US20070272592A1 - Process to Prepare a Lubricating Base Oil - Google Patents

Process to Prepare a Lubricating Base Oil Download PDF

Info

Publication number
US20070272592A1
US20070272592A1 US10/561,588 US56158804A US2007272592A1 US 20070272592 A1 US20070272592 A1 US 20070272592A1 US 56158804 A US56158804 A US 56158804A US 2007272592 A1 US2007272592 A1 US 2007272592A1
Authority
US
United States
Prior art keywords
process
wt
pour point
content
fischer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/561,588
Inventor
Gilbert Germaine
Wiecher Steenge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Oil Co
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP03291598.5 priority Critical
Priority to EP03291598 priority
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to PCT/EP2004/051248 priority patent/WO2005000999A1/en
Assigned to SHELL OIL COMPANY reassignment SHELL OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEENGE, WIECHER DERK EVERT, GERMAINE, GILBERT ROBERT BERNARD
Publication of US20070272592A1 publication Critical patent/US20070272592A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps

Abstract

Process to prepare a base oil having an paraffin content of between 75 and 95 wt % by subjecting a mixture of a Fischer-Tropsch derived feed and a petroleum derived feed to a catalytic pour point reducing treatment.

Description

  • The invention is directed to a process to prepare a base oil having an paraffin content of between 75 and 95 wt %.
  • WO-A-0157166 describes the use of a highly paraffinic base oil as obtained from a Fischer-Tropsch wax in a motor engine lubricant formulation. The examples illustrate that such formulations will also consist of an ester, which according to the description of the patent are added to confer additional desired characteristics, such as additive solvency.
  • The use of ester co-base fluids in lubricant formulations as illustrated in WO-A-0157166 is not desired because such ester co-base fluids are not widely available and thus expensive. Additive solvency may be improved by using a paraffinic base stock, which contains less paraffins. Such base oils may be prepared by hydroisomerisation of petroleum derived waxes followed by a solvent or catalytic dewaxing step. A disadvantage of such a process is that the starting petroleum derived waxes, such as for example slack wax, are not easily obtainable. Furthermore such waxes may not always have the desired high paraffin content needed to make the desired base oils as per this invention.
  • The object of the present invention is to provide a process wherein a base oil with a paraffin content of between 75 and 95 wt % is obtained which does not have the disadvantages of the prior art processes.
  • This object is achieved by the following process. Process to prepare a base oil having an paraffin content of between 75 and 95 wt % by subjecting a mixture of a Fischer-Tropsch derived feed and a petroleum derived feed to a catalytic pour point reducing treatment.
  • Applicants found that by mixing a relatively small amount of a petroleum derived feed with a Fischer-Tropsch derived feed before performing a catalytic pour point reducing treatment a base oil may be obtained having the desired properties.
  • The petroleum-derived fraction may in principle be any fraction boiling in the base oil range and containing non-paraffinic compounds. Preferably a petroleum-derived fraction is used which has been subjected to a hydroprocessing step in order to reduce aromatic, sulphur and nitrogen content of such fractions and improve some of the desired properties such viscosity index. The hydroprocessing step may be a hydrotreating optionally followed by a hydrocracking step. Such processes are for example performed when preparing base oils from a petroleum derived vacuum distillate or de-asphalted oils.
  • A very interesting petroleum derived feed is the bottoms fraction of a fuels hydrocracker. With a fuels hydrocracker in the context of the present invention is meant a hydrocracker process which main products are naphtha, kerosene and gas oil. The conversion, expressed in the weight percentage of the fraction in the feed to the hydrotreater-hydrocracker which boils above 370° C. which are converted to products boiling below 370° C., in the hydrotreater-hydrocracker process is typically above 50 wt %. Examples of possible fuels hydrocracker processes, which may yield a bottoms fraction which can be used in the present process, are described in the above referred to EP-A-699225, EP-A-649896, WO-A-9718278, EP-A-705321, EP-A-994173 and U.S. Pat. No. 4,851,109.
  • Another interesting petroleum derived feed is the fraction obtained in a dedicated base oil hydrotreater-hydrocracker. In such a hydrotreater-hydrocracker the main products will boil in the base oil range. Typically such processes operate at a feed conversion of below 50 wt % and more typically between 20 and 40 wt %. The petroleum derived feed is thus the high boiling fraction as obtained in such a process prior to dewaxing.
  • Preferably the fuels hydrocracker is operated in two steps, consisting of a preliminary hydrotreating step followed by a hydrocracking step. In the hydrotreating step nitrogen and sulphur are removed and aromatics are saturated to naphthenes
  • The Fischer-Tropsch derived feed preferably is a hydroisomerized Fischer-Tropsch wax. Such a feed may be obtained by well-known processes, for example the so-called commercial Sasol process, the Shell Middle Distillate Process or by the non-commercial Exxon process. These and other processes are for example described in more detail in EP-A-776959, EP-A-668342, U.S. Pat. No. 4,943,672, U.S. Pat. No. 5,059,299, WO-A-9934917 and WO-A-9920720. The process will generally comprise a Fischer-Tropsch synthesis and a hydroisomerisation step as described in these publications.
  • The mixture of petroleum derived and Fischer-Tropsch derived feeds will suitably have a viscosity corresponding to the desired viscosity of the base oil product. Preferably the kinematic viscosity at 100° C. of the mixture is between 3 and 10 cSt. Suitable distillate fractions obtained in step (a) have a T10 wt % boiling point of between 200 and 450° C. and a T90 wt % boiling point of between 300 and 550° C. The fraction of petroleum derived feed in the mixture is preferably higher than 5 wt %, more preferably higher than 10 wt % and preferably lower than 50 wt % and more preferably below 30 wt % and even more preferably below 25 wt %. The actual content of petroleum-derived feed in the mixture will of course depend on the paraffin content of said feed. The mixture will preferably contain less than 50 ppm sulphur and/or less that 10 ppm nitrogen.
  • With the catalytic pour point reducing treatment is understood every process wherein the pour point of the base oil is reduced by more than 10° C., preferably more than 20° C., more preferably more than 25° C.
  • The catalytic dewaxing or pour point reducing process can be performed by any process wherein in the presence of a catalyst and hydrogen the pour point of the base oil precursor fraction is reduced as specified above. Suitable dewaxing catalysts are heterogeneous catalysts comprising a molecular sieve and optionally in combination with a metal having a hydrogenation function, such as the Group VIII metals. Molecular sieves, and more suitably intermediate pore size zeolites, have shown a good catalytic ability to reduce the pour point of the distillate base oil precursor fraction under catalytic dewaxing conditions. Preferably the intermediate pore size zeolites have a pore diameter of between 0.35 and 0.8 nm. Suitable intermediate pore size zeolites are mordenite, ZSM-5, ZSM-12, ZSM-22, ZSM-23, SSZ-32, ZSM-35 and ZSM-48. Another preferred group of molecular sieves are the silica-aluminaphosphate (SAPO) materials of which SAPO-11 is most preferred as for example described in U.S. Pat. No. 4,859,311. ZSM-5 may optionally be used in its HZSM-5 form in the absence of any Group VIII metal. The other molecular sieves are preferably used in combination with an added Group VIII metal. Suitable Group VIII metals are nickel, cobalt, platinum and palladium. Examples of possible combinations are Ni/ZSM-5, Pt/ZSM-23, Pd/ZSM-23, Pt/ZSM-48 and Pt/SAPO-11. Further details and examples of suitable molecular sieves and dewaxing conditions are for example described in WO-A-9718278, U.S. Pat. No. 5,053,373, U.S. Pat. No. 5,252,527 and U.S. Pat. No. 4,574,043.
  • The dewaxing catalyst suitably also comprises a binder. The binder can be a synthetic or naturally occurring (inorganic) substance, for example clay, silica and/or metal oxides. Natural occurring clays are for example of the montmorillonite and kaolin families. The binder is preferably a porous binder material, for example a refractory oxide of which examples are: alumina, silica-alumina, silica-magnesia, silica-zirconia, silica-thoria, silica-beryllia, silica-titania as well as ternary compositions for example silica-alumina-thoria, silica-alumina-zirconia, silica-alumina-magnesia and silica-magnesia-zirconia. More preferably a low acidity refractory oxide binder material which is essentially free of alumina is used. Examples of these binder materials are silica, zirconia, titanium dioxide, germanium dioxide, boria and mixtures of two or more of these of which examples are listed above. The most preferred binder is silica.
  • A preferred class of dewaxing catalysts comprise intermediate zeolite crystallites as described above and a low acidity refractory oxide binder material which is essentially free of alumina as described above, wherein the surface of the aluminosilicate zeolite crystallites has been modified by subjecting the aluminosilicate zeolite crystallites to a surface dealumination treatment. A preferred dealumination treatment is by contacting an extrudate of the binder and the zeolite with an aqueous solution of a fluorosilicate salt as described in for example U.S. Pat. No. 5,157,191 or WO-A-2000029511. Examples of suitable dewaxing catalysts as described above are silica bound and dealuminated Pt/ZSM-5, silica bound and dealuminated Pt/ZSM-23, silica bound and dealuminated Pt/ZSM-12, silica bound and dealuminated Pt/ZSM-22 as for example described in WO-A-200029511 and EP-B-832171.
  • Catalytic dewaxing conditions are known in the art and typically involve operating temperatures in the range of from 200 to 500° C., suitably from 250 to 400° C., hydrogen pressures in the range of from 10 to 200 bar, preferably from 40 to 70 bar, weight hourly space velocities (WHSV) in the range of from 0.1 to 10 kg of oil per litre of catalyst per hour (kg/l/hr), suitably from 0.2 to 5 kg/l/hr, more suitably from 0.5 to 3 kg/l/hr and hydrogen to oil ratios in the range of from 100 to 2,000 litres of hydrogen per litre of oil. By varying the temperature between 315 and 375° C. at between 40-70 bars, in the catalytic dewaxing step it is possible to prepare base oils having different pour point specifications varying from suitably lower than −60 to −10° C.
  • After performing the pour point reducing treatment lower boiling compounds formed during said treatment are suitably removed, preferably by means of distillation, optionally in combination with an initial flashing step.
  • The effluent of the pour point reducing treatment may suitably be subjected to a hydrogenation treatment. Hydrogenation may be performed on the entire effluent or on specific base oil grades after the above described fractionation. This may be required in order to reduce the content of aromatic compounds in the reduced pour point product to preferably values of below 1 wt %. Such a hydrogenation is also referred to as a hydrofinishing step. This step is suitably carried out at a temperature between 180 and 380° C., a total pressure of between 10 to 250 bar and preferably above 100 bar and more preferably between 120 and 250 bar. The WHSV (Weight hourly space velocity) ranges from 0.3 to 2 kg of oil per litre of catalyst per hour (kg/l·h). Preferably a hydrogenation is performed in the same reactor as the catalytic dewaxing reactor. In such a reactor the beds of dewaxing catalyst and hydrogenation catalyst will be placed in a stacked bed on top of each other.
  • The hydrogenation catalyst is suitably a supported catalyst comprising a dispersed Group VIII metal. Possible Group VIII metals are cobalt, nickel, palladium and platinum. Cobalt and nickel containing catalysts may also comprise a Group VIB metal, suitably molybdenum and tungsten. Suitable carrier or support materials are low acidity amorphous refractory oxides. Examples of suitable amorphous refractory oxides include inorganic oxides, such as alumina, silica, titania, zirconia, boria, silica-alumina, fluorided alumina, fluorided silica-alumina and mixtures of two or more of these.
  • Examples of suitable hydrogenation catalysts are nickel-molybdenum containing catalyst such as KF-847 and KF-8010 (AKZO Nobel) M-8-24 and M-8-25 (BASF), and C-424, DN-190, HDS-3 and HDS-4 (Criterion); nickel-tungsten containing catalysts such as NI-4342 and NI-4352 (Engelhard) and C-454 (Criterion); cobalt-molybdenum containing catalysts such as KF-330 (AKZO-Nobel), HDS-22 (Criterion) and HPC-601 (Engelhard). Preferably platinum containing and more preferably platinum and palladium containing catalysts are used. Preferred supports for these palladium and/or platinum containing catalysts are amorphous silica-alumina. Examples of suitable silica-alumina carriers are disclosed in WO-A-9410263. A preferred catalyst comprises an alloy of palladium and platinum preferably supported on an amorphous silica-alumina carrier of which the commercially available catalyst C-624 of Criterion Catalyst Company (Houston, Tex.) is an example.
  • From the effluent of the pour point reducing treatment and the optional hydrogenation treatment one or more base oil grades may be isolated by means of fractionation. Base oil products having kinematic viscosity at 100° C. of between 2 and 10 cSt, having a volatility of between 8 and 11% (according to CEC L40 T87) and a pour point of between −20 and −60° C. (according to ASTM D 97) may advantageously be obtained.
  • The content of paraffins is more preferably less than 90 wt % and more preferably higher than 80 wt %.
  • The above-described base oil can suitably find use as base oil for an Automatic Transmission Fluids (ATF), motor engine oils, electrical oils or transformer oils and refrigerator oils. lubricant formulations such as motor engine oils of the 0W-x and 5W-x specification according to the SAE J-300 viscosity classification, wherein x is 20, 30, 40, 50 or 60 may be advantageously made using this base oil.
  • It has been found that lubricant formulations can be prepared with the base oils obtainable by the process of the current invention without the need to add high contents of additional ester or aromatic co-base oils. Preferably less than 15 wt % and more preferably less than 10 wt % of such ester or aromatic co-base oil is present in such formulations.

Claims (24)

1. A process to prepare a base oil having a paraffin content of between 75 and 95 wt % the process comprising subjecting a mixture of a hydroisomerized Fischer-Tropsch wax and a petroleum derived feed to a catalytic pour point reducing treatment, wherein the petroleum derived feed has an aromatic content of between 0 and 20 wt % and a naphthenic compound content of between 15 and 90 wt % and wherein the fraction of petroleum derived feed in the mixture is higher than 5 wt % and lower than 50 wt %.
2. The process of claim 1, wherein the petroleum derived feed is a bottoms fraction of a fuels hydrocracker.
3. The process of Process according to claim 2, wherein the content of sulfur in the mixed feed to the pour point reducing treatment is below 50 ppm and the content of nitrogen in the mixed feed to the pour point reducing treatment is below 10 ppm.
4. The process of claim 1, wherein the wax content in the petroleum derived feed is below 30 wt %.
5. The process of claim 4, wherein the pour point of the petroleum derived feed is below −10° C.
6. The process of claim 1, wherein the petroleum derived feed has a saturates content of greater than 98 wt % a viscosity index of between 80 and 150 and a sulfur content of below 0.001 wt %.
7. The process of claim 6, wherein the petroleum derived feed has been obtained in a process comprising a hydrofinishing step performed at a hydrogen pressure of greater than 100 bars.
8. The process of claim 1, wherein the base oil is hydrogenated after performing the pour point reducing treatment such that the content of aromatics is below 1 wt %.
9. The process of claim 1, wherein the catalytic pour point reducing treatment is a catalytic dewaxing process performed in the presence of a catalyst comprising a Group VIII metal and an intermediate pore size zeolite having pore diameter between 0.35 and 0.8 nm, and a binder.
10. The process of claim 1, wherein after performing the catalytic pour point reducing treatment hydrogen is separated from the dewaxed effluent, contacted with a heterogeneous adsorbent selective for removing hydrogen sulfide and recycled to said catalytic pour point reducing treatment.
11. The process of claim 10, wherein the heterogeneous adsorbent is zinc oxide.
12. The process of claim 1, wherein the hydroisomerized Fischer-Tropsch wax is obtained by a process comprising:
(a) hydrocracking/hydroisomerizing a Fischer-Tropsch product, and,
(b) distilling the product of step (a) into one or more gas oil fractions and a higher boiling Fischer-Tropsch derived feed.
13. The process of claim 12, wherein the Fischer-Tropsch product used as feed in step (a) is a product wherein the weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms in the Fischer-Tropsch product is at least 0.4 and wherein at least 30 wt % of compounds in the Fischer-Tropsch product have at least 30 carbon atoms.
14. The process of claim 2, wherein the content of sulfur in the mixed feed to the pour point reducing treatment is below 50 ppm and the content of nitrogen in the mixed feed to the pour point reducing treatment is below 10 ppm.
15. The process of claim 2, wherein the wax content in the petroleum derived feed is below 30 wt %.
16. The process of claim 15, wherein the pour point of the petroleum derived feed is below −10° C.
17. The process of claim 2, wherein the petroleum derived feed has a saturates content of greater than 98 wt % a viscosity index of between 80 and 150 and a sulfur content of below 0.001 wt %.
18. The process of claim 17, wherein the petroleum derived feed has been obtained in a process comprising a hydrofinishing step performed at a hydrogen pressure of greater than 100 bars.
19. The process of claim 2, wherein the base oil is hydrogenated after performing the pour point reducing treatment such that the content of aromatics is below 1 wt %.
20. The process of claim 2, wherein the catalytic pour point reducing treatment is a catalytic dewaxing process performed in the presence of a catalyst comprising a Group VIII metal and an intermediate pore size zeolite having pore diameter between 0.35 and 0.8 nm, and a binder.
21. The process of claim 2, wherein after performing the catalytic pour point reducing treatment hydrogen is separated from the dewaxed effluent, contacted with a heterogeneous adsorbent selective for removing hydrogen sulfide and recycled to said catalytic pour point reducing treatment.
22. The process of claim 21, wherein the heterogeneous adsorbent is zinc oxide.
23. The process of claim 2, wherein the hydroisomerized Fischer-Tropsch wax is obtained by a process comprising:
(a) hydrocracking/hydroisomerizing a Fischer-Tropsch product, and,
(b) distilling the product of step (a) into one or more gas oil fractions and a higher boiling Fischer-Tropsch derived feed.
24. The process of claim 23, wherein the Fischer-Tropsch product used as feed in step (a) is a product wherein the weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms in the Fischer-Tropsch product is at least 0.4 and wherein at least 30 wt % of compounds in the Fischer-Tropsch product have at least 30 carbon atoms.
US10/561,588 2003-06-27 2004-06-25 Process to Prepare a Lubricating Base Oil Abandoned US20070272592A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03291598.5 2003-06-27
EP03291598 2003-06-27
PCT/EP2004/051248 WO2005000999A1 (en) 2003-06-27 2004-06-25 Process to prepare a lubricating base oil

Publications (1)

Publication Number Publication Date
US20070272592A1 true US20070272592A1 (en) 2007-11-29

Family

ID=33547793

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/561,588 Abandoned US20070272592A1 (en) 2003-06-27 2004-06-25 Process to Prepare a Lubricating Base Oil

Country Status (5)

Country Link
US (1) US20070272592A1 (en)
EP (1) EP1644463A1 (en)
JP (1) JP2009513727A (en)
CN (1) CN100358979C (en)
WO (1) WO2005000999A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090062163A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear Oil Compositions, Methods of Making and Using Thereof
US20090159492A1 (en) * 2004-12-24 2009-06-25 Etienne Duhoux Process to prepare a lubricating base oil and its use
US20090298732A1 (en) * 2008-05-29 2009-12-03 Chevron U.S.A. Inc. Gear oil compositions, methods of making and using thereof
US20100078355A1 (en) * 2008-10-01 2010-04-01 Chevron U.S.A. Inc. Process to manufacture a base stock and a base oil manufacturing plant
JP2013209603A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Method for manufacturing lubricant base oil
US9045702B2 (en) 2009-03-31 2015-06-02 Jx Nippon Oil & Energy Corporation Method for producing lubricant base oil
US9677012B2 (en) 2012-03-30 2017-06-13 Jx Nippon Oil & Energy Corporation Method for producing lubricant base oil

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4938447B2 (en) 2003-06-23 2012-05-23 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap Method for producing lubricating base oil
US7674364B2 (en) 2005-03-11 2010-03-09 Chevron U.S.A. Inc. Hydraulic fluid compositions and preparation thereof
US20090054285A1 (en) * 2007-08-21 2009-02-26 Marc-Andre Poirier Lubricant composition with low deposition tendency
FR2943070B1 (en) * 2009-03-12 2012-12-21 Total Raffinage Marketing Hydrocarbon hydrodeparaffin fluid for the manufacture of industrial, agricultural or domestic fluids

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386904A (en) * 1942-01-10 1945-10-16 Line Material Co Electromagnetic device
US2388611A (en) * 1941-05-16 1945-11-06 Selas Corp Of America Method of forming vitreous coatings
US3730876A (en) * 1970-12-18 1973-05-01 A Sequeira Production of naphthenic oils
US3790472A (en) * 1973-05-24 1974-02-05 Chevron Res Hydrocracking process for producing lubricating oils
US4390414A (en) * 1981-12-16 1983-06-28 Exxon Research And Engineering Co. Selective dewaxing of hydrocarbon oil using surface-modified zeolites
US4574043A (en) * 1984-11-19 1986-03-04 Mobil Oil Corporation Catalytic process for manufacture of low pour lubricating oils
US4681674A (en) * 1985-11-07 1987-07-21 Mobil Oil Corporation Fixed bed catalytic reactor system with improved liquid distribution
US4851109A (en) * 1987-02-26 1989-07-25 Mobil Oil Corporation Integrated hydroprocessing scheme for production of premium quality distillates and lubricants
US4859311A (en) * 1985-06-28 1989-08-22 Chevron Research Company Catalytic dewaxing process using a silicoaluminophosphate molecular sieve
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US4990318A (en) * 1989-06-07 1991-02-05 Phillips Petroleum Company Selective removal of hydrogen sulfide over a nickel-promoted absorbing composition
US5034119A (en) * 1989-03-28 1991-07-23 Mobil Oil Corporation Non-carcinogenic bright stock extracts and deasphalted oils
US5053373A (en) * 1988-03-23 1991-10-01 Chevron Research Company Zeolite SSZ-32
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
US5077261A (en) * 1990-06-25 1991-12-31 Phillips Petroleum Company Sulfur absorbants
US5102854A (en) * 1991-03-08 1992-04-07 Phillips Petroleum Company Adsorbent compositions for the removal of hydrogen sulfide from fluid streams
US5108975A (en) * 1991-01-28 1992-04-28 Phillips Petroleum Company Composition and method of making high porosity, high strength compositions
US5130288A (en) * 1991-03-07 1992-07-14 Phillips Petroleum Company Cogelled mixtures of hydrated zinc oxide and hydrated silica sulfur sorbents
US5157191A (en) * 1986-01-03 1992-10-20 Mobil Oil Corp. Modified crystalline aluminosilicate zeolite catalyst and its use in the production of lubes of high viscosity index
US5174919A (en) * 1991-03-07 1992-12-29 Phillips Petroleum Company Sulfur absorbents and process for removing sulfur from fluid streams
US5177050A (en) * 1991-12-16 1993-01-05 Phillips Petroleum Company Sulfur absorbents
US5219542A (en) * 1991-07-10 1993-06-15 Phillips Petroleum Company Process for removing sulfur compounds
US5244641A (en) * 1992-04-28 1993-09-14 Phillips Petroleum Company Absorption of hydrogen sulfide and absorbent composition therefor
US5248481A (en) * 1992-05-11 1993-09-28 Minnesota Mining And Manufacturing Company Diesel particulate trap of perforated tubes having laterally offset cross-wound wraps of inorganic yarn
US5252527A (en) * 1988-03-23 1993-10-12 Chevron Research And Technology Company Zeolite SSZ-32
US5281445A (en) * 1990-07-30 1994-01-25 Phillips Petroleum Company Coating of components of sulfur absorbants
US5525209A (en) * 1993-10-25 1996-06-11 Institut Francais Du Petrole Process for the improved production of middle distillates jointly with the production of high viscosity oils with high viscosity indices from heavy petroleum cuts
US5976354A (en) * 1997-08-19 1999-11-02 Shell Oil Company Integrated lube oil hydrorefining process
US6025305A (en) * 1998-08-04 2000-02-15 Exxon Research And Engineering Co. Process for producing a lubricant base oil having improved oxidative stability
US6080301A (en) * 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6190532B1 (en) * 1998-07-13 2001-02-20 Mobil Oil Corporation Production of high viscosity index lubricants
US6294077B1 (en) * 2000-02-02 2001-09-25 Mobil Oil Corporation Production of high viscosity lubricating oil stock with improved ZSM-5 catalyst
US6315891B1 (en) * 1997-12-03 2001-11-13 Schumann Sasol (South Africa) (Proprietary) Limited Production of lubricant base oils
US20020146358A1 (en) * 2001-04-04 2002-10-10 Smith Ben D. Graded catalyst bed for split-feed hydrocracking/hydrotreating
US6544410B1 (en) * 2001-12-19 2003-04-08 Phillips Petroleum Company Desulfurization with improved sorbent regeneration
US20030088133A1 (en) * 2001-10-19 2003-05-08 O'rear Dennis J. Lube base oils with improved yield
US6576120B1 (en) * 1998-11-16 2003-06-10 Shell Oil Company Catalytic dewaxing process
US20040065581A1 (en) * 2002-10-08 2004-04-08 Zhaozhong Jiang Dual catalyst system for hydroisomerization of Fischer-Tropsch wax and waxy raffinate
US20050194288A1 (en) * 2004-02-26 2005-09-08 Holland John B. Process to prepare a lubricating base oil
US7250107B2 (en) * 2000-07-26 2007-07-31 Institut Francais Du Petrole Flexible method for producing oil bases and distillates from feedstock containing heteroatoms
US7354508B2 (en) * 2002-07-12 2008-04-08 Shell Oil Company Process to prepare a heavy and a light lubricating base oil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098551A (en) * 1989-05-30 1992-03-24 Bertaux Jean Marie A Process for the manufacture of lubricating base oils
ES2190303B1 (en) * 1999-04-29 2005-02-16 Institut Francais Du Petrole FLEXIBLE PROCEDURE FOR THE PRODUCTION OF OIL BASES AND DISTILLATES FOR A CONVERSION-HYDROISOMERIZATION ON A Slightly DISPERSED CATALYST FOLLOWED BY A CATALYTIC DEPARAFINATE.
US7067049B1 (en) 2000-02-04 2006-06-27 Exxonmobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
US6773578B1 (en) * 2000-12-05 2004-08-10 Chevron U.S.A. Inc. Process for preparing lubes with high viscosity index values

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2388611A (en) * 1941-05-16 1945-11-06 Selas Corp Of America Method of forming vitreous coatings
US2386904A (en) * 1942-01-10 1945-10-16 Line Material Co Electromagnetic device
US3730876A (en) * 1970-12-18 1973-05-01 A Sequeira Production of naphthenic oils
US3790472A (en) * 1973-05-24 1974-02-05 Chevron Res Hydrocracking process for producing lubricating oils
US4390414A (en) * 1981-12-16 1983-06-28 Exxon Research And Engineering Co. Selective dewaxing of hydrocarbon oil using surface-modified zeolites
US4574043A (en) * 1984-11-19 1986-03-04 Mobil Oil Corporation Catalytic process for manufacture of low pour lubricating oils
US4859311A (en) * 1985-06-28 1989-08-22 Chevron Research Company Catalytic dewaxing process using a silicoaluminophosphate molecular sieve
US4681674A (en) * 1985-11-07 1987-07-21 Mobil Oil Corporation Fixed bed catalytic reactor system with improved liquid distribution
US5157191A (en) * 1986-01-03 1992-10-20 Mobil Oil Corp. Modified crystalline aluminosilicate zeolite catalyst and its use in the production of lubes of high viscosity index
US4851109A (en) * 1987-02-26 1989-07-25 Mobil Oil Corporation Integrated hydroprocessing scheme for production of premium quality distillates and lubricants
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US5053373A (en) * 1988-03-23 1991-10-01 Chevron Research Company Zeolite SSZ-32
US5252527A (en) * 1988-03-23 1993-10-12 Chevron Research And Technology Company Zeolite SSZ-32
US5034119A (en) * 1989-03-28 1991-07-23 Mobil Oil Corporation Non-carcinogenic bright stock extracts and deasphalted oils
US4990318A (en) * 1989-06-07 1991-02-05 Phillips Petroleum Company Selective removal of hydrogen sulfide over a nickel-promoted absorbing composition
US5077261A (en) * 1990-06-25 1991-12-31 Phillips Petroleum Company Sulfur absorbants
US5281445A (en) * 1990-07-30 1994-01-25 Phillips Petroleum Company Coating of components of sulfur absorbants
US5108975A (en) * 1991-01-28 1992-04-28 Phillips Petroleum Company Composition and method of making high porosity, high strength compositions
US5130288A (en) * 1991-03-07 1992-07-14 Phillips Petroleum Company Cogelled mixtures of hydrated zinc oxide and hydrated silica sulfur sorbents
US5174919A (en) * 1991-03-07 1992-12-29 Phillips Petroleum Company Sulfur absorbents and process for removing sulfur from fluid streams
US5102854A (en) * 1991-03-08 1992-04-07 Phillips Petroleum Company Adsorbent compositions for the removal of hydrogen sulfide from fluid streams
US5219542A (en) * 1991-07-10 1993-06-15 Phillips Petroleum Company Process for removing sulfur compounds
US5177050A (en) * 1991-12-16 1993-01-05 Phillips Petroleum Company Sulfur absorbents
US5244641A (en) * 1992-04-28 1993-09-14 Phillips Petroleum Company Absorption of hydrogen sulfide and absorbent composition therefor
US5248481A (en) * 1992-05-11 1993-09-28 Minnesota Mining And Manufacturing Company Diesel particulate trap of perforated tubes having laterally offset cross-wound wraps of inorganic yarn
US5525209A (en) * 1993-10-25 1996-06-11 Institut Francais Du Petrole Process for the improved production of middle distillates jointly with the production of high viscosity oils with high viscosity indices from heavy petroleum cuts
US5976354A (en) * 1997-08-19 1999-11-02 Shell Oil Company Integrated lube oil hydrorefining process
US6315891B1 (en) * 1997-12-03 2001-11-13 Schumann Sasol (South Africa) (Proprietary) Limited Production of lubricant base oils
US6190532B1 (en) * 1998-07-13 2001-02-20 Mobil Oil Corporation Production of high viscosity index lubricants
US6025305A (en) * 1998-08-04 2000-02-15 Exxon Research And Engineering Co. Process for producing a lubricant base oil having improved oxidative stability
US6080301A (en) * 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6576120B1 (en) * 1998-11-16 2003-06-10 Shell Oil Company Catalytic dewaxing process
US6294077B1 (en) * 2000-02-02 2001-09-25 Mobil Oil Corporation Production of high viscosity lubricating oil stock with improved ZSM-5 catalyst
US7250107B2 (en) * 2000-07-26 2007-07-31 Institut Francais Du Petrole Flexible method for producing oil bases and distillates from feedstock containing heteroatoms
US20020146358A1 (en) * 2001-04-04 2002-10-10 Smith Ben D. Graded catalyst bed for split-feed hydrocracking/hydrotreating
US20030088133A1 (en) * 2001-10-19 2003-05-08 O'rear Dennis J. Lube base oils with improved yield
US6544410B1 (en) * 2001-12-19 2003-04-08 Phillips Petroleum Company Desulfurization with improved sorbent regeneration
US7354508B2 (en) * 2002-07-12 2008-04-08 Shell Oil Company Process to prepare a heavy and a light lubricating base oil
US20040065581A1 (en) * 2002-10-08 2004-04-08 Zhaozhong Jiang Dual catalyst system for hydroisomerization of Fischer-Tropsch wax and waxy raffinate
US20050194288A1 (en) * 2004-02-26 2005-09-08 Holland John B. Process to prepare a lubricating base oil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090159492A1 (en) * 2004-12-24 2009-06-25 Etienne Duhoux Process to prepare a lubricating base oil and its use
US20090062163A1 (en) * 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Gear Oil Compositions, Methods of Making and Using Thereof
US20090298732A1 (en) * 2008-05-29 2009-12-03 Chevron U.S.A. Inc. Gear oil compositions, methods of making and using thereof
US20100078355A1 (en) * 2008-10-01 2010-04-01 Chevron U.S.A. Inc. Process to manufacture a base stock and a base oil manufacturing plant
WO2010039297A1 (en) * 2008-10-01 2010-04-08 Chevron U.S.A. Inc. A process to manufacture a base stock and a base oil manufacturing plant
US8562819B2 (en) 2008-10-01 2013-10-22 Chevron U.S.A. Inc. Process to manufacture a base stock and a base oil manufacturing plant
KR101562084B1 (en) 2008-10-01 2015-10-20 셰브런 유.에스.에이.인크. A process to manufacture a base stock and a base oil manufacturing plant
US9732287B2 (en) 2008-10-01 2017-08-15 Chevron U.S.A. Inc. Process to manufacture a base stock
US9045702B2 (en) 2009-03-31 2015-06-02 Jx Nippon Oil & Energy Corporation Method for producing lubricant base oil
JP2013209603A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Method for manufacturing lubricant base oil
US9677012B2 (en) 2012-03-30 2017-06-13 Jx Nippon Oil & Energy Corporation Method for producing lubricant base oil

Also Published As

Publication number Publication date
CN1813044A (en) 2006-08-02
WO2005000999A1 (en) 2005-01-06
EP1644463A1 (en) 2006-04-12
JP2009513727A (en) 2009-04-02
CN100358979C (en) 2008-01-02

Similar Documents

Publication Publication Date Title
JP5680028B2 (en) Lubricant base oil with optimized branching
US9598651B2 (en) Integrated hydrocracking and dewaxing of hydrocarbons
DE69929803T3 (en) Synthetic basebread oil
AU2004213790B2 (en) Process for producing premium fischer-tropsch diesel and lube base oils
CA2230760C (en) Integrated lubricant upgrading process
US6846778B2 (en) Synthetic isoparaffinic premium heavy lubricant base stock
ES2341566T3 (en) Gasoil or gasoil mixing component.
AU780765B2 (en) Process for preparing lubes with high viscosity index values
CA2803604C (en) Integrated hydrocracking and dewaxing of hydrocarbons
NL1026464C2 (en) Fuels and lubricants using layer bed catalysts in the hydrotreating of waxy feeds, including Fischer-Tropsch wax.
AU2003286538B2 (en) Production of fuels and lube oils from Fischer-Tropsch wax
CN100384965C (en) Process to prepare a fischer-tropsch product
US5804058A (en) Catalytic dewaxing processes using alumina free coated catalyst
AU2004250190B2 (en) Fuels and lubricants using layered bed catalysts in hydrotreating waxy feeds, including Fischer-Tropsch wax, plus solvent dewaxing
US7198710B2 (en) Isomerization/dehazing process for base oils from Fischer-Tropsch wax
US9487723B2 (en) High viscosity high quality group II lube base stocks
AU2002301444B2 (en) Lube base oils with improved yield
DE60205596T2 (en) Oil composition
AU2004219695B2 (en) Blending of low viscosity fischer-tropsch base oils and fischer-tropsch derived bottoms or bright stock
JP4671689B2 (en) Mixing of low viscosity base oils by Fischer-Tropsch process to produce high quality lubricating base oils
AU2002249845B2 (en) Integrated lubricant upgrading process
EP0776959B1 (en) Process for producing lubricating base oils
AU2003270493B2 (en) Heavy lube oil from Fischer-Tropsch wax
AU724363B2 (en) Layered catalyst system for lube oil hydroconversion
JP2010121139A (en) Method for converting waxy feed into low haze heavy base oil

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHELL OIL COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GERMAINE, GILBERT ROBERT BERNARD;STEENGE, WIECHER DERK EVERT;REEL/FRAME:019118/0449;SIGNING DATES FROM 20060307 TO 20061005

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION