US20070244523A1 - System and method for selective retinal stimulation - Google Patents

System and method for selective retinal stimulation Download PDF

Info

Publication number
US20070244523A1
US20070244523A1 US11/735,417 US73541707A US2007244523A1 US 20070244523 A1 US20070244523 A1 US 20070244523A1 US 73541707 A US73541707 A US 73541707A US 2007244523 A1 US2007244523 A1 US 2007244523A1
Authority
US
United States
Prior art keywords
pulse phase
pre
duration
stimulation
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/735,417
Inventor
Warren Grill
Matthew Schiefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Case Western Reserve University
Original Assignee
Case Western Reserve University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US74474906P priority Critical
Application filed by Case Western Reserve University filed Critical Case Western Reserve University
Priority to US11/735,417 priority patent/US20070244523A1/en
Assigned to CASE WESTERN RESERVE UNIVERSITY reassignment CASE WESTERN RESERVE UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHIEFER, MATTHEW A., GRILL, WARREN M.
Publication of US20070244523A1 publication Critical patent/US20070244523A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36046Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0543Retinal electrodes

Abstract

A method for selective electrical stimulation of a retina for application in a visual neuralprosthesis. The method includes application of an asymmetrical, charge-balance biphasic waveform to increase the receptivity of selected cells to a subsequent stimulus, and then electrically stimulating to those selected cells to induce either a punctuate phosphene (perceived spot of light in the visual field) or a streak phosphene (streak of light in the visual field). A waveform having a sub-threshold anodic pulse followed by a supra-threshold cathodic pulse induces the punctuate phosphene, and a sub-threshold cathodic pulse followed by a supra-threshold anodic pulse induces the streak phosphene.

Description

    RELATED APPLICATIONS
  • The inventors claim the benefit of U.S. Provisional Application No. 60/744,749, filed Apr. 13, 2006, which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to electrical stimulation of sensory nerves, and in particular electrical stimulation of retinal ganglion cells of an eye to induce visual perception.
  • BACKGROUND
  • In many patients who are blinded by degenerative conditions, the photoreceptors of the retina may no longer function normally. For many of these patients, however, the retinal ganglion cells can continue to function and provide a signal pathway through the central nervous system to the brain.
  • A typical eye 10 and the relative location of its components is schematically illustrated in FIGS. 1 and 2. The eye 10 is a generally circular globe filled with aqueous humour 12, a clear liquid that is similar to water. The eye 10 also includes a cornea 14, which is a transparent structure that admits light into the eye 10. The amount of light passing into the eye 10 is controlled by an iris 16, a muscle that moves to allow or block light from passing through a lens 20 behind the iris 16 to the interior of the eye 10. The lens 20 focuses light passing therethrough onto the retina 22. The retina 22 forms the interior surface of the eye opposite the lens. The output of the retina 22 is carried by retinal ganglion cells 30 that transmit action potentials to the brain via the optic nerve 24.
  • In the eye 10, the retina 22 is a multilayered tissue that includes a layer of rods 26 and cones 28 which are the photoreceptors that detect the light falling thereon and help to convert the image projected on the retina 22 into electrical signals that can be interpreted by the brain as sight. The rods 26 provide vision in dim light and do not respond to bright light. Cones 28 on the other hand, do not respond to dim light, but provide color and fine detail vision. An inner nuclear layer separates the rods 26 and cones 28 from the ganglion cells 30 and includes amacrine cells 32, bipolar cells 34 and horizontal cells 36.
  • A common structural feature of ganglion cells 30 is an approximately 90° bend 40 in the axon as the axon leaves the ganglion cell layer 42 and enters the nerve fiber layer 44. The axons of the retinal ganglion cells 30 pass across the surface of the retina 22 and collect before exiting to form the optic nerve 24. In a healthy eye, light detected by the rods 26 and cones 28 generate signals that are transmitted via the retinal ganglion cells 30 and the optic nerve 24 to the brain, which perceives the visual image.
  • SUMMARY
  • An exemplary method for electrically stimulating a retina of an eye to induce visual perception includes the following steps: placing an electrode adjacent a retinal ganglion cell layer; effecting a change in the excitability of cells in the ganglion cell layer by selectively applying a biphasic asymmetrical waveform having a relatively long duration and a relatively low amplitude pre-pulse phase of a first polarity, and inducing visual perception by selectively applying a biphasic asymmetrical waveform having a relatively short duration and relatively high amplitude stimulation pulse phase that follows the pre-pulse phase. The stimulation pulse phase has a second polarity opposite the first polarity of the pre-pulse phase. A cathodic pre-pulse phase and an anodic stimulation phase induce the perception of a circular (punctuate) shape, and an anodic pre-pulse phase and a cathodic stimulation phase induce the perception of an elongated (streak) shape.
  • The pre-pulse phase has a magnitude that is below a threshold value at which ganglion nerve cells are activated to pass a signal (sub-threshold magnitude), and has a duration that is sufficient to increase the excitability of the selected type of ganglion nerve cell. An anodic pre-pulse phase applied at a sub-threshold magnitude and for a duration that is sufficient to increase the excitability of a bending region of an axon helps to induce the perception of a circular shape in response to the stimulation phase. Applying a cathodic pre-pulse phase at a sub-threshold magnitude and for a duration sufficient to increase the excitability of the passing region of an axon helps to induce the perception of an elongated shape in response to the stimulation phase. Typically, the stimulation pulse phase has a supra-threshold magnitude that balances the charge injected by the pre-pulse phase. The pre-pulse phase typically lasts for no more than about one millisecond. The duration of the stimulation pulse phase to the duration of the pre-pulse phase is approximately 10:1.
  • Another method includes the steps of placing an electrode adjacent a retinal ganglion cell layer and effecting a change in the excitability of cells in the ganglion cell layer by selectively applying a biphasic asymmetrical waveform. The waveform has a pre-pulse phase having a first polarity, a first amplitude and a first duration. The first amplitude and first duration together define a pre-pulse charge having a first magnitude and the first polarity. The waveform also includes a stimulation-pulse phase following the pre-pulse phase, the stimulation-pulse phase having a second polarity opposite the first polarity, a second amplitude and second duration less than the first duration. The second amplitude and second duration together define a stimulation charge having the second polarity and a second magnitude that equals the first magnitude.
  • A visual neuroprosthesis for electrically stimulating a retina of an eye to induce visual perception generally includes an electrode positionable near a ganglion cell layer of the retina of an eye, and a waveform generator capable of generating a waveform for selectively stimulating either bending axons to induce the perception of a circular image or passing axons to induce the perception of a streak image.
  • U.S. Pat. No. 6,560,490, which includes work performed by an inventor of the present invention in the field of central nervous system (CNS) stimulation, is hereby incorporated herein by reference. In contrast to this earlier patent, the present application recognizes the applicability of electrical stimulation to the eye and applies a biphasic asymmetrical waveform to produce selectively different types of perception, i.e., either spots or streaks, based on the polarity, duration and magnitude of the pre-pulse phase and the stimulation phase.
  • The foregoing and other features of the invention are shown in the drawings and particularly pointed out in the claims. The following description and annexed drawings set forth detail one or more illustrated embodiments of the invention, as being indicative, however, but one or a few of the various ways in which the principles of the invention might be employed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross-sectional view of an eye.
  • FIG. 2 is an enlarged schematic view of a portion of a retina portion of the eye.
  • FIG. 3 is a schematic drawing of a neuroprosthesis that can be used in accordance with the present invention.
  • FIG. 4 is a schematic representation of an electrode and retinal ganglion cells.
  • FIGS. 5 and 6 are schematic illustrations of biphasic asymmetrical waveforms and the resulting visual perception induced thereby.
  • DETAILED DESCRIPTION
  • Referring now to the drawings in detail, and initially to FIGS. 1-4, a visual neuroprosthesis 100 for electrically stimulating a retina 22 of an eye 10 to induce visual perception includes an electrode 102 that can be positioned near a ganglion cell layer 40 of a retina 22, and a waveform generator 104 connected to the electrode 102. The threshold for excitation of a retinal ganglion cell 30 with an epiretinal electrode generally is lower when the electrode is located in proximity to the characteristic 90° bend (bending region) 40 in the axon of the ganglion cell 30 than when it is located over a passing axon of the nerve fiber layer 44. The waveform generator 104 is capable of generating a waveform in the electrode 102 for selectively stimulating either bending axons 40 of the retinal ganglion cell layer 42 to induce the perception of a circular image (punctuate, spot) or passing axons of the nerve fiber layer 44 to induce the perception of an elongate image (pie, streak, teardrop).
  • The waveform generator 104 is configured or programmed to output biphasic, asymmetric waveforms to induce the desired visual perception. The waveform generator 104 also may have a ground or reference potential 106, and may be implanted into a body or remotely located outside the body. The hardware of such a generator is conventional. Likewise, the electrode 102 may be a conventional electrode, such as a metal microelectrode or a multiple-contact electrode that can be placed adjacent the eye, including on the eye.
  • A method for electrically stimulating a retina of an eye, using the aforementioned waveform generator 104 and electrode 102, for example, may be performed to selectively induce visual perception of either an elongate image (sometimes referred to as a streak phosphene) or a spot image (sometimes referred to as a punctuate phosphene).
  • The method includes the steps of placing an electrode 102 adjacent an eye, particularly near a retinal ganglion cell layer 42, and effecting a change in the excitability of the cells 30 in the ganglion cell layer 42 or the nerve fiber layer 44. After effecting the change in the excitability, the method includes inducing visual perception.
  • The effecting and inducing steps are performed by selectively applying a biphasic asymmetrical waveform. The waveform has a relatively long duration and relatively low amplitude (sub-threshold) pre-pulse phase of a first polarity, and a relatively short duration and relatively high amplitude (supra-threshold) stimulation pulse phase of a second polarity opposite the first polarity. Further, an interphase delay may be introduced between the delivery of the pre-pulse phase and stimulation phase of the waveform. To preserve charge-balancing, the charge delivered by the pre-pulse phase is equal in magnitude and opposite in polarity relative to the charge delivered by the stimulation pulse phase.
  • As shown in FIG. 5, a cathodic (positive) pre-pulse phase 110 and an anodic (negative) stimulation phase 112 following the pre-pulse phase 110 have been found to increase the excitation of a passing region of an axon in a nerve fiber layer 44 and to induce the perception of a circular or spot shape 114. The same pre-pulse phase 110 of the waveform that increases the susceptibility of the passing region of the axon to stimulation decreases the susceptibility of a bending region 40 of an axon to excitation by the subsequent stimulation pulse phase 112 of the waveform. The opposite also applies when applying an anodic pre-pulse phase followed by a cathodic stimulation phase.
  • Referring now to FIG. 6, an anodic pre-pulse phase 120 and a cathodic stimulation phase 122 increase the excitation of a bending region 40 of an axon and induce the perception of an elongate or streak shape 124.
  • The threshold for ganglion cell stimulation is the point at which the electrical pulse generates propagating action potentials in the axon. The stimulation threshold generally is lower when the electrode 102 is located in proximity to the characteristic ninety degree bend 40 in the axon than when it is located over a passing axon of the nerve fiber layer 44. The stimulation pulse phase typically has a magnitude that balances the charge injected by the pre-pulse phase, and generally has a duration of no more than about one millisecond. The pulse width typically is about fifty microseconds to about five hundred microseconds. And the duration of the stimulation pulse phase to the duration of the pre-pulse phase is approximately 10:1.
  • This approach may be applied across multiple electrodes, which may be contained within an electrode array, to produce multiple phosphenes (spots and streaks) and the perception of an image. Different waveforms (polarity, duration, intensity) would be delivered selectively to different electrodes within the array to produce the desired set of phosphenes and thereby the desired image.
  • Exemplary stimulus waveforms are shown and described in U.S. Pat. No. 6,560,490, which is incorporated herein by reference. In addition to the aforementioned patent, C. C. McIntyre and W. M. Grill, “Selective Microstimulation of Central Nervous System Neurons,” Annals of Biomedical Engineering vol. 28, pp. 219-233, 2000, is hereby incorporated herein by reference.
  • Although the invention has been shown and described with respect to certain preferred embodiments, equivalent alterations and modifications will occur to others skilled in the art upon reading and understanding the specification and the annexed drawings. In particular regard to the various functions performed by the above described integers (components, assemblies, devices, compositions, etc.), the terms (including a reference to “means”) used to describe such integers are intended to correspond, unless otherwise indicated, to any integer which performs the specified function of the described integer (i.e. that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one of several illustrated embodiments, such feature can be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.

Claims (9)

1. A method for electrically stimulating a retina of an eye to induce visual perception, comprising the following steps:
placing an electrode adjacent a retinal ganglion cell layer;
effecting a change in the excitability of cells in the ganglion cell layer by selectively applying a biphasic asymmetrical waveform having a relatively long duration and relatively low amplitude pre-pulse phase of a first polarity; and
inducing visual perception by selectively applying a biphasic asymmetrical waveform having a relatively short duration and relatively high amplitude stimulation pulse phase of a second polarity opposite the first polarity following the pre-pulse phase;
wherein a cathodic pre-pulse phase and an anodic stimulation phase induce the perception of a circular shape, and an anodic pre-pulse phase and a cathodic stimulation phase induce the perception of an elongate shape.
2. A method as set forth in claim 1, wherein the effecting and inducing steps are accomplished by applying an asymmetrical charged-balanced biphasic waveform.
3. A method as set forth in claim 1, wherein the effecting step includes applying the anodic pre-pulse phase at a magnitude that is below a threshold value at which ganglion nerve cells are triggered and for a duration that is sufficient to increase the excitability of the bending region of an axon.
4. A method as set forth in claim 1, wherein the effecting step includes applying the cathodic pre-pulse phase at a magnitude that is sub-threshold and for a duration sufficient to increase the excitability of the passing region of an axon.
5. A method as set forth in claim 1, wherein the inducing step includes applying the stimulation pulse phase at a supra-threshold magnitude that balances the charge injected by the pre-pulse phase.
6. A method as set forth in claim 1, wherein the effecting step includes applying a pre-pulse phase for no more than about half a millisecond.
7. A method as set forth in claim 1, wherein the duration of the stimulation pulse phase to the duration of the pre-pulse phase is approximately 10:1.
8. A method comprising the steps of
placing an electrode adjacent a retinal ganglion cell layer;
effecting a change in the excitability of cells in the ganglion cell layer by selectively applying a biphasic asymmetrical waveform that has a pre-pulse phase having a first polarity, a first amplitude and a first duration, the first amplitude and first duration together defining a pre-pulse charge having a first magnitude and the first polarity; and a stimulation-pulse phase following the pre-pulse phase, the stimulation-pulse phase having a second polarity opposite the first polarity, a second amplitude and second duration less than the first duration, the second amplitude and second duration together defining a stimulation charge having the second polarity and a second magnitude that equals the first magnitude.
9. A visual neuroprosthesis for electrically stimulating a retina of an eye to induce visual perception, comprising an electrode positionable near a ganglion cell layer of the retina of an eye; and a waveform generator capable of generating a waveform for selectively stimulating either bending axons to induce the perception of a circular image or passing axons to induce the perception of an elongated image.
US11/735,417 2006-04-13 2007-04-13 System and method for selective retinal stimulation Abandoned US20070244523A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US74474906P true 2006-04-13 2006-04-13
US11/735,417 US20070244523A1 (en) 2006-04-13 2007-04-13 System and method for selective retinal stimulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/735,417 US20070244523A1 (en) 2006-04-13 2007-04-13 System and method for selective retinal stimulation
US12/789,063 US8892211B2 (en) 2006-04-13 2010-05-27 System and method for selective retinal stimulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/789,063 Continuation US8892211B2 (en) 2006-04-13 2010-05-27 System and method for selective retinal stimulation

Publications (1)

Publication Number Publication Date
US20070244523A1 true US20070244523A1 (en) 2007-10-18

Family

ID=38605808

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/735,417 Abandoned US20070244523A1 (en) 2006-04-13 2007-04-13 System and method for selective retinal stimulation
US12/789,063 Active 2028-09-16 US8892211B2 (en) 2006-04-13 2010-05-27 System and method for selective retinal stimulation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/789,063 Active 2028-09-16 US8892211B2 (en) 2006-04-13 2010-05-27 System and method for selective retinal stimulation

Country Status (1)

Country Link
US (2) US20070244523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090287276A1 (en) * 2008-05-14 2009-11-19 Greenberg Robert J Visual Prosthesis for Phosphene Shape Control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190232052A1 (en) * 2016-06-23 2019-08-01 Newsouth Innovations Pty Limited Method and apparatus for facilitating artificial vision

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458157B1 (en) * 1997-08-04 2002-10-01 Suaning Gregg Joergen Retinal stimulator
US6560490B2 (en) * 2000-09-26 2003-05-06 Case Western Reserve University Waveforms for selective stimulation of central nervous system neurons
US20070142877A1 (en) * 2005-12-20 2007-06-21 Mclean George Y Charge-integrating retinal prosthesis and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264320B2 (en) * 2003-09-30 2009-05-13 株式会社ニデック Vision regeneration assisting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458157B1 (en) * 1997-08-04 2002-10-01 Suaning Gregg Joergen Retinal stimulator
US6560490B2 (en) * 2000-09-26 2003-05-06 Case Western Reserve University Waveforms for selective stimulation of central nervous system neurons
US20070142877A1 (en) * 2005-12-20 2007-06-21 Mclean George Y Charge-integrating retinal prosthesis and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090287276A1 (en) * 2008-05-14 2009-11-19 Greenberg Robert J Visual Prosthesis for Phosphene Shape Control
US9254385B2 (en) * 2008-05-14 2016-02-09 Second Sight Medical Products, Inc. Visual prosthesis for phosphene shape control

Also Published As

Publication number Publication date
US8892211B2 (en) 2014-11-18
US20100305659A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
Landgren et al. Vestibular, cochlear and trigeminal projections to the cortex in the anterior suprasylvian sulcus of the cat
Potts et al. The electrically evoked response of the visual system (EER)
Fried et al. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation
Suga et al. Plasticity and corticofugal modulation for hearing in adult animals
Cooper et al. Reversibility of chronic neurologic deficits. Some effects of electrical stimulation of the thalamus and internal capsule in man
EP1494753B1 (en) Variable pitch electrode array
Yan et al. Corticofugal modulation of the midbrain frequency map in the bat auditory system
US9403014B2 (en) Onset-mitigating high-frequency nerve block
US7338522B2 (en) Implantable retinal electrode array configuration for minimal retinal damage and method of reducing retinal stress
Winter et al. Retinal prostheses: current challenges and future outlook
Troyk et al. A model for intracortical visual prosthesis research
US7047080B2 (en) Self-sufficient retinal prosthesis powered by intraocular photovoltaic cells
EP1417001B1 (en) Gradual recruitment of muscle/neural excitable tissue using high-rate electrical stimulation parameters
US7890185B2 (en) Treatment of disorders by unidirectional nerve stimulation
EP1007148B1 (en) Apparatus for adjusting the locus of excitation of electrically excitable tissue
US6458157B1 (en) Retinal stimulator
Kuncel et al. Selection of stimulus parameters for deep brain stimulation
Shannon Threshold and loudness functions for pulsatile stimulation of cochlear implants
US6622038B2 (en) Treatment of movement disorders by near-diaphragmatic nerve stimulation
EP2523598B1 (en) Penetrating electrodes for retinal stimulation
Luo et al. The Argus® II retinal prosthesis system
Sakaguchi et al. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes
Pezaris et al. Demonstration of artificial visual percepts generated through thalamic microstimulation
US7657318B2 (en) Technique for adjusting the locus of excitation of electrically excitable tissue
Eckhorn et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex

Legal Events

Date Code Title Description
AS Assignment

Owner name: CASE WESTERN RESERVE UNIVERSITY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRILL, WARREN M.;SCHIEFER, MATTHEW A.;REEL/FRAME:019480/0136;SIGNING DATES FROM 20070516 TO 20070604

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION