US20080016848A1 - Exhaust System For An Internal Combustion Engine, and Method For Operating Such An Exhaust System - Google Patents

Exhaust System For An Internal Combustion Engine, and Method For Operating Such An Exhaust System Download PDF

Info

Publication number
US20080016848A1
US20080016848A1 US11/576,568 US57656805A US2008016848A1 US 20080016848 A1 US20080016848 A1 US 20080016848A1 US 57656805 A US57656805 A US 57656805A US 2008016848 A1 US2008016848 A1 US 2008016848A1
Authority
US
United States
Prior art keywords
filter device
filter
exhaust system
catalytic material
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/576,568
Inventor
Markus Widenmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35160050&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080016848(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIDENMEYER, MARKUS
Publication of US20080016848A1 publication Critical patent/US20080016848A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates first to an exhaust system for an internal combustion engine, in particular in a motor vehicle, having a first filter device and a second filter device, located downstream of the first, which each filter soot particles out of the exhaust gas, and at least the first filter device has a catalytic material which promotes an exothermic soot burnoff in such a manner that as a result of the corresponding heating up of the exhaust gas, the soot burnoff in the second filter device is set in motion.
  • the invention also relates to a method for operating an exhaust system of this kind.
  • German Patent Disclosure DE 101 56 191 A1 shows an exhaust system which has a main filter device and a prefilter device preceding it.
  • soot from the exhaust gas is accumulated.
  • the soot accumulated in the prefilter device is burned off.
  • the soot ignition temperature which serves to initiate the burnoff of the soot that has accumulated in the main filter device.
  • a heater is provided, for instance a heating element protruding into the filter body of the prefilter device, or an external burner by which a hot gas is generated.
  • This object is attained, in an exhaust system of the type defined at the outset, in that the materials of the two filter devices are selected such that the soot burnoff in the first filter device ensues at a lower temperature and/or at a similar temperature is stronger than in the second filter device.
  • the stated object is attained accordingly.
  • soot burnoff there can already be set into motion with a comparatively slight energy input.
  • soot burnoff which is an exothermic reaction
  • the exhaust gas flowing through the first filter device is heated so markedly that even in the second filter device, the soot ignition temperature, which is higher there, can be reached and the soot accumulated there can be accommodated.
  • reliable regeneration of both the first and second filter devices is thus possible, despite lower production costs.
  • the exhaust system of the invention is especially appropriate if the first filter device has a filter efficiency of at most 90%, because soot particles in the second filter device can then be accumulated and burned off to an adequate extent.
  • the second filter device no catalytic material that promotes the soot burnoff is present.
  • This not only makes it possible to use a comparatively inexpensive material for the structure of the second filter device, but the comparatively complex process of coating with a catalytic material is also dispensed with, which additionally reduces costs. Furthermore, damage to the filter structure from excessively strong soot burnoff is avoided. Since the “ignition temperature” in the second filter device is then comparatively high, however, a correspondingly active catalytic material must be used in the first filter device, so that the required heating of the exhaust gas can be attained with a reasonable energy input.
  • the first filter device includes a depth filter, preferably comprising an open-pore ceramic foam
  • the second filter device includes a surface filter, preferably of metal and even more preferably of special steel. Because of the large effective surface area, an especially good catalytic action can be attained with a depth filter. This is especially true when so-called molten salt catalysts are used, which are in liquid form in the operating range in question.
  • a surface filter in turn has a very good filter action and can be inexpensively made from metal, especially special steel, while at the same time having good high-temperature strength and thermal shock resistance.
  • a further advantageous feature of the exhaust system of the invention is distinguished in that the second filter device includes a catalytic material which promotes the oxidation of CO to CO 2 and/or the oxidation of NO to NO 2 .
  • the second filter device includes a catalytic material which promotes the oxidation of CO to CO 2 and/or the oxidation of NO to NO 2 .
  • heat is additionally liberated, which contributes to attaining the ignition temperature required for burning off the soot in the second filter device.
  • the ignition temperature in the second filter device thus need not be achieved solely by way of the heating of the exhaust gas.
  • this embodiment has the advantage of spatially separating the various oxidation processes. As a result, unwanted interactions are prevented.
  • a catalytic material that is simple to process and promotes the oxidation of CO and NO is platinum and palladium. These materials can be substrated onto a large-surface-area oxide or directly onto a filter body, which keeps the production costs low.
  • first filter device and the second filter device are located immediately adjacent one another. This prevents the exhaust gas, heated in the soot burnoff in the first filter device, from cooling down excessively along its way to the second filter device.
  • the efficiency of the soot burnoff is thus especially high.
  • the first filter device and the second filter device can be integrated into a filter unit, which is accommodated in a common housing, for instance. It is even possible for a single filter to be embodied in its upstream region like the first filter device and in its downstream region like the second filter device. This makes for an especially compact design.
  • a catalytic material which is a member of the following group: 1 to 50 weight % Ag on an oxidic substrate, and/or V and/or Mo and/or W and/or Mn and/or Cu on an oxidic substrate, the substrate including: Al 2 O 3 , TiO 2 , CeO 2 , ZrO 2 , and/or SiO 2 ; Ag in chemical combination with oxides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Al, and/or Zr, in particular Ag 2 CrO 4 or AgMn 2 O 5 ; metal vanadate; molybdate; tungstenates; metal-V mixed oxide, in particular Cs 2 V 2 O 4 ; Cr mixed oxide; Mo mixed oxide; manganese oxide; rhenium oxide; metal manganate; metal rhenate.
  • the exhaust gas temperature upstream of the first filter device is elevated to a first level, at which in the first filter device a soot burnoff ensues to such an extent that as a result the exhaust gas temperature is additionally elevated to a second level, at which in the second filter device a soot burnoff is likewise set into motion.
  • FIG. 1 is a schematic illustration of an internal combustion engine with an exhaust system having a first and a second filter device
  • FIG. 2 is an enlarged view of the first and second filter devices of FIG. 1 ;
  • FIG. 3 is a detail of the first filter device in FIG. 1 ;
  • FIG. 4 is a detail of the second filter device in FIG. 1 ;
  • FIG. 5 is a view similar to FIG. 1 of an alternative embodiment of an exhaust system.
  • an exhaust system of an internal combustion engine 10 is identified by reference numeral 12 . It includes an exhaust tube 14 , which delivers the exhaust gases from combustion first to a first filter device 16 and after that to a second filter device 18 .
  • the engine 10 operates on the diesel principle. Soot particles produced in combustion are at least partially filtered out of the exhaust gas in the two filter devices 16 and 18 .
  • the first filter device 16 includes a housing 20 , in which a filter structure in the form of an open-pore ceramic or metal foam 22 is located.
  • the first filter device 16 is accordingly a depth filter.
  • the second filter device 18 likewise includes a housing 24 , in which a filter structure 26 in the form of alternatingly closed honeycombs or conduits 28 is located.
  • FIG. 3 A detail of an internal region of the filter structure 22 of the first filter device 16 is show in FIG. 3 .
  • this filter structure 22 has pores 30 , which are present in the material comprising the filter structure 22 .
  • This material is identified in FIG. 3 by reference numeral 32 .
  • it is silicon carbide.
  • all open-pore bodies and bulk materials comprising ceramic and metal material, and combinations of the two, which are suitable for filtering soot particles out of the exhaust gas that flows through the exhaust tube 14 , can be considered for the filter structure 22 .
  • the silicon carbide material 32 of the filter structure 22 of the first filter device 16 is provided with a catalytic material 34 .
  • This material is selected such that it promotes the oxidation or burnoff of soot particles (reference numeral 36 in FIG. 3 ), which have accumulated in the first filter device 16 , at comparatively tow temperatures. This kind of soot burnoff prevents the first filter device 16 from becoming clogged over time.
  • the catalytic material 34 used in the first filter device 16 is highly active in view of the promotion of soot burnoff and reduces the ignition temperature at which the exothermic soot burnoff in the first filter device 16 is set into motion by from 100 to 250 K or even more. It is also especially advantageous if the catalytic material 34 promotes the soot burnoff in such a way that CO 2 is also formed (see hereinafter).
  • the second filter device 18 is a surface filter, which is embodied here as a wall flow filter. It has a filter structure 38 , which is honeycomblike as viewed in the flow direction and is made from special steel. Some of the honeycombs are open on the side toward the engine 10 and closed on the side away from the engine 10 (the exhaust gas stream is represented by arrows 40 in FIG. 4 ). These honeycombs are identified by reference numeral 28 a in FIG. 4 . Other honeycombs 28 b , adjacent to the honeycombs 28 a , are closed on the side toward the engine 10 and open on the side away from the engine 10 .
  • the filter action is due to the porosity of the walls of the filter structure 38 that are located between the honeycombs 28 a and 28 b .
  • the exhaust gas stream accordingly passes through the wall surfaces from the honeycombs 28 a into the honeycombs 28 b , as indicated by the arrow 42 in FIG. 4 .
  • the filter efficiency of the second filter device 18 is approximately 95% to 99%.
  • the filter action is selected such that small soot particles are preferentially filtered out of the exhaust gas stream.
  • the filter efficiency of the first filter device 16 is approximately 50%. Through this filter device 16 , large soot particles are preferentially filtered out of the exhaust gas stream. The result is accordingly a total efficiency of over 99%.
  • the temperature of the exhaust gas flowing from the engine 10 into the exhaust tube 14 is raised from time to time by motor provisions, specifically to a temperature in the range from 350 to approximately 550° C.
  • soot burnoff to the relevant extent does not occur until temperatures of above approximately 600°. Because of the presence of the catalytic material 34 in the first filter device 16 , however, the aforementioned temperature level does suffice to put the burnoff of the deposited soot particles 36 into motion in the first filter device 16 .
  • the minimum temperature required for this is also called the “ignition temperature”. Burning off the deposited soot particles involves an exothermic oxidation reaction. By the energy released as a result, the exhaust gas flowing through the first filter device 16 is heated.
  • a typical temperature of the exhaust gas flowing from the first filter device 16 to the second filter device 18 during an ongoing soot burnoff in the first filter device 16 is approximately 600 to 700° C. This temperature is above the ignition temperature of the soot particles 36 in the second filter device 18 , in which no catalytic material that promotes the soot burnoff is present. Thus even in the second filter device 18 , the soot burnoff of the deposited soot particles 36 is set into motion.
  • FIG. 1 shows, the first filter device 16 and the second filter device 18 are located immediately adjacent one another. As a result, the exhaust gas heated in the soot burnoff in the first filter device 16 is prevented from cooling down excessively along its way to the second filter device 18 .
  • the embodiment of FIG. 5 in which the first filter device 16 and the second filter device 18 are integrated into a filter unit 44 , is optimal.
  • FIG. 5 those regions and elements that have equivalent functions to elements and regions in the preceding drawings have the same reference numerals and are not described again in detail.
  • the filter structure 22 of the first filter device 16 is integral with the filter structure 38 of the second filter device 18 (the dividing line between the two filter structures).
  • the first filter device 16 is accordingly distinguished from the second filter device 18 only in that it includes a catalytic material, not shown in FIG. 5 , which is especially active and which promotes the soot burnoff in the first filter device 16 .

Abstract

An exhaust system of an internal combustion engine includes a first filter device and a second filter device located downstream of the first. Both filter devices filter soot particles out of the exhaust gas. At least the first filter device has a catalytic material, which promotes an exothermic soot burnoff in such a way that as a result of the corresponding heating up of the exhaust gas, the soot burnoff in the second filter device is set in motion. The materials of the two filter devices are selected such that the soot burnoff in the first filter device ensues at a lower temperature and/or at a similar temperature is stronger than in the second filter device.

Description

    PRIOR ART
  • The invention relates first to an exhaust system for an internal combustion engine, in particular in a motor vehicle, having a first filter device and a second filter device, located downstream of the first, which each filter soot particles out of the exhaust gas, and at least the first filter device has a catalytic material which promotes an exothermic soot burnoff in such a manner that as a result of the corresponding heating up of the exhaust gas, the soot burnoff in the second filter device is set in motion. The invention also relates to a method for operating an exhaust system of this kind.
  • An exhaust system and a method of the type defined at the outset are known from German Patent Disclosure DE 101 56 191 A1. This shows an exhaust system which has a main filter device and a prefilter device preceding it. In both the prefilter device and the main filter device, soot from the exhaust gas is accumulated. For regeneration, the soot accumulated in the prefilter device is burned off. As a result, so much heat is released that the exhaust gas flowing through is also heated to the soot ignition temperature, which serves to initiate the burnoff of the soot that has accumulated in the main filter device. It is also known to provide both the main filter device and the prefilter device with a catalytic coating, by which ignition temperature of the soot is lowered. For heating the soot that has accumulated in the prefilter device, a heater is provided, for instance a heating element protruding into the filter body of the prefilter device, or an external burner by which a hot gas is generated.
  • However, it is a problem that many catalytic materials that promote the soot burnoff lead to corrosion problems in the filter structure onto which they are applied. This necessitates the use of special filter materials, which increases the production costs.
  • It is therefore the object of the present invention to refine an exhaust system and a method of the type defined at the outset such that the exhaust system can be produced as inexpensively as possible.
  • This object is attained, in an exhaust system of the type defined at the outset, in that the materials of the two filter devices are selected such that the soot burnoff in the first filter device ensues at a lower temperature and/or at a similar temperature is stronger than in the second filter device. In a method of the type defined at the outset, the stated object is attained accordingly.
  • ADVANTAGES OF THE INVENTION
  • It is true of many catalytic materials that promote soot burnoff that their corrosive aggressiveness increases with the intensity of the catalytic property. Since according to the invention that catalytic activity in the second filter device is less than in the first filter device, the corrosive activity in the second filter device is also reduced, so that a less-expensive substrate or filter material can be used there. As a result, the production costs of the exhaust system are reduced.
  • Because the catalytic activity of the first filter device is greater than in the second filter device, soot burnoff there can already be set into motion with a comparatively slight energy input. As a result of the soot burnoff, which is an exothermic reaction, the exhaust gas flowing through the first filter device is heated so markedly that even in the second filter device, the soot ignition temperature, which is higher there, can be reached and the soot accumulated there can be accommodated. In the exhaust system and the method of the invention, reliable regeneration of both the first and second filter devices is thus possible, despite lower production costs.
  • The exhaust system of the invention is especially appropriate if the first filter device has a filter efficiency of at most 90%, because soot particles in the second filter device can then be accumulated and burned off to an adequate extent.
  • Advantageous refinements of the invention are recited in the dependent claims.
  • For instance, it is proposed that in the second filter device, no catalytic material that promotes the soot burnoff is present. This not only makes it possible to use a comparatively inexpensive material for the structure of the second filter device, but the comparatively complex process of coating with a catalytic material is also dispensed with, which additionally reduces costs. Furthermore, damage to the filter structure from excessively strong soot burnoff is avoided. Since the “ignition temperature” in the second filter device is then comparatively high, however, a correspondingly active catalytic material must be used in the first filter device, so that the required heating of the exhaust gas can be attained with a reasonable energy input.
  • It is especially advantageous if the first filter device includes a depth filter, preferably comprising an open-pore ceramic foam, and the second filter device includes a surface filter, preferably of metal and even more preferably of special steel. Because of the large effective surface area, an especially good catalytic action can be attained with a depth filter. This is especially true when so-called molten salt catalysts are used, which are in liquid form in the operating range in question. A surface filter in turn has a very good filter action and can be inexpensively made from metal, especially special steel, while at the same time having good high-temperature strength and thermal shock resistance.
  • A further advantageous feature of the exhaust system of the invention is distinguished in that the second filter device includes a catalytic material which promotes the oxidation of CO to CO2 and/or the oxidation of NO to NO2. By the likewise exothermic oxidation reaction of CO to CO2 in the second filter device, heat is additionally liberated, which contributes to attaining the ignition temperature required for burning off the soot in the second filter device. The ignition temperature in the second filter device thus need not be achieved solely by way of the heating of the exhaust gas. Moreover, whenever in the second filter device there is no catalytic material that promotes the soot burnoff, this embodiment has the advantage of spatially separating the various oxidation processes. As a result, unwanted interactions are prevented.
  • A catalytic material that is simple to process and promotes the oxidation of CO and NO is platinum and palladium. These materials can be substrated onto a large-surface-area oxide or directly onto a filter body, which keeps the production costs low.
  • It is especially advantageous if the first filter device and the second filter device are located immediately adjacent one another. This prevents the exhaust gas, heated in the soot burnoff in the first filter device, from cooling down excessively along its way to the second filter device. In this embodiment of the exhaust system of the invention, the efficiency of the soot burnoff is thus especially high. The first filter device and the second filter device can be integrated into a filter unit, which is accommodated in a common housing, for instance. It is even possible for a single filter to be embodied in its upstream region like the first filter device and in its downstream region like the second filter device. This makes for an especially compact design.
  • To assure the high catalytic activity, provided according to the invention, in the first filter device, a catalytic material can be used which is a member of the following group: 1 to 50 weight % Ag on an oxidic substrate, and/or V and/or Mo and/or W and/or Mn and/or Cu on an oxidic substrate, the substrate including: Al2O3, TiO2, CeO2, ZrO2, and/or SiO2; Ag in chemical combination with oxides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Al, and/or Zr, in particular Ag2CrO4 or AgMn2O5; metal vanadate; molybdate; tungstenates; metal-V mixed oxide, in particular Cs2V2O4; Cr mixed oxide; Mo mixed oxide; manganese oxide; rhenium oxide; metal manganate; metal rhenate.
  • In an advantageous refinement of the method of the invention, it is proposed that for regenerating the filter devices, the exhaust gas temperature upstream of the first filter device is elevated to a first level, at which in the first filter device a soot burnoff ensues to such an extent that as a result the exhaust gas temperature is additionally elevated to a second level, at which in the second filter device a soot burnoff is likewise set into motion. An exhaust system operated in this way can be produced very inexpensively, since the use of a separate heater, with which the first filter device is heated to the ignition temperature required for the soot burnoff, can be dispensed with. Instead, the soot burnoff is set into motion by provisions associated with the motor.
  • DRAWINGS
  • Especially preferred exemplary embodiments of the present invention are described in further detail below in conjunction with the accompanying drawings. In the drawings:
  • FIG. 1 is a schematic illustration of an internal combustion engine with an exhaust system having a first and a second filter device;
  • FIG. 2 is an enlarged view of the first and second filter devices of FIG. 1;
  • FIG. 3 is a detail of the first filter device in FIG. 1;
  • FIG. 4 is a detail of the second filter device in FIG. 1; and
  • FIG. 5 is a view similar to FIG. 1 of an alternative embodiment of an exhaust system.
  • DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
  • In FIG. 1, an exhaust system of an internal combustion engine 10 is identified by reference numeral 12. It includes an exhaust tube 14, which delivers the exhaust gases from combustion first to a first filter device 16 and after that to a second filter device 18. The engine 10 operates on the diesel principle. Soot particles produced in combustion are at least partially filtered out of the exhaust gas in the two filter devices 16 and 18.
  • As FIG. 2 shows, the first filter device 16 includes a housing 20, in which a filter structure in the form of an open-pore ceramic or metal foam 22 is located. The first filter device 16 is accordingly a depth filter. The second filter device 18 likewise includes a housing 24, in which a filter structure 26 in the form of alternatingly closed honeycombs or conduits 28 is located.
  • A detail of an internal region of the filter structure 22 of the first filter device 16 is show in FIG. 3. As shown, this filter structure 22 has pores 30, which are present in the material comprising the filter structure 22. This material is identified in FIG. 3 by reference numeral 32. Here, it is silicon carbide. However, in principle, all open-pore bodies and bulk materials comprising ceramic and metal material, and combinations of the two, which are suitable for filtering soot particles out of the exhaust gas that flows through the exhaust tube 14, can be considered for the filter structure 22.
  • As also seen from FIG. 3, the silicon carbide material 32 of the filter structure 22 of the first filter device 16 is provided with a catalytic material 34. This material is selected such that it promotes the oxidation or burnoff of soot particles (reference numeral 36 in FIG. 3), which have accumulated in the first filter device 16, at comparatively tow temperatures. This kind of soot burnoff prevents the first filter device 16 from becoming clogged over time.
  • The catalytic material 34 used in the first filter device 16 is highly active in view of the promotion of soot burnoff and reduces the ignition temperature at which the exothermic soot burnoff in the first filter device 16 is set into motion by from 100 to 250 K or even more. It is also especially advantageous if the catalytic material 34 promotes the soot burnoff in such a way that CO2 is also formed (see hereinafter).
  • The second filter device 18, show in detail in FIG. 4, is a surface filter, which is embodied here as a wall flow filter. It has a filter structure 38, which is honeycomblike as viewed in the flow direction and is made from special steel. Some of the honeycombs are open on the side toward the engine 10 and closed on the side away from the engine 10 (the exhaust gas stream is represented by arrows 40 in FIG. 4). These honeycombs are identified by reference numeral 28 a in FIG. 4. Other honeycombs 28 b, adjacent to the honeycombs 28 a, are closed on the side toward the engine 10 and open on the side away from the engine 10.
  • The filter action is due to the porosity of the walls of the filter structure 38 that are located between the honeycombs 28 a and 28 b. The exhaust gas stream accordingly passes through the wall surfaces from the honeycombs 28 a into the honeycombs 28 b, as indicated by the arrow 42 in FIG. 4. The filter efficiency of the second filter device 18 is approximately 95% to 99%. The filter action is selected such that small soot particles are preferentially filtered out of the exhaust gas stream. The filter efficiency of the first filter device 16 is approximately 50%. Through this filter device 16, large soot particles are preferentially filtered out of the exhaust gas stream. The result is accordingly a total efficiency of over 99%.
  • In the course of time, more and more soot particles 36 are deposited in the first filter device 16 and the second filter device 18. To prevent clogging of the exhaust system 12, the temperature of the exhaust gas flowing from the engine 10 into the exhaust tube 14 is raised from time to time by motor provisions, specifically to a temperature in the range from 350 to approximately 550° C.
  • It is true that normally, soot burnoff to the relevant extent does not occur until temperatures of above approximately 600°. Because of the presence of the catalytic material 34 in the first filter device 16, however, the aforementioned temperature level does suffice to put the burnoff of the deposited soot particles 36 into motion in the first filter device 16. The minimum temperature required for this is also called the “ignition temperature”. Burning off the deposited soot particles involves an exothermic oxidation reaction. By the energy released as a result, the exhaust gas flowing through the first filter device 16 is heated.
  • Because of the high catalytic activity of the catalytic material 34 in the first filter device 16, the ensuing exothermic reaction is very strong at the temperature level of the exhaust gas attained, which leads to a correspondingly strong increase in the temperature of the exhaust gas flowing from the first filter device 16 to the second filter device 18. A typical temperature of the exhaust gas flowing from the first filter device 16 to the second filter device 18 during an ongoing soot burnoff in the first filter device 16 is approximately 600 to 700° C. This temperature is above the ignition temperature of the soot particles 36 in the second filter device 18, in which no catalytic material that promotes the soot burnoff is present. Thus even in the second filter device 18, the soot burnoff of the deposited soot particles 36 is set into motion.
  • As a result of the soot burnoff in the first filter device 16, which because of the use of a special and highly active catalytic material 34 proceeds quickly and with high energy output once ignition has occurred, the exhaust gas temperature is accordingly increased such that the soot particles 36 themselves, located in the second filter device 18, ignite. This effect is enhanced still further in the exemplary embodiment shown in FIG. 4 because the filter structure 38 of the second filter device 18 is also provided with a catalytic material 43, which, however, is of a completely different type from the catalytic material 34 of the first filter device 16:
  • In the soot burnoff in the first filter device 16, specifically, CO is also released, which is now oxidized into CO2 in the second filter device 18, thanks to the catalytic material 43 present there. This oxidation is likewise an exothermic reaction, or accordingly one in which heat is released. This energy can be utilized to reach the ignition temperature in the second filter device 18, which in turn makes it possible to use a less-active catalytic material 34 in the first filter device 16, or in all less catalytic material 34 in the first filter device 16. Platinum or palladium can be considered, as an example, for the catalytic material 43 in the second filter device 18. It can be substrated on a large-surface-area oxide or can be located directly on the special steel filter structure 38.
  • As FIG. 1 shows, the first filter device 16 and the second filter device 18 are located immediately adjacent one another. As a result, the exhaust gas heated in the soot burnoff in the first filter device 16 is prevented from cooling down excessively along its way to the second filter device 18. In this respect, the embodiment of FIG. 5, in which the first filter device 16 and the second filter device 18 are integrated into a filter unit 44, is optimal. It should be pointed out that in FIG. 5, those regions and elements that have equivalent functions to elements and regions in the preceding drawings have the same reference numerals and are not described again in detail. It can be seen from FIG. 5 that the filter structure 22 of the first filter device 16 is integral with the filter structure 38 of the second filter device 18 (the dividing line between the two filter structures). The first filter device 16 is accordingly distinguished from the second filter device 18 only in that it includes a catalytic material, not shown in FIG. 5, which is especially active and which promotes the soot burnoff in the first filter device 16.

Claims (21)

1-11. (canceled)
12. In an exhaust system for an internal combustion engine, in particular in a motor vehicle, having a first filter device and a second filter device, located downstream of the first, each of which filters soot particles out of the exhaust gas, and at least the first filter device has a catalytic material which promotes an exothermic soot burnoff, in such a manner that as a result of the corresponding heating up of the exhaust gas, the soot burnoff in the second filter device is set in motion, the improvement wherein the materials of first and second filter devices are selected such that the soot burnoff in the first filter device ensues at a lower temperature and/or at a similar temperature is stronger than in the second filter device.
13. The exhaust system as defined by claim 12, wherein essentially no catalytic material that promotes the soot burnoff is present in the second filter device.
14. The exhaust system as defined by claim 12, wherein the first filter device comprises a depth filter, preferably comprising an open-pore ceramic foam, and the second filter device comprises a surface filter, preferably of metal and even more preferably of special steel.
15. The exhaust system as defined by claim 13, wherein the first filter device comprises a depth filter, preferably comprising an open-pore ceramic foam, and the second filter device comprises a surface filter, preferably of metal and even more preferably of special steel.
16. The exhaust system as defined by claim 12, wherein the second filter device comprises a catalytic material which promotes the oxidation of CO to CO2 and/or the oxidation of NO to NO2.
17. The exhaust system as defined by claim 13, wherein the second filter device comprises a catalytic material which promotes the oxidation of CO to CO2 and or the oxidation of NO to NO2.
18. The exhaust system as defined by claim 14, wherein the second filter device comprises a catalytic material which promotes the oxidation of CO to CO, and/or the oxidation of NO to NO2.
19. The exhaust system as defined by claim 16, wherein the second filter device comprises a catalytic material, which includes platinum and/or palladium.
20. The exhaust system as defined by claim 17, wherein the second filter device comprises a catalytic material, which includes platinum and/or palladium.
21. The exhaust system as defined by claim 18, wherein the second filter device comprises a catalytic material, which includes platinum and/or palladium.
22. The exhaust system as defined by claim 19, wherein the catalytic material is coated on a large-surface-area oxide or directly on a filter body.
23. The exhaust system as defined by claim 20, wherein the catalytic material is coated on a large-surface-area oxide or directly on a filter body.
24. The exhaust system as defined by claim 21, wherein the catalytic material is coated on a large-surface-area oxide or directly on a filter body.
25. The exhaust system as defined by claim 12, wherein the first filter device and the second filter device are located immediately adjacent one another.
26. The exhaust system as defined by claim 14, wherein the first filter device and the second filter device are located immediately adjacent one another.
27. The exhaust system as defined by claim 16, wherein the first filter device and the second filter device are located immediately adjacent one another.
28. The exhaust system as defined by claim 12, wherein the first filter device and the second filter device are integrated into a filter unit.
29. The exhaust system as defined by claim 12, wherein the first filter device comprises at least one catalytic material, which is a member of the following group: 1 to 50 weight % Ag on an oxidic substrate, and/or V and/or Mo and/or W and/or Mn and/or Cu on an oxidic substrate, the substrate including: Al2O3, TiO2, CeO2, ZrO2, and/or SiO2; Ag in chemical combination with oxides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Al, and/or Zr, in particular Ag2CrO4 or AgMn2O5; metal vanadate; molybdate; tungstenates; metal-V mixed oxide, in particular Cs2V2O4; Cr mixed oxide; Mo mixed oxide; manganese oxide; rhenium oxide; metal manganate; metal rhenate.
30. A method for operating an exhaust system for an internal combustion engine, in particular in a motor vehicle, having a first filter device and a second filter device, located downstream of the first, each of which filter soot particles out of the exhaust gas, and at least the first filter device has a catalytic material which promotes an exothermic soot burnoff in such a manner that as a result of the corresponding heating up of the exhaust gas, the soot burnoff in the second filter device is set in motion, the method comprising selecting the materials of the two filter devices are selected such that the soot burnoff in the first filter device ensues at a lower temperature and/or at a similar temperature is stronger than in the second filter device.
31. The method as defined by claim 30, wherein, for regenerating the filter devices, the exhaust gas temperature upstream of the first filter device is elevated to a first level, at which in the first filter device a soot burnoff ensues to such an extent that as a result the exhaust gas temperature is additionally elevated to a second level, at which in the second filter device a soot burnoff is likewise set into motion.
US11/576,568 2004-10-05 2005-09-01 Exhaust System For An Internal Combustion Engine, and Method For Operating Such An Exhaust System Abandoned US20080016848A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004048313A DE102004048313A1 (en) 2004-10-05 2004-10-05 Exhaust system for an internal combustion engine, and method for operating such an exhaust system
DE102004048313.2 2004-10-05
PCT/EP2005/054295 WO2006037703A1 (en) 2004-10-05 2005-09-01 Exhaust gas system for an internal combustion engine and method for the operation of such an exhaust gas system

Publications (1)

Publication Number Publication Date
US20080016848A1 true US20080016848A1 (en) 2008-01-24

Family

ID=35160050

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/576,568 Abandoned US20080016848A1 (en) 2004-10-05 2005-09-01 Exhaust System For An Internal Combustion Engine, and Method For Operating Such An Exhaust System

Country Status (6)

Country Link
US (1) US20080016848A1 (en)
EP (1) EP1799977B1 (en)
JP (1) JP2007518008A (en)
KR (1) KR20070098992A (en)
DE (2) DE102004048313A1 (en)
WO (1) WO2006037703A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080120968A1 (en) * 2006-11-29 2008-05-29 Douglas Munroe Beall Partial wall-flow filter and diesel exhaust system and method
WO2014137269A1 (en) * 2013-03-05 2014-09-12 Scania Cv Ab Method and arrangement for exhaust aftertreatment at a combustion engine
US9694321B2 (en) * 2015-09-01 2017-07-04 Caterpillar Inc. Exhaust treatment system with particulate filter having wall-flow and flow-through channels

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011000153A1 (en) * 2011-01-14 2012-07-19 Fev Gmbh Method for the diagnosis of exhaust gas aftertreatment
DE102012001654A1 (en) * 2012-01-27 2013-08-01 Vaillant Gmbh filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900517A (en) * 1984-02-28 1990-02-13 Degussa Ag Apparatus for the purification of exhaust gas from diesel motors
US20020170433A1 (en) * 2001-04-18 2002-11-21 Omg Ag & Co. Kg Process and device for removing soot particles from diesel engine exhaust gas
US20030110761A1 (en) * 2001-12-13 2003-06-19 Isuzu Motors Limited Exhaust emission purification system for diesel engine
US20030213231A1 (en) * 2002-04-09 2003-11-20 Nissan Motor Co., Ltd. Apparatus and method for purifying exhaust gas in engine
US20040163383A1 (en) * 2003-02-21 2004-08-26 Khair Magdi K. Control method for dual path NOx adsorber system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355431A (en) * 2000-06-16 2001-12-26 Isuzu Motors Ltd Exhaust emission control device for diesel engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900517A (en) * 1984-02-28 1990-02-13 Degussa Ag Apparatus for the purification of exhaust gas from diesel motors
US20020170433A1 (en) * 2001-04-18 2002-11-21 Omg Ag & Co. Kg Process and device for removing soot particles from diesel engine exhaust gas
US20030110761A1 (en) * 2001-12-13 2003-06-19 Isuzu Motors Limited Exhaust emission purification system for diesel engine
US20030213231A1 (en) * 2002-04-09 2003-11-20 Nissan Motor Co., Ltd. Apparatus and method for purifying exhaust gas in engine
US20040163383A1 (en) * 2003-02-21 2004-08-26 Khair Magdi K. Control method for dual path NOx adsorber system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080120968A1 (en) * 2006-11-29 2008-05-29 Douglas Munroe Beall Partial wall-flow filter and diesel exhaust system and method
WO2014137269A1 (en) * 2013-03-05 2014-09-12 Scania Cv Ab Method and arrangement for exhaust aftertreatment at a combustion engine
US9694321B2 (en) * 2015-09-01 2017-07-04 Caterpillar Inc. Exhaust treatment system with particulate filter having wall-flow and flow-through channels

Also Published As

Publication number Publication date
DE502005002942D1 (en) 2008-04-03
DE102004048313A1 (en) 2006-04-06
EP1799977B1 (en) 2008-02-20
EP1799977A1 (en) 2007-06-27
JP2007518008A (en) 2007-07-05
KR20070098992A (en) 2007-10-08
WO2006037703A1 (en) 2006-04-13

Similar Documents

Publication Publication Date Title
CN100443710C (en) Diesel engine and a catalysed filter therefor.
EP1888885B1 (en) Segregated catalyzed metallic wire filter for diesel soot filtration
US5682740A (en) Diesel particulate filter apparatus
EP1371826B1 (en) Filter catalyst for purifying exhaust gases
US8066952B2 (en) Method for removing soot particles from an exhaust gas, associated collecting element and system
CN103269773B (en) For the NO strengthened 2the structural formula diesel oxidation catalyst of generator
CN101379275A (en) Exhaust-gas treatment system for diesel engines
RU2443459C2 (en) Substrate for black filter with "washcoat" coating
US10107162B2 (en) Catalyst subassembly, device comprising same for purifying exhaust gases from an internal combustion engine, modular system for the subassembly, and method for manufacturing the subassembly
JP2011502773A (en) Smoke particle filter
US20080016848A1 (en) Exhaust System For An Internal Combustion Engine, and Method For Operating Such An Exhaust System
WO2006103781A1 (en) Apparatus for purifying exhaust gas and catalyst for purifying exhaust gas
EP1949959A1 (en) Exhaust gas purification apparatus
US6968681B2 (en) Method and device for aftertreatment of exhaust gases from combustion engines
JP2006125206A (en) Purification method and device for internal combustion engine exhaust gas
EP2035663A1 (en) Particulate filter
JP2004216305A (en) Exhaust gas purification catalyst, exhaust gas purification material using same, and production method therefor
CN109310991B (en) Diesel oxidation catalytic converter
JP4639455B2 (en) Exhaust gas purification material
US20130276432A1 (en) Internal combustion engine exhaust line
US20070081925A1 (en) Exhaust gas system for an internal combustion engine
JP2006257920A (en) Exhaust emission control device
JPH10274030A (en) Exhaust emission control device
WO2019059032A1 (en) Exhaust gas purification filter
JPH08312328A (en) Diesel particulate filter

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIDENMEYER, MARKUS;REEL/FRAME:020001/0043

Effective date: 20060313

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION