US20080014139A1 - Enhanced breakdown voltage electrode - Google Patents

Enhanced breakdown voltage electrode Download PDF

Info

Publication number
US20080014139A1
US20080014139A1 US11/775,758 US77575807A US2008014139A1 US 20080014139 A1 US20080014139 A1 US 20080014139A1 US 77575807 A US77575807 A US 77575807A US 2008014139 A1 US2008014139 A1 US 2008014139A1
Authority
US
United States
Prior art keywords
binder
mixture
particles
activated carbon
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/775,758
Inventor
Linda Zhong
Xiaomei Xi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesla Inc
Original Assignee
Maxwell Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxwell Technologies Inc filed Critical Maxwell Technologies Inc
Priority to US11/775,758 priority Critical patent/US20080014139A1/en
Assigned to MAXWELL TECHNOLOGIES, INC. reassignment MAXWELL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XI, XIAOMEI, ZHONG, LINDA
Publication of US20080014139A1 publication Critical patent/US20080014139A1/en
Assigned to TESLA, INC. reassignment TESLA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAXWELL TECHNOLOGIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention generally relates to fabrication of electrodes. More specifically, the present invention relates to porous electrodes and to energy storage devices, such as electrochemical double layer capacitors, made using porous electrodes immersed in an electrolytic solution.
  • Electrodes are widely used in many devices that store electrical energy, including primary (non-rechargeable) battery cells, secondary (rechargeable) battery cells, fuel cells, and capacitors.
  • Important characteristics of electrical energy storage devices include energy density, power density, maximum charging rate, internal leakage current, equivalent series resistance (ESR), and durability, i.e., the ability to withstand multiple charge-discharge cycles.
  • ESR equivalent series resistance
  • durability i.e., the ability to withstand multiple charge-discharge cycles.
  • double layer capacitors also known as supercapacitors and ultracapacitors, are gaining popularity in many energy storage applications. The reasons include availability of double layer capacitors with high power densities (in both charge and discharge modes), and with energy densities approaching those of conventional rechargeable cells.
  • Double layer capacitors use electrodes immersed in an electrolyte (an electrolytic solution) as their energy storage element.
  • an electrolyte an electrolytic solution
  • a porous separator immersed in and impregnated with the electrolyte ensures that the electrodes do not come in contact with each other, preventing electronic current flow directly between the electrodes.
  • the porous separator allows ionic currents to flow through the electrolyte between the electrodes in both directions.
  • double layers of charges are formed at the interfaces between the solid electrodes and the electrolyte. Double layer capacitors owe their descriptive name to these layers.
  • Electrostatic energy can also be stored in the double layer capacitors through orientation and alignment of molecules of the electrolytic solution under influence of the electric field induced by the potential. This mode of energy storage, however, is secondary.
  • double layer capacitors In comparison to conventional capacitors, double layer capacitors have high capacitance in relation to their volume and weight. There are two main reasons for these volumetric and weight efficiencies. First, the charge separation layers are very narrow. Their widths are typically on the order of nanometers. Second, the electrodes can be made from a porous material, having very large effective surface area per unit volume. Because capacitance is directly proportional to the electrode area and inversely proportional to the widths of the charge separation layers, the combined effect of the large effective surface area and narrow charge separation layers is capacitance that is very high in comparison to that of conventional capacitors of similar size and weight. High capacitance of double layer capacitors allows the capacitors to receive, store, and release large amounts of electrical energy.
  • E C * V 2 2 . ( 1 )
  • E represents the stored energy
  • C stands for the capacitance
  • V is the voltage of the charged capacitor.
  • E m C * V r 2 2 , ( 2 ) where V r stands for the rated voltage of the capacitor. It follows that a capacitor's energy storage capability depends on both (1) its capacitance, and (2) its rated voltage. Increasing these two parameters is therefore important to capacitor performance. Indeed, because the total energy storage capacity varies linearly with capacitance and as a second order of the voltage rating, increasing the voltage rating is the more important of the two objectives.
  • Electrolytes currently used in double layer capacitors are of two kinds.
  • the first kind includes aqueous electrolytic solutions, for example, potassium hydroxide and sulfuric acid solutions.
  • Double layer capacitors may also be made with organic electrolytes, such as propylene carbonate (PC) solution, acetonitrile (AN) solution, certain liquid crystal electrolytes, and even solid electrolytes.
  • organic electrolytes such as propylene carbonate (PC) solution, acetonitrile (AN) solution, certain liquid crystal electrolytes, and even solid electrolytes.
  • Double layer capacitor cells manufactured using organic electrolytes and activated carbon are typically rated at or below 2.5 volts in order to achieve a commercially acceptable number of charge-discharge cycles. Even small increases in the rated voltage above 2.5 volts tend to reduce substantially the number of charge-discharge cycles that the capacitors can withstand without significant deterioration in performance. As an approximation, every 100 millivolt increase in the rated capacitor voltage results in halving of the number of charge-discharge cycles that the capacitor can reliably withstand.
  • the 2.5 volt rating is considerably below theoretical breakdown voltage of organic electrolytes.
  • noble metal (inert) electrodes such as platinum electrodes
  • breakdown voltages approaching 4.0 volts and possibly higher may be achievable.
  • One part of the low breakdown voltage problem therefore lies in the carbon used in the electrodes of double layer capacitors. Pure carbon tends to have relatively high surface energy states, thereby contributing to the decrease in the electrolyte breakdown voltage.
  • double layer capacitors made with an organic electrolyte and activated carbon should perform reliably at voltages ranging to about 3.2-3.5 volts. As noted above, achieving this range has been an elusive goal because of early decomposition and breakdown of the electrolyte.
  • An exemplary embodiment of the invention herein disclosed is a method of making particles of active electrode material.
  • particles of activated carbon, conductive carbon, and fibril-forming binder may be mixed and fibrillized.
  • the activated carbon particles have chloride content not exceeding about 50 parts per million.
  • the conductive carbon includes low contamination level and/or high conductivity conductive carbon particles.
  • the proportion of the conductive particles in the mixture does not exceed about 0.5 percent by weight.
  • the binder is an inert binder, such as PTFE.
  • the proportion of the inert binder may be between 9 and 11 percent by weight, for example, about 10 percent by weight.
  • mixing of the activated carbon, conductive carbon, and binder is performed by dry-blending these ingredients.
  • fibrillizing is carried out by subjecting the mixture of the activated carbon, conductive carbon, and binder to a non-lubricated high-shear force technique.
  • films of active electrode material are made from the particles of active electrode material made as is described in the preceding paragraphs.
  • the films are attached to current collectors and used in various electrical devices, for example, in double layer capacitors.
  • a method of making particles of active electrode material comprises providing activated carbon with chloride content not exceeding about 50 parts per million; providing binder; mixing the activated carbon and the binder to obtain a mixture; and fibrillizing the binder in the mixture.
  • the method may further comprise providing conductive carbon particles.
  • the proportion of the conductive carbon particles in the mixture does not exceed about 0.5 percent by weight.
  • the binder comprises PTFE; and the proportion of the binder in the mixture is about 10 percent by weight.
  • the proportion of the conductive carbon particles in the mixture is between 0.1 percent and 1 percent by weight, and the proportion of binder in the mixture is between 9 and 11 percent by weight.
  • the step of mixing comprises dry blending the activated carbon, conductive carbon, and the binder.
  • the step of fibrillizing is performed without processing additives.
  • an electrode comprises a current collector; and a film of active electrode material attached to the current collector, wherein the active electrode material comprises particles of activated carbon with a chloride content of less than about 50 ppm.
  • the active electrode material may comprise binder, wherein the proportion of binder in the active electrode material is between 9 and 11 percent by weight.
  • the active electrode material may comprise conductive carbon particles, and wherein the proportion of the conductive carbon particles in the active electrode material is between 0.1 percent and 1 percent by weight.
  • the chloride content of the activated carbon is less than about 30 ppm chloride.
  • a method of making particles of active electrode material comprises providing activated carbon with chloride content not exceeding about 50 parts per million; providing low contamination level conductive carbon particles; providing fibril-forming binder; mixing the activated carbon, the conductive carbon, and the binder to obtain a mixture; and fibrillizing the mixture.
  • a proportion of the conductive carbon particles in the mixture does not exceed about 0.5 percent by weight.
  • a proportion of the binder in the mixture is about 10 percent by weight.
  • a proportion of the binder in the mixture is between 9 and 11 percent by weight.
  • the binder comprises PTFE.
  • the step of providing activated carbon comprises providing activated carbon with chloride content less than about 30 parts per million.
  • an electrochemical double layer capacitor comprises a first electrode comprising a first current collector and a first film of active electrode material, the first film comprising a first surface and a second surface, the first current collector being attached to the first surface of the first film; a second electrode comprising a second current collector and a second film of active electrode material, the second film comprising a third surface and a fourth surface, the second current collector being attached to the third surface of the second film; a porous separator disposed between the second surface of the first film and the fourth surface of the second film; a container; an electrolyte; wherein:the first electrode, the second electrode, the porous separator, and the electrolyte are disposed in the container; the first film is at least partially immersed in the electrolyte; the second film is at least partially immersed in the electrolyte; the porous separator is at least partially immersed in the electrolyte; each of the first and second films comprises a mixture of activated carbon with chloride content not exceeding about 50 parts per million.
  • the electrode films further comprise conductive carbon, wherein the proportion of the conductive carbon in the mixture is about 0.5 percent by weight. In one embodiment, the electrode films further comprise binder, wherein the proportion of binder in the mixture is between about 9 percent and 11 percent by weight. In one embodiment, the films are attached to respective collectors via a conductive adhesive layer.
  • FIG. 1 illustrates selected steps of a process for making fibrillized particles of active electrode material, in accordance with some aspects of the present invention.
  • FIG. 2 illustrates, in a high-level manner, cross-section of an electrode assembly of a double layer capacitor.
  • the words “embodiment” and “variant” refer to particular apparatus, process, or article of manufacture, and not necessarily to the same apparatus, process, or article of manufacture.
  • “one embodiment” (or a similar expression) used in one place or context can refer to a particular apparatus, process, or article of manufacture; the same or a similar expression in a different place can refer to a different apparatus, process, or article of manufacture.
  • “some embodiments,” certain embodiments, or similar expressions used in one place or context may refer to one or more particular apparatus, process, or article of manufacture; the same or similar expressions in a different place or context may refer to the same or a different apparatus, process, or article of manufacture.
  • active electrode material signify material that enhances the function of the electrode beyond simply providing a contact or reactive area approximately the size of the visible external surface of the electrode.
  • a film of active electrode material includes particles with high porosity, so that the surface area of the electrode exposed to an electrolyte in which the electrode is immersed is increased well beyond the area of the visible external surface; in effect, the surface area exposed to the electrolyte becomes a function of the volume of the film made from the active electrode material.
  • film is similar to the meaning of the words “layer” and “sheet”; “film” does not necessarily imply a particular thickness of the material.
  • particulate material is often referred to as a powder, grain, specks, dust, or by other appellations. References to carbon and binder powders throughout this document are thus not meant to limit the invention.
  • “fibrillizable binder” and “fibril-forming binder” within this document are intended to convey the meaning of polymers, co-polymers, and similar ultra-high molecular weight substances capable of fibrillation. Such substances are often employed as binder for promoting cohesion in loosely-assembled particulate materials, i.e., active filler materials that perform some useful function in a particular application.
  • “Fibrillized” or “fibrillated” particles are particles of active electrode material mixed with fibrillizable binder and, optionally, with a conduction promoter such as conductive carbon (and possibly other substances), and that have undergone a fibrillation process, such as exposure to high-shear forces.
  • calender means a device adapted for pressing and compressing. Pressing may be, but is not necessarily, performed using rollers.
  • calender and “laminate” mean processing in a press, which may, but need not, include rollers.
  • chloride refers to anions (negatively charged ions) formed when the element chlorine picks up an extra electron. Chloride also refers to chemical compounds in which one or possibly more than one atoms of the element chlorine are covalently bonded in a molecule.
  • a chloride compound may be an organic or an inorganic compound.
  • FIG. 1 illustrates selected steps of a dry process 100 for making fibrillized particles of active electrode material.
  • process steps are described serially, certain steps may also be performed in conjunction or in parallel, in a pipelined manner, or otherwise. There is no particular requirement that the steps be performed in the same order in which this description lists them, except where explicitly so indicated, otherwise made clear from the context, or inherently required. Not all illustrated steps may be strictly necessary, while other optional steps may be added to the process 100 .
  • a high level overview of the process 100 is provided immediately below. A more detailed description of the steps of the process 100 and variants of the steps is provided following the overview.
  • step 105 activated carbon particles with reduced chloride content are provided.
  • step 10 conductive carbon particles with low contamination level and high conductivity are provided.
  • step 115 fibrillizable binder is provided.
  • the fibrillizable binder comprises polytetraflouroethylene (also known as PTFE or Teflon®).
  • step 120 the activated carbon, conductive carbon, and binder are mixed together. Alternatively, in certain embodiments may be omitted.
  • the activated carbon particles provided in the step 105 have chloride content of 50 parts per million (ppm) or less. In some more specific embodiments, chloride content of the activated carbon particles is less than about 30 ppm.
  • conductive carbon particles when they are provided in the step 110 they desirably comprise a low total level of contaminants.
  • the conductive particles also preferably have a relatively high conductivity.
  • total impurity content (other than ash) in conductive carbon is below about 120 ppm. Table 1 below shows typical contaminant levels in conductive carbon utilized by the present invention.
  • Conductive carbon particles with substantially similar or lower contamination levels and conductivities that are substantially similar to or higher than that of TABLE 1 may be processed to obtain such characteristics using techniques known to those skilled in the art. Thus, it should be understood that the invention is not limited to particular brands of carbon or other materials.
  • fibrillizable binders may be provided, for example: PTFE in granular powder form, various fluoropolymer particles, polypropylene, polyethylene, co-polymers, and other polymer blends. It has been identified, that the use of inert binders such as PTFE, tends to increase the voltage that an electrode comprising such inert binder can be operated at. Such increase occurs in part due to reduced interactions with electrolyte that the electrode is subsequently immersed in. In one embodiment, typical diameters of the PTFE particles are in the five hundred micron range.
  • activated carbon particles, conductive carbon particles, and/or binder particles are blended or otherwise mixed together.
  • proportions of activated carbon, conductive carbon, and binder are as follows: 85-92 percent by weight of activated carbon, 5-15 percent by weight of PTFE, and 0-10 percent by weight of conductive carbon.
  • a preferred embodiment contains about 89.5 percent of activated carbon, about 10 percent of PTFE, and about 0.5 percent of conductive carbon. Other ranges are within the scope of the present invention as well. Note that all percentages are given by weight.
  • Conductive carbon is preferably held to a low percentage of the mixture because it has been identified that increased proportion of conductive carbon tends to lower the breakdown voltage of electrolyte in which an electrode made from the conductive carbon particles is subsequently immersed.
  • the blending step 120 is a “dry-blending” step, i.e., blending of activated carbon, conductive carbon, and/or binder is performed without the addition of any solvents, liquids, processing aids, or the like to the particle mixture. Dry-blending may be carried out, for example, for 1 to 10 minutes in a V-blender equipped with a high intensity mixing bar, until a uniform dry mixture is formed. Those skilled in the art will identify, after perusal of this document, that blending time can vary based on batch size, materials, particle size, densities, as well as other properties, and yet remain within the scope of the present invention.
  • blended dry powder material is fibrillized.
  • the dry powder material is dry fibrillized (fibrillated) using non-lubricated high-shear force techniques.
  • high-shear forces are provided by a jet-mill.
  • the dry powder material is introduced into the jet-mill, wherein high-velocity air jets are directed at the dry powder material to effectuate application of high shear to the fibrillizable binder within the dry powder material.
  • the shear forces that arise during the dry fibrillation process physically stretch the fibrillizable binder, causing the binder to form a network of fibers that bind the binder to other particles within the fibrillized material.
  • a certain amount of impurity for example, moisture
  • the dry particles used with embodiments and processes disclosed herein may also, prior to being provided by particle manufacturers as dry particles, have themselves been preprocessed with additives and, thus, contain one or more pre-process residues.
  • one or more of the embodiments and processes disclosed herein may utilize a drying step at some point before a final electrolyte impregnation step, so as to remove or reduce the aforementioned pre-process residues and impurities. It is identified that even after one or more drying steps, trace amounts of moisture, residues and impurities may be present in the active electrode material and an electrode film made therefrom.
  • Dry fibrillization is described in more detail in a co-pending commonly-assigned U.S. patent application Ser. No. 11/116,882. This application is hereby incorporated by reference as if fully set forth herein, including all figures, tables, and claims.
  • references to dry-blending, dry-fibrillization, dry particles, and other dry materials and processes used in the manufacture of the active electrode material and films do not exclude the use of other than dry processes as described herein, for example, as may be achieved after drying of particles and films that may have been prepared using a processing aid, liquid, solvent, or the like.
  • the product obtained through the process 100 may be used to make electrode films.
  • the films may then be bonded to a current collector, such as a foil made from aluminum or another conductor.
  • the current collector may be pretreated prior to bonding to enhance its adhesion properties. Pretreatment of the current collector may include mechanical roughing, chemical pitting, and/or use of a surface activation treatment, such as corona discharge, active plasma, ultraviolet, laser, or high frequency treatment methods known to a person skilled in the art.
  • the electrode films may be bonded to a current collector via an intermediate layer of conductive adhesive known to those skilled in the art.
  • the product obtained from process 100 may be mixed with a processing aid to obtain a slurry-like composition used by those skilled in the art to coat an electrode film onto a collector (i.e. a coating process).
  • the slurry may be then deposited on one or both sides of a current collector.
  • film or films of active electrode material are formed on the current collector.
  • the current collector with the films may be calendered one or more times to densify the films and to improve adhesion of the films to the current collector.
  • the product obtained from process 100 may be mixed with a processing aid to obtain a paste like material.
  • the paste-like material may be then be extruded, formed into a film, and deposited on one or both sides of a current collector.
  • film or films of active electrode material are formed on the current collector.
  • the current collector with the dried films may be calendered one or more times to densify the films and to improve adhesion of the films to the current collector.
  • the binder particles may comprise thermoplastic or thermoset particles.
  • the product obtained through the process 100 that includes thermoplastic or thermoset particles may be used to make electrode films.
  • the films may then be bonded to a current collector, such as a foil made from aluminum or another conductor.
  • the films may be bonded to a current collector in a heated calendar apparatus
  • the current collector may be pretreated prior to bonding to enhance its adhesion properties. Pretreatment of the current collector may include mechanical roughing, chemical pitting, and/or use of a surface activation treatment, such as corona discharge, active plasma, ultraviolet, laser, or high frequency treatment methods known to a person skilled in the art.
  • FIG. 2 illustrates, in a high level manner, a cross-section of an electrode assembly 200 of a double layer capacitor.
  • the components of the assembly 200 are arranged in the following order: (1) first current collector 205 , (2) first active electrode film 210 , (3) porous separator 220 , (4) second active electrode film 230 , and (5) second current collector 235 .
  • a conductive adhesive layer (not shown) is disposed on current collector 235 prior to bonding of the electrode film 210 .
  • the films 210 and 230 may be made using fibrillized particles of active electrode material obtained through the process 100 described in relation to FIG. 1 .
  • An exemplary double layer capacitor using the electrode assembly 200 further includes an electrolyte and a container, for example, a sealed can, that holds the electrolyte.
  • the assembly 200 is disposed within the container (can) and immersed in the electrolyte.
  • Electrode products that include active electrode film attached to current collector and/or porous separator may be used in double layer capacitors and other electrical energy storage devices.
  • a high performance double-layer capacitor product can be provided.
  • Such a product further comprises about 10 percent by weight binder, and about 0.5 percent by weight conductive carbon.
  • Such a product is exemplified by the MC2600 product available from Maxwell Technologies, Inc. 9244 Balboa Ave, San Diego, Calif. 92009.
  • the MC2600 product is rated to provide 2600 Farads of capacitance with a decrease of less than 20% in capacitance and an increase of less than 60% in resistance over the lifetime of the product, which is rated for over 1 million duty cycles of operation at 2.7 volts.
  • Such performance characteristics are presently not available from any prior art products.

Abstract

Particles of active electrode material are made by blending and fibrillizing (i.e., fibrillating) a mixture of activated carbon, conductive carbon, and fibrillizable binder. In selected embodiments, chloride level in the activated carbon is relatively low, a small amount of conductive carbon with low impurity levels and high conductivity is used, and the binder is inert. For example, chloride content of the activated carbon is below 50 ppm, and total impurities in the conductive carbon are below 120 ppm. The mixture may include about 10% of PTFE and 0.5% or less of conductive carbon. Blending and fibrillization may be performed without solvents. The fibrillized particles are dried, blended again to reduce clumping, and used to make active electrode material film. The film is attached to a current collector to obtain an electrode for use in various electrical devices, including double layer capacitors. The electrode increases breakdown voltage of the capacitor electrolyte.

Description

    FIELD OF THE INVENTION
  • The present invention generally relates to fabrication of electrodes. More specifically, the present invention relates to porous electrodes and to energy storage devices, such as electrochemical double layer capacitors, made using porous electrodes immersed in an electrolytic solution.
  • BACKGROUND
  • Electrodes are widely used in many devices that store electrical energy, including primary (non-rechargeable) battery cells, secondary (rechargeable) battery cells, fuel cells, and capacitors. Important characteristics of electrical energy storage devices include energy density, power density, maximum charging rate, internal leakage current, equivalent series resistance (ESR), and durability, i.e., the ability to withstand multiple charge-discharge cycles. For a number of reasons, double layer capacitors, also known as supercapacitors and ultracapacitors, are gaining popularity in many energy storage applications. The reasons include availability of double layer capacitors with high power densities (in both charge and discharge modes), and with energy densities approaching those of conventional rechargeable cells.
  • Double layer capacitors use electrodes immersed in an electrolyte (an electrolytic solution) as their energy storage element. Typically, a porous separator immersed in and impregnated with the electrolyte ensures that the electrodes do not come in contact with each other, preventing electronic current flow directly between the electrodes. At the same time, the porous separator allows ionic currents to flow through the electrolyte between the electrodes in both directions. As discussed below, double layers of charges are formed at the interfaces between the solid electrodes and the electrolyte. Double layer capacitors owe their descriptive name to these layers.
  • When electric potential is applied between a pair of electrodes of a double layer capacitor, ions that exist within the electrolyte are attracted to the surfaces of the oppositely-charged electrodes, and migrate towards the electrodes. A layer of oppositely-charged ions is thus created and maintained near each electrode surface. Electrical energy is stored in the charge separation layers between these ionic layers and the charge layers of the corresponding electrode surfaces. In fact, the charge separation layers behave essentially as electrostatic capacitors. Electrostatic energy can also be stored in the double layer capacitors through orientation and alignment of molecules of the electrolytic solution under influence of the electric field induced by the potential. This mode of energy storage, however, is secondary.
  • In comparison to conventional capacitors, double layer capacitors have high capacitance in relation to their volume and weight. There are two main reasons for these volumetric and weight efficiencies. First, the charge separation layers are very narrow. Their widths are typically on the order of nanometers. Second, the electrodes can be made from a porous material, having very large effective surface area per unit volume. Because capacitance is directly proportional to the electrode area and inversely proportional to the widths of the charge separation layers, the combined effect of the large effective surface area and narrow charge separation layers is capacitance that is very high in comparison to that of conventional capacitors of similar size and weight. High capacitance of double layer capacitors allows the capacitors to receive, store, and release large amounts of electrical energy.
  • Electrical energy stored in a capacitor is determined using a well-known formula: E = C * V 2 2 . ( 1 )
    In this formula, E represents the stored energy, C stands for the capacitance, and V is the voltage of the charged capacitor. Thus, the maximum energy (Em) that can be stored in a capacitor is given by the following expression: E m = C * V r 2 2 , ( 2 )
    where Vr stands for the rated voltage of the capacitor. It follows that a capacitor's energy storage capability depends on both (1) its capacitance, and (2) its rated voltage. Increasing these two parameters is therefore important to capacitor performance. Indeed, because the total energy storage capacity varies linearly with capacitance and as a second order of the voltage rating, increasing the voltage rating is the more important of the two objectives.
  • Voltage ratings of double layer capacitors are generally limited by chemical reactions (e.g., reduction or oxidation) and breakdown that take place within the electrolytic solution in presence of an electric field induced between capacitor electrodes. Electrolytes currently used in double layer capacitors are of two kinds. The first kind includes aqueous electrolytic solutions, for example, potassium hydroxide and sulfuric acid solutions.
  • Double layer capacitors may also be made with organic electrolytes, such as propylene carbonate (PC) solution, acetonitrile (AN) solution, certain liquid crystal electrolytes, and even solid electrolytes.
  • Double layer capacitor cells manufactured using organic electrolytes and activated carbon are typically rated at or below 2.5 volts in order to achieve a commercially acceptable number of charge-discharge cycles. Even small increases in the rated voltage above 2.5 volts tend to reduce substantially the number of charge-discharge cycles that the capacitors can withstand without significant deterioration in performance. As an approximation, every 100 millivolt increase in the rated capacitor voltage results in halving of the number of charge-discharge cycles that the capacitor can reliably withstand.
  • The 2.5 volt rating is considerably below theoretical breakdown voltage of organic electrolytes. With noble metal (inert) electrodes, such as platinum electrodes, breakdown voltages approaching 4.0 volts and possibly higher may be achievable. One part of the low breakdown voltage problem therefore lies in the carbon used in the electrodes of double layer capacitors. Pure carbon tends to have relatively high surface energy states, thereby contributing to the decrease in the electrolyte breakdown voltage. Nevertheless, according to some calculations, double layer capacitors made with an organic electrolyte and activated carbon should perform reliably at voltages ranging to about 3.2-3.5 volts. As noted above, achieving this range has been an elusive goal because of early decomposition and breakdown of the electrolyte.
  • It would be desirable to increase actual breakdown voltage of electrolyte in electrical devices with porous electrodes, such as double layer capacitors. It would also be desirable to improve reliability and durability of double layer capacitors, as measured by the number of charge-discharge cycles that a double layer capacitor can withstand without a significant deterioration in its operating characteristics. It would further be desirable to provide porous electrodes that, when immersed in an electrolyte, do not lower the breakdown voltage of the electrolyte to the same extent as known porous electrodes. Additionally, it would be desirable to provide electrical devices, such as double layer capacitors, using these electrodes.
  • SUMMARY
  • A need thus exists for porous electrodes that, when immersed in electrolyte, do not lower the electrolyte's breakdown voltage to the same extent as conventional porous electrodes. A need also exists for methods and materials for making such porous electrodes, and for electrical devices, including double layer capacitors, using such electrodes.
  • Various embodiments of the present invention are directed to methods, electrodes, electrode assemblies, and electrical devices that satisfy one or more of these needs. An exemplary embodiment of the invention herein disclosed is a method of making particles of active electrode material. In accordance with the method, particles of activated carbon, conductive carbon, and fibril-forming binder may be mixed and fibrillized. In aspects of the invention, the activated carbon particles have chloride content not exceeding about 50 parts per million. In aspects of the invention, the conductive carbon includes low contamination level and/or high conductivity conductive carbon particles.
  • In accordance with aspects of the invention, the proportion of the conductive particles in the mixture does not exceed about 0.5 percent by weight.
  • In accordance with aspects of the invention, the binder is an inert binder, such as PTFE. The proportion of the inert binder may be between 9 and 11 percent by weight, for example, about 10 percent by weight.
  • In accordance with aspects of the invention, mixing of the activated carbon, conductive carbon, and binder is performed by dry-blending these ingredients.
  • In accordance with aspects of the invention, fibrillizing is carried out by subjecting the mixture of the activated carbon, conductive carbon, and binder to a non-lubricated high-shear force technique.
  • In accordance with aspects of the invention, films of active electrode material are made from the particles of active electrode material made as is described in the preceding paragraphs. The films are attached to current collectors and used in various electrical devices, for example, in double layer capacitors.
  • In one embodiment, a method of making particles of active electrode material comprises providing activated carbon with chloride content not exceeding about 50 parts per million; providing binder; mixing the activated carbon and the binder to obtain a mixture; and fibrillizing the binder in the mixture. The method may further comprise providing conductive carbon particles. In one embodiment, the proportion of the conductive carbon particles in the mixture does not exceed about 0.5 percent by weight. In one embodiment, the binder comprises PTFE; and the proportion of the binder in the mixture is about 10 percent by weight. In one embodiment, the proportion of the conductive carbon particles in the mixture is between 0.1 percent and 1 percent by weight, and the proportion of binder in the mixture is between 9 and 11 percent by weight. In one embodiment, the step of mixing comprises dry blending the activated carbon, conductive carbon, and the binder. In one embodiment, the step of fibrillizing is performed without processing additives.
  • In one embodiment, an electrode comprises a current collector; and a film of active electrode material attached to the current collector, wherein the active electrode material comprises particles of activated carbon with a chloride content of less than about 50 ppm. The active electrode material may comprise binder, wherein the proportion of binder in the active electrode material is between 9 and 11 percent by weight. The active electrode material may comprise conductive carbon particles, and wherein the proportion of the conductive carbon particles in the active electrode material is between 0.1 percent and 1 percent by weight. In one embodiment, the chloride content of the activated carbon is less than about 30 ppm chloride.
  • In one embodiment, a method of making particles of active electrode material comprises providing activated carbon with chloride content not exceeding about 50 parts per million; providing low contamination level conductive carbon particles; providing fibril-forming binder; mixing the activated carbon, the conductive carbon, and the binder to obtain a mixture; and fibrillizing the mixture. In one embodiment, a proportion of the conductive carbon particles in the mixture does not exceed about 0.5 percent by weight. In one embodiment, a proportion of the binder in the mixture is about 10 percent by weight. In one embodiment, a proportion of the binder in the mixture is between 9 and 11 percent by weight. In one embodiment, the binder comprises PTFE. In one embodiment, the step of providing activated carbon comprises providing activated carbon with chloride content less than about 30 parts per million.
  • In one embodiment, an electrochemical double layer capacitor comprises a first electrode comprising a first current collector and a first film of active electrode material, the first film comprising a first surface and a second surface, the first current collector being attached to the first surface of the first film; a second electrode comprising a second current collector and a second film of active electrode material, the second film comprising a third surface and a fourth surface, the second current collector being attached to the third surface of the second film; a porous separator disposed between the second surface of the first film and the fourth surface of the second film; a container; an electrolyte; wherein:the first electrode, the second electrode, the porous separator, and the electrolyte are disposed in the container; the first film is at least partially immersed in the electrolyte; the second film is at least partially immersed in the electrolyte; the porous separator is at least partially immersed in the electrolyte; each of the first and second films comprises a mixture of activated carbon with chloride content not exceeding about 50 parts per million. In one embodiment, the electrode films further comprise conductive carbon, wherein the proportion of the conductive carbon in the mixture is about 0.5 percent by weight. In one embodiment, the electrode films further comprise binder, wherein the proportion of binder in the mixture is between about 9 percent and 11 percent by weight. In one embodiment, the films are attached to respective collectors via a conductive adhesive layer.
  • These and other features and aspects of the present invention will be better understood with reference to the following description, drawings, and appended claims.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates selected steps of a process for making fibrillized particles of active electrode material, in accordance with some aspects of the present invention; and
  • FIG. 2 illustrates, in a high-level manner, cross-section of an electrode assembly of a double layer capacitor.
  • DETAILED DESCRIPTION
  • In this document, the words “embodiment” and “variant” refer to particular apparatus, process, or article of manufacture, and not necessarily to the same apparatus, process, or article of manufacture. Thus, “one embodiment” (or a similar expression) used in one place or context can refer to a particular apparatus, process, or article of manufacture; the same or a similar expression in a different place can refer to a different apparatus, process, or article of manufacture. Similarly, “some embodiments,” certain embodiments, or similar expressions used in one place or context may refer to one or more particular apparatus, process, or article of manufacture; the same or similar expressions in a different place or context may refer to the same or a different apparatus, process, or article of manufacture. The expression “alternative embodiment” and similar phrases are used to indicate one of a number of different possible embodiments. The number of possible embodiments is not necessarily limited to two or any other quantity. Characterization of an embodiment as “exemplary” means that the embodiment is used as an example. Such characterization does not necessarily mean that the embodiment is a preferred embodiment; the embodiment may but need not be a currently preferred embodiment.
  • The expression “active electrode material” and similar phrases signify material that enhances the function of the electrode beyond simply providing a contact or reactive area approximately the size of the visible external surface of the electrode. In a double layer capacitor electrode, for example, a film of active electrode material includes particles with high porosity, so that the surface area of the electrode exposed to an electrolyte in which the electrode is immersed is increased well beyond the area of the visible external surface; in effect, the surface area exposed to the electrolyte becomes a function of the volume of the film made from the active electrode material.
  • The meaning of the word “film” is similar to the meaning of the words “layer” and “sheet”; “film” does not necessarily imply a particular thickness of the material.
  • When used to describe making of active electrode material film, the terms “powder,” “particles,” and the like refer to a plurality of small granules. As a person skilled in the art would recognize, particulate material is often referred to as a powder, grain, specks, dust, or by other appellations. References to carbon and binder powders throughout this document are thus not meant to limit the invention.
  • The references to “fibrillizable binder” and “fibril-forming binder” within this document are intended to convey the meaning of polymers, co-polymers, and similar ultra-high molecular weight substances capable of fibrillation. Such substances are often employed as binder for promoting cohesion in loosely-assembled particulate materials, i.e., active filler materials that perform some useful function in a particular application. “Fibrillized” or “fibrillated” particles are particles of active electrode material mixed with fibrillizable binder and, optionally, with a conduction promoter such as conductive carbon (and possibly other substances), and that have undergone a fibrillation process, such as exposure to high-shear forces.
  • The words “calender,” “nip,” “laminator,” and similar expressions mean a device adapted for pressing and compressing. Pressing may be, but is not necessarily, performed using rollers. When used as verbs, “calender” and “laminate” mean processing in a press, which may, but need not, include rollers.
  • The word “chloride” refers to anions (negatively charged ions) formed when the element chlorine picks up an extra electron. Chloride also refers to chemical compounds in which one or possibly more than one atoms of the element chlorine are covalently bonded in a molecule. A chloride compound may be an organic or an inorganic compound.
  • Other and further definitions and clarifications of definitions may be found throughout this document. The definitions are intended to assist in understanding this disclosure and the appended claims, but the scope and spirit of the invention should not be construed as strictly limited to the definitions, or to the particular examples described in this specification.
  • Reference will now be made in detail to several embodiments of the invention that are illustrated in the accompanying drawings. Same reference numerals are used in the drawings and the description to refer to the same parts or steps. The drawings are in simplified form and not to precise scale. For purposes of convenience and clarity only, directional terms, such as top, bottom, left, right, up, down, over, above, below, beneath, rear, and front may be used with respect to the accompanying drawings. These and similar directional terms should not be construed to limit the scope of the invention.
  • Referring more particularly to the drawings, FIG. 1 illustrates selected steps of a dry process 100 for making fibrillized particles of active electrode material. Although the process steps are described serially, certain steps may also be performed in conjunction or in parallel, in a pipelined manner, or otherwise. There is no particular requirement that the steps be performed in the same order in which this description lists them, except where explicitly so indicated, otherwise made clear from the context, or inherently required. Not all illustrated steps may be strictly necessary, while other optional steps may be added to the process 100. A high level overview of the process 100 is provided immediately below. A more detailed description of the steps of the process 100 and variants of the steps is provided following the overview.
  • In step 105, activated carbon particles with reduced chloride content are provided. In step 10, conductive carbon particles with low contamination level and high conductivity are provided. In step 115, fibrillizable binder is provided. In one embodiment the fibrillizable binder comprises polytetraflouroethylene (also known as PTFE or Teflon®). In step 120, the activated carbon, conductive carbon, and binder are mixed together. Alternatively, in certain embodiments may be omitted.
  • We now turn to a more detailed description of the individual steps of the process 100, beginning with the step 105 in which activated carbon particles with reduced chloride content are provided. It has been identified that when electrodes are made from activated carbon particles with reduced chloride content, breakdown voltage of the electrolyte in which the electrodes are immersed tends to be higher than in the case of activated carbon particles with a relatively higher chloride content. Furthermore, other components that may be used in the manufacture of electrodes may benefit from reduced chloride content, for example, a paper separator that may degrade when exposed to excessive amounts of chloride. Accordingly, in some embodiments the activated carbon particles provided in the step 105 have chloride content of 50 parts per million (ppm) or less. In some more specific embodiments, chloride content of the activated carbon particles is less than about 30 ppm.
  • It has also been identified when the level of contaminants in conductive carbon of an electrode tends is reduced, the breakdown voltage of electrolyte in which an electrode comprising the conductive carbon can be increased. Thus, when conductive carbon particles are provided in the step 110 they desirably comprise a low total level of contaminants. The conductive particles also preferably have a relatively high conductivity. In one embodiment, total impurity content (other than ash) in conductive carbon is below about 120 ppm. Table 1 below shows typical contaminant levels in conductive carbon utilized by the present invention.
    TABLE 1
    IMPURITY
    IMPURITY UNIT LEVEL (Typical)
    ash % 0.01
    Al ppm 0.8
    Ba ppm <0.2
    Ca ppm 8.4
    Cd ppm <0.1
    Co ppm <0.1
    Cr ppm <2
    Cu ppm <0.2
    Fe ppm 10
    Hg ppm 1.3
    K ppm 0.5
    Mg ppm 1
    Mn ppm 0.1
    Mo ppm <0.5
    Na ppm 8
    Ni ppm 0.5
    P ppm <3
    Pb ppm <1
    S ppm 70
    Sb ppm <4
    Se ppm <0.5
    Si ppm 2
    Sn ppm <3
    Sr ppm <0.2
    Ti ppm <0.1
    V ppm <0.2
    Zn ppm 0.5
  • Conductive carbon particles with substantially similar or lower contamination levels and conductivities that are substantially similar to or higher than that of TABLE 1 may be processed to obtain such characteristics using techniques known to those skilled in the art. Thus, it should be understood that the invention is not limited to particular brands of carbon or other materials.
  • In step 115, fibrillizable binders may be provided, for example: PTFE in granular powder form, various fluoropolymer particles, polypropylene, polyethylene, co-polymers, and other polymer blends. It has been identified, that the use of inert binders such as PTFE, tends to increase the voltage that an electrode comprising such inert binder can be operated at. Such increase occurs in part due to reduced interactions with electrolyte that the electrode is subsequently immersed in. In one embodiment, typical diameters of the PTFE particles are in the five hundred micron range.
  • In the step 120, activated carbon particles, conductive carbon particles, and/or binder particles are blended or otherwise mixed together. In various embodiments, proportions of activated carbon, conductive carbon, and binder are as follows: 85-92 percent by weight of activated carbon, 5-15 percent by weight of PTFE, and 0-10 percent by weight of conductive carbon. A preferred embodiment contains about 89.5 percent of activated carbon, about 10 percent of PTFE, and about 0.5 percent of conductive carbon. Other ranges are within the scope of the present invention as well. Note that all percentages are given by weight. Conductive carbon is preferably held to a low percentage of the mixture because it has been identified that increased proportion of conductive carbon tends to lower the breakdown voltage of electrolyte in which an electrode made from the conductive carbon particles is subsequently immersed.
  • In a preferred embodiment of the process 100, the blending step 120 is a “dry-blending” step, i.e., blending of activated carbon, conductive carbon, and/or binder is performed without the addition of any solvents, liquids, processing aids, or the like to the particle mixture. Dry-blending may be carried out, for example, for 1 to 10 minutes in a V-blender equipped with a high intensity mixing bar, until a uniform dry mixture is formed. Those skilled in the art will identify, after perusal of this document, that blending time can vary based on batch size, materials, particle size, densities, as well as other properties, and yet remain within the scope of the present invention.
  • Turning next to the step 125, blended dry powder material is fibrillized. In a preferred embodiment, the dry powder material is dry fibrillized (fibrillated) using non-lubricated high-shear force techniques. In a preferred embodiment, high-shear forces are provided by a jet-mill. The dry powder material is introduced into the jet-mill, wherein high-velocity air jets are directed at the dry powder material to effectuate application of high shear to the fibrillizable binder within the dry powder material. The shear forces that arise during the dry fibrillation process physically stretch the fibrillizable binder, causing the binder to form a network of fibers that bind the binder to other particles within the fibrillized material.
  • Although additives, such as solvents, liquids, and the like, are not necessarily used in the manufacture of certain embodiments disclosed herein, a certain amount of impurity, for example, moisture, may be absorbed by the active electrode material from the surrounding environment. Those skilled in the art will understand, after perusal of this document that the dry particles used with embodiments and processes disclosed herein may also, prior to being provided by particle manufacturers as dry particles, have themselves been preprocessed with additives and, thus, contain one or more pre-process residues. For these reasons, one or more of the embodiments and processes disclosed herein may utilize a drying step at some point before a final electrolyte impregnation step, so as to remove or reduce the aforementioned pre-process residues and impurities. It is identified that even after one or more drying steps, trace amounts of moisture, residues and impurities may be present in the active electrode material and an electrode film made therefrom.
  • Dry fibrillization is described in more detail in a co-pending commonly-assigned U.S. patent application Ser. No. 11/116,882. This application is hereby incorporated by reference as if fully set forth herein, including all figures, tables, and claims.
  • It should also be noted that references to dry-blending, dry-fibrillization, dry particles, and other dry materials and processes used in the manufacture of the active electrode material and films do not exclude the use of other than dry processes as described herein, for example, as may be achieved after drying of particles and films that may have been prepared using a processing aid, liquid, solvent, or the like.
  • The product obtained through the process 100 may be used to make electrode films. The films may then be bonded to a current collector, such as a foil made from aluminum or another conductor. The current collector may be pretreated prior to bonding to enhance its adhesion properties. Pretreatment of the current collector may include mechanical roughing, chemical pitting, and/or use of a surface activation treatment, such as corona discharge, active plasma, ultraviolet, laser, or high frequency treatment methods known to a person skilled in the art. In one embodiment, the electrode films may be bonded to a current collector via an intermediate layer of conductive adhesive known to those skilled in the art.
  • In one embodiment, the product obtained from process 100 may be mixed with a processing aid to obtain a slurry-like composition used by those skilled in the art to coat an electrode film onto a collector (i.e. a coating process). The slurry may be then deposited on one or both sides of a current collector. After a drying step, film or films of active electrode material are formed on the current collector. The current collector with the films may be calendered one or more times to densify the films and to improve adhesion of the films to the current collector.
  • In one embodiment, the product obtained from process 100 may be mixed with a processing aid to obtain a paste like material. The paste-like material may be then be extruded, formed into a film, and deposited on one or both sides of a current collector. After a drying step, film or films of active electrode material are formed on the current collector. The current collector with the dried films may be calendered one or more times to densify the films and to improve adhesion of the films to the current collector.
  • In yet another embodiment, the product obtained through the process 100 the binder particles may comprise thermoplastic or thermoset particles. The product obtained through the process 100 that includes thermoplastic or thermoset particles may be used to make electrode films. The films may then be bonded to a current collector, such as a foil made from aluminum or another conductor. The films may be bonded to a current collector in a heated calendar apparatus The current collector may be pretreated prior to bonding to enhance its adhesion properties. Pretreatment of the current collector may include mechanical roughing, chemical pitting, and/or use of a surface activation treatment, such as corona discharge, active plasma, ultraviolet, laser, or high frequency treatment methods known to a person skilled in the art.
  • Other methods of forming the active electrode material films and attaching the films to the current collector may also be used.
  • FIG. 2 illustrates, in a high level manner, a cross-section of an electrode assembly 200 of a double layer capacitor. In FIG. 2, the components of the assembly 200 are arranged in the following order: (1) first current collector 205, (2) first active electrode film 210, (3) porous separator 220, (4) second active electrode film 230, and (5) second current collector 235. In a preferred embodiment, a conductive adhesive layer (not shown) is disposed on current collector 235 prior to bonding of the electrode film 210. The films 210 and 230 may be made using fibrillized particles of active electrode material obtained through the process 100 described in relation to FIG. 1. An exemplary double layer capacitor using the electrode assembly 200 further includes an electrolyte and a container, for example, a sealed can, that holds the electrolyte. The assembly 200 is disposed within the container (can) and immersed in the electrolyte.
  • Electrode products that include active electrode film attached to current collector and/or porous separator may be used in double layer capacitors and other electrical energy storage devices.
  • In one preferred embodiment, it has been identified that using process 100, wherein activated carbon with no more than about 30 ppm of chloride is used, a high performance double-layer capacitor product can be provided. Such a product further comprises about 10 percent by weight binder, and about 0.5 percent by weight conductive carbon. Such a product is exemplified by the MC2600 product available from Maxwell Technologies, Inc. 9244 Balboa Ave, San Diego, Calif. 92009. The MC2600 product is rated to provide 2600 Farads of capacitance with a decrease of less than 20% in capacitance and an increase of less than 60% in resistance over the lifetime of the product, which is rated for over 1 million duty cycles of operation at 2.7 volts. Such performance characteristics are presently not available from any prior art products.
  • The inventive methods for making fibrillized active electrode material, films of these material, electrodes made with the films, and double layer capacitors employing the electrodes have been described above in considerable detail. This was done for illustration purposes. Neither the specific embodiments of the invention as a whole, nor those of its features, limit the general principles underlying the invention. In particular, the invention is not necessarily limited to the specific constituent materials and proportions of constituent materials used in making the electrodes. The invention is also not necessarily limited to electrodes used in double layer capacitors, but extends to other electrode applications. The specific features described herein may be used in some embodiments, but not in others, without departure from the spirit and scope of the invention as set forth. Many additional modifications are intended in the foregoing disclosure, and it will be appreciated by those of ordinary skill in the art that, in some instances, some features of the invention will be employed in the absence of other features. The illustrative examples therefore do not define the metes and bounds of the invention and the legal protection afforded the invention, which function is served by the claims and their equivalents.

Claims (12)

1. A method of making particles of active electrode material, the method comprising:
providing activated carbon with chloride content not exceeding about 50 parts per million;
providing binder;
mixing the activated carbon and the binder to obtain a mixture; and
fibrillizing the binder in the mixture.
2. A method in accordance with claim 1, further comprising providing conductive particles.
3. A method in accordance with claim 2, wherein proportion of the conductive carbon particles in the mixture does not exceed about 0.5 percent by weight.
4. A method in accordance with claim 1, wherein the binder comprises PTFE; and wherein the proportion of the binder in the mixture is about 10 percent by weight.
5. A method in accordance with claim 2, wherein the proportion of the conductive carbon particles in the mixture is between 0.1 percent and 1 percent by weight; and wherein the proportion of binder in the mixture is between 9 and 11 percent by weight.
6. A method in accordance with claim 2, wherein the step of mixing comprises dry blending the activated carbon, conductive carbon, and the binder.
7. A method in accordance with claim 1, wherein the step of fibrillizing is performed without processing additives.
8. A method of making particles of active electrode material, the method comprising:
providing activated carbon with chloride content not exceeding about 50 parts per million;
providing low contamination level conductive particles;
providing fibril-forming binder;
mixing the activated carbon, the conductive carbon, and the binder to obtain a mixture; and
fibrillizing the mixture.
9. A method in accordance with claim 8, wherein proportion of the conductive carbon particles in the mixture does not exceed about 0.5 percent by weight.
10. A method in accordance with claim 9, wherein proportion of the binder in the mixture is about 10 percent by weight.
11. A method in accordance with claim 9, wherein proportion of binder in the mixture is between 9 and 11 percent by weight.
12. A method in accordance with claim 8 wherein the step of providing activated carbon comprises providing activated carbon with chloride content less than about 30 parts per million.
US11/775,758 2004-08-16 2007-07-10 Enhanced breakdown voltage electrode Abandoned US20080014139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/775,758 US20080014139A1 (en) 2004-08-16 2007-07-10 Enhanced breakdown voltage electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60179304P 2004-08-16 2004-08-16
US66211305P 2005-03-14 2005-03-14
US11/178,192 US7245478B2 (en) 2004-08-16 2005-07-08 Enhanced breakdown voltage electrode
US11/775,758 US20080014139A1 (en) 2004-08-16 2007-07-10 Enhanced breakdown voltage electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/178,192 Division US7245478B2 (en) 2004-08-16 2005-07-08 Enhanced breakdown voltage electrode

Publications (1)

Publication Number Publication Date
US20080014139A1 true US20080014139A1 (en) 2008-01-17

Family

ID=37618110

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/178,192 Expired - Fee Related US7245478B2 (en) 2004-08-16 2005-07-08 Enhanced breakdown voltage electrode
US11/775,758 Abandoned US20080014139A1 (en) 2004-08-16 2007-07-10 Enhanced breakdown voltage electrode
US11/779,241 Abandoned US20070258193A1 (en) 2004-08-16 2007-07-17 Enhanced breakdown voltage electrode

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/178,192 Expired - Fee Related US7245478B2 (en) 2004-08-16 2005-07-08 Enhanced breakdown voltage electrode

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/779,241 Abandoned US20070258193A1 (en) 2004-08-16 2007-07-17 Enhanced breakdown voltage electrode

Country Status (1)

Country Link
US (3) US7245478B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722686B2 (en) 2004-02-19 2010-05-25 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7791861B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Dry particle based energy storage device product
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7859826B2 (en) 2005-03-14 2010-12-28 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices
US7920371B2 (en) 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
CN105225847A (en) * 2015-08-14 2016-01-06 宁波南车新能源科技有限公司 A kind of electrode of super capacitor preparation technology
WO2017197299A1 (en) * 2016-05-12 2017-11-16 Navitas Systems, Llc Compositions and methods for electrode fabrication
WO2019200374A1 (en) * 2018-04-13 2019-10-17 Navitas Systems, Llc Compositions and methods for electrode fabrication
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10679798B2 (en) 2016-05-20 2020-06-09 Avx Corporation Ultracapacitor containing thin electrodes in a metal container

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245478B2 (en) * 2004-08-16 2007-07-17 Maxwell Technologies, Inc. Enhanced breakdown voltage electrode
US7723262B2 (en) 2005-11-21 2010-05-25 Energ2, Llc Activated carbon cryogels and related methods
KR101496934B1 (en) 2006-11-15 2015-03-03 유니버시티 오브 워싱톤 스루 이츠 센터 포 커머셜리제이션 electric double layer capacitance device
US20080204973A1 (en) * 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled iron content
US20080201925A1 (en) * 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled sulfur content
WO2011002536A2 (en) 2009-04-08 2011-01-06 Energ2, Inc. Manufacturing methods for the production of carbon materials
EP2448748A4 (en) 2009-07-01 2016-04-06 Basf Se Ultrapure synthetic carbon materials
KR101147208B1 (en) * 2009-10-16 2012-05-29 삼성에스디아이 주식회사 Rechargeable battery, bipolar electrode, and fabricating method rechargeable battery
WO2011072256A1 (en) * 2009-12-11 2011-06-16 Energ2, Inc. Carbon materials comprising an electrochemical modifier
US9013144B2 (en) 2010-12-21 2015-04-21 Fastcap Systems Corporation Power system for high temperature applications with rechargeable energy storage
WO2011112992A1 (en) 2010-03-12 2011-09-15 Energ2, Inc. Mesoporous carbon materials comprising bifunctional catalysts
US8654507B2 (en) 2010-09-30 2014-02-18 Energ2 Technologies, Inc. Enhanced packing of energy storage particles
US8760851B2 (en) 2010-12-21 2014-06-24 Fastcap Systems Corporation Electrochemical double-layer capacitor for high temperature applications
US9214709B2 (en) 2010-12-21 2015-12-15 CastCAP Systems Corporation Battery-capacitor hybrid energy storage system for high temperature applications
EP2659498B1 (en) 2010-12-28 2020-07-22 Basf Se Carbon materials comprising enhanced electrochemical properties
US9001495B2 (en) 2011-02-23 2015-04-07 Fastcap Systems Corporation High power and high energy electrodes using carbon nanotubes
US20120262127A1 (en) 2011-04-15 2012-10-18 Energ2 Technologies, Inc. Flow ultracapacitor
AU2012250774B2 (en) 2011-05-03 2015-05-07 Axion Power International, Inc. Process for the manufacture of carbon sheet for an electrode
CN107785180A (en) 2011-06-03 2018-03-09 巴斯福股份公司 For the carbon lead blend in mixed tensor storage device
AU2012267770A1 (en) 2011-06-07 2014-01-23 Fastcap Systems Corporation Energy storage media for ultracapacitors
CN104221110B (en) 2011-07-08 2019-04-05 快帽系统公司 High temperature energy storage device
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
CN108868747A (en) 2011-11-03 2018-11-23 快帽系统公司 Production logging instrument
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
DE102012203019A1 (en) * 2012-02-28 2013-08-29 Technische Universität Dresden Cathode for lithium-containing batteries and solvent-free process for their preparation
US20120177923A1 (en) * 2012-03-20 2012-07-12 Haycarb PLC Low ash activated carbon and methods of making same
EP2963664B1 (en) * 2013-02-26 2018-04-11 Nippon Valqua Industries, Ltd. Method for producing activated carbon sheet and method for improving impregnation of activated carbon sheet with electrolyte solution
CN105190948B (en) 2013-03-14 2019-04-26 14族科技公司 The complex carbon material of electrochemical modification agent comprising lithium alloyage
JP2016521017A (en) 2013-06-14 2016-07-14 マックスウェル テクノロジーズ インコーポレイテッド Energy storage device with improved energy density
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11270850B2 (en) 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
EP4325025A2 (en) 2013-12-20 2024-02-21 Fastcap Systems Corporation Electromagnetic telemetry device
CN106104858B (en) * 2014-03-10 2020-07-31 麦斯韦尔技术股份有限公司 Method, apparatus and system for fibrillating binder component of electrode film
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
EP3204955B1 (en) 2014-10-09 2022-01-05 Fastcap Systems Corporation Nanostructured electrode for energy storage device
KR102469677B1 (en) 2015-01-27 2022-11-22 패스트캡 시스템즈 코포레이션 Wide temperature range ultracapacitors
US20160307707A1 (en) * 2015-04-17 2016-10-20 YUNASKO, Ltd. Method for manufacturing an electrode for energy storage devices and an electrode manufactured therewith
US20190097222A1 (en) 2015-08-14 2019-03-28 Energ2 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
WO2017201180A1 (en) 2016-05-20 2017-11-23 Avx Corporation Multi-cell ultracapacitor
CN117198764A (en) 2016-12-02 2023-12-08 快帽系统公司 Energy storage device and method of preparing electrode active layer
KR102571014B1 (en) 2017-03-09 2023-08-25 그룹14 테크놀로지스, 인코포레이티드 Degradation of silicon-containing precursors on porous scaffold materials
US11557765B2 (en) 2019-07-05 2023-01-17 Fastcap Systems Corporation Electrodes for energy storage devices
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482906A (en) * 1993-12-28 1996-01-09 Toho Tayon Co., Ltd. Adsorption material comprising activated carbon fiber and polytetrafluoroethylene
US20050266990A1 (en) * 2002-07-30 2005-12-01 Hideharu Iwasaki Activated carbon, method for production thereof, polarizing electrode and electrical double layer capacitor
US7342770B2 (en) * 2003-07-09 2008-03-11 Maxwell Technologies, Inc. Recyclable dry particle based adhesive electrode and methods of making same
US7352558B2 (en) * 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US7384433B2 (en) * 2004-02-19 2008-06-10 Maxwell Technologies, Inc. Densification of compressible layers during electrode lamination
US7384686B2 (en) * 1997-02-06 2008-06-10 Bollore Porous composite product in particular with a high specific surface preparation process and electrode formed of a porous composite film for an electro-chemical assembly

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692210A (en) * 1949-12-10 1954-10-19 Sprague Electric Co Process of purifying and impregnating cellulosic spacers for electrical condensers
US3528955A (en) 1967-05-16 1970-09-15 Liquid Nitrogen Processing Polytetrafluoroethylene molding powder and process of preparing the same
US4194040A (en) 1969-04-23 1980-03-18 Joseph A. Teti, Jr. Article of fibrillated polytetrafluoroethylene containing high volumes of particulate material and methods of making and using same
CA980038A (en) 1969-04-23 1975-12-16 Dexter Worden Flexible, non-woven compositions and process for producing same
CA1008623A (en) 1972-02-11 1977-04-19 Gould Inc. Process and apparatus for manufacture of an electrode
US4153661A (en) 1977-08-25 1979-05-08 Minnesota Mining And Manufacturing Company Method of making polytetrafluoroethylene composite sheet
US4313972A (en) 1978-06-28 1982-02-02 United Technologies Corporation Dry method for making an electrochemical cell electrode
US4175055A (en) 1978-06-28 1979-11-20 United Technologies Corporation Dry mix method for making an electrochemical cell electrode
US4177159A (en) 1978-06-28 1979-12-04 United Technologies Corporation Catalytic dry powder material for fuel cell electrodes comprising fluorocarbon polymer and precatalyzed carbon
US4287232A (en) 1978-06-28 1981-09-01 United Technologies Corporation Dry floc method for making an electrochemical cell electrode
DE2941774C2 (en) 1979-10-16 1985-03-21 Varta Batterie Ag, 3000 Hannover Method and device for producing a plastic-bonded activated carbon layer for thin gas diffusion electrodes
FR2468218A1 (en) 1979-10-18 1981-04-30 Alsthom Cgee METHOD OF MANUFACTURING BY CALENDERING POROUS THIN STRIPS AND PRODUCTS OBTAINED, ESPECIALLY ELECTRODES FOR FUEL CELLS
NL8003949A (en) 1980-07-09 1982-02-01 Electrochem Energieconversie METHOD FOR MANUFACTURING A COAT OF AN ELECTRODE FOR A CELL, IN PARTICULAR FOR A FUEL CELL.
US4354958A (en) 1980-10-31 1982-10-19 Diamond Shamrock Corporation Fibrillated matrix active layer for an electrode
US4500647A (en) 1980-10-31 1985-02-19 Diamond Shamrock Chemicals Company Three layer laminated matrix electrode
US4320185A (en) 1981-01-19 1982-03-16 Mpd Technology Corporation Production of a cell electrode system
US4556618A (en) 1983-12-01 1985-12-03 Allied Corporation Battery electrode and method of making
EP0260847A1 (en) * 1986-09-19 1988-03-23 Imperial Chemical Industries Plc Solid electrolytes
JPS63187574A (en) 1987-01-29 1988-08-03 Japan Gore Tex Inc Fuel cell electrode-matrix monobloc forming and its manufacture
DE3702787A1 (en) 1987-01-30 1988-08-11 Bayer Ag METHOD AND DEVICE FOR MICRONIZING SOLIDS IN JET MILLS
JP3038676B2 (en) * 1988-03-24 2000-05-08 旭硝子株式会社 Electric double layer capacitor
JP2575840B2 (en) 1988-09-13 1997-01-29 株式会社東芝 Dry manufacturing method of hydrogen storage alloy electrode
US5198313A (en) 1989-06-14 1993-03-30 Bolder Battery, Inc. Battery end connector
US4992910A (en) 1989-11-06 1991-02-12 The Evans Findings Company, Inc. Electrical component package
JP2790529B2 (en) 1990-07-31 1998-08-27 松下電器産業株式会社 Electric double layer capacitor
DE69128805T2 (en) 1990-03-29 1998-05-14 Matsushita Electric Ind Co Ltd Electrolytic double layer capacitor and process for its manufacture
JP3028560B2 (en) 1990-07-09 2000-04-04 松下電器産業株式会社 Method for manufacturing polarizable electrode of electric double layer capacitor
JP3077218B2 (en) 1991-03-13 2000-08-14 ソニー株式会社 Non-aqueous electrolyte secondary battery
RU2036523C1 (en) 1992-07-03 1995-05-27 Многопрофильное научно-техническое и производственно-коммерческое общество с ограниченной ответственностью "Эконд" Capacitor with double electric layer
EP0617441A1 (en) 1993-02-25 1994-09-28 Globe-Union Inc. Capacitive battery
US5450279A (en) * 1993-05-19 1995-09-12 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor
US5393617A (en) 1993-10-08 1995-02-28 Electro Energy, Inc. Bipolar electrochmeical battery of stacked wafer cells
FR2712733B1 (en) 1993-11-16 1996-02-09 Bollore Technologies Method of manufacturing a multilayer electrochemical assembly comprising an electrolyte between two electrodes and assembly thus produced.
US5478668A (en) 1993-11-30 1995-12-26 Bell Communications Research Inc. Rechargeable lithium battery construction
JPH07161589A (en) 1993-12-06 1995-06-23 Nisshinbo Ind Inc Electric double-layer capacitor
JP2993343B2 (en) 1993-12-28 1999-12-20 日本電気株式会社 Polarizing electrode and method of manufacturing the same
US6207251B1 (en) 1994-01-10 2001-03-27 Minnesota Mining And Manufacturing Company Reinforced particle-loaded fibrillated PTFE web
US5707763A (en) 1994-10-19 1998-01-13 Daikin Industries, Ltd. Binder for batteries, and electrode compositions and batteries incorporating same
JPH08138978A (en) 1994-11-02 1996-05-31 Japan Gore Tex Inc Electric double layer capacitor and manufacture of its electrode
JPH0955341A (en) 1995-08-11 1997-02-25 Nisshinbo Ind Inc Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the polarizable electrode
KR100417560B1 (en) 1995-09-27 2004-04-28 소니 가부시끼 가이샤 Jelly Roll Type High Capacity Rechargeable Battery
JPH09183604A (en) * 1995-12-28 1997-07-15 Kyocera Corp Solid activated carbon, its production and electric double layer capacitor
US5786980A (en) * 1996-02-02 1998-07-28 Evans Capacitor Company, Incorporated Electrical component package and packaged electrical component
CA2254911C (en) 1996-05-15 2006-07-25 Hyperion Catalysis International, Inc. Graphitic nanofibers in electrochemical capacitors
DE19629154C2 (en) * 1996-07-19 2000-07-06 Dornier Gmbh Bipolar electrode-electrolyte unit
US6022436A (en) 1997-03-07 2000-02-08 Koslow Technologies Corporation Electrode manufacturing process and flow-through capacitor produced therefrom
JPH10275747A (en) 1997-03-28 1998-10-13 Nec Corp Electric double layer capacitor
US6127474A (en) 1997-08-27 2000-10-03 Andelman; Marc D. Strengthened conductive polymer stabilized electrode composition and method of preparing
US6134760A (en) 1997-09-22 2000-10-24 Mushiake; Naofumi Process for manufacturing electric double layer capacitor
US6349027B1 (en) 1997-10-29 2002-02-19 Asahi Glass Company, Ltd. Electric double layer capacitor
GB9727222D0 (en) 1997-12-23 1998-02-25 Aea Technology Plc Cell recycling
JP3791180B2 (en) 1998-04-23 2006-06-28 旭硝子株式会社 Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
US6245464B1 (en) 1998-09-21 2001-06-12 Wilson Greatbatch Ltd. Hermetically sealed lithium-ion secondary electrochemical cell
US6181545B1 (en) 1998-09-24 2001-01-30 Telcordia Technologies, Inc. Supercapacitor structure
US6304426B1 (en) * 1998-09-29 2001-10-16 General Electric Company Method of making an ultracapacitor electrode
FR2786927B1 (en) 1998-12-07 2001-01-12 Commissariat Energie Atomique METHOD FOR TREATMENT OF A LITHIUM ACCUMULATOR WITH A VIEW TO RECYCLING ITS MATERIALS CONSTITUTIVE
JP3796381B2 (en) 1999-01-26 2006-07-12 株式会社エスアイアイ・マイクロパーツ Electric double layer capacitor
JP2000315632A (en) 1999-03-02 2000-11-14 Matsushita Electric Ind Co Ltd Capacitor
JP2001006966A (en) * 1999-06-17 2001-01-12 Murata Mfg Co Ltd Ceramic capacitor and its manufacture
EP1126536B1 (en) 2000-02-16 2007-05-16 Nisshinbo Industries, Inc. Multi-layer electrode structure, and method of manufacturing same
JP2001267187A (en) 2000-03-22 2001-09-28 Ngk Insulators Ltd Polarizable electrode for electric double-layer capacitor
JP2001284188A (en) 2000-04-03 2001-10-12 Asahi Glass Co Ltd Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
US6627252B1 (en) 2000-05-12 2003-09-30 Maxwell Electronic Components, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP2002025867A (en) 2000-07-04 2002-01-25 Jeol Ltd Electric double-layer capacitor and carbon material for the electric double-layer capacitor
US6403257B1 (en) 2000-07-10 2002-06-11 The Gillette Company Mechanochemical synthesis of lithiated manganese dioxide
IL155790A0 (en) 2000-11-09 2003-12-23 Foc Frankenburg Oil Company Es A supercapacitor and a method of manufacturing such a supercapacitor
JP2002203749A (en) 2000-12-28 2002-07-19 Daiso Co Ltd Multilayer electrical double layer capacitor
US20020122985A1 (en) 2001-01-17 2002-09-05 Takaya Sato Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor
US6589299B2 (en) 2001-02-13 2003-07-08 3M Innovative Properties Company Method for making electrode
DE10112232A1 (en) 2001-03-07 2002-09-19 Deutsch Zentr Luft & Raumfahrt Method for producing a multi-layer electrode or electrode composite unit and gas diffusion electrode
JP2002280262A (en) 2001-03-19 2002-09-27 Ngk Insulators Ltd Electrochemical capacitor
CN100444455C (en) 2001-09-21 2008-12-17 Tdk株式会社 Lithium secondary cell
MXPA04006499A (en) 2002-01-04 2004-10-04 Du Pont Core-shell fluoropolymer dispersions.
JP4591909B2 (en) 2002-01-09 2010-12-01 スティーヴン イー. スループ, Systems and methods for removing electrolytes from energy storage and / or conversion devices using supercritical fluids
JP2003297701A (en) 2002-03-29 2003-10-17 Tdk Corp Electrochemical device and method of manufacturing the same
EP1411533A1 (en) 2002-10-09 2004-04-21 Asahi Glass Company, Limited Electric double layer capacitor and process for its production
US7691782B2 (en) * 2002-11-13 2010-04-06 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
JP2004186273A (en) 2002-11-29 2004-07-02 Honda Motor Co Ltd Electrode sheet for electric double layer capacitor, its manufacturing method, polarizable electrode, and electric double layer capacitor using the same
US6831826B2 (en) 2002-11-29 2004-12-14 Honda Motor Co., Ltd. Polarized electrode for electric double-layer condenser, and electric double-layer condenser manufactured using the same, and process for manufacturing electrode sheet for electric double-layer condenser, and laminating apparatus
JP2004193571A (en) 2002-11-29 2004-07-08 Honda Motor Co Ltd Polarized electrodes for electric double layer capacitor, manufacturing method of polarized electrodes for electric double layer capacitor, and manufacturing method of electric double layer capacitor
US6962006B2 (en) 2002-12-19 2005-11-08 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
US20050064289A1 (en) 2003-07-03 2005-03-24 Tdk Corporation Electrode, electrochemical device, method for manufacturing electrode, and method for manufacturing electrochemical device
US20050266298A1 (en) 2003-07-09 2005-12-01 Maxwell Technologies, Inc. Dry particle based electro-chemical device and methods of making same
US7245478B2 (en) * 2004-08-16 2007-07-17 Maxwell Technologies, Inc. Enhanced breakdown voltage electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482906A (en) * 1993-12-28 1996-01-09 Toho Tayon Co., Ltd. Adsorption material comprising activated carbon fiber and polytetrafluoroethylene
US7384686B2 (en) * 1997-02-06 2008-06-10 Bollore Porous composite product in particular with a high specific surface preparation process and electrode formed of a porous composite film for an electro-chemical assembly
US20050266990A1 (en) * 2002-07-30 2005-12-01 Hideharu Iwasaki Activated carbon, method for production thereof, polarizing electrode and electrical double layer capacitor
US7342770B2 (en) * 2003-07-09 2008-03-11 Maxwell Technologies, Inc. Recyclable dry particle based adhesive electrode and methods of making same
US7352558B2 (en) * 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US7384433B2 (en) * 2004-02-19 2008-06-10 Maxwell Technologies, Inc. Densification of compressible layers during electrode lamination

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791861B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Dry particle based energy storage device product
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US8072734B2 (en) 2003-07-09 2011-12-06 Maxwell Technologies, Inc. Dry particle based energy storage device product
US7920371B2 (en) 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
US7722686B2 (en) 2004-02-19 2010-05-25 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7859826B2 (en) 2005-03-14 2010-12-28 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices
CN105225847A (en) * 2015-08-14 2016-01-06 宁波南车新能源科技有限公司 A kind of electrode of super capacitor preparation technology
WO2017197299A1 (en) * 2016-05-12 2017-11-16 Navitas Systems, Llc Compositions and methods for electrode fabrication
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10679798B2 (en) 2016-05-20 2020-06-09 Avx Corporation Ultracapacitor containing thin electrodes in a metal container
US10840031B2 (en) 2016-05-20 2020-11-17 Avx Corporation Ultracapacitor for use at high temperatures
WO2019200374A1 (en) * 2018-04-13 2019-10-17 Navitas Systems, Llc Compositions and methods for electrode fabrication

Also Published As

Publication number Publication date
US7245478B2 (en) 2007-07-17
US20070008677A1 (en) 2007-01-11
US20070258193A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US7245478B2 (en) Enhanced breakdown voltage electrode
US7811337B2 (en) Ultracapacitor electrode with controlled sulfur content
US8279580B2 (en) Electrode for energy storage device with microporous and mesoporous activated carbon particles
US20080204973A1 (en) Ultracapacitor electrode with controlled iron content
US7317609B2 (en) Pretreated porous electrode
US20090321678A1 (en) Method and apparatus for ultracapacitor electrode with controlled binder content
US20070146967A1 (en) Ultracapacitor electrode with controlled carbon content
US6614646B2 (en) Polarizable electrode for electrical double-layer capacitor
EP1440454A1 (en) Electrically conductive, freestanding microporous sheet for use in an ultracapacitor
US20220029242A1 (en) Method for producing a solid electrolyte membrane or an anode, and solid electrolyte membrane or anode
EP2088604B1 (en) Electrode membrane, electrode and method for producing the same, and electric double layer capacitor
US6778379B2 (en) Granules for electrode, method for manufacturing thereof, electrode sheet, polarizable electrode and electric double-layer capacitor
US20090195220A1 (en) Recoverable ultracapacitor electrode

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAXWELL TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHONG, LINDA;XI, XIAOMEI;REEL/FRAME:019726/0911

Effective date: 20050708

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: TESLA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAXWELL TECHNOLOGIES, INC.;REEL/FRAME:057890/0202

Effective date: 20211014