polymer coating/film upon drying. The filler preferably comprises at least 80% by weight of the layer. The filler preferably has particle sizes less than or equal to 0.5 microns.
  • [0019]
    The flexible backing sheet may be any permeable or impermeable substance and may be selected from the group consisting of paper, polyester, polycarbonate, polyamide, polyimide, polyetherketone, polyetheretherketone, polyethersulfone, polyphenolynesulfide, polyolefins (e.g., polyethylene and polypropylene), polystyrene, polyvinylidine chloride, and cellulose and its derivatives.
  • [0020]
    The instant invention will be better understood with reference to the following example.
  • EXAMPLE
  • [0021]
    A 2 cm×2 cm cell was printed using a 2 cm×2 cm faced, smooth rubber pad into a sheet of standard office bond paper and a sheet of polyester film (each having an approximate thickness of about 0.07-0.08 mm). The impact of printing stock were negligible on cell performance, but were noticeable on drying times which were accelerated using forced hot air (e.g., from a hair dryer). Three ink suspensions were prepared. First, a conductive ink suspension was made. This suspension consisted of 79% weight of conductive carbon (particle size <0.1μ) in an acrylic binder (Rohm & Haas HA-8 acrylic binder). A positive electrode (cathode) ink suspension was made. This suspension consisted of 96+% weight of manganese dioxide (particle size <0.4μ) in an acrylic binder (Rohm & Haas HA-8 acrylic binder). A negative electrode (anode) ink suspension was made. This suspension consisted of 96+% weight of zinc powder (particle size <0.3μ) in an acrylic binder (Rohm & Haas HA-8 acrylic binder). The cell had an overall thickness (including the base sheet) of about 0.4 mm. The cell had a ‘no load’ voltage of about 1.4 volts; a continuous current density of about 0.09 mA/cm2 (the curve is relatively linear and has a flat discharge curve); a capacity of about 2-3 nAh/cm2; a maximum capacity (not sustainable for over 2 milliseconds) of about 6 mA/cm2; an internal resistance (at near discharge) of 3.75-5 ohms/cm2; and an internal resistance (at outset, first 1 minute of use at 0.16 mA drain rate) of 4 ohms.
  • [0022]
    The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicated the scope of the invention.

Claims (16)

  1. 1-14. (canceled)
  2. 15. A method of making a printed battery consisting essentially of the following steps:
    printing a first conductive layer on a flexible backing sheet;
    printing a first electrode layer on the first conductive layer, where said first electrode layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions;
    printing an electrolyte layer on the first electrode layer, said electrolyte layer comprises electrolyte salts and a matrix material, said matrix material being selected from the group consisting of aqueous acrylics, polyvinylidene fluoride (PVDF), PVDF copolymers, polyacrylonitrile (PAN) and PAN copolymers;
    printing a second electrode layer on said electrolyte layer, where said second electrode layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions; and
    printing a second conductive layer on the second electrode layer.
  3. 16. The method of claim 15 further consisting essentially of curing each layer before printing a next layer.
  4. 17. The method of claim 16 where curing comprises drying.
  5. 18. The method of claim 17 where drying comprises the use of forced hot air.
  6. 19. A printed battery comprising:
    a flexible backing sheet;
    a first conductive layer printed on said sheet;
    a first electrode layer printed on said first conductive layer, where said first electrode layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions;
    a separator layer printed on said first electrode layer, said separator layer consisting essentially of an electrolyte salt and a matrix material, said matrix material being selected from the group consisting of a highly filled aqueous acrylics, polyvinylidene fluoride (PVDF), PVDF copolymers, polyacrylonitrile (PAN), and PAN copolymers, where highly filled is defined by a filler content of at least 80%;
    a second electrode layer printed on said separator layer, where said second electrode layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions; and
    a second conductive layer printed on said second electrode layer.
  7. 20. The battery of claim 19 wherein said backing sheet being a porous or nonporous material.
  8. 21. The battery of claim 20 wherein said sheet being selected from the group consisting of paper and plastic sheets.
  9. 22. The battery of claim 21 wherein said plastic sheets being selected from the group consisting of polyester, polyolefins, polycarbonate, polyamide, polyimide, polyetherketone, polyetheretherketone, polyethersulfone, polyphenylsulfide, polystryene, polyvinyl chloride, and cellulose and its derivatives.
  10. 23. The battery of claim 19 wherein printing being selected from the group consisting of screen printing, pad printing, stenciling, offset printing, and jet printing.
  11. 24. The battery of claim 19 wherein each conductive layer being printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions.
  12. 25. The battery of claim 19 wherein one electrode being an anode and one electrode being a cathode, said anode having an active material selected from the group consisting of zinc, magnesium, cadmium, and lithium, and said cathode having a material selected from the group consisting of manganese dioxide, mercury oxide, silver oxide, and other electro-active oxides.
  13. 23. A printed battery consisting essentially of:
    a flexible backing sheet, where said flexible backing sheet being selected from the group consisting of paper and plastic sheets;
    a first conductive layer printed on said sheet, where said first conductive layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions;
    a first electrode layer printed on said first conductive layer, where said first electrode layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions;
    an electrolyte layer printed on said first electrode layer, said electrolyte layer comprises electrolyte salts and a matrix material, said matrix material being selected from the group consisting of highly filled aqueous acrylics, polyvinylidene fluoride (PVDF), PVDF copolymers, polyacrylonitrile (PAN) and PAN copolymers, where highly filled is defined by a filler content of at least 80%;
    a second electrode layer printed on said electrolyte layer, where said second electrode layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions;
    a second conductive layer printed on said second electrode layer, where said second conductive layer is printed with an ink having a base selected from the group consisting of acrylics, alkyds, alginate, latex, polyurethane, linseed oil, and hydrocarbon emulsions; and
    where one electrode being an anode and one electrode being a cathode, said anode having an active material selected from the group consisting of zinc, magnesium, cadmium, and lithium, and said cathode having a material selected from the group consisting of manganese dioxide, mercury oxide, silver oxide.
  14. 24. The battery of claim 23 wherein said backing sheet is selected from the group of a porous or nonporous material.
  15. 25. The battery of claim 23 wherein said plastic sheets being selected from the group consisting of polyester, polyolefins, polycarbonate, polyamide, polyimide, polyetherketone, polyetheretherketone, polyethersulfone, polyphenylsulfide, polystryene, polyvinyl chloride, and cellulose and its derivatives.
  16. 26. The battery of claim 23 wherein printing being selected from the group consisting of screen printing, pad printing, stenciling, offset printing, and jet printing.
US11938414 2002-05-24 2007-11-12 printed battery Abandoned US20080063931A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10155253 US7320845B2 (en) 2002-05-24 2002-05-24 Printed battery
US11938414 US20080063931A1 (en) 2002-05-24 2007-11-12 printed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11938414 US20080063931A1 (en) 2002-05-24 2007-11-12 printed battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10155253 Division US7320845B2 (en) 2002-05-24 2002-05-24 Printed battery

Publications (1)

Publication Number Publication Date
US20080063931A1 true true US20080063931A1 (en) 2008-03-13

Family

ID=29549018

Family Applications (2)

Application Number Title Priority Date Filing Date
US10155253 Expired - Fee Related US7320845B2 (en) 2002-05-24 2002-05-24 Printed battery
US11938414 Abandoned US20080063931A1 (en) 2002-05-24 2007-11-12 printed battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10155253 Expired - Fee Related US7320845B2 (en) 2002-05-24 2002-05-24 Printed battery

Country Status (5)

Country Link
US (2) US7320845B2 (en)
EP (1) EP1508180A4 (en)
JP (1) JP2005527093A (en)
CA (1) CA2484357A1 (en)
WO (1) WO2003100893A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080141A1 (en) * 2007-09-25 2009-03-26 Renewable Energy Development, Inc. Multi electrode series connected arrangement supercapacitor
US20090279230A1 (en) * 2008-05-08 2009-11-12 Renewable Energy Development, Inc. Electrode structure for the manufacture of an electric double layer capacitor
US20100053844A1 (en) * 2008-08-28 2010-03-04 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
US20100311488A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Amusement device including means for processing electronic data in play of a game in which an outcome is dependant upon card values
US20100311494A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Amusement device including means for processing electronic data in play of a game of chance
US20100311489A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Mobile playing card devices
US20100312625A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Data transfer and control among multiple computer devices in a gaming environment
US20100311490A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Portable electronic charge device for card devices
US20100311502A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Electrical transmission among interconnected gaming systems
WO2011140150A1 (en) * 2010-05-03 2011-11-10 Georgia Tech Research Corporation Alginate-containing compositions for use in battery applications
EP2395572A1 (en) 2010-06-10 2011-12-14 Bayer MaterialScience AG Layer construction comprising electronic components
US8784189B2 (en) 2009-06-08 2014-07-22 Cfph, Llc Interprocess communication regarding movement of game devices
US8889295B2 (en) 2009-09-29 2014-11-18 Sila Nanotechnologies, Inc. Electrodes, lithium-ion batteries, and methods of making and using same
WO2015009867A1 (en) * 2013-07-17 2015-01-22 Nthdegree Technologies Worldwide Inc. Printed silver oxide batteries
US9076589B2 (en) 2010-09-13 2015-07-07 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9825305B2 (en) 2012-07-18 2017-11-21 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9917309B2 (en) 2012-10-10 2018-03-13 Printed Energy Pty Ltd Printed energy storage device

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160905B4 (en) * 2001-12-12 2007-07-19 Carl Freudenberg Kg Sealing arrangement for fuel cells, methods of making and use of such a sealing arrangement
US8722235B2 (en) 2004-04-21 2014-05-13 Blue Spark Technologies, Inc. Thin printable flexible electrochemical cell and method of making the same
EP1769426B1 (en) * 2004-07-01 2011-05-25 Powerid Ltd. Battery-assisted backscatter rfid transponder
JP4591016B2 (en) * 2004-09-30 2010-12-01 ブラザー工業株式会社 The method of manufacturing the manufacturing apparatus, the display medium of the display medium, and a display medium
US20060127752A1 (en) * 2004-12-09 2006-06-15 Trw Automotive U.S. Llc Battery with printed circuit
US8029927B2 (en) 2005-03-22 2011-10-04 Blue Spark Technologies, Inc. Thin printable electrochemical cell utilizing a “picture frame” and methods of making the same
US8722233B2 (en) 2005-05-06 2014-05-13 Blue Spark Technologies, Inc. RFID antenna-battery assembly and the method to make the same
GB0610237D0 (en) * 2006-05-23 2006-07-05 Univ Brunel Lithographically printed voltaic cells
WO2009012463A3 (en) 2007-07-18 2009-03-12 Blue Spark Technologies Inc Integrated electronic device and methods of making the same
EP2208246A2 (en) * 2007-09-10 2010-07-21 Medtronic, Inc. Control of properties of printed electrodes in at least two dimensions
KR20100097217A (en) 2007-12-19 2010-09-02 블루 스파크 테크놀러지스, 인크. High current thin electrochemical cell and methods of making the same
KR20110053256A (en) 2008-09-08 2011-05-19 엔퓨셀 오와이 (엘티디) Anode and a method of manufacturing an anode
DE112009003837A5 (en) 2008-12-23 2012-06-28 Basf Se Non-rechargeable thin film batteries with cationically functionalized polymers as separators
US20100261049A1 (en) * 2009-04-13 2010-10-14 Applied Materials, Inc. high power, high energy and large area energy storage devices
WO2011069590A1 (en) * 2009-12-09 2011-06-16 Merck Patent Gmbh Therapeutic and cosmetic electroluminescent compositions
US8747775B2 (en) 2009-12-11 2014-06-10 Food Technologies International, LLC Food safety indicator
EP2510349A4 (en) * 2009-12-11 2014-04-09 Warren Sandvick Food safety indicator
JP2012209048A (en) * 2011-03-29 2012-10-25 Asahi Chem Res Lab Ltd Printed battery
US9027242B2 (en) 2011-09-22 2015-05-12 Blue Spark Technologies, Inc. Cell attachment method
WO2013177202A1 (en) 2012-05-21 2013-11-28 Blue Spark Technologies, Inc. Multi-cell battery
EP2688123B1 (en) * 2012-07-16 2017-07-05 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Process for manufacturing a Li-ion battery comprising a fluoropolymeric separator
DE13852079T1 (en) 2012-11-01 2015-11-19 Blue Spark Technologies, Inc. Patch for logging of body temperature
US9444078B2 (en) 2012-11-27 2016-09-13 Blue Spark Technologies, Inc. Battery cell construction
DE102013017149A1 (en) * 2013-10-16 2015-04-16 ThePeople.de GmbH Arrangement and method for use of printed batteries in electrical cigarette
CN105765008A (en) 2013-11-13 2016-07-13 R.R.当纳利父子公司 Battery
US20150288024A1 (en) 2014-04-08 2015-10-08 International Business Machines Corporation Homogeneous solid metallic anode for thin film microbattery
US9508566B2 (en) 2014-08-15 2016-11-29 International Business Machines Corporation Wafer level overmold for three dimensional surfaces
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
GB201615585D0 (en) * 2016-09-14 2016-10-26 Dst Innovations Ltd Flexible battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688649A (en) * 1951-12-14 1954-09-07 Bjorksten Res Lab For Electroc Printed battery and method for making
US5019467A (en) * 1987-11-13 1991-05-28 Kimoto & Co., Ltd. Thin primary cell
US6379793B2 (en) * 1997-07-18 2002-04-30 Kyowa Kabushiki Kaisha Flame retardant for mesh sheets and flameproof mesh sheets
US6379835B1 (en) * 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735912A (en) 1993-06-02 1998-04-07 Micron Communications, Inc. Methods of forming battery electrodes
US5558957A (en) 1994-10-26 1996-09-24 International Business Machines Corporation Method for making a thin flexible primary battery for microelectronics applications
US5652043A (en) 1995-12-20 1997-07-29 Baruch Levanon Flexible thin layer open electrochemical cell
US6045942A (en) 1997-12-15 2000-04-04 Avery Dennison Corporation Low profile battery and method of making same
US6369793B1 (en) 1998-03-30 2002-04-09 David C. Zimman Printed display and battery
US6136468A (en) 1998-08-25 2000-10-24 Timer Technologies, Llc Electrochemical cell with deferred assembly
US6395043B1 (en) 1998-11-25 2002-05-28 Timer Technologies, Llc Printing electrochemical cells with in-line cured electrolyte
CA2513454C (en) * 2002-02-12 2015-09-01 Eveready Battery Company, Inc. Flexible thin printed battery with gelled electrolyte and method of manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688649A (en) * 1951-12-14 1954-09-07 Bjorksten Res Lab For Electroc Printed battery and method for making
US5019467A (en) * 1987-11-13 1991-05-28 Kimoto & Co., Ltd. Thin primary cell
US6379793B2 (en) * 1997-07-18 2002-04-30 Kyowa Kabushiki Kaisha Flame retardant for mesh sheets and flameproof mesh sheets
US6379835B1 (en) * 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110032661A1 (en) * 2007-09-25 2011-02-10 Eilertsen Thor E Multi electrode series connected arrangement supercapacitor
US8098483B2 (en) 2007-09-25 2012-01-17 Ioxus, Inc. Multi electrode series connected arrangement supercapacitor
US7830646B2 (en) 2007-09-25 2010-11-09 Ioxus, Inc. Multi electrode series connected arrangement supercapacitor
US20090080141A1 (en) * 2007-09-25 2009-03-26 Renewable Energy Development, Inc. Multi electrode series connected arrangement supercapacitor
US20090279230A1 (en) * 2008-05-08 2009-11-12 Renewable Energy Development, Inc. Electrode structure for the manufacture of an electric double layer capacitor
US20100053844A1 (en) * 2008-08-28 2010-03-04 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
WO2010025323A3 (en) * 2008-08-28 2010-06-17 Ioxus, Inc. High voltage edlc cell and method for the manufacture thereof
US8411413B2 (en) 2008-08-28 2013-04-02 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
US9245693B2 (en) 2008-08-28 2016-01-26 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
US8771078B2 (en) 2009-06-08 2014-07-08 Cfph, Llc Amusement device including means for processing electronic data in play of a game of chance
US20100311502A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Electrical transmission among interconnected gaming systems
US20100311490A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Portable electronic charge device for card devices
US9613497B2 (en) 2009-06-08 2017-04-04 Cfph, Llc Amusement device including means for processing electronic data in play of a game of chance
US20100312625A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Data transfer and control among multiple computer devices in a gaming environment
US8784189B2 (en) 2009-06-08 2014-07-22 Cfph, Llc Interprocess communication regarding movement of game devices
US20100311489A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Mobile playing card devices
US8287386B2 (en) 2009-06-08 2012-10-16 Cfph, Llc Electrical transmission among interconnected gaming systems
US20100311494A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Amusement device including means for processing electronic data in play of a game of chance
US20100311488A1 (en) * 2009-06-08 2010-12-09 Miller Mark A Amusement device including means for processing electronic data in play of a game in which an outcome is dependant upon card values
US8545328B2 (en) 2009-06-08 2013-10-01 Cfph, Llc Portable electronic charge device for card devices
US8545327B2 (en) 2009-06-08 2013-10-01 Cfph, Llc Amusement device including means for processing electronic data in play of a game in which an outcome is dependant upon card values
US8613671B2 (en) 2009-06-08 2013-12-24 Cfph, Llc Data transfer and control among multiple computer devices in a gaming environment
US8419535B2 (en) 2009-06-08 2013-04-16 Cfph, Llc Mobile playing card devices
US9373838B2 (en) 2009-09-29 2016-06-21 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
US8889295B2 (en) 2009-09-29 2014-11-18 Sila Nanotechnologies, Inc. Electrodes, lithium-ion batteries, and methods of making and using same
US8652688B2 (en) 2010-05-03 2014-02-18 Clemson University Alginate-containing compositions for use in battery applications
WO2011140150A1 (en) * 2010-05-03 2011-11-10 Georgia Tech Research Corporation Alginate-containing compositions for use in battery applications
EP2395572A1 (en) 2010-06-10 2011-12-14 Bayer MaterialScience AG Layer construction comprising electronic components
WO2011154399A1 (en) 2010-06-10 2011-12-15 Bayer Materialscience Ag Layer structure comprising electrotechnical components
US9742030B2 (en) 2010-09-13 2017-08-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9076589B2 (en) 2010-09-13 2015-07-07 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9368283B2 (en) 2010-09-13 2016-06-14 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
US9825305B2 (en) 2012-07-18 2017-11-21 Printed Energy Pty Ltd Diatomaceous energy storage devices
US9917309B2 (en) 2012-10-10 2018-03-13 Printed Energy Pty Ltd Printed energy storage device
CN105379000A (en) * 2013-07-17 2016-03-02 无限科技全球公司 Printed silver oxide batteries
WO2015009867A1 (en) * 2013-07-17 2015-01-22 Nthdegree Technologies Worldwide Inc. Printed silver oxide batteries
US9786926B2 (en) 2013-07-17 2017-10-10 Printed Energy Pty Ltd Printed silver oxide batteries

Also Published As

Publication number Publication date Type
WO2003100893A1 (en) 2003-12-04 application
EP1508180A4 (en) 2007-01-10 application
US7320845B2 (en) 2008-01-22 grant
JP2005527093A (en) 2005-09-08 application
US20030219648A1 (en) 2003-11-27 application
CA2484357A1 (en) 2003-12-04 application
EP1508180A1 (en) 2005-02-23 application

Similar Documents

Publication Publication Date Title
US3563805A (en) Thin,flat primary cells and batteries
US6291097B1 (en) Grid placement in lithium ion bi-cell counter electrodes
US6180281B1 (en) Composite separator and electrode
US5800857A (en) Energy storage device and methods of manufacture
US4919648A (en) High tack drug patch
US5588971A (en) Current collector device and method of manufacturing same
US5651768A (en) Transdermal drug applicator and electrodes therefor
US5605536A (en) Transdermal drug applicator and electrodes therefor
US20040038090A1 (en) Layered electrochemical cell and manufacturing method therefor
EP0337642A2 (en) Transdermal drug delivery device
US20020102465A1 (en) Solid gel membrane separator in electrochemical cells
US6815121B2 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
US20100291442A1 (en) Primer for battery electrode
US6252762B1 (en) Rechargeable hybrid battery/supercapacitor system
US6584349B1 (en) Low cost electrodes for an iontophoretic device
US7066971B1 (en) Methods of preparing electrochemical cells
US5628801A (en) Electrolyte capacitor and method of making the same
US4640689A (en) Transdermal drug applicator and electrodes therefor
US4562511A (en) Electric double layer capacitor
US6117593A (en) Current collector manufacture by arc spray deposition
US4925752A (en) Solid state electrochemical cell having porous cathode current collector
US2708683A (en) Electrode and material therefor
US6234225B1 (en) Cell electrode with thick tip portion
US6387565B1 (en) Battery having an adhesive resin layer containing a filler
US4957826A (en) Rechargeable metal-air battery