US20080058126A1 - Method for assessing biomechanical efficiency of the pitching delivery - Google Patents

Method for assessing biomechanical efficiency of the pitching delivery Download PDF

Info

Publication number
US20080058126A1
US20080058126A1 US11/516,078 US51607806A US2008058126A1 US 20080058126 A1 US20080058126 A1 US 20080058126A1 US 51607806 A US51607806 A US 51607806A US 2008058126 A1 US2008058126 A1 US 2008058126A1
Authority
US
United States
Prior art keywords
pitching
critical point
motion
delivery
pitcher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/516,078
Inventor
Thomas R. House
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/516,078 priority Critical patent/US20080058126A1/en
Publication of US20080058126A1 publication Critical patent/US20080058126A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • A63B24/0006Computerised comparison for qualitative assessment of motion sequences or the course of a movement
    • A63B2024/0012Comparing movements or motion sequences with a registered reference
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • A63B2069/0004Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects
    • A63B2069/0006Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects for pitching

Definitions

  • the present invention is directed to methods for assessing biomechanical efficiency as its relates to the performance of making pitching or throwing motions.
  • any type of methodology for assessing the biomechanical efficiency of a pitcher making a pitching motion that can be used to not only evaluate, correct and improve pitching performance, but can further be utilized to predict potential injury that can arise with incorrect or suboptimal biomechanical pitching delivery as well as predict a pitcher's longevity.
  • the present invention specifically addresses and alleviates the above-deficiencies in the art.
  • the present invention is directed to a method for assessing the biomechanical efficiency of a pitcher's pitching delivery, regardless of the pitcher's unique “signature” throwing style.
  • the methodology of the present invention further can be utilized as part of a coaching model to improve the pitcher's biomechanical efficiency of his pitching delivery, and may be likewise utilized as a tool to predict potential strain of a pitcher based upon his or her pitching motions, and can further be utilized to predict the longevity of an individual's pitching ability.
  • the present invention provides for a time line within which multiple critical points of a pitcher's delivery are identified and assessed.
  • the critical points consist of balance and posture, lift and thrust, stride and momentum, equal and opposite, delayed shoulder rotation, stack and track, swivel and stabilize, and ball release, which when completed from start to finish defines the entire pitching motion.
  • Crucial to the present invention is for the pitcher to perform or move through certain of the critical points within certain time frames.
  • lift and thrust and the stride and momentum points along the pitching delivery time line which begin with a first forward movement to a foot strike position, must be made between 0.95 seconds and 1.05 seconds in order for the pitcher to optimize biomechanical efficiency of the pitching delivery.
  • the equal and opposite, delayed shoulder rotation, stack and track and swivel and stabilize motions must be performed preferably within 1.25 to 1.35 seconds from the initiation of the pitching motion. Still further, the pitcher optimally completes the release of the pitch by approximately 1.925 to 2.025 seconds from the initiation of the pitching motion.
  • the methods of the present invention can serve as extremely useful tools in evaluating pitching performance, especially in relation to recruiting and drafting pitchers on the collegiate and professional levels.
  • the methods can further be used as coaching methods to correct and improve upon a pitcher's existing biomechanical efficiencies, and likewise as a means of predicting potential injury and loss of pitching talent.
  • the methods are also capable of being easily deployed, do not require substantial biomechanical analysis, can be utilized to evaluate the performance of any individual pitcher regardless of his or her unique pitching style, and may be readily deployed using known, existing biomechanical assessment technology.
  • FIG. 1 is a pitching delivery timeline for assessing biomechanical efficiency of the pitching delivery.
  • FIG. 1 a pitching delivery timeline 12 for use in assessing biomechanical efficiency of the pitching delivery 10 .
  • the teachings of the present invention are set forth in the Applicant's publication entitled The Art and Science of Pitching as most recently published by Coaches ChoiceTM and the National Pitching Association, the teachings of which are expressly incorporated herein by reference.
  • the pitching delivery timeline 12 is dissected into multiple critical points of a pitcher's 14 delivery.
  • the pitching assessor coach can determine strengths and weaknesses for each critical point in the pitching delivery timeline 12 or the assessor may determine strengths or weaknesses for a combination of critical points along the pitching delivery timeline 12 .
  • the pitcher 14 with inefficient mechanics and poor timing is limiting his/her potential control, consistency, and velocity, as well as exposure to an increased risk of injury.
  • the pitching motion is a complex movement that requires the body to coordinate and time the energy transfer through the body and onto the baseball; however, the optional pitching delivery is comprised of a set of events that happen, as discovered by the Applicant, in a set sequence within specific timing parameters. To maximize the efficiency of the delivery, each of these respective events must be executed in the correct sequence within the right timeframe.
  • the delivery timeline 12 provides an assessor with a method for assessing biomechanical efficiency of the pitching delivery 10 to determine the pitcher's 14 potential, regardless of the pitcher's unique throwing style.
  • the first critical point is a balance and posture 16 position.
  • the balance and posture 16 position initiates with a setup 18 also commonly referred to as a pitching stance.
  • the setup 18 is an initial starting position that will facilitate absorbing, directing, and delivering energy.
  • the setup 18 requires balance which involves aligning the pitcher's 14 head, spine, and belly button between the ball of the foot at the start of delivery, when the knees are flexed and the weight is equally distributed between the feet, which are spread within the width of the torso.
  • Posture involves finding a spine to hip angle, as well as an angle of flexion in the knees that will stabilize and maintain the head and spine, while the body remains in-line to the plate with little or no head movement throughout the pitcher's 14 delivery.
  • the balance and posture 16 position is completed with a first forward movement 20 .
  • the first forward movement 20 initiates a time t 0 22 , for assessing the critical points of the pitching delivery.
  • the time is used for comparison with the established time requirements of the method for assessing biomechanical efficiency of the pitching delivery, as will be discussed in further detail below.
  • the assessor uses the first critical point, balance and posture 16 , to determine if the pitcher 14 can facilitate absorbing, directing, and delivering energy to the baseball before the pitcher 14 makes any movement in the pitching delivery.
  • the first forward movement 20 leads into the second critical point along the pitching delivery timeline 12 known as a lift and thrust 24 .
  • the pitcher's 14 first forward movement 20 must accomplish shifting total body critical mass toward home plate by leading with the rear end.
  • the lift and thrust 24 concludes with a maximum leg lift 26 .
  • the maximum leg lift 26 is the maximum height or the maximum distance toward second base reached by the pitcher's 14 lift knee.
  • the maximum leg lift 26 occurs when the pitcher 14 lifts the front leg as high or as far toward second base as possible. For example, if the pitcher 14 is pitching right-handed, the leg that is lifted off the ground is the left leg. Both the first forward movement 20 and:the maximum leg lift 26 must be accomplished without compromising balance and posture 16 .
  • a proper maximum leg lift 26 will maximize stride length and stride speed, thus optimizing the available energy created by linear weight transfer into later points on the pitching delivery timeline 12 .
  • This second critical point helps the assessor determine if the pitcher 14 transitions from the first forward movement 20 to the maximum leg lift 26 in a manner that will optimize the velocity and control of the baseball.
  • stride and momentum 28 movement or motion The maximum leg lift 26 leads into the third critical point along the pitching delivery timeline 12 classified as a stride and momentum 28 movement or motion.
  • Stride is the distance and direction the pitcher's body travels from back foot into front foot contact. Stride is affected by lift leg height and lift leg angle with the head and spine staying upright, in line, and behind the body from first forward movement 20 throughout the stride and momentum 28 critical point. Momentum is maximized when the body only moves forward on stride and direction line. Stride and momentum 28 concludes with a foot strike 30 .
  • the foot strike 30 occurs when the first foot contacts the ground with the pitcher's 14 stride leg.
  • the foot strike 30 is a critical measuring point along the pitching delivery timeline 12 because it corresponds to a time, t 1 32 .
  • the elapsed time between the first forward movement 20 and the foot strike 30 is represented by t 1 -t 0 .
  • the time elapsed between the first forward movement 20 and the foot strike 30 should be between 0.95 seconds and 1.05 seconds.
  • the lift and thrust 24 and the stride and momentum 28 points along the pitching delivery timeline must be between 0.95 seconds and 1.05 seconds in order for the pitcher 14 to optimize biomechanical efficiency of the pitching delivery 10 .
  • the time requirement between the first forward movement 20 and the foot strike 30 is an essential assessment tool, because if the pitcher 14 is outside the required time range, this will notify the assessor that the pitcher has a weakness. That weakness may manifest itself by way of decreased ball velocity, decreased control of the ball, or it may make the pitcher 14 more prone to injury.
  • This information may prove very valuable when assessing the pitcher 14 . Conversely, if the pitcher 14 is within the range of time required by the pitching delivery timeline 12 , this will notify the assessor that the pitcher's 14 movement between the first forward movement 20 and the foot strike 30 is solid and should be considered a strong point in the pitcher's 14 pitching delivery.
  • the foot strike 30 leads into the fourth critical point, namely, equal and opposite 32 arms position.
  • the equal and opposite 32 arms position is important for balance and timing throughout the delivery, and refers to the “mirror imaging” in position of the glove arm to the throwing arm. In other words, from the time the hands separate the ball and glove, to the time the ball and throwing forearm lay back into external rotation, every joint in both arms, hands to wrist angle, forearms to elbows angle, elbows to shoulders angle, will be equal on both sides of the body.
  • the equal and opposite 32 position helps coordinate body balance, posture, stride direction, and momentum with the timing and translation of weight transfer and kinetic sequencing during a pitching delivery.
  • the equal and opposite 32 position concludes with a maximum shoulder separation 34 .
  • the maximum shoulder separation 34 is required for maximizing and stabilizing the optimal angle difference between the front hip and back shoulder. If the maximum shoulder separation 34 is done properly it may optimize the translation of energy generated by total-body linear momentum into hip and shoulder rotational momentum.
  • the maximum shoulder separation 34 leads into a delayed shoulder rotation 36 critical point.
  • the delayed shoulder rotation 36 requires the pitcher to refrain from allowing the back shoulder to start rotating forward until the body is as close to home plate as stride, momentum, strength, and flexibility will allow.
  • Optimal energy translation requires efficient total-body timing and sequencing on the stride line, keeping the hips and shoulders separated, and delaying the rotation of the throwing shoulder as long as possible while the torso moves toward home plate.
  • the delayed shoulder rotation 36 contributes substantially to the rotational momentum of the pitcher 14 .
  • the delayed shoulder rotation 36 ends when the pitcher 14 is in a position where the shoulders are squared up perpendicular to home plate 40 .
  • the next critical point is referred to as a stack and track 38 .
  • the stack and track 38 occurs when the hips and shoulders rotate and shoulders square up perpendicular to the home plate 40 , the lower back is in full extension, head and spine stay upright as legs deliver torso on stride and direction line to the home plate.
  • Stack refers to torso posture staying upright and vertical with the head over the shoulders, as the hips and shoulders sequence their rotation around the spine.
  • Track refers to the torso continuing to move forward, while the legs deliver the hips, and the hips rotate the shoulders and square up to home plate.
  • the stack and track 38 concludes with the pitcher's 14 forearm back in external rotation 42 .
  • the following critical point is a swivel and stabilize 44 movement.
  • the swivel and stabilize 44 movement combined with the stack and track 38 make up the final phase of timing and sequencing in the pitching delivery.
  • the swivel and stabilize 44 movement helps maximize the efficiency of directional or linear momentum and the rotational momentum of the hips and shoulders.
  • the glove must stabilize and then stop to direct and help the pitcher time the final sequencing of energy coming up through the body into the throwing arm.
  • Sequencing the swivel and stabilize movement 44 involves stopping the glove over the front foot in front of the torso; swiveling the glove at that point to a “glove up, palm to torso” position; stabilizing the glove elbow in a slot straight under the armpit; and squaring the shoulders up as the torso tracks to the glove.
  • the swivel and stabilize 44 movement ends with a ball release 46 .
  • the ball release is the exact position and moment the baseball leaves the pitcher's 46 hand.
  • the ball release 46 is another critical measuring point along the pitching delivery timeline 12 , because it corresponds to a time, t 2 48 .
  • the elapsed time between the first forward movement 20 and the ball release 46 is represented by t 2 -t 0 .
  • the time required by the pitching delivery timeline 12 to elapse between the first forward movement and the ball release 46 is 1.25 to 1.35 seconds.
  • t 2 -t 1 represents the time elapsed between the foot strike 30 and the ball release 46 . Therefore, the assessor may dissect and critique a certain sequence in the pitching delivery timeline 12 .
  • the pitching delivery timeline 12 requires a time between 0.2 and 0.4 seconds elapsed between the foot strike 30 and the ball release 46 , also known as the pitch cycle.
  • the pitch cycle is an important part of the pitching delivery because everything that happens prior to the ball release simply prepares the pitcher to be in the optimal position to deliver the ball effectively. Release point happens after the foot strike 30 from the ground up, efficiently timing and sequencing each successive link of energy in the pitcher's body out onto the baseball. If the pitcher cannot complete the critical points between the foot strike and the ball release within the required time, the assessor may conclude that the pitcher has weaknesses in that particular area of the pitching delivery.
  • the ball release 46 should occur as close to home plate as genetics, biomechanics, strength, and flexibility will allow.
  • the ball release 46 occurs at the end of the swivel and stabilize 44 critical point and initiates the final critical point, a release 50 . If the release 50 is efficient it demonstrates proper timing and sequencing of the pitcher's 14 kinetic energy chain.
  • An efficient release 50 point occurs 8 to 12 inches in front of the landing foot and is sequenced when torso has tracked as far forward as strength, flexibility, and momentum will allow, shoulders have squared up perpendicular to the target, throwing arm has laid back in maximum external rotation and glove has swiveled over front foot.
  • the back foot should not come off the ground until the baseball leaves the throwing hand and the back foot drag line should end on the center line between the middle of rubber and the middle of home plate.
  • a follow through 52 At the end of the release 50 point is a follow through 52 .
  • the follow through 52 should take place with little or no head movement.
  • the pitcher's eyes remain stable and focused on the target until the ball crosses home plate.
  • the follow through 52 is an important point because it allows the assessor to determine whether the motions prior to the follow through 52 are efficient. Basically, the more efficient the pitcher 14 is until the ball is released, the more efficient the follow through 52 will be after the release 50 .
  • a time t 3 54 is recorded which, concludes the pitching delivery timeline 12 .
  • the time t 3 -t 0 represents the time elapsed from the first forward movement 20 until the follow through 52 . This time should be between 1.925 and 2.025 seconds for that range of motion to be considered efficient.
  • the time t 3 -t 1 represents the time elapsed from the foot strike 30 until the follow through 52 . This time should be between 0.875 and 1.075 seconds for that range of motion to be considered efficient.
  • the time t 3 -t 2 represents the time elapsed from the ball release 46 until the follow through 52 . This time should be between 0.575 and 0.775 seconds for that range of motion to be considered efficient. If any of the times along the pitching delivery timeline 12 recorded for the pitcher 14 is not within the ranges discussed above, then this signifies an inefficient range of motion for a particular set of critical points.

Abstract

A method of assessing the biomechanical efficiency of a pitching delivery relative to time elapsed through certain motions of the pitching delivery. The method includes a pitching delivery timeline. The pitching delivery timeline has a first time requirement between 0.95 and 1.05 seconds within which a first forward movement until a foot strike range of motion should be completed. The pitching delivery timeline has a second time requirement between 1.25 and 1.35 seconds and corresponds to the time it takes to complete the first forward movement and a ball release range of motion. The pitching delivery timeline has a third time requirement from between 1.925 and 2.025 seconds and corresponds to the time it optimally takes to move from the first forward movement to a follow through range of motion. The method includes comparing at least one of the time requirements with a pitcher's delivery time for the corresponding range of motion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable
  • STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
  • Not Applicable
  • BACKGROUND
  • The present invention is directed to methods for assessing biomechanical efficiency as its relates to the performance of making pitching or throwing motions.
  • The sport of baseball is well-known in the art, and essential to such sport is the pitcher. The mechanics of pitching, although generally well understood, are complicated. Along these lines, not only are the biomechanics associated with the pitching motion complex, further complicating factors arise due to the specific physics and motions of the particular ball that is pitched, whether it be a curve ball, change-up, slider, knuckle ball, fast ball, and the like. In this regard, each particular pitch has its own unique characteristics and physics associated therewith.
  • Further compounding the complexities associated with the pitching motions is the unique “signature” motion that each individual makes when throwing a pitch. In this respect, and despite prior art techniques that are operative to teach uniform throwing motions, each individual pitcher will make distinctive throwing motions and exhibit unique biomechanical changes that are unique to that individual. As a consequence, in order to make a proper assessment of a pitcher's pitching ability, as well as to provide effective coaching, is it imperative to not only take conventional throwing biomechanics into consideration, there must further be considered how those mechanics apply to the unique throwing style of a specific pitcher.
  • Unfortunately, however, there has not heretofore been available any type of methodology for assessing pitching performance (i.e., in terms of biomechanical efficiency of the pitching delivery) that not only takes into account the critical motions or points associated with the delivery of a pitch but also takes into account the unique “signature” of an individual in making this delivery. There is likewise lacking in the art any type of method for assessing the biomechanical efficiency of a pitcher making a pitching motion that can be utilized to evaluate all types of pitchers and pitching motions, and further can be utilized as a coaching tool to ensure the pitcher's biomechanical efficiency is conserved when making a pitching motion. Still further, there is lacking in the art any type of methodology for assessing the biomechanical efficiency of a pitcher making a pitching motion that can be used to not only evaluate, correct and improve pitching performance, but can further be utilized to predict potential injury that can arise with incorrect or suboptimal biomechanical pitching delivery as well as predict a pitcher's longevity.
  • BRIEF SUMMARY
  • The present invention specifically addresses and alleviates the above-deficiencies in the art. In this regard, the present invention is directed to a method for assessing the biomechanical efficiency of a pitcher's pitching delivery, regardless of the pitcher's unique “signature” throwing style. The methodology of the present invention further can be utilized as part of a coaching model to improve the pitcher's biomechanical efficiency of his pitching delivery, and may be likewise utilized as a tool to predict potential strain of a pitcher based upon his or her pitching motions, and can further be utilized to predict the longevity of an individual's pitching ability.
  • To that end, the present invention provides for a time line within which multiple critical points of a pitcher's delivery are identified and assessed. The critical points consist of balance and posture, lift and thrust, stride and momentum, equal and opposite, delayed shoulder rotation, stack and track, swivel and stabilize, and ball release, which when completed from start to finish defines the entire pitching motion. Crucial to the present invention is for the pitcher to perform or move through certain of the critical points within certain time frames. In this regard, lift and thrust and the stride and momentum points along the pitching delivery time line, which begin with a first forward movement to a foot strike position, must be made between 0.95 seconds and 1.05 seconds in order for the pitcher to optimize biomechanical efficiency of the pitching delivery. Similarly, the equal and opposite, delayed shoulder rotation, stack and track and swivel and stabilize motions must be performed preferably within 1.25 to 1.35 seconds from the initiation of the pitching motion. Still further, the pitcher optimally completes the release of the pitch by approximately 1.925 to 2.025 seconds from the initiation of the pitching motion.
  • To the extent a pitcher, using his unique signature throwing style, can perform the critical motions within the respective time frames, optimal biomechanical efficiency of the pitching delivery will be realized. To the extent one or more critical points is not properly made or made within the time constraints for achieving optimal biomechanical efficiency, appropriate coaching may be made to improve that particular aspect of the individual's pitching delivery. In this respect, regardless of which specific critical point is sub-optimally performed, to the extent each critical point can be performed within the time ranges specified for performing such motion(s) optimal biomechanical efficiency of the pitcher's delivery will be substantially conserved. Alternatively, to the extent these critical points cannot be performed within the specified time ranges, such inability can be indicative of a pitcher's incapability of maximizing biomechanical efficiency and thus can predict decline in performance and susceptibility to injury, the latter being caused by strain and overexertion of the pitching delivery.
  • Advantageously, the methods of the present invention can serve as extremely useful tools in evaluating pitching performance, especially in relation to recruiting and drafting pitchers on the collegiate and professional levels. The methods can further be used as coaching methods to correct and improve upon a pitcher's existing biomechanical efficiencies, and likewise as a means of predicting potential injury and loss of pitching talent. The methods are also capable of being easily deployed, do not require substantial biomechanical analysis, can be utilized to evaluate the performance of any individual pitcher regardless of his or her unique pitching style, and may be readily deployed using known, existing biomechanical assessment technology.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawing, in which like numbers refer to like parts throughout, and in which:
  • FIG. 1 is a pitching delivery timeline for assessing biomechanical efficiency of the pitching delivery.
  • DETAILED DESCRIPTION
  • Referring now to the drawing wherein the showings are for purposes of illustrating embodiments of the present invention only and not for purposes of limiting the same, there is shown in FIG. 1 a pitching delivery timeline 12 for use in assessing biomechanical efficiency of the pitching delivery 10. In this regard, the teachings of the present invention are set forth in the Applicant's publication entitled The Art and Science of Pitching as most recently published by Coaches Choice™ and the National Pitching Association, the teachings of which are expressly incorporated herein by reference.
  • The pitching delivery timeline 12 is dissected into multiple critical points of a pitcher's 14 delivery. The pitching assessor coach can determine strengths and weaknesses for each critical point in the pitching delivery timeline 12 or the assessor may determine strengths or weaknesses for a combination of critical points along the pitching delivery timeline 12. The pitcher 14 with inefficient mechanics and poor timing is limiting his/her potential control, consistency, and velocity, as well as exposure to an increased risk of injury.
  • In this regard, the pitching motion is a complex movement that requires the body to coordinate and time the energy transfer through the body and onto the baseball; however, the optional pitching delivery is comprised of a set of events that happen, as discovered by the Applicant, in a set sequence within specific timing parameters. To maximize the efficiency of the delivery, each of these respective events must be executed in the correct sequence within the right timeframe. Thus, the delivery timeline 12 provides an assessor with a method for assessing biomechanical efficiency of the pitching delivery 10 to determine the pitcher's 14 potential, regardless of the pitcher's unique throwing style.
  • The first critical point is a balance and posture 16 position. The balance and posture 16 position initiates with a setup 18 also commonly referred to as a pitching stance. The setup 18 is an initial starting position that will facilitate absorbing, directing, and delivering energy. The setup 18 requires balance which involves aligning the pitcher's 14 head, spine, and belly button between the ball of the foot at the start of delivery, when the knees are flexed and the weight is equally distributed between the feet, which are spread within the width of the torso. Posture involves finding a spine to hip angle, as well as an angle of flexion in the knees that will stabilize and maintain the head and spine, while the body remains in-line to the plate with little or no head movement throughout the pitcher's 14 delivery. The balance and posture 16 position is completed with a first forward movement 20. The first forward movement 20 initiates a time t0 22, for assessing the critical points of the pitching delivery. The time is used for comparison with the established time requirements of the method for assessing biomechanical efficiency of the pitching delivery, as will be discussed in further detail below. The assessor uses the first critical point, balance and posture 16, to determine if the pitcher 14 can facilitate absorbing, directing, and delivering energy to the baseball before the pitcher 14 makes any movement in the pitching delivery.
  • The first forward movement 20 leads into the second critical point along the pitching delivery timeline 12 known as a lift and thrust 24. The pitcher's 14 first forward movement 20 must accomplish shifting total body critical mass toward home plate by leading with the rear end. The lift and thrust 24 concludes with a maximum leg lift 26. The maximum leg lift 26 is the maximum height or the maximum distance toward second base reached by the pitcher's 14 lift knee. The maximum leg lift 26 occurs when the pitcher 14 lifts the front leg as high or as far toward second base as possible. For example, if the pitcher 14 is pitching right-handed, the leg that is lifted off the ground is the left leg. Both the first forward movement 20 and:the maximum leg lift 26 must be accomplished without compromising balance and posture 16. A proper maximum leg lift 26 will maximize stride length and stride speed, thus optimizing the available energy created by linear weight transfer into later points on the pitching delivery timeline 12. This second critical point helps the assessor determine if the pitcher 14 transitions from the first forward movement 20 to the maximum leg lift 26 in a manner that will optimize the velocity and control of the baseball.
  • The maximum leg lift 26 leads into the third critical point along the pitching delivery timeline 12 classified as a stride and momentum 28 movement or motion. Stride is the distance and direction the pitcher's body travels from back foot into front foot contact. Stride is affected by lift leg height and lift leg angle with the head and spine staying upright, in line, and behind the body from first forward movement 20 throughout the stride and momentum 28 critical point. Momentum is maximized when the body only moves forward on stride and direction line. Stride and momentum 28 concludes with a foot strike 30. The foot strike 30 occurs when the first foot contacts the ground with the pitcher's 14 stride leg. The foot strike 30 is a critical measuring point along the pitching delivery timeline 12 because it corresponds to a time, t 1 32. The elapsed time between the first forward movement 20 and the foot strike 30 is represented by t1-t0. The time elapsed between the first forward movement 20 and the foot strike 30 should be between 0.95 seconds and 1.05 seconds. Thus, the lift and thrust 24 and the stride and momentum 28 points along the pitching delivery timeline must be between 0.95 seconds and 1.05 seconds in order for the pitcher 14 to optimize biomechanical efficiency of the pitching delivery 10. The time requirement between the first forward movement 20 and the foot strike 30 is an essential assessment tool, because if the pitcher 14 is outside the required time range, this will notify the assessor that the pitcher has a weakness. That weakness may manifest itself by way of decreased ball velocity, decreased control of the ball, or it may make the pitcher 14 more prone to injury. This information may prove very valuable when assessing the pitcher 14. Conversely, if the pitcher 14 is within the range of time required by the pitching delivery timeline 12, this will notify the assessor that the pitcher's 14 movement between the first forward movement 20 and the foot strike 30 is solid and should be considered a strong point in the pitcher's 14 pitching delivery.
  • The foot strike 30 leads into the fourth critical point, namely, equal and opposite 32 arms position. The equal and opposite 32 arms position is important for balance and timing throughout the delivery, and refers to the “mirror imaging” in position of the glove arm to the throwing arm. In other words, from the time the hands separate the ball and glove, to the time the ball and throwing forearm lay back into external rotation, every joint in both arms, hands to wrist angle, forearms to elbows angle, elbows to shoulders angle, will be equal on both sides of the body. The equal and opposite 32 position helps coordinate body balance, posture, stride direction, and momentum with the timing and translation of weight transfer and kinetic sequencing during a pitching delivery. The equal and opposite 32 position concludes with a maximum shoulder separation 34. The maximum shoulder separation 34 is required for maximizing and stabilizing the optimal angle difference between the front hip and back shoulder. If the maximum shoulder separation 34 is done properly it may optimize the translation of energy generated by total-body linear momentum into hip and shoulder rotational momentum.
  • The maximum shoulder separation 34 leads into a delayed shoulder rotation 36 critical point. The delayed shoulder rotation 36 requires the pitcher to refrain from allowing the back shoulder to start rotating forward until the body is as close to home plate as stride, momentum, strength, and flexibility will allow. Optimal energy translation requires efficient total-body timing and sequencing on the stride line, keeping the hips and shoulders separated, and delaying the rotation of the throwing shoulder as long as possible while the torso moves toward home plate. The delayed shoulder rotation 36 contributes substantially to the rotational momentum of the pitcher 14.
  • The delayed shoulder rotation 36 ends when the pitcher 14 is in a position where the shoulders are squared up perpendicular to home plate 40. The next critical point is referred to as a stack and track 38. The stack and track 38 occurs when the hips and shoulders rotate and shoulders square up perpendicular to the home plate 40, the lower back is in full extension, head and spine stay upright as legs deliver torso on stride and direction line to the home plate. Stack refers to torso posture staying upright and vertical with the head over the shoulders, as the hips and shoulders sequence their rotation around the spine. Track refers to the torso continuing to move forward, while the legs deliver the hips, and the hips rotate the shoulders and square up to home plate. The stack and track 38 concludes with the pitcher's 14 forearm back in external rotation 42.
  • The following critical point is a swivel and stabilize 44 movement. The swivel and stabilize 44 movement combined with the stack and track 38 make up the final phase of timing and sequencing in the pitching delivery. As the shoulders rotate and square up perpendicular to the target, the throwing forearm lays back in external rotation 42, and the glove swivels to stabilize over the landing foot, somewhere in front of the torso between shoulders and belly button. Done properly, the swivel and stabilize movement helps maximize the efficiency of directional or linear momentum and the rotational momentum of the hips and shoulders. The glove must stabilize and then stop to direct and help the pitcher time the final sequencing of energy coming up through the body into the throwing arm. Sequencing the swivel and stabilize movement 44 involves stopping the glove over the front foot in front of the torso; swiveling the glove at that point to a “glove up, palm to torso” position; stabilizing the glove elbow in a slot straight under the armpit; and squaring the shoulders up as the torso tracks to the glove. The swivel and stabilize 44 movement ends with a ball release 46. The ball release is the exact position and moment the baseball leaves the pitcher's 46 hand.
  • The ball release 46 is another critical measuring point along the pitching delivery timeline 12, because it corresponds to a time, t 2 48. The elapsed time between the first forward movement 20 and the ball release 46 is represented by t2-t0. The time required by the pitching delivery timeline 12 to elapse between the first forward movement and the ball release 46 is 1.25 to 1.35 seconds. Thus, if the pitcher 14 is outside the time range, the assessor will know that the pitcher 14 has a weakness in the pitching delivery between the two movements. Additionally, t2-t1 represents the time elapsed between the foot strike 30 and the ball release 46. Therefore, the assessor may dissect and critique a certain sequence in the pitching delivery timeline 12. For example, the pitching delivery timeline 12 requires a time between 0.2 and 0.4 seconds elapsed between the foot strike 30 and the ball release 46, also known as the pitch cycle. The pitch cycle is an important part of the pitching delivery because everything that happens prior to the ball release simply prepares the pitcher to be in the optimal position to deliver the ball effectively. Release point happens after the foot strike 30 from the ground up, efficiently timing and sequencing each successive link of energy in the pitcher's body out onto the baseball. If the pitcher cannot complete the critical points between the foot strike and the ball release within the required time, the assessor may conclude that the pitcher has weaknesses in that particular area of the pitching delivery.
  • The ball release 46 should occur as close to home plate as genetics, biomechanics, strength, and flexibility will allow. The ball release 46 occurs at the end of the swivel and stabilize 44 critical point and initiates the final critical point, a release 50. If the release 50 is efficient it demonstrates proper timing and sequencing of the pitcher's 14 kinetic energy chain. An efficient release 50 point occurs 8 to 12 inches in front of the landing foot and is sequenced when torso has tracked as far forward as strength, flexibility, and momentum will allow, shoulders have squared up perpendicular to the target, throwing arm has laid back in maximum external rotation and glove has swiveled over front foot. At this point and time the low back initiates flexion and throwing forearm snaps forward with internal rotation to deliver the ball in an arm path unique to each pitcher. The back foot should not come off the ground until the baseball leaves the throwing hand and the back foot drag line should end on the center line between the middle of rubber and the middle of home plate. At the end of the release 50 point is a follow through 52. The follow through 52 should take place with little or no head movement. The pitcher's eyes remain stable and focused on the target until the ball crosses home plate. The follow through 52 is an important point because it allows the assessor to determine whether the motions prior to the follow through 52 are efficient. Basically, the more efficient the pitcher 14 is until the ball is released, the more efficient the follow through 52 will be after the release 50. At the end of the release 50 a time t 3 54 is recorded which, concludes the pitching delivery timeline 12.
  • The time t3-t0 represents the time elapsed from the first forward movement 20 until the follow through 52. This time should be between 1.925 and 2.025 seconds for that range of motion to be considered efficient. The time t3-t1 represents the time elapsed from the foot strike 30 until the follow through 52. This time should be between 0.875 and 1.075 seconds for that range of motion to be considered efficient. The time t3-t2 represents the time elapsed from the ball release 46 until the follow through 52. This time should be between 0.575 and 0.775 seconds for that range of motion to be considered efficient. If any of the times along the pitching delivery timeline 12 recorded for the pitcher 14 is not within the ranges discussed above, then this signifies an inefficient range of motion for a particular set of critical points.
  • While an illustrative and present embodiment of the invention has been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed. It should further be understood that the invention described herein may be utilized in a wide variety of applications that will be readily appreciated by those skilled in the art, which can include recruiting/drafting players, rehabilitation, and pitcher training, among others. It should also be appreciated that the present invention may find applications for other sports where the optimal ability to throw, such as football, plays an important role.

Claims (4)

1. A method for assessing the biomechanical efficiency of a pitching delivery, the method comprising:
a. dissecting a pitching delivery into a plurality of consecutively performed motions comprised of a first forward movement, a foot strike range of motion, a ball release range of motion and a follow through range of motion;
b. imposing a first time requirement between 0.95 and 1.05 seconds for moving from the first forward movement to the foot strike range of motion from the plurality of motions;
c. imposing a second time requirement between 1.25 and 1.35 seconds for moving from the first forward movement to the ball release range of motion from the plurality of motions;
d. imposing a third time requirement between 1.925 and 2.025 seconds for moving from the first forward movement to the follow through range of motion from the plurality of motions; and
e. comparing from a timed pitching delivery at least one time requirement provided in steps b, c and d with the corresponding motion provided in said respective steps.
2. The method of claim 1 wherein in step b, said first forward movement to said foot strike range of motion defines a lift and thrust critical point and a stride and momentum critical point.
3. The method of claim 2 wherein in step c, said first forward movement to said ball release range of motion defines a lift and thrust critical point, a stride and momentum critical point, an equal and opposite critical point, a delayed shoulder rotation critical point, a stack and track critical point and a swivel and stabilize critical point.
4. The method of claim 3 wherein in step d, said first forward movement to said follow through range of motion defines a lift and thrust critical point, a stride and momentum critical point, an equal and opposite critical point, a delayed shoulder critical point, a stack and track critical point, a swivel and stabilize critical point and release critical point.
US11/516,078 2006-09-06 2006-09-06 Method for assessing biomechanical efficiency of the pitching delivery Abandoned US20080058126A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/516,078 US20080058126A1 (en) 2006-09-06 2006-09-06 Method for assessing biomechanical efficiency of the pitching delivery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/516,078 US20080058126A1 (en) 2006-09-06 2006-09-06 Method for assessing biomechanical efficiency of the pitching delivery

Publications (1)

Publication Number Publication Date
US20080058126A1 true US20080058126A1 (en) 2008-03-06

Family

ID=39152469

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/516,078 Abandoned US20080058126A1 (en) 2006-09-06 2006-09-06 Method for assessing biomechanical efficiency of the pitching delivery

Country Status (1)

Country Link
US (1) US20080058126A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303827A1 (en) * 2013-02-01 2017-10-26 Nike, Inc. System and Method for Analyzing Athletic Activity
CN108319211A (en) * 2018-04-03 2018-07-24 伊士通(上海)医疗器械有限公司 A kind of remote monitoring and maintenance system of athletic rehabilitation equipment
US10408693B2 (en) 2008-06-13 2019-09-10 Nike, Inc. System and method for analyzing athletic activity
US10674782B2 (en) 2011-02-17 2020-06-09 Nike, Inc. Footwear having sensor system
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627620A (en) * 1984-12-26 1986-12-09 Yang John P Electronic athlete trainer for improving skills in reflex, speed and accuracy
US5000449A (en) * 1990-08-31 1991-03-19 Douglas Weeks Baseball pitching trainer
US5330176A (en) * 1992-08-24 1994-07-19 Cagney Jr Richard D Stance and stride training aid
US5354050A (en) * 1994-04-01 1994-10-11 Mccarthy Robert L Alarm device for teaching the correct mechanics for throwing a baseball
US20020147062A1 (en) * 2001-04-10 2002-10-10 Isaiah Moore Apparatus and methods for batting practice and playing baseball
US6663512B2 (en) * 2002-01-24 2003-12-16 The Pitching Coach, Llc Pitching coach
US7059862B2 (en) * 2002-06-19 2006-06-13 Mcginley Michael L Hitting trainer
US7090599B2 (en) * 2003-12-24 2006-08-15 Hedgepath Phillip A Baseball batting stance training assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627620A (en) * 1984-12-26 1986-12-09 Yang John P Electronic athlete trainer for improving skills in reflex, speed and accuracy
US5000449A (en) * 1990-08-31 1991-03-19 Douglas Weeks Baseball pitching trainer
US5330176A (en) * 1992-08-24 1994-07-19 Cagney Jr Richard D Stance and stride training aid
US5354050A (en) * 1994-04-01 1994-10-11 Mccarthy Robert L Alarm device for teaching the correct mechanics for throwing a baseball
US20020147062A1 (en) * 2001-04-10 2002-10-10 Isaiah Moore Apparatus and methods for batting practice and playing baseball
US6663512B2 (en) * 2002-01-24 2003-12-16 The Pitching Coach, Llc Pitching coach
US7059862B2 (en) * 2002-06-19 2006-06-13 Mcginley Michael L Hitting trainer
US7090599B2 (en) * 2003-12-24 2006-08-15 Hedgepath Phillip A Baseball batting stance training assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408693B2 (en) 2008-06-13 2019-09-10 Nike, Inc. System and method for analyzing athletic activity
US10674782B2 (en) 2011-02-17 2020-06-09 Nike, Inc. Footwear having sensor system
US11109635B2 (en) 2011-02-17 2021-09-07 Nike, Inc. Footwear having sensor system
US20170303827A1 (en) * 2013-02-01 2017-10-26 Nike, Inc. System and Method for Analyzing Athletic Activity
US10327672B2 (en) * 2013-02-01 2019-06-25 Nike, Inc. System and method for analyzing athletic activity
US10926133B2 (en) 2013-02-01 2021-02-23 Nike, Inc. System and method for analyzing athletic activity
US11006690B2 (en) 2013-02-01 2021-05-18 Nike, Inc. System and method for analyzing athletic activity
US11918854B2 (en) 2013-02-01 2024-03-05 Nike, Inc. System and method for analyzing athletic activity
US10914645B2 (en) 2013-03-15 2021-02-09 Nike, Inc. System and method for analyzing athletic activity
CN108319211A (en) * 2018-04-03 2018-07-24 伊士通(上海)医疗器械有限公司 A kind of remote monitoring and maintenance system of athletic rehabilitation equipment

Similar Documents

Publication Publication Date Title
Fleisig et al. Tennis: Kinematics used by world class tennis players to produce high‐velocity serves
Cheetham et al. The importance of stretching the “X-Factor” in the downswing of golf: The “X-Factor Stretch”
Zheng et al. Kinematic analysis of swing in pro and amateur golfers
Hume et al. The role of biomechanics in maximising distance and accuracy of golf shots
Egret et al. Analysis of 3D kinematics concerning three different clubs in golf swing
Zheng et al. Swing kinematics for male and female pro golfers
López De Subijana et al. Biomechanical analysis of the penalty-corner drag-flick of elite male and female hockey players
US20080058126A1 (en) Method for assessing biomechanical efficiency of the pitching delivery
Van den Tillaar et al. A comparison of kinematics between overarm throwing with 20% underweight, regular, and 20% overweight balls
Neal et al. Body segment sequencing and timing in golf
Stępień et al. The kinematics of trunk and upper extremities in one-handed and two-handed backhand stroke
Lynn et al. Rotational kinematics of the pelvis during the golf swing: Skill level differences and relationship to club and ball impact conditions
Brétigny et al. Upper-limb kinematics and coordination of short grip and classic drives in field hockey
van der Graaff et al. Timing of peak pelvis and thorax rotation velocity in baseball pitching
Lee et al. Head–putter coordination patterns in expert and less skilled golfers
US20130065702A1 (en) Sport swinging, hitting and throwing assistance device
Lee et al. Correlation analysis between postural sway and kinematics variables of putter head during golf putting
Fortenbaugh et al. Coming down: Throwing mechanics of baseball catchers
Kim et al. Relationship between joint angles and x-factor in golf swing
Choi et al. Kinematic Analysis of Golf Putting for Elite and Novice Golfers
Healy Identification of the biomechanical performance determining factors of the 5 iron golf swing when hitting for maximum distance
Aleksovski PRECISION OF GROUND STROKES IN TENNIS.
Choi et al. Kinematics and grip forces of professionals, amateurs and novices during golf putting
Linning A concise method of specifying the geometry and timing of golf swings
Song et al. A biomechanical analysis of the upper limb on different snooker batting techniques

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION