US20080038501A1 - Carrier tapes having tear-initiated cover tapes and methods of making thereof - Google Patents

Carrier tapes having tear-initiated cover tapes and methods of making thereof Download PDF

Info

Publication number
US20080038501A1
US20080038501A1 US11/835,211 US83521107A US2008038501A1 US 20080038501 A1 US20080038501 A1 US 20080038501A1 US 83521107 A US83521107 A US 83521107A US 2008038501 A1 US2008038501 A1 US 2008038501A1
Authority
US
United States
Prior art keywords
tear
cover tape
film
initiation
features
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/835,211
Inventor
Ruben E. Velasquez Urey
Rocky D. Edwards
Douglas B. Gundel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/835,211 priority Critical patent/US20080038501A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EDWARDS, ROCKY D., GUNDEL, DOUGLAS B., VELASQUEZ UREY, RUBEN E.
Publication of US20080038501A1 publication Critical patent/US20080038501A1/en
Priority to US12/368,457 priority patent/US8323442B2/en
Priority to US13/662,800 priority patent/US20130048220A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0084Containers and magazines for components, e.g. tube-like magazines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/18Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet characterized by perforations in the adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/204Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive coating being discontinuous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1067Continuous longitudinal slitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/15Sheet, web, or layer weakened to permit separation through thickness

Definitions

  • the present invention relates to carrier tapes for storing electronic surface mount components.
  • the present invention relates to carrier tapes that incorporate cover tapes having tear-initiation features.
  • electronic components are often carried from a supply of such components to a specific location on a circuit board for attachment.
  • One way to provide a continuous supply of electronic components to a desired location is to load a series of such components into pockets that are spaced along a carrier tape.
  • the loaded carrier tape which is usually provided in roll form, may then be advanced toward a pick-up location at a predetermined rate as each succeeding component is removed from the tape by a robotic placement machine.
  • carrier tapes typically include a self-supporting base portion that carries the component, and a flexible cover tape that aids in preventing foreign matter from deleteriously affecting the component.
  • the cover tape is typically sealed to the base portion with a sealing apparatus, and is progressively peeled away from the base portion just before the robotic placement machine removes the component from the carrier tape.
  • a common issue with carrier tapes is that the bond between the base portion and the cover tape needs to be sufficient to prevent the cover tape from prematurely delaminating from the base portion, while also being weak enough to allow the cover tape to be readily peeled off from the base portion without requiring excessive removal forces or generating undesirable vibrations.
  • cover tapes that exhibit suitable bond strengths to base portions and are also easy to remove when desired.
  • At least one aspect of the present invention relates to a cover tape for use with a carrier tape.
  • the cover tape includes at least one tear-initiation feature extending through a lateral edge of the cover tape, where the tear-initiation feature at least partially defines a predetermined direction of tear to initiate a tear along portions of the cover tape.
  • the at least one tear-initiation features has an arcuate shape.
  • the at least one tear-initiation feature is formed by cutting through the film from a top surface of the film.
  • At least one aspect of the present invention also relates to a method of forming cover tapes.
  • the method involves cutting at least one track into a film from a first major surface of the film, cutting lines of weakness in the film from a second major surface of the film, applying adhesive materials to the second major surface of the film, and separating the film into multiple cover tapes by slitting the film through the at least one track, thereby forming at least one tear-initiation feature from the at least one divided track.
  • FIG. 1 is a perspective view of a carrier tape of an embodiment of the present invention.
  • FIG. 2A is a top perspective view of a segment of a cover tape of the carrier tape.
  • FIG. 2B is a top view of a segment of the cover tape of the carrier tape.
  • FIG. 3 is a flow diagram of a method of forming the cover tape.
  • FIG. 4A is a top view photograph taken of a cover tape containing a tear-initiation features formed after an adhesive strip was applied.
  • FIG. 4B is a top view photograph taken of a cover tape containing a tear-initiation features formed before an adhesive strip was applied.
  • FIG. 5 is a flow diagram of a method of forming multiple cover tapes in a simultaneous manner.
  • FIG. 6 is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5 .
  • FIG. 7 is a top view of an alternative multi-layer film formed pursuant to the method shown in FIG. 5 .
  • FIG. 8A is a side perspective view of a wound-up roll of cover tape that illustrates an alternative method for forming tear-initiation features.
  • FIG. 8B is a front perspective view of the wound-up roll of cover tape.
  • FIG. 9A is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5 , where the multi-layer film has a first alternative “U”-shaped feature.
  • FIG. 9B is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5 , where the multi-layer film has a second alternative “U”-shaped feature.
  • FIG. 10 is an expanded view of a U”-shaped feature formed pursuant to the method shown in FIG. 5 .
  • FIG. 11 is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5 , where the multi-layer film has a first alternative, non-arcuate feature.
  • FIG. 12 is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5 , where the multi-layer film has a second alternative, non-arcuate feature.
  • FIG. 13 is a top view photograph of a carrier tape, which includes a cover tape having non-arcuate tear-initiation features.
  • FIGS. 14A-14D are top views of multi-layer films formed pursuant to the method shown in FIG. 5 , where the multi-layer films depict additional alternative features.
  • FIG. 15A is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5 , where the multi-layer film has a “U”-shaped feature with a linear apex portion and linear trailing ends.
  • FIG. 15B is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5 , where the multi-layer film has a “U”-shaped feature with a linear apex portion and curved trailing ends.
  • FIG. 16 is a cross-sectional view of a cover tape having recessed portions.
  • FIG. 1 is a perspective view of carrier tape 10 , which is a convenient system for storing and transporting electronic components.
  • carrier tape 10 includes base portion 12 and cover tape 14 , and is disposed in a coordinate system that includes lateral axis 16 x , longitudinal axis 16 y , and vertical axis 16 z .
  • the directional orientations are used herein for ease of discussion, and are not intended to be limiting.
  • Base portion 12 is a flexible, self-supporting structure that extends along longitudinal axis 16 y , and includes perimeter surface 18 and pockets 20 .
  • Perimeter surface 18 is a planar border extending around pockets 20 , and includes edge portions 22 a and 22 b . Edge portions 22 a and 22 b each extend along longitudinal axis 16 y and are offset along lateral axis 16 x . Additionally, lateral edge portion 22 b includes a row of aligned advancement holes 24 formed in perimeter surface 18 . Advancement holes 24 allow carrier tape 10 to engage with an advancement mechanism (not shown) for advancing carrier tape 10 to a predetermined position during use.
  • Pockets 20 are indentations formed in base portion 12 , within perimeter surface 18 , which are spaced apart along longitudinal axis 16 y . Pockets 20 are designed to conform to the size of the stored electronic components, such as component 26 shown in FIG. 1 .
  • Cover tape 14 is a single layer or multi-layer film that extends along longitudinal axis 16 y , and is disposed vertically over perimeter surface 18 and pockets 20 of base portion 12 . As such, during storage and transportation, cover tape 14 seals stored electronic components (e.g., component 26 ) within pockets 20 .
  • Cover tape 14 includes top surface 28 and bottom surface 30 , which are opposing major surfaces of cover tape 14 offset along vertical axis 16 z .
  • Cover tape 14 also includes bonding portions 32 a and 32 b , and medial portion 34 , where medial portion 34 is laterally disposed between bonding portions 32 a and 32 b .
  • Bonding portions 32 a and 32 b are the portions of cover tape 14 that are adhered to perimeter surface 18 at edge portions 22 a and 22 b , respectively.
  • Medial portion 34 is a central portion of cover tape 14 that is configured to be peeled back as shown in FIG. 1 (i.e., separated from bonding portions 32 a and 32 b ) for access to pockets 20 .
  • Cover tape 14 also includes a plurality of tear-initiation features 36 , which, in this embodiment, are arcuate-shaped slits extending from top surface 28 toward, and typically through, bottom surface 30 at bonding portions 32 a and 32 b , and are situated at intermittent locations along longitudinal axis 16 y . Tear-initiation features 36 allow medial portion 34 to be readily peeled from bonding portions 32 a and 32 b , without requiring an excessive amount of removal force. When the cover tape 14 is peeled back from perimeter surface 18 of base portion 12 , bonding portions 32 a and 32 b respectively delaminate from edge portions 22 a and 22 b of perimeter surface 18 until the peel intersects tear-initiation features 36 .
  • tear-initiation features 36 are arcuate-shaped slits extending from top surface 28 toward, and typically through, bottom surface 30 at bonding portions 32 a and 32 b , and are situated at intermittent locations along longitudinal axis 16 y . Tear-initiation features 36 allow medial portion 34 to be readily pe
  • cover tape 14 starts to tear and the tear is directed towards the center of cover tape 14 by the angle and shape of tear-initiation features 36 .
  • the tear continues until it runs into score lines (not shown in FIG. 1 ), which then provide the directions along which cover tape 14 will tear continually.
  • Tear-initiation features 36 allow cover tape 14 to rely on a tear mechanism rather than an adhesive de-bonding mechanism to peel cover tape 14 from base portion 12 . This reduces the need for specialized adhesives to bond cover tape 14 to base portion 12 , which otherwise require a balance between adhesion and removal forces. As such, cover tape 14 can be adhered to base portion 12 with strong adhesive forces, while still allowing medial portion 34 to be readily removed with moderate and consistent removal forces.
  • FIGS. 2A and 2B are respectively a top perspective view and a top view of a segment of cover tape 14 .
  • cover tape 14 is a multi-layer film that includes topcoat layer 38 , core layer 40 , bottom coating 42 , and adhesive strips 44 a and 44 b .
  • Core layer 40 is the base layer for cover tape 14 , and is desirably uniaxially or biaxially oriented to facilitate downweb tearing along longitudinal axis 16 y , and to reduce or prevent transverse tearing along lateral axis 16 x .
  • Core layer 40 of cover tape 14 can be a polymer film, for example, polyethylene terephthalate, oriented polypropylene (e.g., biaxially oriented polypropylene), oriented polyamides, oriented polyvinyl chloride, polystyrene, polycarbonate, polyethylene, polyacrylonitrile, polyolefin and polyimide films.
  • Core layer 40 can also be transparent, intrinsically non-conductive, electrically conductive, static dissipative, and combinations thereof. Core layer 40 may be made electrically conductive or static dissipative by compounding materials such as carbon black or metals into the polymer film material that forms core layer 40 .
  • Topcoat layer 38 is optionally provided along top face 28 of cover tape 14 .
  • Topcoat layer 38 may be or may include a static dissipative (SD) coating, LAB (i.e., an adhesive release coating), an anti-reflective or glare-reducing coating, and other coatings and combinations of coatings.
  • Topcoat layer 38 may also be a protective layer that protects the cover tape 14 and retained electrical components during storage and transportation.
  • Suitable materials for topcoat layer 28 include weathering and abrasion resistant materials, such as polyurethanes, cross-linked materials (e.g., cured acrylates and epoxies), silicones, silane-conforming materials, and combinations thereof.
  • topcoat layer 38 is shown across the entire top portion of core layer 40 , topcoat layer 38 may alternatively be disposed over one or more smaller portions of core layer 40 (e.g., to align with adhesive strips 44 a and 44 b when cover tape 14 is rolled up).
  • Bottom coating 42 is also optionally provided along the bottom face 30 of cover tape 14 .
  • Bottom coating 42 can be an SD coating or other type of coating, and can be at least partially blended with core layer 40 .
  • a metallized layer which can dissipate static electricity, may be substituted for bottom coating 42 .
  • Suitable materials for a metallized layer include metals such as aluminum, stainless steel, nickel-chrome, and nickel-cadmium, which are applied by vapor coating or sputtering techniques.
  • one or both of topcoat layer 38 and core layer 40 may also include metals for dissipating electricity.
  • cover tape 14 is shown with the above-discussed layers, in alternative embodiments, cover tape 14 may include different types of functional and non-functional layers as necessary for particular storage applications.
  • cover tape 14 is a single-layer film that only includes core layer 40 .
  • top surface 28 and bottom surface 30 are the opposing major surfaces of core layer 40 . This embodiment is beneficial for reducing material and processing costs in forming cover tape 14 .
  • Adhesive strips 44 a and 44 b are film-based strips of adhesive materials that are bonded to bottom surface 30 at bonding portions 32 a and 32 b , respectively. Adhesive strips 44 a and 44 b extend along longitudinal axis 16 y , and are the portions of cover tape 14 that adhere to edge portions 22 a and 22 b of base portion 12 . Suitable materials for adhesive strips 44 a and 44 b include pressure sensitive adhesives and heat-activated adhesives (e.g., ethylene vinyl acetate copolymers). Upon assembly with base portion 12 (shown above in FIG. 1 ), adhesive strips 44 a and 44 b adhere bonding portions 32 a and 32 b of cover tape 12 to edge portions 22 a and 22 b of base portion 12 .
  • cover tape 14 includes score lines 46 a and 46 b , which are lines of weakness formed in bottom surface 30 , and which extend through bottom coating 42 and partially into core layer 40 .
  • Score lines 46 a and 46 b are disposed laterally adjacent to adhesive strips 44 a and 44 b , respectively, and extend along longitudinal axis 16 y .
  • score lines 46 a and 46 b extend partially into core layer 40 , but are formed before bottom coating 42 is secured to core layer 40 . As such, in this embodiment, score lines 46 a and 46 b do not extend through bottom coating 42 .
  • Tear-initiation features 36 extend through topcoat layer 38 , core layer 40 , and bottom coating 42 , and each have an arcuate shape along top surface 28 and bottom surface 30 .
  • score lines 46 a and 46 b are disposed laterally inward relative to adhesive strips 44 a and 44 b (shown with phantom lines).
  • the force required to peel medial portion 34 only needs to exceed the tear force of score lines 46 a and 46 b .
  • the strength of the adhesive bond at bonding portions 32 a and 32 b no longer directly affects the required peel force.
  • tear-initiation features 36 extend from the lateral edges of cover tape 14 to points laterally inward that are disposed over adhesive strips 44 a and 44 b . This keeps cover tape 14 anchored to base portion 12 , and reduces the risk of cover tape 14 accidentally peeling at a premature point in time (e.g., during storage or transportation). Tear-initiation features 36 also do not intersect score lines 46 a and 46 b to preserve the structural integrity of cover tape 14 .
  • a removal force is applied to medial portion 34 of cover tape 14 .
  • Continued application of the removal force causes further de-bonding until the peel reaches the first set of tear-initiation features 36 along longitudinal axis 16 y.
  • FIG. 3 is a flow diagram of method 50 , which is a suitable method for forming cover tape 14 .
  • method 50 includes steps 52 - 58 , and initially involves forming the multi-layer film of cover tape 14 (i.e., topcoat layer 38 , core layer 40 , and bottom coating 42 ) (step 52 ).
  • the layers of cover tape 14 may be formed in a variety of manners, such as co-lamination techniques (e.g., coextrusions and wet castings), deposition techniques (e.g., vapor coatings and sputtering techniques), and combinations thereof.
  • Tear-initiation features 36 are then cut into the lateral edges of the multi-layer film of cover tape 14 from top surface 28 (step 54 ). Forming tear-initiation features 36 from top surface 28 reduces the amount of debris contamination on top surface 28 , thereby reducing the risk of contaminating guides and sealing shoes of sealing equipment used to seal cover tape 14 to base portion 12 .
  • score lines 46 a and 46 b are then cut into cover tape 14 from bottom surface 30 (step 56 ). Because score lines 46 a and 46 b do not extend through core layer 40 or topcoat layer 38 , score lines 46 a and 46 b may be cut from bottom surface 30 without forming debris contamination on top surface 28 . In an alternative embodiment, score lines extend through topcoat layer 38 and into core layer 40 . In this embodiment, the score lines are cut into top surface 28 rather than bottom surface 30 . While steps 54 and 56 are described above in the order shown in FIG. 3 , steps 54 and 56 may alternatively be formed in an opposite order (i.e., cut score lines 46 a and 46 b prior to cutting tear-initiation features 36 ), or in a substantially simultaneous manner.
  • tear-initiation features 36 and score lines 46 a and 46 b are then coated onto bottom surface 30 at bonding portions 32 a and 32 b (step 58 ). This may be performed with a standard lamination process. Applying adhesive strips 44 a and 44 b after tear-initiation features 36 are formed also reduces contamination that may otherwise occur if tear-initiation features 36 are cut after applying adhesive strips 44 a and 44 b to bottom surface 30 . Cutting tear-initiation features 36 , from bottom surface 30 , after applying adhesive strips 44 a and 44 b pushes adhesive material through tear-initiation features 36 , and out of top surface 28 .
  • cover film 14 After cover film 14 is formed, it is then sealed to base portion 12 (after electrical components are placed in pockets 20 ) to form carrier tape 10 .
  • Suitable sealing systems for sealing cover film 14 to base portion 12 include systems commercially available from Ismeca USA, Inc., Carlsbad, Calif.
  • FIGS. 4A and 4B are top view photographs taken of cover tapes containing tear-initiation features (taken with 20 ⁇ magnification).
  • the cover tape includes portions 60 a and 60 b , and tear-initiation feature 62 .
  • Portion 60 a is a portion of the multi-layer film adjacent a lateral edge of the cover tape
  • portion 60 b is a portion where an adhesive strip is disposed below the multi-layer film.
  • tear-initiation feature 62 extends through portion 60 a , and has a trailing end that terminates in portion 62 b (i.e., above the adhesive strip).
  • tear-initiation feature 62 was cut into the multi-layer film from bottom surface 30 after the adhesive strip was applied to bottom surface 30 , thereby forming tear-initiation feature 62 through the adhesive strip as well. Because of this, the section of tear-initiation feature 62 that extends into portion 60 b is spread apart, and adhesive material is pushed upwards through tear-initiation feature 62 . The penetration of the cutting blade through the adhesive strip pushes the adhesive away from the area of tear-initiation feature 62 , thereby causing a small region with insufficient adhesive. This area has a reduced adhesive bond to the corresponding base portion, and is a potential point of delamination, which can result in shut downs and damage to the sealing equipment.
  • the cover tape includes portions 64 a and 64 b , and tear-initiation feature 66 , which correspond to portions 60 a and 60 b , and tear-initiation feature 62 (shown above in FIG. 4A ).
  • tear-initiation feature 66 was cut into the multi-layer film from top surface 28 before the adhesive strip was applied.
  • the section of tear-initiation feature 66 that extends into portion 64 b is cleanly cut and no adhesive is pushed upwards.
  • forming tear-initiation feature 66 from top surface 28 (or from bottom surface 30 ) prior to applying the adhesive strips reduced the amount of contaminating adhesive and debris formed on the top surface of the cover tape.
  • most of the debris created when forming tear-initiation feature 66 was captured or encapsulated by the adhesive strip, thereby making it cleaner.
  • debris in the region of the adhesive strip did not appear to reduce the adhesive strength of the adhesive strip.
  • FIG. 5 is a flow diagram of method 68 , which is a suitable method for forming multiple cover tapes simultaneously.
  • method 68 includes steps 70 - 78 , and initially involves forming a multi-layer film containing the layers of the cover tapes (step 70 ).
  • the multi-layer film may be formed using the same techniques discussed above in step 52 of method 50 (shown above in FIG. 3 ).
  • Multiple tracks are then cut into the multi-layer film from the top surface of the film (step 72 ).
  • Multiple score lines are then cut into the multi-layer film from the bottom surface of the film (step 74 ). In an alternative embodiment, score lines are cut into the multi-layer film from the top surface of the film. While steps 72 and 74 are described above in the order shown in FIG.
  • steps 72 and 74 may alternatively be formed in an opposite order (i.e., cut the score lines prior to cutting the tracks), or in a substantially simultaneous manner.
  • multiple adhesive strips are then coated onto the bonding portions of the bottom surface of the film (step 76 ).
  • the film is separated into the multiple cover tapes by slitting the film through the tracks (step 78 ). As discussed further below in FIG. 6 , slitting the film between the adhesive strips (and through the tracks) bisects each of the tracks, thereby forming a pair of rows of tear-initiation features on the lateral edges of each cover tape.
  • FIG. 6 is a top view of film 80 , which is a multi-layer film formed pursuant to step 70 of method 68 .
  • Film 80 includes top surface 82 , tracks 84 , score lines 86 (shown with hidden lines), adhesive strips 88 (shown with hidden lines), and slit lines 90 .
  • tracks 84 are cut into top surface 82 , pursuant to step 72 of method 68 .
  • tracks 84 are rows of “U”-shaped features 91 , where each “U”-shaped feature 91 is subsequently divided to form a pair of arcuate-shaped tear-initiation features. As such, this allows a single cutting blade to form tear-initiation features for a pair of adjacent cover tapes.
  • the distance along film 80 between “U”-shaped features 91 may vary depending on the particular sizing requirements of the resulting cover tapes. Suitable separation distances include at least about 0.1 inches, with more suitable distances typically ranging from about 0.5 inches to about 3 inches. Suitable lateral widths of “U”-shaped features 91 include at least about 0.1 millimeters, with more suitable widths typically ranging from about 0.5 millimeters to about 2.0 millimeters. In one embodiment, the multi-layer film includes a single “U”-shaped features 91 . As discussed above, forming tear-initiation features from top surface 82 (and also prior to applying adhesive strips 88 ) reduces the amount of contaminating debris that forms on top surface 82 .
  • score lines 86 are then cut in multi-layer film 80 from the bottom surface (not shown in FIG. 6 ), pursuant to step 74 of method 68 . As shown, score lines 86 are disposed laterally beyond “U”-shaped features 91 , and beyond the intended locations of adhesive strips 88 . Adhesive strips 88 are then coated onto the bottom surface of multi-layer film 80 , pursuant to step 76 of method 68 . At this point multi-layer film 80 includes multiple repeating patterns containing tracks 84 , score lines 86 , and adhesive strips 88 .
  • Multi-layer film 80 is then separated into multiple cover tapes (e.g., cover tapes 92 a and 92 b ) by slitting film 80 along slit lines 90 , pursuant to step 78 of method 68 .
  • cover tapes 92 a and 92 b cover tapes
  • slit lines 90 bisect tracks 84 , thereby separating each “U”-shaped feature 91 into a pair of arcuate-shaped tear-initiation features that extend from each lateral edge of the separated cover tapes.
  • Method 68 shown above in FIG. 5 and discussed in FIG. 6 is an efficient technique for forming multiple cover tapes from a single multi-layer film.
  • the number of cover tapes that may be prepared pursuant to method 68 will vary depending on the lateral width of film 80 , the desired lateral widths of the cover tapes, and on the lateral widths of the cutting dies.
  • Tracks 84 may be cut into film 80 in a variety of manners. For example, cutting may be performed with one or more blades, a blade burst, a rotary die, a stamping die, or combinations thereof.
  • a sealing shoe of a standard sealing apparatus is modified with small blades to function as a rotary die.
  • tracks 84 are cut into a cover tape (e.g., cover tape 92 a ) from top surface 82 after adhesive strips 88 are applied.
  • the sealing shoe is desirably treated so that adhesive strips 88 do not stick to the sealing shoe (e.g., Teflon, plasma, and other lubricants).
  • cover tape 92 a As cover tape 92 a is positioned above a base portion corresponding to base portion 12 (shown above in FIG. 1 ), cover tape 92 a and the base portion pass through the sealing shoe. The sealing shoe then seals cover tape 92 a to the base portion and cuts tracks 84 into cover tape 92 a in a substantially simultaneous manner. Because the cutting process occurs during the sealing process, the adhesive material does not press through the formed features before the sealed portion of cover tape 92 a exits the sealing shoe. As such, the concern for contaminating debris is reduced.
  • a cutting die (corresponding to a rotary die or a stamping die) may be located on one of the multiple idler rollers that feed cover tape 92 a to the sealing shoe, thereby cutting tracks 84 into cover tape 92 a just before cover tape 92 a is sealed to the base portion.
  • different types of cutting mechanisms may be used to cut tracks 84 into multi-layer film 80 . Examples of suitable alternative cutting mechanisms include laser-cutting systems, rotating blades, and ultrasound-cutting systems.
  • FIG. 7 is a top view of multi-layer film 94 , which is also a multi-layer film formed pursuant to step 70 of method 68 .
  • Film 94 includes top surface 95 , tracks 96 , score lines 97 (shown with hidden lines), slit lines 98 , and “U”-shaped feature 99 , which are the same as top surface 82 , tracks 84 , score lines 86 , slit lines 90 , and “U”-shaped feature 91 , as shown above in FIG. 6 .
  • film 94 also includes adhesive strips 100 (shown with hidden lines), which extend across slit lines 90 and encompass tracks 96 .
  • Film 94 is separated into multiple cover tapes by slitting film 94 along slit lines 98 , pursuant to step 78 of method 68 .
  • slit lines 98 bisect tracks 84 and adhesive strips 100 .
  • each “U”-shaped feature 99 is separated into a pair of arcuate-shaped tear-initiation features
  • each adhesive strip 100 is separated into a pair of adhesive strips that extend from each lateral edge of the separated cover tapes.
  • FIGS. 8A and 8B are respectively a side perspective view and a front perspective view of roll 104 , which is a wound roll of cover tape 106 that includes score lines (not shown) and tear-initiation features 108 .
  • Cover tape 106 may be formed pursuant to method 68 (shown above in FIG. 5 ), except that step 72 (cutting the tracks) is omitted prior to separating the multi-layer film into individual cover tapes (e.g., cover tape 106 ).
  • tear-initiation features 108 are formed by cutting tear-initiation features 108 into the lateral sides of roll 104 .
  • this embodiment is suitable for forming tear-initiation feature in existing (e.g., commercially available) cover tapes. This allows the existing cover tapes to be opened in a desired direction with the use of tear-initiation features.
  • One or more groups of tear-initiation features formed by a single blade may be cut at a time.
  • the cutting may be performed with a cutting mechanism that holds multiple blades angled in the proper direction, thereby cutting all tear-initiation features 108 into one of the lateral sides of roll 104 in a single cutting motion.
  • This embodiment is beneficial because tear-initiation features 108 can be cut in every layer of roll 104 with minimal equipment. Because most rolls (e.g., roll 104 ) are wound with good accuracy, a pre-set depth of a blade will cut all the layers within reasonable tolerances. Nonetheless, exemplary samples of cover tapes formed in this manner initiated a tear even when the tear-initiation features were not cut to the exact desired depth. As such, the cutting-depth tolerances for tear-initiation features 108 allow for processing variations.
  • tear-initiation features 108 disposed around roll 104 are desirable to ensure that there is always a tear initiation feature 108 in case the cover tape is cut, a single cut on a lateral side of roll 104 is sufficient to form tear initiation features 108 for use.
  • a single set of tear initiation features 108 is beneficial for placing a tear initiation feature 108 at the beginning of the sealed reel so a customer can readily initiate the tear. This also improves the strength and integrity of cover tape 106 .
  • FIGS. 9A and 9B are top views of multi-layer films, each of which depict alternative “U”-shaped features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5 ).
  • film 110 includes features 112 a - 112 c and slit line 114 , where features 112 a - 112 c are sharper than “U”-shaped features 91 (shown above in FIG. 6 ).
  • the terms “sharp”, “sharper”, and the like refer to “U”-shaped features that have narrow, angular apexes that cause the features to resemble “V”-shapes.
  • the “U”-shaped features may also be more rounded so that they are semi-circular or between a “U”shape and a semi-circular shape.
  • feature 112 a is centered around slit line 114
  • feature 112 b is laterally offset upward in the view shown in FIG. 9A
  • feature 112 c is laterally offset downward in the view shown in FIG. 9A . Because of this offsetting, and because of the sharp “U”-shapes, slit line 114 does not intersect features 112 b and 112 c at the apexes of the “U” shapes. As a result, when the cover tapes are separated along slit line 114 , the resulting divided tear-initiation features are uneven.
  • features 112 a - 112 c reduce the risk of cover tape lifting, which is undesirable and can cause equipment shut downs.
  • film 116 includes features 118 a - 118 c and slit line 120 , where features 118 a - 118 c are flatter than “U”-shaped features 91 (shown above in FIG. 6 ), and slit line 120 .
  • the terms “flat”, “flatter”, and the like refer to “U”-shaped features that have broad, extended apexes.
  • the flatter shapes of features 118 a - 118 c reduce the need to accurately center features 118 a - 118 c around slit line 120 .
  • feature 118 a is centered around slit line 120
  • feature 118 b is laterally offset upward in the view shown in FIG.
  • features 118 a - 118 c have flat “U”-shapes, when the cover tapes are separated along slit line 120 , the resulting tear-initiation features each extend from the lateral edges of the cover tapes in the same directions. As such, the tear forces required to peel the cover tapes from the offset tear-initiation features (i.e., features 118 b and 118 c ) are substantially the same as those for centered tear-initiation features (i.e., feature 118 a ).
  • flat features such as features 118 a - 118 c
  • the flat “U”-shapes also allows for a greater surface contact area with the adhesive materials, thereby reducing the risk of cover tape lifting.
  • FIG. 10 is an expanded view of feature 122 , which is a “U”-shaped feature formed pursuant to step 72 of method 68 (shown above in FIG. 5 ). As shown in FIG. 10 , feature 122 is divided along slit line 124 to form individual, arcuate-shaped tear-initiation features 126 a and 126 b , which are disposed on adjacent cover tapes.
  • the term “arcuate” refers to a curved shape of a tear-initiation feature (e.g., tear-initiation feature 122 a ), where a leading end of the tear-initiation feature adjacent the edge of the cover tape (shown as leading end 128 ) is oriented in a different direction than a trailing end of the tear-initiation feature (shown as trailing end 130 ). Because of the curvature of tear-initiation feature 126 a , the directions of leading end 128 and trailing end 130 may be determined by the tangents of tear-initiation feature 126 a at the leading end 128 and trailing end 130 (shown as tangent lines 132 and 134 , respectively).
  • a tear-initiation feature is defined as being arcuate if a first tangent line at the leading end (i.e., tangent line 132 ) is oriented in a different direction than a second tangent line at the trailing end (i.e., tangent line 134 ).
  • the term “arcuate” includes shapes that have corner angles.
  • FIGS. 11 and 12 are top views of multi-layer films, each of which depict alternative, non-arcuate features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5 ).
  • film 134 includes “V”-shaped track features 136 and slit line 138 , where each feature 136 has a corner angle apex centered around slit line 138 .
  • the resulting tear-initiation features, defined by the track features are linear notches extending at the same angle from the edges of the cover tapes.
  • FIG. 11 shows that depict alternative, non-arcuate features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5 ).
  • film 134 includes “V”-shaped track features 136 and slit line 138 , where each feature 136 has a corner angle apex centered around slit line 138 .
  • film 140 includes notch track features 142 and slit line 144 , where each notch feature extends from slit line 144 .
  • notch track features 142 and slit line 144 , where each notch feature extends from slit line 144 .
  • the cover tapes are separated along slit line 144 , the resulting tear-initiation notch features 142 separate along with each cover film.
  • FIG. 13 is a top view photograph of carrier tape 146 , which includes base portion 148 and cover tape 150 .
  • Cover tape 150 includes notch features 152 , which are tear-initiation features that may be formed with films 134 and 140 (shown above in FIGS. 11 and 12 ). As discussed above, notch features 152 are formed by cutting the film from the top surface, prior to applying the adhesive strips. This reduces the risk of forming contaminating debris on the top surface of the film.
  • FIGS. 14A-14D are top views of multi-layer films, each of which depict additional alternative features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5 ).
  • films 154 a - 154 d each include different tracks cut into the films (shown as tracks 156 a - 156 d ).
  • Tracks 156 a - 156 d illustrate the wide variety of tracks and tear-initiation features that are suitable for use with the present invention.
  • FIG. 14B shows film 158 with features 160 a - 160 c , where features 160 a - 160 c are cut into film 158 to form notch features that extend at varying angles (ranging from about 15° to about 45°).
  • FIGS. 14C and 14D show films 162 and 164 , respectively, which respectively include features 166 a - 166 c and features 168 a - 168 f .
  • features 166 a - 166 c and features 168 a - 168 f are inverted from the “U”-shape features shown above in FIG. 14A .
  • features 166 a - 166 c and features 168 a - 168 f exhibit triangular or pyramidal shapes that extend at varying angles.
  • the resulting tear-initiation features are arcuate shaped, and function in the same manner as those discussed above.
  • FIGS. 15A and 15B are top views of multi-layer films, each of which depict additional alternative “U”-shaped features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5 ).
  • film 170 includes features 172 and slit line 174 , where features 172 includes linear apex portion 176 and linear trailing ends 178 a and 178 b .
  • linear trailing ends 178 a and 178 b extend from linear apex portion 176 at corner angles 180 a and 180 b , respectively.
  • film 182 includes features 184 and slit line 186 , where features 184 includes linear apex portion 188 and curved trailing ends 190 a and 190 b . As shown, curved trailing ends 190 a and 190 b extend from linear apex portion 188 at corners 192 a and 192 b , respectively.
  • Features 172 and 184 are further illustrative of the variety of different features that may used pursuant the present invention.
  • FIG. 16 is a cross-sectional schematic view of another embodiment of a cover tape of the present invention having recessed portions.
  • the cover tape 220 includes an elongate film 222 that has opposed longitudinal edges 224 and 226 , and opposed top and bottom faces 228 and 230 , respectively.
  • Longitudinally extending tear enabling features 232 and 234 and longitudinally extending recesses 236 and 238 are located relative to the bottom face 230 of the film 222 .
  • the tear enabling features 232 and 234 are spaced apart, and a central portion 240 of the film 222 is defined therebetween.
  • a top coating 242 is optionally provided along top face 228 of film 222 .
  • a bottom coating 244 is also optionally provided along the bottom face 30 of the film 22 .
  • Longitudinally disposed adhesive stripes 246 and 248 are provided along the recesses 236 and 238 .
  • the recesses 236 and 238 are located at the longitudinal edges 224 and 226 , respectively, of the film 222 .
  • the recesses 236 and 238 are each open facing the bottom face 230 and longitudinal edges 224 and 226 , respectively, of the film 222 .
  • recesses may be formed on both surfaces of the cover tape. This feature would be useful, for example, if the thicknesses of the adhesive stripes are greater than depth D R , because it would facilitate winding of the cover tape.
  • a bottom portion 250 and a side portion 252 define each of the recesses 236 and 238 .
  • the adhesive stripes 246 and 248 can be disposed on the bottom portions 250 of the recesses 236 and 238 , respectively.
  • the bottom portions 250 of the recesses 236 and 238 can have microtexture (not shown in FIG. 16 ) for better adhering the adhesive stripes 246 and 248 to the film 222 . It should be recognized that other recess shapes can be utilized, so long as the recesses 236 and 238 are open facing an adjacent elongate edge 224 or 226 of the film 222 and the bottom face 230 of the film 222 .
  • the film 222 can be formed using processes such as scoring, extrusion, calendaring, micro-replication, laser ablation, ultrasound, die cutting, chemical etching, and stripping.
  • the recesses 236 and 238 can be formed using different processes.
  • the adhesive stripes 246 and 248 on bottom portion 250 of recesses 236 and 238 can be, for instance, pressure sensitive adhesives (PSAs), heat activated and microencapsulated adhesives.
  • PSAs pressure sensitive adhesives
  • the adhesive stripes 246 and 248 can have thicknesses greater than, less than or equal to a depth D R of the recessed areas 236 and 238 . Typically, the thickness is less than or equal to depth D R .
  • the adhesive stripes 246 and 248 have widths equal to or less than widths W R of the recessed areas 236 and 238 .
  • widths less than widths D R of recessed areas 236 and 238 provides substantially adhesive-free zones longitudinally extending along the bottom portions 250 of the recesses 236 and 238 on either side of each of the adhesive stripes 246 and 248 when the cover tape 220 is not applied to a surface (i.e., is not under tension).
  • the tear enabling features 232 and 234 are located relative to the bottom face 230 of the film 222 , and can be located adjacent the recesses 236 and 238 at the side portions 252 thereof However, in further embodiments, the tear enabling features 232 and 234 can be located nearly anywhere along the top face 228 , bottom face 230 , or both faces of the film 222 , so long as they are each spaced from the longitudinal edges 224 and 226 of the film 222 . As shown in FIG. 16 , the tear enabling features 232 and 234 are continuous scoring lines that extend longitudinally along film 222 . Such scoring lines can be formed by cutting into the film 222 (e.g., with lasers, die cutters, and blades, for instance, according to the blade scoring procedure described below).
  • the tear enabling features 232 and 234 can be weakened regions of the film 222 (e.g., interfaces of different materials, thinner regions, microperforations, etc.), a transition between two materials (e.g., a first material comprises central portion 240 of the film 222 and a second material comprises the region of the film 222 between the bottom portions 250 of the recesses 236 and 238 and the top face 228 ), or other structures that facilitate tearing.
  • the cover tape 220 can have the following dimensions.
  • An overall width W O of the film 222 (measured between elongate edges 224 and 226 ) is about 1 inch (2.54 cm).
  • a thickness T of the film 222 is about 2 mil (0.0254 mm) (measured at the thickest portion of the central region 240 of the film 222 ).
  • the recesses 236 and 238 each have a width W R of about 0.0393701 inch (1 mm) and a depth D R of about 0.5 mil (0.0127 mm).
  • the tear enabling features 232 and 234 are score lines each having a depth of about 1.5 mil (0.0381 mm) (measured from the bottom face 230 of the film 222 ).
  • a width of the central portion 240 of the film 222 can be selected such that it is at least as wide as the pockets of a carrier tape with which the cover tape 220 is used.
  • cover tapes having recesses are disclosed in co-pending U.S. patent application Ser. No. 11/228956, which is incorporated herein by reference.

Abstract

A cover tape for use with a carrier tape, where the cover tape includes at least one tear-initiation feature that defines a predetermined direction of tear to initiate a tear along portions of the cover tape.

Description

    REFERENCE TO CROSS-RELATED APPLICATIONS
  • The present application claims priority to U.S. Provisional Patent Application 60/821,944, filed Aug. 9, 2006.
  • BACKGROUND
  • The present invention relates to carrier tapes for storing electronic surface mount components. In particular, the present invention relates to carrier tapes that incorporate cover tapes having tear-initiation features.
  • During electronic circuit assembly, electronic components are often carried from a supply of such components to a specific location on a circuit board for attachment. One way to provide a continuous supply of electronic components to a desired location is to load a series of such components into pockets that are spaced along a carrier tape. The loaded carrier tape, which is usually provided in roll form, may then be advanced toward a pick-up location at a predetermined rate as each succeeding component is removed from the tape by a robotic placement machine.
  • Conventional carrier tapes typically include a self-supporting base portion that carries the component, and a flexible cover tape that aids in preventing foreign matter from deleteriously affecting the component. The cover tape is typically sealed to the base portion with a sealing apparatus, and is progressively peeled away from the base portion just before the robotic placement machine removes the component from the carrier tape. However, a common issue with carrier tapes is that the bond between the base portion and the cover tape needs to be sufficient to prevent the cover tape from prematurely delaminating from the base portion, while also being weak enough to allow the cover tape to be readily peeled off from the base portion without requiring excessive removal forces or generating undesirable vibrations. As such, there is a need for cover tapes that exhibit suitable bond strengths to base portions and are also easy to remove when desired.
  • BRIEF SUMMARY
  • At least one aspect of the present invention relates to a cover tape for use with a carrier tape. The cover tape includes at least one tear-initiation feature extending through a lateral edge of the cover tape, where the tear-initiation feature at least partially defines a predetermined direction of tear to initiate a tear along portions of the cover tape. In one embodiment, the at least one tear-initiation features has an arcuate shape. In another embodiment, the at least one tear-initiation feature is formed by cutting through the film from a top surface of the film.
  • At least one aspect of the present invention also relates to a method of forming cover tapes. The method involves cutting at least one track into a film from a first major surface of the film, cutting lines of weakness in the film from a second major surface of the film, applying adhesive materials to the second major surface of the film, and separating the film into multiple cover tapes by slitting the film through the at least one track, thereby forming at least one tear-initiation feature from the at least one divided track.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a carrier tape of an embodiment of the present invention.
  • FIG. 2A is a top perspective view of a segment of a cover tape of the carrier tape.
  • FIG. 2B is a top view of a segment of the cover tape of the carrier tape.
  • FIG. 3 is a flow diagram of a method of forming the cover tape.
  • FIG. 4A is a top view photograph taken of a cover tape containing a tear-initiation features formed after an adhesive strip was applied.
  • FIG. 4B is a top view photograph taken of a cover tape containing a tear-initiation features formed before an adhesive strip was applied.
  • FIG. 5 is a flow diagram of a method of forming multiple cover tapes in a simultaneous manner.
  • FIG. 6 is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5.
  • FIG. 7 is a top view of an alternative multi-layer film formed pursuant to the method shown in FIG. 5.
  • FIG. 8A is a side perspective view of a wound-up roll of cover tape that illustrates an alternative method for forming tear-initiation features.
  • FIG. 8B is a front perspective view of the wound-up roll of cover tape.
  • FIG. 9A is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5, where the multi-layer film has a first alternative “U”-shaped feature.
  • FIG. 9B is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5, where the multi-layer film has a second alternative “U”-shaped feature.
  • FIG. 10 is an expanded view of a U”-shaped feature formed pursuant to the method shown in FIG. 5.
  • FIG. 11 is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5, where the multi-layer film has a first alternative, non-arcuate feature.
  • FIG. 12 is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5, where the multi-layer film has a second alternative, non-arcuate feature.
  • FIG. 13 is a top view photograph of a carrier tape, which includes a cover tape having non-arcuate tear-initiation features.
  • FIGS. 14A-14D are top views of multi-layer films formed pursuant to the method shown in FIG. 5, where the multi-layer films depict additional alternative features.
  • FIG. 15A is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5, where the multi-layer film has a “U”-shaped feature with a linear apex portion and linear trailing ends.
  • FIG. 15B is a top view of a multi-layer film formed pursuant to the method shown in FIG. 5, where the multi-layer film has a “U”-shaped feature with a linear apex portion and curved trailing ends.
  • FIG. 16 is a cross-sectional view of a cover tape having recessed portions.
  • While the above-identified drawing figures set forth several embodiments of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the invention. The figures may not be drawn to scale.
  • DETAILED DESCRIPTION
  • FIG. 1 is a perspective view of carrier tape 10, which is a convenient system for storing and transporting electronic components. As shown, carrier tape 10 includes base portion 12 and cover tape 14, and is disposed in a coordinate system that includes lateral axis 16 x, longitudinal axis 16 y, and vertical axis 16 z. The directional orientations are used herein for ease of discussion, and are not intended to be limiting.
  • Base portion 12 is a flexible, self-supporting structure that extends along longitudinal axis 16 y, and includes perimeter surface 18 and pockets 20. Perimeter surface 18 is a planar border extending around pockets 20, and includes edge portions 22 a and 22 b. Edge portions 22 a and 22 b each extend along longitudinal axis 16 y and are offset along lateral axis 16 x. Additionally, lateral edge portion 22 b includes a row of aligned advancement holes 24 formed in perimeter surface 18. Advancement holes 24 allow carrier tape 10 to engage with an advancement mechanism (not shown) for advancing carrier tape 10 to a predetermined position during use. Pockets 20 are indentations formed in base portion 12, within perimeter surface 18, which are spaced apart along longitudinal axis 16 y. Pockets 20 are designed to conform to the size of the stored electronic components, such as component 26 shown in FIG. 1.
  • Cover tape 14 is a single layer or multi-layer film that extends along longitudinal axis 16 y, and is disposed vertically over perimeter surface 18 and pockets 20 of base portion 12. As such, during storage and transportation, cover tape 14 seals stored electronic components (e.g., component 26) within pockets 20. Cover tape 14 includes top surface 28 and bottom surface 30, which are opposing major surfaces of cover tape 14 offset along vertical axis 16 z. Cover tape 14 also includes bonding portions 32 a and 32 b, and medial portion 34, where medial portion 34 is laterally disposed between bonding portions 32 a and 32 b. Bonding portions 32 a and 32 b are the portions of cover tape 14 that are adhered to perimeter surface 18 at edge portions 22 a and 22 b, respectively. Medial portion 34 is a central portion of cover tape 14 that is configured to be peeled back as shown in FIG. 1 (i.e., separated from bonding portions 32 a and 32 b) for access to pockets 20.
  • Cover tape 14 also includes a plurality of tear-initiation features 36, which, in this embodiment, are arcuate-shaped slits extending from top surface 28 toward, and typically through, bottom surface 30 at bonding portions 32 a and 32 b, and are situated at intermittent locations along longitudinal axis 16 y. Tear-initiation features 36 allow medial portion 34 to be readily peeled from bonding portions 32 a and 32 b, without requiring an excessive amount of removal force. When the cover tape 14 is peeled back from perimeter surface 18 of base portion 12, bonding portions 32 a and 32 b respectively delaminate from edge portions 22 a and 22 b of perimeter surface 18 until the peel intersects tear-initiation features 36. At this point, cover tape 14 starts to tear and the tear is directed towards the center of cover tape 14 by the angle and shape of tear-initiation features 36. The tear continues until it runs into score lines (not shown in FIG. 1), which then provide the directions along which cover tape 14 will tear continually.
  • Tear-initiation features 36 allow cover tape 14 to rely on a tear mechanism rather than an adhesive de-bonding mechanism to peel cover tape 14 from base portion 12. This reduces the need for specialized adhesives to bond cover tape 14 to base portion 12, which otherwise require a balance between adhesion and removal forces. As such, cover tape 14 can be adhered to base portion 12 with strong adhesive forces, while still allowing medial portion 34 to be readily removed with moderate and consistent removal forces.
  • FIGS. 2A and 2B are respectively a top perspective view and a top view of a segment of cover tape 14. According to the embodiment shown in FIG. 2A, cover tape 14 is a multi-layer film that includes topcoat layer 38, core layer 40, bottom coating 42, and adhesive strips 44 a and 44 b. Core layer 40 is the base layer for cover tape 14, and is desirably uniaxially or biaxially oriented to facilitate downweb tearing along longitudinal axis 16 y, and to reduce or prevent transverse tearing along lateral axis 16 x. Core layer 40 of cover tape 14 can be a polymer film, for example, polyethylene terephthalate, oriented polypropylene (e.g., biaxially oriented polypropylene), oriented polyamides, oriented polyvinyl chloride, polystyrene, polycarbonate, polyethylene, polyacrylonitrile, polyolefin and polyimide films. Core layer 40 can also be transparent, intrinsically non-conductive, electrically conductive, static dissipative, and combinations thereof. Core layer 40 may be made electrically conductive or static dissipative by compounding materials such as carbon black or metals into the polymer film material that forms core layer 40.
  • Topcoat layer 38 is optionally provided along top face 28 of cover tape 14. Topcoat layer 38 may be or may include a static dissipative (SD) coating, LAB (i.e., an adhesive release coating), an anti-reflective or glare-reducing coating, and other coatings and combinations of coatings. Topcoat layer 38 may also be a protective layer that protects the cover tape 14 and retained electrical components during storage and transportation. Suitable materials for topcoat layer 28 include weathering and abrasion resistant materials, such as polyurethanes, cross-linked materials (e.g., cured acrylates and epoxies), silicones, silane-conforming materials, and combinations thereof. While topcoat layer 38 is shown across the entire top portion of core layer 40, topcoat layer 38 may alternatively be disposed over one or more smaller portions of core layer 40 (e.g., to align with adhesive strips 44 a and 44 b when cover tape 14 is rolled up).
  • Bottom coating 42 is also optionally provided along the bottom face 30 of cover tape 14. Bottom coating 42 can be an SD coating or other type of coating, and can be at least partially blended with core layer 40. Alternatively, a metallized layer, which can dissipate static electricity, may be substituted for bottom coating 42. Suitable materials for a metallized layer include metals such as aluminum, stainless steel, nickel-chrome, and nickel-cadmium, which are applied by vapor coating or sputtering techniques. Additionally, one or both of topcoat layer 38 and core layer 40 may also include metals for dissipating electricity.
  • While cover tape 14 is shown with the above-discussed layers, in alternative embodiments, cover tape 14 may include different types of functional and non-functional layers as necessary for particular storage applications. In another alternative embodiment, cover tape 14 is a single-layer film that only includes core layer 40. In this embodiment, top surface 28 and bottom surface 30 are the opposing major surfaces of core layer 40. This embodiment is beneficial for reducing material and processing costs in forming cover tape 14.
  • Adhesive strips 44 a and 44 b are film-based strips of adhesive materials that are bonded to bottom surface 30 at bonding portions 32 a and 32 b, respectively. Adhesive strips 44 a and 44 b extend along longitudinal axis 16 y, and are the portions of cover tape 14 that adhere to edge portions 22 a and 22 b of base portion 12. Suitable materials for adhesive strips 44 a and 44 b include pressure sensitive adhesives and heat-activated adhesives (e.g., ethylene vinyl acetate copolymers). Upon assembly with base portion 12 (shown above in FIG. 1), adhesive strips 44 a and 44 b adhere bonding portions 32 a and 32 b of cover tape 12 to edge portions 22 a and 22 b of base portion 12.
  • As further shown in FIG. 2A, cover tape 14 includes score lines 46 a and 46 b, which are lines of weakness formed in bottom surface 30, and which extend through bottom coating 42 and partially into core layer 40. Score lines 46 a and 46 b are disposed laterally adjacent to adhesive strips 44 a and 44 b, respectively, and extend along longitudinal axis 16 y. In an alternative embodiment, score lines 46 a and 46 b extend partially into core layer 40, but are formed before bottom coating 42 is secured to core layer 40. As such, in this embodiment, score lines 46 a and 46 b do not extend through bottom coating 42. Tear-initiation features 36 extend through topcoat layer 38, core layer 40, and bottom coating 42, and each have an arcuate shape along top surface 28 and bottom surface 30.
  • As shown in FIG. 2B, score lines 46 a and 46 b (shown with hidden lines) are disposed laterally inward relative to adhesive strips 44 a and 44 b (shown with phantom lines). As a result, when the tear of cover tape 14 reaches score lines 46 a and 46 b, the force required to peel medial portion 34 only needs to exceed the tear force of score lines 46 a and 46 b. The strength of the adhesive bond at bonding portions 32 a and 32 b no longer directly affects the required peel force.
  • As further shown in FIG. 2B, tear-initiation features 36 extend from the lateral edges of cover tape 14 to points laterally inward that are disposed over adhesive strips 44 a and 44 b. This keeps cover tape 14 anchored to base portion 12, and reduces the risk of cover tape 14 accidentally peeling at a premature point in time (e.g., during storage or transportation). Tear-initiation features 36 also do not intersect score lines 46 a and 46 b to preserve the structural integrity of cover tape 14.
  • To obtain access to pockets 20 of base portion 12 (shown above in FIG. 1), a removal force is applied to medial portion 34 of cover tape 14. This initially de-bonds bonding portions 32 a and 32 b from edge portions 22 a and 22 b of base portion 12, thereby peeling cover tape 14 from base portion 12 as represented by arrows 48 a. Continued application of the removal force causes further de-bonding until the peel reaches the first set of tear-initiation features 36 along longitudinal axis 16 y.
  • When the peel reaches tear-initiation features 36, the peel then follows the arcuate shapes of tear-initiation features 36, thereby moving the peel laterally inward toward the center of cover tape 14 as represented by arrows 48 b. When the peel reaches the end of tear-initiation features 36, cover tape 14 then begins to tear in the same direction as the trailing edges of tear-initiation features 36, as represented by arrows 48 c. Continued application of the removal force causes the tearing to continue until score lines 46 a and 46 b are reached. Because score lines 46 a and 46 b have lower tear strengths, the applied removal force then causes the tear to follow score lines 46 a and 46 b, as represented by arrows 48 d. This separates medial portion 34 away from bonding portions 32 a and 32 b, while bonding portions 32 a and 32 b remain adhered to base portion 12.
  • FIG. 3 is a flow diagram of method 50, which is a suitable method for forming cover tape 14. As shown, method 50 includes steps 52-58, and initially involves forming the multi-layer film of cover tape 14 (i.e., topcoat layer 38, core layer 40, and bottom coating 42) (step 52). The layers of cover tape 14 may be formed in a variety of manners, such as co-lamination techniques (e.g., coextrusions and wet castings), deposition techniques (e.g., vapor coatings and sputtering techniques), and combinations thereof.
  • Tear-initiation features 36 are then cut into the lateral edges of the multi-layer film of cover tape 14 from top surface 28 (step 54). Forming tear-initiation features 36 from top surface 28 reduces the amount of debris contamination on top surface 28, thereby reducing the risk of contaminating guides and sealing shoes of sealing equipment used to seal cover tape 14 to base portion 12.
  • Once tear-initiation features 36 are formed, score lines 46 a and 46 b are then cut into cover tape 14 from bottom surface 30 (step 56). Because score lines 46 a and 46 b do not extend through core layer 40 or topcoat layer 38, score lines 46 a and 46 b may be cut from bottom surface 30 without forming debris contamination on top surface 28. In an alternative embodiment, score lines extend through topcoat layer 38 and into core layer 40. In this embodiment, the score lines are cut into top surface 28 rather than bottom surface 30. While steps 54 and 56 are described above in the order shown in FIG. 3, steps 54 and 56 may alternatively be formed in an opposite order (i.e., cut score lines 46 a and 46 b prior to cutting tear-initiation features 36), or in a substantially simultaneous manner.
  • Once tear-initiation features 36 and score lines 46 a and 46 b are formed, adhesive strips 44 a and 44 b are then coated onto bottom surface 30 at bonding portions 32 a and 32 b (step 58). This may be performed with a standard lamination process. Applying adhesive strips 44 a and 44 b after tear-initiation features 36 are formed also reduces contamination that may otherwise occur if tear-initiation features 36 are cut after applying adhesive strips 44 a and 44 b to bottom surface 30. Cutting tear-initiation features 36, from bottom surface 30, after applying adhesive strips 44 a and 44 b pushes adhesive material through tear-initiation features 36, and out of top surface 28. This also pushes film debris out through top surface 28, where it may potentially collect in the guides and sealing shoes of the tape sealing equipment. Thus, coating adhesive strips 44 a and 44 b onto bottom surface 30 after tear-initiation features 36 are formed from top surface 28 (or from bottom surface 30) reduces the risk of producing contaminating debris. Additionally, application of adhesive strips 44 a and 44 b after tear-initiating features 36 have been formed will encapsulate within the adhesive strips any film debris deposited on bottom surface 30 when tear-Initiating features 36 were formed.
  • After cover film 14 is formed, it is then sealed to base portion 12 (after electrical components are placed in pockets 20) to form carrier tape 10. Suitable sealing systems for sealing cover film 14 to base portion 12 include systems commercially available from Ismeca USA, Inc., Carlsbad, Calif.
  • FIGS. 4A and 4B are top view photographs taken of cover tapes containing tear-initiation features (taken with 20× magnification). In the example shown in FIG. 4A, the cover tape includes portions 60 a and 60 b, and tear-initiation feature 62. Portion 60 a is a portion of the multi-layer film adjacent a lateral edge of the cover tape, and portion 60 b is a portion where an adhesive strip is disposed below the multi-layer film. As shown, tear-initiation feature 62 extends through portion 60 a, and has a trailing end that terminates in portion 62 b (i.e., above the adhesive strip).
  • In this example, tear-initiation feature 62 was cut into the multi-layer film from bottom surface 30 after the adhesive strip was applied to bottom surface 30, thereby forming tear-initiation feature 62 through the adhesive strip as well. Because of this, the section of tear-initiation feature 62 that extends into portion 60 b is spread apart, and adhesive material is pushed upwards through tear-initiation feature 62. The penetration of the cutting blade through the adhesive strip pushes the adhesive away from the area of tear-initiation feature 62, thereby causing a small region with insufficient adhesive. This area has a reduced adhesive bond to the corresponding base portion, and is a potential point of delamination, which can result in shut downs and damage to the sealing equipment.
  • In the example shown in FIG. 4B, the cover tape includes portions 64 a and 64 b, and tear-initiation feature 66, which correspond to portions 60 a and 60 b, and tear-initiation feature 62 (shown above in FIG. 4A). In contrast to the example shown in FIG. 4A, tear-initiation feature 66 was cut into the multi-layer film from top surface 28 before the adhesive strip was applied. As shown, the section of tear-initiation feature 66 that extends into portion 64 b is cleanly cut and no adhesive is pushed upwards. Thus, forming tear-initiation feature 66 from top surface 28 (or from bottom surface 30) prior to applying the adhesive strips reduced the amount of contaminating adhesive and debris formed on the top surface of the cover tape. In addition, most of the debris created when forming tear-initiation feature 66 was captured or encapsulated by the adhesive strip, thereby making it cleaner. Furthermore, debris in the region of the adhesive strip did not appear to reduce the adhesive strength of the adhesive strip.
  • FIG. 5 is a flow diagram of method 68, which is a suitable method for forming multiple cover tapes simultaneously. As shown, method 68 includes steps 70-78, and initially involves forming a multi-layer film containing the layers of the cover tapes (step 70). The multi-layer film may be formed using the same techniques discussed above in step 52 of method 50 (shown above in FIG. 3). Multiple tracks are then cut into the multi-layer film from the top surface of the film (step 72). Multiple score lines are then cut into the multi-layer film from the bottom surface of the film (step 74). In an alternative embodiment, score lines are cut into the multi-layer film from the top surface of the film. While steps 72 and 74 are described above in the order shown in FIG. 5, steps 72 and 74 may alternatively be formed in an opposite order (i.e., cut the score lines prior to cutting the tracks), or in a substantially simultaneous manner. After the tracks and score lines are formed, multiple adhesive strips are then coated onto the bonding portions of the bottom surface of the film (step 76). Finally, the film is separated into the multiple cover tapes by slitting the film through the tracks (step 78). As discussed further below in FIG. 6, slitting the film between the adhesive strips (and through the tracks) bisects each of the tracks, thereby forming a pair of rows of tear-initiation features on the lateral edges of each cover tape.
  • FIG. 6 is a top view of film 80, which is a multi-layer film formed pursuant to step 70 of method 68. Film 80 includes top surface 82, tracks 84, score lines 86 (shown with hidden lines), adhesive strips 88 (shown with hidden lines), and slit lines 90. As discussed above, multiple tracks 84 are cut into top surface 82, pursuant to step 72 of method 68. As shown, tracks 84 are rows of “U”-shaped features 91, where each “U”-shaped feature 91 is subsequently divided to form a pair of arcuate-shaped tear-initiation features. As such, this allows a single cutting blade to form tear-initiation features for a pair of adjacent cover tapes. The distance along film 80 between “U”-shaped features 91 may vary depending on the particular sizing requirements of the resulting cover tapes. Suitable separation distances include at least about 0.1 inches, with more suitable distances typically ranging from about 0.5 inches to about 3 inches. Suitable lateral widths of “U”-shaped features 91 include at least about 0.1 millimeters, with more suitable widths typically ranging from about 0.5 millimeters to about 2.0 millimeters. In one embodiment, the multi-layer film includes a single “U”-shaped features 91. As discussed above, forming tear-initiation features from top surface 82 (and also prior to applying adhesive strips 88) reduces the amount of contaminating debris that forms on top surface 82.
  • Multiple score lines 86 are then cut in multi-layer film 80 from the bottom surface (not shown in FIG. 6), pursuant to step 74 of method 68. As shown, score lines 86 are disposed laterally beyond “U”-shaped features 91, and beyond the intended locations of adhesive strips 88. Adhesive strips 88 are then coated onto the bottom surface of multi-layer film 80, pursuant to step 76 of method 68. At this point multi-layer film 80 includes multiple repeating patterns containing tracks 84, score lines 86, and adhesive strips 88. Multi-layer film 80 is then separated into multiple cover tapes (e.g., cover tapes 92 a and 92 b) by slitting film 80 along slit lines 90, pursuant to step 78 of method 68. As shown in FIG. 6, slit lines 90 bisect tracks 84, thereby separating each “U”-shaped feature 91 into a pair of arcuate-shaped tear-initiation features that extend from each lateral edge of the separated cover tapes.
  • Method 68 shown above in FIG. 5 and discussed in FIG. 6 is an efficient technique for forming multiple cover tapes from a single multi-layer film. The number of cover tapes that may be prepared pursuant to method 68 will vary depending on the lateral width of film 80, the desired lateral widths of the cover tapes, and on the lateral widths of the cutting dies.
  • Tracks 84 may be cut into film 80 in a variety of manners. For example, cutting may be performed with one or more blades, a blade burst, a rotary die, a stamping die, or combinations thereof. In one embodiment, a sealing shoe of a standard sealing apparatus is modified with small blades to function as a rotary die. In this embodiment, tracks 84 are cut into a cover tape (e.g., cover tape 92 a) from top surface 82 after adhesive strips 88 are applied. When tracks 84 are formed after the adhesive strips are applied, the sealing shoe is desirably treated so that adhesive strips 88 do not stick to the sealing shoe (e.g., Teflon, plasma, and other lubricants). As cover tape 92 a is positioned above a base portion corresponding to base portion 12 (shown above in FIG. 1), cover tape 92 a and the base portion pass through the sealing shoe. The sealing shoe then seals cover tape 92 a to the base portion and cuts tracks 84 into cover tape 92 a in a substantially simultaneous manner. Because the cutting process occurs during the sealing process, the adhesive material does not press through the formed features before the sealed portion of cover tape 92 a exits the sealing shoe. As such, the concern for contaminating debris is reduced.
  • In an alternative embodiment, a cutting die (corresponding to a rotary die or a stamping die) may be located on one of the multiple idler rollers that feed cover tape 92 a to the sealing shoe, thereby cutting tracks 84 into cover tape 92 a just before cover tape 92 a is sealed to the base portion. In additional alternative embodiments, different types of cutting mechanisms may be used to cut tracks 84 into multi-layer film 80. Examples of suitable alternative cutting mechanisms include laser-cutting systems, rotating blades, and ultrasound-cutting systems.
  • FIG. 7 is a top view of multi-layer film 94, which is also a multi-layer film formed pursuant to step 70 of method 68. Film 94 includes top surface 95, tracks 96, score lines 97 (shown with hidden lines), slit lines 98, and “U”-shaped feature 99, which are the same as top surface 82, tracks 84, score lines 86, slit lines 90, and “U”-shaped feature 91, as shown above in FIG. 6. As shown in FIG. 7, film 94 also includes adhesive strips 100 (shown with hidden lines), which extend across slit lines 90 and encompass tracks 96. Film 94 is separated into multiple cover tapes by slitting film 94 along slit lines 98, pursuant to step 78 of method 68. As shown in FIG. 7, slit lines 98 bisect tracks 84 and adhesive strips 100. As such, each “U”-shaped feature 99 is separated into a pair of arcuate-shaped tear-initiation features, and each adhesive strip 100 is separated into a pair of adhesive strips that extend from each lateral edge of the separated cover tapes.
  • FIGS. 8A and 8B are respectively a side perspective view and a front perspective view of roll 104, which is a wound roll of cover tape 106 that includes score lines (not shown) and tear-initiation features 108. To better illustrate tear-initiation features 108, the layers of cover tape 106 on roll 104 are not shown in the figures. Cover tape 106 may be formed pursuant to method 68 (shown above in FIG. 5), except that step 72 (cutting the tracks) is omitted prior to separating the multi-layer film into individual cover tapes (e.g., cover tape 106). In this embodiment, tear-initiation features 108 are formed by cutting tear-initiation features 108 into the lateral sides of roll 104. As such, this embodiment is suitable for forming tear-initiation feature in existing (e.g., commercially available) cover tapes. This allows the existing cover tapes to be opened in a desired direction with the use of tear-initiation features.
  • One or more groups of tear-initiation features formed by a single blade may be cut at a time. Alternatively, the cutting may be performed with a cutting mechanism that holds multiple blades angled in the proper direction, thereby cutting all tear-initiation features 108 into one of the lateral sides of roll 104 in a single cutting motion. This embodiment is beneficial because tear-initiation features 108 can be cut in every layer of roll 104 with minimal equipment. Because most rolls (e.g., roll 104) are wound with good accuracy, a pre-set depth of a blade will cut all the layers within reasonable tolerances. Nonetheless, exemplary samples of cover tapes formed in this manner initiated a tear even when the tear-initiation features were not cut to the exact desired depth. As such, the cutting-depth tolerances for tear-initiation features 108 allow for processing variations.
  • While a number of tear-initiation features 108 disposed around roll 104 are desirable to ensure that there is always a tear initiation feature 108 in case the cover tape is cut, a single cut on a lateral side of roll 104 is sufficient to form tear initiation features 108 for use. A single set of tear initiation features 108 is beneficial for placing a tear initiation feature 108 at the beginning of the sealed reel so a customer can readily initiate the tear. This also improves the strength and integrity of cover tape 106.
  • FIGS. 9A and 9B are top views of multi-layer films, each of which depict alternative “U”-shaped features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5). As shown in FIG. 9A, film 110 includes features 112 a-112 c and slit line 114, where features 112 a-112 c are sharper than “U”-shaped features 91 (shown above in FIG. 6). The terms “sharp”, “sharper”, and the like refer to “U”-shaped features that have narrow, angular apexes that cause the features to resemble “V”-shapes. The “U”-shaped features may also be more rounded so that they are semi-circular or between a “U”shape and a semi-circular shape.
  • As shown, feature 112 a is centered around slit line 114, feature 112 b is laterally offset upward in the view shown in FIG. 9A, and feature 112 c is laterally offset downward in the view shown in FIG. 9A. Because of this offsetting, and because of the sharp “U”-shapes, slit line 114 does not intersect features 112 b and 112 c at the apexes of the “U” shapes. As a result, when the cover tapes are separated along slit line 114, the resulting divided tear-initiation features are uneven. Nonetheless, the sharp “U”-shapes create a sharp point having little surface area for the cover tape, which tends to lift when stressed (e.g., when wound in a roll after the cover tape is sealed to a bottom portion). Accordingly, features 112 a-112 c reduce the risk of cover tape lifting, which is undesirable and can cause equipment shut downs.
  • As shown in FIG. 9B, film 116 includes features 118 a-118 c and slit line 120, where features 118 a-118 c are flatter than “U”-shaped features 91 (shown above in FIG. 6), and slit line 120. The terms “flat”, “flatter”, and the like refer to “U”-shaped features that have broad, extended apexes. The flatter shapes of features 118 a-118 c reduce the need to accurately center features 118 a-118 c around slit line 120. As shown, feature 118 a is centered around slit line 120, feature 118 b is laterally offset upward in the view shown in FIG. 9B, and feature 118 c is laterally offset downward in the view shown in FIG. 9B. Nonetheless, because features 118 a-118 c have flat “U”-shapes, when the cover tapes are separated along slit line 120, the resulting tear-initiation features each extend from the lateral edges of the cover tapes in the same directions. As such, the tear forces required to peel the cover tapes from the offset tear-initiation features (i.e., features 118 b and 118 c) are substantially the same as those for centered tear-initiation features (i.e., feature 118 a). Therefore, the use of flat features, such as features 118 a-118 c, allows for greater accuracy tolerances for aligning with slit line 120. Furthermore, the flat “U”-shapes also allows for a greater surface contact area with the adhesive materials, thereby reducing the risk of cover tape lifting.
  • FIG. 10 is an expanded view of feature 122, which is a “U”-shaped feature formed pursuant to step 72 of method 68 (shown above in FIG. 5). As shown in FIG. 10, feature 122 is divided along slit line 124 to form individual, arcuate-shaped tear-initiation features 126 a and 126 b, which are disposed on adjacent cover tapes. As used herein, the term “arcuate” refers to a curved shape of a tear-initiation feature (e.g., tear-initiation feature 122 a), where a leading end of the tear-initiation feature adjacent the edge of the cover tape (shown as leading end 128) is oriented in a different direction than a trailing end of the tear-initiation feature (shown as trailing end 130). Because of the curvature of tear-initiation feature 126 a, the directions of leading end 128 and trailing end 130 may be determined by the tangents of tear-initiation feature 126 a at the leading end 128 and trailing end 130 (shown as tangent lines 132 and 134, respectively). Accordingly, a tear-initiation feature is defined as being arcuate if a first tangent line at the leading end (i.e., tangent line 132) is oriented in a different direction than a second tangent line at the trailing end (i.e., tangent line 134). In one embodiment, the term “arcuate” includes shapes that have corner angles.
  • FIGS. 11 and 12 are top views of multi-layer films, each of which depict alternative, non-arcuate features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5). As shown in FIG. 11, film 134 includes “V”-shaped track features 136 and slit line 138, where each feature 136 has a corner angle apex centered around slit line 138. As a result, when the cover tapes are separated along slit line 138, the resulting tear-initiation features, defined by the track features, are linear notches extending at the same angle from the edges of the cover tapes. As shown in FIG. 12, film 140 includes notch track features 142 and slit line 144, where each notch feature extends from slit line 144. In this embodiment, when the cover tapes are separated along slit line 144, the resulting tear-initiation notch features 142 separate along with each cover film.
  • FIG. 13 is a top view photograph of carrier tape 146, which includes base portion 148 and cover tape 150. Cover tape 150 includes notch features 152, which are tear-initiation features that may be formed with films 134 and 140 (shown above in FIGS. 11 and 12). As discussed above, notch features 152 are formed by cutting the film from the top surface, prior to applying the adhesive strips. This reduces the risk of forming contaminating debris on the top surface of the film.
  • FIGS. 14A-14D are top views of multi-layer films, each of which depict additional alternative features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5). As shown in FIG. 14A, films 154 a-154 d each include different tracks cut into the films (shown as tracks 156 a-156 d). Tracks 156 a-156 d illustrate the wide variety of tracks and tear-initiation features that are suitable for use with the present invention. FIG. 14B shows film 158 with features 160 a-160 c, where features 160 a-160 c are cut into film 158 to form notch features that extend at varying angles (ranging from about 15° to about 45°). FIGS. 14C and 14D show films 162 and 164, respectively, which respectively include features 166 a-166 c and features 168 a-168 f. As shown, features 166 a-166 c and features 168 a-168 f are inverted from the “U”-shape features shown above in FIG. 14A. As such, features 166 a-166 c and features 168 a-168 f exhibit triangular or pyramidal shapes that extend at varying angles. When features 166 a-166 c and features 168 a-168 f are divided, however, the resulting tear-initiation features are arcuate shaped, and function in the same manner as those discussed above.
  • FIGS. 15A and 15B are top views of multi-layer films, each of which depict additional alternative “U”-shaped features that may be formed pursuant to the step 72 of method 68 (shown above in FIG. 5). As shown in FIG. 15A, film 170 includes features 172 and slit line 174, where features 172 includes linear apex portion 176 and linear trailing ends 178 a and 178 b. As shown, linear trailing ends 178 a and 178 b extend from linear apex portion 176 at corner angles 180 a and 180 b, respectively.
  • As shown in FIG. 15B, film 182 includes features 184 and slit line 186, where features 184 includes linear apex portion 188 and curved trailing ends 190 a and 190 b. As shown, curved trailing ends 190 a and 190 b extend from linear apex portion 188 at corners 192 a and 192 b, respectively. Features 172 and 184 are further illustrative of the variety of different features that may used pursuant the present invention.
  • FIG. 16 is a cross-sectional schematic view of another embodiment of a cover tape of the present invention having recessed portions. The cover tape 220 includes an elongate film 222 that has opposed longitudinal edges 224 and 226, and opposed top and bottom faces 228 and 230, respectively. Longitudinally extending tear enabling features 232 and 234 and longitudinally extending recesses 236 and 238 are located relative to the bottom face 230 of the film 222. The tear enabling features 232 and 234 are spaced apart, and a central portion 240 of the film 222 is defined therebetween. A top coating 242 is optionally provided along top face 228 of film 222. A bottom coating 244 is also optionally provided along the bottom face 30 of the film 22. Longitudinally disposed adhesive stripes 246 and 248 are provided along the recesses 236 and 238.
  • The recesses 236 and 238 are located at the longitudinal edges 224 and 226, respectively, of the film 222. The recesses 236 and 238 are each open facing the bottom face 230 and longitudinal edges 224 and 226, respectively, of the film 222. Alternatively, recesses may be formed on both surfaces of the cover tape. This feature would be useful, for example, if the thicknesses of the adhesive stripes are greater than depth DR, because it would facilitate winding of the cover tape.
  • In the embodiment shown in FIG. 16, a bottom portion 250 and a side portion 252 define each of the recesses 236 and 238. The adhesive stripes 246 and 248 can be disposed on the bottom portions 250 of the recesses 236 and 238, respectively. The bottom portions 250 of the recesses 236 and 238 can have microtexture (not shown in FIG. 16) for better adhering the adhesive stripes 246 and 248 to the film 222. It should be recognized that other recess shapes can be utilized, so long as the recesses 236 and 238 are open facing an adjacent elongate edge 224 or 226 of the film 222 and the bottom face 230 of the film 222.
  • The film 222, including recesses 236 and 238 and any microtextures, can be formed using processes such as scoring, extrusion, calendaring, micro-replication, laser ablation, ultrasound, die cutting, chemical etching, and stripping. In further embodiments, the recesses 236 and 238 can be formed using different processes.
  • The adhesive stripes 246 and 248 on bottom portion 250 of recesses 236 and 238 can be, for instance, pressure sensitive adhesives (PSAs), heat activated and microencapsulated adhesives. The adhesive stripes 246 and 248 can have thicknesses greater than, less than or equal to a depth DR of the recessed areas 236 and 238. Typically, the thickness is less than or equal to depth DR. The adhesive stripes 246 and 248 have widths equal to or less than widths WR of the recessed areas 236 and 238. Having widths less than widths DR of recessed areas 236 and 238 provides substantially adhesive-free zones longitudinally extending along the bottom portions 250 of the recesses 236 and 238 on either side of each of the adhesive stripes 246 and 248 when the cover tape 220 is not applied to a surface (i.e., is not under tension).
  • The tear enabling features 232 and 234 are located relative to the bottom face 230 of the film 222, and can be located adjacent the recesses 236 and 238 at the side portions 252 thereof However, in further embodiments, the tear enabling features 232 and 234 can be located nearly anywhere along the top face 228, bottom face 230, or both faces of the film 222, so long as they are each spaced from the longitudinal edges 224 and 226 of the film 222. As shown in FIG. 16, the tear enabling features 232 and 234 are continuous scoring lines that extend longitudinally along film 222. Such scoring lines can be formed by cutting into the film 222 (e.g., with lasers, die cutters, and blades, for instance, according to the blade scoring procedure described below). In further embodiments, the tear enabling features 232 and 234 can be weakened regions of the film 222 (e.g., interfaces of different materials, thinner regions, microperforations, etc.), a transition between two materials (e.g., a first material comprises central portion 240 of the film 222 and a second material comprises the region of the film 222 between the bottom portions 250 of the recesses 236 and 238 and the top face 228), or other structures that facilitate tearing.
  • In one embodiment, provided by way of example and not limitation, the cover tape 220 can have the following dimensions. An overall width WO of the film 222 (measured between elongate edges 224 and 226) is about 1 inch (2.54 cm). A thickness T of the film 222 is about 2 mil (0.0254 mm) (measured at the thickest portion of the central region 240 of the film 222). The recesses 236 and 238 each have a width WR of about 0.0393701 inch (1 mm) and a depth DR of about 0.5 mil (0.0127 mm). The tear enabling features 232 and 234 are score lines each having a depth of about 1.5 mil (0.0381 mm) (measured from the bottom face 230 of the film 222). It should be recognized that dimensions of the cover tape 220 can vary, as desired. For instance, a width of the central portion 240 of the film 222 can be selected such that it is at least as wide as the pockets of a carrier tape with which the cover tape 220 is used.
  • Other embodiments of cover tapes having recesses are disclosed in co-pending U.S. patent application Ser. No. 11/228956, which is incorporated herein by reference.
  • Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims (19)

1. A cover tape comprising:
a film having first and second major surfaces, a lateral portion extending along a longitudinal length of the film, and a medial portion disposed adjacent the lateral portion;
an adhesive portion secured to the first major surface adjacent the lateral portion;
a line of weakness in the first major surface, the line of weakness extending along the longitudinal length of the film adjacent the lateral portion, and configured to enable progressive separation of the medial portion from the lateral bonding portion; and
at least one tear-initiation feature extending through the lateral portion, wherein the tear-initiation feature defines a predetermined direction of tear in the lateral portion to initiate a tear along each of the line of weakness.
2. The cover tape of claim 1, wherein the at least one tear-initiation feature has an arcuate shape.
3. The cover tape of claim 1, wherein the at least one tear-initiation feature is cut through the lateral portion from the second surface of the film.
4. The cover tape of claim 3, wherein the at least one tear-initiation feature is cut prior to securing the adhesive portion to the first major surface.
5. The cover tape of claim 1, wherein the at least one tear-initiation feature is offset from the first and second lines of weakness.
6. The cover tape of claim 1, wherein the film is a multi-layer film.
7. The cover tape of claim 6, wherein the multi-layer film comprises a topcoat layer, a core layer, and a bottom coating.
8. A method of forming multiple cover tapes, the method comprising:
forming a film having first and second major surfaces;
cutting a plurality of tracks through the first and second major surfaces of the film;
cutting a plurality of score lines in the first major surface of the film;
coating the first major surface with a plurality of adhesive strips; and
separating the film into sections to form the multiple cover tapes, each cover tape having tear-initiation features defined by the tracks.
9. The method of claim 8, wherein each of the plurality of tracks comprises a row of cut features, wherein each cut feature defines a pair of tear-initiation features.
10. The method of claim 8, wherein the tear-initiation features have arcuate shapes.
11. The method of claim 8, wherein the tracks are cut from the second major surface of the film.
12. The method of claim 8, wherein cutting the plurality of tracks occurs prior to coating the first major surface with the adhesive strips.
13. The method of claim 8, wherein cutting the plurality of tracks occurs after separating the film to form the multiple cover tapes, wherein cutting the plurality of tracks comprises cutting the plurality of tracks while at least one of the cover tapes is wound up as a roll.
14. A method of using a carrier tape, the method comprising:
providing the carrier tape having a cover tape bonded to a base portion, wherein the cover tape includes a tear-initiation feature and a score line;
peeling a first portion of the cover tape from the base portion until the peel reaches the tear-initiation feature;
peeling a second portion of the cover tape along the tear-initiation feature;
tearing a third portion of the cover tape in a direction that substantially follows the tear-initiation feature until the tear reaches the score line; and
tearing a fourth portion of the cover tape in a direction that substantially follows the score line.
15. The method of claim 14, wherein the tear-initiation feature has an arcuate shape.
16. The method of claim 14, wherein the cover tape comprises a plurality of tear-initiation features.
17. The method of claim 14, wherein the tear-initiation feature does not intersect the score line.
18. The method of claim 14, wherein at least a portion of the tear-initiation feature has a linear shape.
19. The method of claim 14, wherein the tear-initiation feature is cut prior to applying adhesive materials that bond the cover tape to the base portion.
US11/835,211 2006-08-09 2007-08-07 Carrier tapes having tear-initiated cover tapes and methods of making thereof Abandoned US20080038501A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/835,211 US20080038501A1 (en) 2006-08-09 2007-08-07 Carrier tapes having tear-initiated cover tapes and methods of making thereof
US12/368,457 US8323442B2 (en) 2006-08-09 2009-02-10 Carrier tapes having tear-initiated cover tapes and methods of making thereof
US13/662,800 US20130048220A1 (en) 2006-08-09 2012-10-29 Carrier Tapes Having Tear-Initiated Cover Tapes and Methods of Making Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82194406P 2006-08-09 2006-08-09
US11/835,211 US20080038501A1 (en) 2006-08-09 2007-08-07 Carrier tapes having tear-initiated cover tapes and methods of making thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/368,457 Division US8323442B2 (en) 2006-08-09 2009-02-10 Carrier tapes having tear-initiated cover tapes and methods of making thereof

Publications (1)

Publication Number Publication Date
US20080038501A1 true US20080038501A1 (en) 2008-02-14

Family

ID=39082343

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/835,211 Abandoned US20080038501A1 (en) 2006-08-09 2007-08-07 Carrier tapes having tear-initiated cover tapes and methods of making thereof
US12/368,457 Expired - Fee Related US8323442B2 (en) 2006-08-09 2009-02-10 Carrier tapes having tear-initiated cover tapes and methods of making thereof
US13/662,800 Abandoned US20130048220A1 (en) 2006-08-09 2012-10-29 Carrier Tapes Having Tear-Initiated Cover Tapes and Methods of Making Thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/368,457 Expired - Fee Related US8323442B2 (en) 2006-08-09 2009-02-10 Carrier tapes having tear-initiated cover tapes and methods of making thereof
US13/662,800 Abandoned US20130048220A1 (en) 2006-08-09 2012-10-29 Carrier Tapes Having Tear-Initiated Cover Tapes and Methods of Making Thereof

Country Status (10)

Country Link
US (3) US20080038501A1 (en)
EP (1) EP2049609A4 (en)
JP (1) JP5238699B2 (en)
KR (1) KR101464780B1 (en)
CN (1) CN101501155B (en)
IL (1) IL196932A0 (en)
MX (1) MX2009001430A (en)
MY (1) MY155905A (en)
TW (1) TWI422660B (en)
WO (1) WO2008021833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059171A1 (en) * 2013-09-05 2015-03-05 Panasonic Corporation Reel for component mounting apparatus and component supplying method in component mounting apparatus
US20160237320A1 (en) * 2013-10-23 2016-08-18 Fukumaru Co., Ltd. Adhesive tape, adhesive tape roll, and tape dispenser
US11319464B2 (en) * 2019-11-20 2022-05-03 Gourgen AMBARTSOUMIAN Polymeric tape with tear cuts

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247057B2 (en) * 2005-09-16 2012-08-21 3M Innovative Properties Company Cover tape and method for manufacture
JP5685420B2 (en) * 2010-11-16 2015-03-18 ラピスセミコンダクタ株式会社 Chip part packaging apparatus, chip part packaging method and cover tape
DE102011113838B4 (en) * 2011-09-21 2015-11-05 Fresenius Medical Care Deutschland Gmbh A method of weaving a plurality of moisture sensors for a device for monitoring patient access
CN204014413U (en) 2011-12-16 2014-12-10 3M创新有限公司 Carrying belt
US9038272B1 (en) * 2012-06-04 2015-05-26 Vulcan Spring & Mfg. Co. Variable force spring tapes and method of manufacture
JP2014207276A (en) * 2013-04-11 2014-10-30 日東電工株式会社 Adhesive tape for carrier tape connection and film for carrier tape connection
US20170072659A1 (en) * 2014-03-04 2017-03-16 3M Innovative Properties Company Cover tapes and assemblies and method for making
US10136568B2 (en) 2014-10-29 2018-11-20 3M Innovative Properties Company Carrier tape and carrier tape assembly
CN104589777B (en) * 2014-12-31 2017-07-18 马俊 Material strip overlay film separator
JP6592252B2 (en) * 2015-02-19 2019-10-16 エイブリック株式会社 Transport packaging tape
KR101804411B1 (en) * 2016-04-05 2017-12-04 (주) 인텍플러스 Apparatus for packing semiconductor device with carrier tape
JP6790025B2 (en) * 2018-05-31 2020-11-25 古河電気工業株式会社 Manufacturing method of electronic device processing tape and electronic device processing tape
US10679877B2 (en) 2018-06-28 2020-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Carrier tape system and methods of using carrier tape system
CN110654714B (en) * 2018-06-28 2021-09-17 台湾积体电路制造股份有限公司 Carrier tape system for semiconductor components and method for removing semiconductor components from pockets of carrier tape
CN111977174B (en) * 2020-09-16 2021-12-21 江西若邦科技股份有限公司 Easily-torn cover tape and preparation method thereof
CN113828592B (en) * 2021-10-30 2022-12-02 东莞市起源自动化科技有限公司 Automatic tear label base stock equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1805533A (en) * 1929-10-22 1931-05-19 Reynolds Metals Co Means of sealing cartons
US3467250A (en) * 1968-01-25 1969-09-16 Anthony N D Elia Easy tear tape with lift tab
US4539239A (en) * 1977-01-11 1985-09-03 Newell Companies, Inc. Window shade, and method apparatus for manufacturing same
US4584220A (en) * 1982-01-15 1986-04-22 Kroy Inc. Laminated tape
US4878408A (en) * 1987-05-20 1989-11-07 Keen Corporation Apparatus for slitting elongated flexible tape
US4944979A (en) * 1989-10-19 1990-07-31 At&T Bell Laboratories Tape conveyers for components
US5325654A (en) * 1992-06-19 1994-07-05 Minnesota Mining And Manufacturing Company Carrier tape with cover strip
US5390472A (en) * 1992-06-19 1995-02-21 Minnesota Mining And Manufacturing Company Carrier tape with cover strip
US5691038A (en) * 1993-12-22 1997-11-25 Lintec Corporation Cover tape and coating applicator
US6027802A (en) * 1997-10-23 2000-02-22 Four Piliars Enterprise Co., Ltd. Cover tape for packaging

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY103125A (en) 1987-07-24 1993-04-30 Lintec Corp Cover tape for sealing chip-holding parts of carrier tape
US5027465A (en) * 1988-06-20 1991-07-02 Mckay Nicholas D Lint remover
US5006856A (en) * 1989-08-23 1991-04-09 Monarch Marking Systems, Inc. Electronic article surveillance tag and method of deactivating tags
JPH04201871A (en) 1990-11-29 1992-07-22 Mitsubishi Electric Corp Cover tape for emboss taping
JPH05213364A (en) 1992-01-27 1993-08-24 Matsushita Electric Ind Co Ltd Component storage tape
JPH05310264A (en) 1992-04-28 1993-11-22 Matsushita Electric Ind Co Ltd Tape for packing electronic parts
US6030692A (en) 1996-09-13 2000-02-29 Netpco Incorporated Cover tape for formed tape packing system and process for making same
BR9814963A (en) * 1997-11-14 2000-10-03 Minnesota Mining & Mfg Continuous sheet roll, and, process of creating a continuous sheet roll
JPH11222581A (en) 1998-02-06 1999-08-17 Nitto Denko Corp Adhesive tape
SE518968C2 (en) 2001-04-24 2002-12-10 Panorama Press Ab Manufacture of tear-off sheets and blocks comprising the tear-off sheets
US20030049437A1 (en) * 2001-08-03 2003-03-13 Devaney Laura C. Flexible carrier tape having high clarity and conductivity
JP3626742B2 (en) * 2002-05-13 2005-03-09 旗勝科技股▲分▼有限公司 Mass production method of tape-type flexible printed circuit
TWI229732B (en) * 2003-02-21 2005-03-21 Mitsui Mining & Smelting Co Apparatus and method for inspecting film carrier tape for mounting electronic component
US8247057B2 (en) * 2005-09-16 2012-08-21 3M Innovative Properties Company Cover tape and method for manufacture
US20070062844A1 (en) * 2005-09-16 2007-03-22 Velasquez Urey Ruben E Cover tape and method for manufacture

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1805533A (en) * 1929-10-22 1931-05-19 Reynolds Metals Co Means of sealing cartons
US3467250A (en) * 1968-01-25 1969-09-16 Anthony N D Elia Easy tear tape with lift tab
US4539239A (en) * 1977-01-11 1985-09-03 Newell Companies, Inc. Window shade, and method apparatus for manufacturing same
US4584220A (en) * 1982-01-15 1986-04-22 Kroy Inc. Laminated tape
US4878408A (en) * 1987-05-20 1989-11-07 Keen Corporation Apparatus for slitting elongated flexible tape
US4944979A (en) * 1989-10-19 1990-07-31 At&T Bell Laboratories Tape conveyers for components
US5325654A (en) * 1992-06-19 1994-07-05 Minnesota Mining And Manufacturing Company Carrier tape with cover strip
US5390472A (en) * 1992-06-19 1995-02-21 Minnesota Mining And Manufacturing Company Carrier tape with cover strip
US5691038A (en) * 1993-12-22 1997-11-25 Lintec Corporation Cover tape and coating applicator
US6027802A (en) * 1997-10-23 2000-02-22 Four Piliars Enterprise Co., Ltd. Cover tape for packaging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059171A1 (en) * 2013-09-05 2015-03-05 Panasonic Corporation Reel for component mounting apparatus and component supplying method in component mounting apparatus
US9743568B2 (en) * 2013-09-05 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. Reel for component mounting apparatus and component supplying method in component mounting apparatus
US20160237320A1 (en) * 2013-10-23 2016-08-18 Fukumaru Co., Ltd. Adhesive tape, adhesive tape roll, and tape dispenser
US10662018B2 (en) * 2013-10-23 2020-05-26 Fukumaru Co., Ltd. Adhesive tape, adhesive tape roll, and tape dispenser
US11319464B2 (en) * 2019-11-20 2022-05-03 Gourgen AMBARTSOUMIAN Polymeric tape with tear cuts

Also Published As

Publication number Publication date
KR101464780B1 (en) 2014-11-24
JP2010500261A (en) 2010-01-07
KR20090037453A (en) 2009-04-15
US20130048220A1 (en) 2013-02-28
CN101501155A (en) 2009-08-05
US20090145543A1 (en) 2009-06-11
MX2009001430A (en) 2009-02-17
TW200829672A (en) 2008-07-16
TWI422660B (en) 2014-01-11
WO2008021833A1 (en) 2008-02-21
US8323442B2 (en) 2012-12-04
JP5238699B2 (en) 2013-07-17
EP2049609A1 (en) 2009-04-22
IL196932A0 (en) 2009-11-18
CN101501155B (en) 2014-06-25
EP2049609A4 (en) 2014-07-09
MY155905A (en) 2015-12-15

Similar Documents

Publication Publication Date Title
US8323442B2 (en) Carrier tapes having tear-initiated cover tapes and methods of making thereof
US8247057B2 (en) Cover tape and method for manufacture
US20070062844A1 (en) Cover tape and method for manufacture
US8992714B2 (en) Method for producing an adhesive tape having a protruding liner
US20070062166A1 (en) Apparatus for manufacture of cover tape
CN117690723B (en) Superimposed die cutting process for multilayer nanocrystalline magnetic sheets
JP3134213U (en) Surface protective film laminate
JP4060867B2 (en) Easy-open bag in carton
CN117690723A (en) Superimposed die cutting process for multilayer nanocrystalline magnetic sheets
JP4780934B2 (en) Pressure sensitive adhesive tape
CN114822254A (en) Module and manufacturing method thereof
JP2005280847A (en) Easily unsealble bag-in carton
JPH06321730A (en) Production of cosmetic packing body
JP2006171379A (en) Sealing tool

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VELASQUEZ UREY, RUBEN E.;EDWARDS, ROCKY D.;GUNDEL, DOUGLAS B.;REEL/FRAME:019663/0523

Effective date: 20070720

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION