US20070244512A1 - Endoscopic device - Google Patents

Endoscopic device Download PDF

Info

Publication number
US20070244512A1
US20070244512A1 US11/404,969 US40496906A US2007244512A1 US 20070244512 A1 US20070244512 A1 US 20070244512A1 US 40496906 A US40496906 A US 40496906A US 2007244512 A1 US2007244512 A1 US 2007244512A1
Authority
US
United States
Prior art keywords
clevis
actuator wire
wire
set forth
actuation hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/404,969
Other versions
US7857827B2 (en
Inventor
John Measamer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Priority to US11/404,217 priority Critical patent/US8740853B2/en
Priority to US11/404,737 priority patent/US20070244510A1/en
Priority to US11/404,796 priority patent/US20070244511A1/en
Priority to US11/404,307 priority patent/US8313500B2/en
Priority to US11/404,969 priority patent/US7857827B2/en
Priority to US11/404,736 priority patent/US20070244509A1/en
Assigned to ETHICON ENDO-SURGERY, INC. reassignment ETHICON ENDO-SURGERY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEASAMER, JOHN P.
Priority to PCT/US2007/009109 priority patent/WO2007120813A2/en
Priority to JP2009505496A priority patent/JP5165673B2/en
Priority to BRPI0709979A priority patent/BRPI0709979B8/en
Priority to EP07755393A priority patent/EP2010064A2/en
Publication of US20070244512A1 publication Critical patent/US20070244512A1/en
Publication of US7857827B2 publication Critical patent/US7857827B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2939Details of linkages or pivot points
    • A61B2017/294Connection of actuating rod to jaw, e.g. releasable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320064Surgical cutting instruments with tissue or sample retaining means

Definitions

  • the present invention generally relates to endoscopic instruments, and more particularly to biopsy forceps and other endoscopic end effectors.
  • Endoscopic biopsy forceps are a medical instrument used in combination with an endoscope for removing tissue samples from inside a patient's body for analysis. These instruments typically include an elongate flexible member having a biopsy jaw assembly mounted on one end.
  • the jaw assembly includes a clevis holding pivotally mounted jaws adapted for removing tissue for analysis.
  • An actuator comprising an actuator handle and an actuator member extending from the handle to the pivoting jaws of the jaw assembly moves the jaws between an open position in which the ends of the jaws are spaced and a closed position in which the ends of the jaws contact each other to obtain the tissue sample.
  • some aspects of the present invention relate to other types of endoscopic end effectors such as a flexible grasper, a dissector, or scissors.
  • Biopsy forceps frequently have teeth along the mating edges of the jaws to improve grasping of the tissue.
  • the teeth extending along each side of the jaw and those extending across the end of the jaw interact differently with the tissue. In the past, these differences in interaction have not been taken into account when selecting tooth profiles for the different portions of the jaw.
  • a fundamental function of biopsy forceps is to pinch tissue in order to tear a sample free. The teeth, particularly those at the end of the jaw, are believed to have a significant impact on sample depth and weight.
  • the jaw assembly includes a clevis
  • certain obstacles are presented during assembly. If the clevis and axle pin are inseparably assembled before the jaws are installed, the arms of the clevis must be spread when the jaws are being assembled with the clevis. If the clevis and axle pin are separate, the jaws must be inserted between the clevis arms and aligned with the axle pin. Either process has a potential for increasing assembly cost. Still further, connecting the actuator members to the jaw assembly is difficult to achieve using conventional devises because the clevis blocks clear access to these components.
  • the jaw assembly has portions (e.g., distal portions) that are susceptible to higher stresses and wear.
  • portions of the jaw can be thicker or made from different materials.
  • a large jaw size is desired to obtain a large tissue sample.
  • a small jaw size is desirable so that the forceps can travel through smaller radius turns.
  • the jaw size is limited by turning radius.
  • biopsy forceps and end effectors generally is that these instruments are very long and flexible, making packaging, storage and handling difficult.
  • the instruments are frequently coiled when packaged. When the packaging is opened, the instruments can spontaneously uncoil, become unmanageable, potentially falling on the floor, and becoming contaminated or being damaged.
  • the present invention includes a surgical instrument comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends.
  • the clevis has a pair of spaced arms.
  • the instrument further comprises a pin extending between the spaced arms of the clevis, and a pair of end effectors.
  • Each of the end effectors has a pivot hole adapted for receiving the pin extending between the spaced arms of the clevis for pivotal movement relative to the clevis.
  • Each of the end effectors also has a control arm for pivoting the respective end effector about the pin.
  • the control arm includes an actuation hole and a tang adjacent the actuation hole.
  • the instrument includes an actuator wire extending longitudinally to a laterally extending end received within the actuation hole. A portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole is engaged by the tang to maintain the wire in the actuation hole.
  • the invention includes an endoscopic device comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends.
  • the clevis has a pair of spaced arms.
  • the device further comprises a pair of jaws mounted on the clevis for pivotal movement. Each of the jaws has a control arm for moving the respective jaw.
  • the control arm includes an actuation hole and a tang adjacent the actuation hole.
  • the device includes an actuator wire extending longitudinally to a laterally extending end received within the actuation hole. A portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole is engaged by the tang to maintain the wire in the actuation hole.
  • the invention also includes a surgical instrument comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends.
  • the clevis has a pair of spaced arms.
  • the instrument includes a pair of end effectors. Each of the end effectors extends between the spaced arms of the clevis for movement relative to the clevis.
  • each of the end effectors has a control arm for moving the respective end effector.
  • the control arm includes an actuation hole and a tang adjacent the actuation hole.
  • the instrument also comprises an actuator wire extending longitudinally to a laterally extending end received within the actuation hole. A portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole is engaged by the tang to maintain the wire in the actuation hole.
  • FIG. 1 is a side elevation of biopsy forceps of the present invention
  • FIG. 2 is a partially disassembled side elevation of a handle assembly of the biopsy forceps
  • FIG. 3 is a perspective of biopsy forceps of the present invention.
  • FIG. 4 is a perspective of a portion of the handle assembly of the biopsy forceps
  • FIG. 5 is a detail in partial section of the handle assembly of the biopsy forceps
  • FIG. 6 is a cross section of a jaw assembly of the biopsy forceps showing jaws in an open position
  • FIG. 7 is a cross section of the jaw assembly showing jaws in a closed position
  • FIG. 8 is a perspective of the jaw assembly of the biopsy forceps showing jaws in an open position
  • FIG. 9 is a perspective of a jaw of the jaw assembly
  • FIG. 10 is a perspective of a first alternative clevis
  • FIG. 11 is a perspective of a second alternative clevis
  • FIG. 12 is a perspective of a third alternative clevis
  • FIG. 13 is a perspective of a fourth alternative clevis
  • FIG. 14 is a perspective of a first alternative jaw
  • FIG. 15 is a top plan of a second alternative jaw
  • FIGS. 16A and 16B are top plans of first and second alternative actuator members, respectively;
  • FIG. 17 is a perspective of a second alternative actuator member and jaw
  • FIG. 18 is a top plan of a third alternative jaw
  • FIG. 19 is a perspective of a fourth alternative jaw
  • FIG. 20 is an alternate perspective of the fourth alternative jaw.
  • FIGS. 21 A-E illustrate a sequence of movements used to prepare the instrument for packaging using one method.
  • a surgical instrument of the present invention is designated in its entirety by the reference numeral 30 .
  • the surgical instrument 30 illustrated in FIG. 1 is a pair of biopsy forceps, in some embodiments of the present invention the surgical instrument may be a different type of endoscopic end effector such as a flexible grasper, a dissector or scissors.
  • the surgical instrument 30 is used to sample tissue (not shown) of a patient during surgery or endoscopy.
  • the instrument 30 generally comprises an elongate member, generally designated by 32 , having opposite ends 34 , 36 .
  • a jaw assembly, generally designated by 40 is mounted on the elongate member 32 adjacent its end 34 .
  • the jaw assembly 40 includes jaws 42 mounted for independent pivotal movement relative to each other between a closed position ( FIG. 7 ) for grasping tissue and an open position ( FIG. 6 showing a partially open position) for releasing tissue.
  • the instrument 30 comprises an actuator assembly, generally designated by 44 , including an actuator member 46 operatively connected to the jaw assembly 40 for moving the jaws 42 between the open and closed positions, and a handle assembly, generally designated by 50 , operatively connected to the actuator member.
  • the actuator member 46 may be made of other materials without departing from the scope of the present invention, in one embodiment the member 46 is a tube having an inner diameter of between about 0.020 inch and about 0.030 inch crimped to hold a pair of wires having outer diameters of between about 0.010 inch and about 0.012 inch.
  • the tube and wires may be made of other materials without departing from the scope of the present invention, in one embodiment they are made from 304 stainless steel.
  • the tube may have other dimensions without departing from the scope of the present invention, in one embodiment the tube has an overall length of between about two inches and about three inches and an outer diameter of between about 0.030 inch and about 0.040 inch.
  • the handle assembly 50 includes a hollow shank 52 having an elongate slot 54 extending partially along its length.
  • a spool, generally designated by 56 is slidably mounted on the shank 52 and a thumb ring 58 is provided at an end of the shank opposite the elongate member 32 for receiving a surgeon's thumb during use.
  • a C-clip fastener 60 is provided on the thumb ring 58 for releasably connecting the elongate member 32 to the handle assembly 50 during storage and packaging as illustrated in FIG. 3 .
  • the fastener is a C-clip integrally molded on a proximal end of the thumb ring.
  • the spool 56 is formed in two halves joined by press pins 62 as shown in FIG. 2 .
  • each press pin 62 has a circular cross section and is positioned in a hexagonal hole.
  • the spool 56 is held together with adhesives, with screws or with detent fasteners.
  • the spool 56 When assembled, the spool 56 includes an annular groove 64 formed between circumferentially extending ribs 66 , 68 . In use, the surgeon holds the spool 56 between his/her index finger and middle finger so that the fingers are positioned in the annular groove 64 . The surgeon's thumb is inserted in the thumb ring 58 .
  • the spool 56 may be moved toward and away from the thumb ring 58 by pulling or pushing the fingers against the ribs 66 , 68 , respectively.
  • shank 52 and spool 56 may be made from other materials without departing from the scope of the present invention, in one embodiment the shank and spool are made from a polymer such as polycarbonate, polypropylene or ABS.
  • a retainer 70 is captured in a recess 72 formed in the spool 56 halves.
  • the retainer 70 includes a slot 74 for receiving a bent end 76 of the tube portion of the actuator member 46 .
  • the tubing 78 reinforces the actuator member 46 .
  • the retainer 70 may be made of other materials without departing from the scope of the present invention, in one embodiment the retainer is made of 400 series stainless steel.
  • the shank 52 of the handle assembly 50 includes a connector portion, generally designated by 80 .
  • the connector portion 80 includes a bore 82 .
  • the ferrule 84 is crimped around the elongate member 32 .
  • the ferrule 84 includes barbs (not shown) that prevent the member from being withdrawn from the bore 82 . Accordingly, the elongate member 32 is firmly connected to the handle assembly 50 so they form an inseparable assembly.
  • the ferrule 84 may be made of other materials without departing from the scope of the present invention, in one embodiment the ferrule is made of brass.
  • the ferrule 84 may have other dimensions without departing from the scope of the present invention, in one embodiment the ferrule has an overall length of between about 0.75 inch and about 1.25 inches, an undeformed inner diameter of between about 0.075 inch and about 0.095 inch, and an undeformed outer diameter of between about 0.100 inch and about 0.150 inch.
  • the elongate member 32 comprises a coil 90 having an outer cover 92 and a inner lumen 94 .
  • the coil 90 may be made of other materials, in one embodiment the coil is made from 302 stainless steel.
  • the coil may have other maximum outer diameters without departing from the scope of the present invention, in one embodiment the coil has a maximum outer diameter of between about 0.070 inch and about 0.080 inch. In one particular embodiment, the coil has a maximum outer diameter of about 0.074 inch.
  • the coil 90 may have other configurations without departing from the scope of the present invention, in one embodiment the coil has a generally circular cross section and a generally uniform outer diameter. So the coil 90 has sufficient stiffness, the coil may be made so it has compressive preload.
  • the coil 90 may have other compressive preloads without departing from the scope of the present invention, in one embodiment the coil has a compressive preload of between 0.75 pound and about 1.5 pounds. In other words, a tensile load of between about 0.75 pound and about 1.5 pounds is required to separate windings of the coil 90 . In one particular embodiment, the coil 90 has a compressive preload of about 1.3 pounds.
  • the outer cover 92 may be made of other materials without departing from the scope of the present invention, in one embodiment the outer cover is made from polyolefin.
  • the inner lumen 94 may be made of other materials without departing from the scope of the present invention, in one embodiment the inner lumen is made from high density polyethylene.
  • the coil 90 may have other dimensions without departing from the scope of the present invention, in one embodiment the coil has an overall length of between about 220 centimeters and about 260 centimeters, an outer diameter of between about 0.070 inch and about 0.080 inch, and an inner diameter of between about 0.035 inch and about 0.040 inch.
  • the coil 90 is made from wire stock having a diameter of between about 0.015 inch and about 0.020 inch.
  • outer cover 92 may have other outer diameters without departing from the scope of the present invention, in one embodiment the outer cover has an outer diameter of between about 0.085 inch and about 0.92 inch.
  • inner lumen 94 may have other inner diameters without departing from the scope of the present invention, in one embodiment the inner lumen has an inner diameter of between about 0.020 inch and about 0.035 inch. As the elongate member 32 is generally conventional, it will not be described in further detail.
  • the jaw assembly 40 includes a clevis, generally designated by 100 , mounted on the end 34 of the elongate member 32 .
  • the clevis includes two arms 102 extending generally parallel to each other from a barrel 104 .
  • Each of the arms 102 includes a pivot hole for receiving an axle pin 106 therein so that the axle pin extends between the arms.
  • the axle pin 106 pivotally connects the jaws 42 of the jaw assembly 40 to the clevis 100 .
  • the axle pin 106 may connect a central needle 110 to the clevis 100 .
  • the needle 110 includes a sharp point 112 for penetrating tissue (not shown). As shown in FIG.
  • the needle 110 also includes an opening 114 for receiving the axle pin 106 .
  • the needle 110 also includes a lobe 116 opposite the point 112 for engaging the jaws 42 to hold the needle in a centered position between the jaws as will be explained in further detail below.
  • the clevis 100 may be made of other materials without departing from the scope of the present invention, in one embodiment the clevis is made from 17-7 PH stainless steel.
  • the axle pin 106 may be made of other materials without departing from the scope of the present invention, in one embodiment the axle pin is made from 304 stainless steel.
  • the needle 110 may be made of other materials without departing from the scope of the present invention, in one embodiment the needle is made from 302 stainless steel.
  • the clevis 100 is positioned in a fixture (not shown).
  • the jaws 42 and the needle 110 are positioned between the arms 102 of the clevis 100 and the axle pin 106 is inserted through the holes in the clevis, jaws and needle.
  • the axle pin 106 is biased toward one side of the holes in the clevis 100 and joined to the clevis using a conventional method such as welding, swaging or riveting.
  • each of the jaws 42 includes a cup 120 having opposite side walls 122 extending longitudinally along the respective jaw and an end wall 124 extending across corresponding forward ends of the side walls.
  • the side walls 122 and end wall 124 extend generally perpendicular to a central land 126 of the cup 120 .
  • each jaw 42 includes a hinge extension 130 extending from one of the side walls 122 .
  • the jaw 42 may have other configurations without departing from the scope of the present invention, in one embodiment the other side wall 122 opposite that having the hinge extension 130 is substantially free of extensions.
  • the hinge extension 130 extends to a pivot hole or opening 132 adapted for receiving the axle pin 106 extending between the arms 102 of the clevis 100 .
  • the jaws 42 may have differing configurations without departing from the scope of the present invention, in one embodiment both jaws 42 are identical to reduce manufacturing costs.
  • the hinge extension 130 includes an inner face 134 surrounding the opening 132 . Further, in one embodiment with the central needle 110 , the inner face 134 is offset from an imaginary median plane of the jaws 42 by a distance equal to half a thickness of the central needle. In an alternate embodiment (not shown) that does not include a central needle, the inner face is positioned on the imaginary median plane of the jaws.
  • the jaw 42 also includes an outer face 136 positioned to abut the clevis 100 when assembled in the biopsy forceps 30 .
  • the side walls 122 have a common tooth profile and the end 124 wall has a tooth profile different from the side wall tooth profile.
  • each jaw is stamped from sheet metal and formed to shape.
  • the jaws 42 may be made of other materials without departing from the scope of the present invention, in one embodiment the jaws are made from 17-7 PH stainless steel.
  • the hinge extension 130 includes a folded portion forming the inner face 134 extending along the median plane and the outer face 136 positioned to abut the clevis 100 when assembled in the biopsy forceps 30 .
  • hinge extension 130 may be folded in other ways without departing from the scope of the present invention, in one embodiment the extension is folded along a substantially straight fold extending parallel to a longitudinal axis of the jaw.
  • Each jaw 42 also includes a control arm 140 for pivoting the respective jaw about the axle pin 106 .
  • the control arm 140 may have other configurations, in one embodiment the control arm is integrally formed as part of the hinge extension 130 .
  • the control arm 140 includes an actuation hole or opening 142 for receiving the actuator member 46 .
  • each cup 120 includes an opening 144 allowing the respective cup to drain.
  • FIG. 10 An alternative embodiment of the clevis is generally designated by the reference number 200 in FIG. 10 .
  • the clevis 200 is formed in two pieces 202 . Each piece includes a barrel portion 204 for engaging the end 34 of the elongate member 32 .
  • Each clevis half 202 further includes an arm 206 . Each arm 206 includes a hole 208 for receiving the axle pin 106 therein.
  • To assemble the jaw assembly 40 using the alternate clevis embodiment shown in FIG. 10 one of the clevis halves 202 is joined to an axle pin 106 to form a master clevis piece. The master clevis piece is held in position against the end 34 of the elongate member 32 and the jaws 42 and needle 110 are mounted on the axle pin 106 .
  • the second half of the clevis 202 is placed over the first half and the axle pin 106 is laser welded to the corresponding hole 208 in the clevis arm 206 .
  • the barrels 204 of the clevis halves 202 are simultaneously welded (e.g., laser welded) to the end 32 of the elongate member 32 . It is envisioned that this assembly method would simplify the assembly process even when additional components (not shown) such as spacers and spring washers are added to the assembly. Because the clevis 200 is split, component tolerances may be larger. As other features of the clevis 200 are identical to those described above, they will not be described in further detail.
  • FIG. 11 shows a second alternative embodiment of a clevis generally designated by the referenced number 210 .
  • This embodiment of the clevis 210 is identical to the first alternative embodiment of the clevis 200 described above except that one clevis half 212 includes protrusions such as rectangular tabs 214 extending from its barrel 216 .
  • the barrel 218 of the other half includes recesses such as rectangular notches 220 for accommodating the tabs 214 .
  • This second alternative embodiment allows for one clevis half to extend more than half way around the end 34 of the elongate member 32 to aid in holding the clevis half in place during assembly.
  • the tabs 214 and notches 220 also constitute alignment features that aid in locating the second clevis half.
  • a notch or other locating feature may be included on the barrel of the clevis 210 for aligning the clevis with the end 34 of the elongate member 32 . Because other features of the clevis 210 are identical to those described above, they will not be described in further detail.
  • a first clevis half is positioned in a fixture (not shown).
  • the jaws are positioned on the first clevis half and if a central needle is used it is positioned between the jaws.
  • a second clevis half is positioned on the jaw assembly.
  • the stacked components are squeezed together by the fixture and then the fixture is relaxed so that a total accumulated stack gap between the components is within a tolerance selected to assure proper operation of the jaws.
  • the accumulated gap is between about 0.0005 inch and about 0.003 inch.
  • a pivot member or pivot pin is inserted through the components and fastened in place.
  • the actuator member may be connected to the jaws at a convenient time during the assembly.
  • a third alternative embodiment is generally designated by the reference number 230 in FIG. 12 .
  • This third alternative embodiment of the clevis 230 is identical to the first alternative embodiment 200 illustrated in FIG. 10 except that the clevis halves are joined on one side, leaving a slot 232 along one side.
  • the jaw assembly 42 is assembled without assembling the clevis 230 to the end 34 of the elongate member 32 .
  • This jaw assembly 42 may be manufactured remote from the overall instrument.
  • the slot 232 has an advantage of aiding in inserting the actuation member 46 during assembly.
  • Other features of the clevis 230 are identical to those described above and will not be described in further detail.
  • FIG. 13 illustrates a fourth alternative embodiment generally designated by the reference number 234 .
  • the fourth alternative embodiment of the clevis 234 is identical to the third alternative embodiment 230 except that the clevis includes arms 236 having folded portion 238 .
  • Other features of the clevis 234 are identical to those described above and will not be described in further detail.
  • FIG. 14 illustrates an alternative embodiment of a jaw 240 .
  • the jaw 240 is identical to the previously discussed jaw 42 except that the end wall 242 has a sinusoidal tooth profile and the drain hole 144 is omitted.
  • the side walls 122 ( FIG. 9 ) of this embodiment have a tooth profile that is generally uniform and repeating.
  • the side wall tooth profile has generally saw tooth shape.
  • the spacing of tooth profile of the end wall 242 is longer than that of the tooth profile of the side walls 122 .
  • FIG. 15 discloses a second alternative embodiment of the jaws, generally designated 250 .
  • the second alternative embodiment of the jaw 250 is similar to the first embodiment of the jaw 42 described above except that the folded portion of the hinge extension 130 is replaced with an embossed portion 252 .
  • This embossed portion 252 is positioned longitudinally between two other portions 254 , 256 .
  • the embossed portion 252 includes an inner face extending along the median plane.
  • the other portions 254 , 256 include the outer face positioned to abut the clevis 100 when assembled in the biopsy forceps 30 . Because other features of the jaws are identical to those described above, they will not be described in further detail.
  • FIG. 16A illustrates a partial jaw assembly and an alternative embodiment of an actuator member 270 .
  • the actuator member 270 comprises an actuator wire having a helical portion 272 for connecting the actuator member to the control arm 140 of the jaw 42 .
  • the helical portion 272 of the actuation wire 270 permits the wire to be easily threaded into the opening 142 in the control arm 140 of the jaw 42 to save assembly time and eliminate other processes for connecting the wire to the control arm (e.g., heading).
  • FIG. 16B illustrates a partial jaw assembly and a second alternative embodiment of an actuator member 270 .
  • the actuator member 270 comprises an actuator wire having a helical portion 274 similar to that of the previously described embodiment except that the helical portion of the second alternative embodiment is wound about a lateral axis rather than a longitudinal axis.
  • the actuation wire 276 includes a bent end 278 .
  • a U-shaped tang 280 formed on the jaw 282 adjacent the control arm opening 142 retains the actuation wire 276 in position in the control arm opening.
  • the bent end 278 of the wire 276 is inserted in the opening 142 and then the jaw 282 is rotated relative to the wire so the tang 280 engages the wire to prevent removal of the bent portion of the wire from the opening.
  • FIG. 18 illustrates an alternative embodiment of a jaw, generally designated by 290 .
  • the jaw 290 of this alternative embodiment is made from separate pieces.
  • the jaw has a cup 292 with a pair of hinge connectors 294 extending from it for joining a hinge extension 296 to the cup.
  • the hinge extension 296 maybe connected to the hinge connector 294 by any suitable means such as laser welding or adhesives.
  • the jaw cup 292 of the alternative embodiment has a different shape than those disclosed above.
  • the primary difference between the jaw cup 292 shown in FIG. 18 and those previously disclosed is that the side walls are spaced farther from the median plane at a position between the front end and the back end than at the front end and at the back end.
  • the jaw cup of this embodiment permits a larger volume of tissue to be removed while maintaining the same minimal bend radius. Cups having other shapes are also envisioned as being within the scope of this embodiment. For example, rather than having an oval shape as shown, the cup may have an hourglass shape or a tapered shape.
  • FIG. 19 illustrates a second alternative embodiment of a jaw 300 that maximizes tissue volume removed.
  • the end wall 302 has a substantially plainer portion so the cup encompasses a generally rectilinear volume.
  • FIG. 20 illustrates an alternate view of the jaw illustrated in FIG. 19 .
  • the jaw 300 maybe formed in two pieces, a cup 304 and a hinge extension 306 .
  • the cup 304 maybe formed from sheet metal and the hinge extension 306 maybe formed of a polymer such as glass filled nylon.
  • the hinge extension 306 may have molded features (e.g., bushing 308 ) rather than a substantially constant thickness. This provides additional material where stresses are higher or where wear is likely to occur.
  • the cup 304 and hinge extension 306 may be joined by any conventional means.
  • the cup 304 and hinge extension 306 may be joined by heating the hinge extension so that it is molded into holes 310 formed in the cup to mechanically join the components.
  • the instrument described above may be wound in a conventional manner prior to packaging.
  • One method of preparing the instrument for packaging is particularly advantageous because it reduces the likelihood of the instrument becoming tangled and/or springing apart so it is damaged to contaminated.
  • the effector assembly is fastened to the to the fastener on the handle to form a first loop as illustrated in FIG. 21 a .
  • the loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a figure-8 configuration as illustrated in FIG. 21 b .
  • Opposite ends of the figure-8 configuration are moved together into an overlapped loop configuration shown in FIG. 21 c .
  • the overlapping loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a double figure-8 configuration as illustrated in FIG. 21 d .
  • the ends of the overlapped loop are twisted in a direction opposite to that which the loop was previously twisted as shown by the arrows in FIGS. 21 b and 21 d .
  • opposite ends of the double figure-8 configuration are folded together to move the double figure-8 configuration into a quadruple overlapped loop configuration as illustrated in FIG. 21 e .
  • the instrument in this final configuration may be packaged in a conventional sterile packaging.

Abstract

A surgical instrument including an elongate member having opposite ends, and a clevis attached to one end of the opposite ends. The clevis has a pair of spaced arms. The instrument includes a pin extending between the spaced arms of the clevis, and a pair of end effectors. Each of the end effectors has a pivot hole adapted for receiving the pin extending between the spaced arms of the clevis for pivotal movement relative to the clevis and a control arm for pivoting the respective end effector about the pin. The control arm includes an actuation hole and a tang adjacent the actuation hole. The instrument includes an actuator wire extending longitudinally to a laterally extending end received within the actuation hole. A portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole is engaged by the tang to maintain the wire in the actuation hole.

Description

    BACKGROUND OF THE INVENTION
  • The present invention generally relates to endoscopic instruments, and more particularly to biopsy forceps and other endoscopic end effectors.
  • Endoscopic biopsy forceps are a medical instrument used in combination with an endoscope for removing tissue samples from inside a patient's body for analysis. These instruments typically include an elongate flexible member having a biopsy jaw assembly mounted on one end. The jaw assembly includes a clevis holding pivotally mounted jaws adapted for removing tissue for analysis. An actuator comprising an actuator handle and an actuator member extending from the handle to the pivoting jaws of the jaw assembly moves the jaws between an open position in which the ends of the jaws are spaced and a closed position in which the ends of the jaws contact each other to obtain the tissue sample. In addition to biopsy forceps, some aspects of the present invention relate to other types of endoscopic end effectors such as a flexible grasper, a dissector, or scissors.
  • Biopsy forceps frequently have teeth along the mating edges of the jaws to improve grasping of the tissue. As will be appreciated by those skilled in the art, the teeth extending along each side of the jaw and those extending across the end of the jaw interact differently with the tissue. In the past, these differences in interaction have not been taken into account when selecting tooth profiles for the different portions of the jaw. A fundamental function of biopsy forceps is to pinch tissue in order to tear a sample free. The teeth, particularly those at the end of the jaw, are believed to have a significant impact on sample depth and weight.
  • Many conventional jaws have been made so that each jaw in the assembly has a different configuration. When a single jaw assembly uses two different jaw configurations, the different jaws must be manufactured, stored and handled during assembly. This situation results in manufacturing inefficiency and a cost increase. In addition, many conventional jaws are cast or molded. Jaws designed to be manufactured using other less expensive processes have the potential for reducing overall assembly cost.
  • Because the jaw assembly includes a clevis, certain obstacles are presented during assembly. If the clevis and axle pin are inseparably assembled before the jaws are installed, the arms of the clevis must be spread when the jaws are being assembled with the clevis. If the clevis and axle pin are separate, the jaws must be inserted between the clevis arms and aligned with the axle pin. Either process has a potential for increasing assembly cost. Still further, connecting the actuator members to the jaw assembly is difficult to achieve using conventional devises because the clevis blocks clear access to these components.
  • Once assembled, the jaw assembly has portions (e.g., distal portions) that are susceptible to higher stresses and wear. In order to optimize the jaw, some portions of the jaw can be thicker or made from different materials. Although producing a jaw cup by stamping has economic advantages, conventional jaw assemblies have been unable to take advantage of a stamped jaw cup while having thicker portions or portions made from different materials.
  • During use, a large jaw size is desired to obtain a large tissue sample. However, when the forceps are being pushed into position, a small jaw size is desirable so that the forceps can travel through smaller radius turns. Using conventional jaw shapes, the jaw size is limited by turning radius.
  • Among the problems common to known biopsy forceps and end effectors generally is that these instruments are very long and flexible, making packaging, storage and handling difficult. The instruments are frequently coiled when packaged. When the packaging is opened, the instruments can spontaneously uncoil, become unmanageable, potentially falling on the floor, and becoming contaminated or being damaged. Thus, there is a need for a feature that retains these types of instruments in a coiled configuration when unpackaged.
  • SUMMARY OF THE INVENTION
  • Briefly, the present invention includes a surgical instrument comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends. The clevis has a pair of spaced arms. The instrument further comprises a pin extending between the spaced arms of the clevis, and a pair of end effectors. Each of the end effectors has a pivot hole adapted for receiving the pin extending between the spaced arms of the clevis for pivotal movement relative to the clevis. Each of the end effectors also has a control arm for pivoting the respective end effector about the pin. The control arm includes an actuation hole and a tang adjacent the actuation hole. Further, the instrument includes an actuator wire extending longitudinally to a laterally extending end received within the actuation hole. A portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole is engaged by the tang to maintain the wire in the actuation hole.
  • In yet another aspect, the invention includes an endoscopic device comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends. The clevis has a pair of spaced arms. The device further comprises a pair of jaws mounted on the clevis for pivotal movement. Each of the jaws has a control arm for moving the respective jaw. The control arm includes an actuation hole and a tang adjacent the actuation hole. In addition, the device includes an actuator wire extending longitudinally to a laterally extending end received within the actuation hole. A portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole is engaged by the tang to maintain the wire in the actuation hole.
  • The invention also includes a surgical instrument comprising an elongate member having opposite ends, and a clevis attached to one end of the opposite ends. The clevis has a pair of spaced arms. Further, the instrument includes a pair of end effectors. Each of the end effectors extends between the spaced arms of the clevis for movement relative to the clevis. In addition, each of the end effectors has a control arm for moving the respective end effector. The control arm includes an actuation hole and a tang adjacent the actuation hole. The instrument also comprises an actuator wire extending longitudinally to a laterally extending end received within the actuation hole. A portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole is engaged by the tang to maintain the wire in the actuation hole.
  • Other features of the present invention will be in part apparent and in part pointed out hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side elevation of biopsy forceps of the present invention;
  • FIG. 2 is a partially disassembled side elevation of a handle assembly of the biopsy forceps;
  • FIG. 3 is a perspective of biopsy forceps of the present invention;
  • FIG. 4 is a perspective of a portion of the handle assembly of the biopsy forceps;
  • FIG. 5 is a detail in partial section of the handle assembly of the biopsy forceps;
  • FIG. 6 is a cross section of a jaw assembly of the biopsy forceps showing jaws in an open position;
  • FIG. 7 is a cross section of the jaw assembly showing jaws in a closed position;
  • FIG. 8 is a perspective of the jaw assembly of the biopsy forceps showing jaws in an open position;
  • FIG. 9 is a perspective of a jaw of the jaw assembly;
  • FIG. 10 is a perspective of a first alternative clevis;
  • FIG. 11 is a perspective of a second alternative clevis;
  • FIG. 12 is a perspective of a third alternative clevis;
  • FIG. 13 is a perspective of a fourth alternative clevis
  • FIG. 14 is a perspective of a first alternative jaw;
  • FIG. 15 is a top plan of a second alternative jaw;
  • FIGS. 16A and 16B are top plans of first and second alternative actuator members, respectively;
  • FIG. 17 is a perspective of a second alternative actuator member and jaw;
  • FIG. 18 is a top plan of a third alternative jaw;
  • FIG. 19 is a perspective of a fourth alternative jaw;
  • FIG. 20 is an alternate perspective of the fourth alternative jaw; and.
  • FIGS. 21A-E illustrate a sequence of movements used to prepare the instrument for packaging using one method.
  • Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now to the drawings and in particular to FIG. 1, a surgical instrument of the present invention is designated in its entirety by the reference numeral 30. Although the surgical instrument 30 illustrated in FIG. 1 is a pair of biopsy forceps, in some embodiments of the present invention the surgical instrument may be a different type of endoscopic end effector such as a flexible grasper, a dissector or scissors. In the case of the biopsy forceps embodiment, the surgical instrument 30 is used to sample tissue (not shown) of a patient during surgery or endoscopy. The instrument 30 generally comprises an elongate member, generally designated by 32, having opposite ends 34, 36. A jaw assembly, generally designated by 40, is mounted on the elongate member 32 adjacent its end 34. The jaw assembly 40 includes jaws 42 mounted for independent pivotal movement relative to each other between a closed position (FIG. 7) for grasping tissue and an open position (FIG. 6 showing a partially open position) for releasing tissue. As further shown in FIG. 1, the instrument 30 comprises an actuator assembly, generally designated by 44, including an actuator member 46 operatively connected to the jaw assembly 40 for moving the jaws 42 between the open and closed positions, and a handle assembly, generally designated by 50, operatively connected to the actuator member. Although the actuator member 46 may be made of other materials without departing from the scope of the present invention, in one embodiment the member 46 is a tube having an inner diameter of between about 0.020 inch and about 0.030 inch crimped to hold a pair of wires having outer diameters of between about 0.010 inch and about 0.012 inch. Although the tube and wires may be made of other materials without departing from the scope of the present invention, in one embodiment they are made from 304 stainless steel. Although the tube may have other dimensions without departing from the scope of the present invention, in one embodiment the tube has an overall length of between about two inches and about three inches and an outer diameter of between about 0.030 inch and about 0.040 inch.
  • As illustrated in FIG. 2, the handle assembly 50 includes a hollow shank 52 having an elongate slot 54 extending partially along its length. A spool, generally designated by 56, is slidably mounted on the shank 52 and a thumb ring 58 is provided at an end of the shank opposite the elongate member 32 for receiving a surgeon's thumb during use. A C-clip fastener 60 is provided on the thumb ring 58 for releasably connecting the elongate member 32 to the handle assembly 50 during storage and packaging as illustrated in FIG. 3. Although other fastener types may be used without departing from the scope of the present invention, in one embodiment the fastener is a C-clip integrally molded on a proximal end of the thumb ring. The spool 56 is formed in two halves joined by press pins 62 as shown in FIG. 2. In one particular embodiment, each press pin 62 has a circular cross section and is positioned in a hexagonal hole. In an alternative embodiment, the spool 56 is held together with adhesives, with screws or with detent fasteners. When assembled, the spool 56 includes an annular groove 64 formed between circumferentially extending ribs 66, 68. In use, the surgeon holds the spool 56 between his/her index finger and middle finger so that the fingers are positioned in the annular groove 64. The surgeon's thumb is inserted in the thumb ring 58. The spool 56 may be moved toward and away from the thumb ring 58 by pulling or pushing the fingers against the ribs 66, 68, respectively. Although the shank 52 and spool 56 may be made from other materials without departing from the scope of the present invention, in one embodiment the shank and spool are made from a polymer such as polycarbonate, polypropylene or ABS.
  • As illustrated in FIG. 4, a retainer 70 is captured in a recess 72 formed in the spool 56 halves. The retainer 70 includes a slot 74 for receiving a bent end 76 of the tube portion of the actuator member 46. The tubing 78 reinforces the actuator member 46. Thus, as the spool 56 is moved back and forth relative to the shank 52, the actuator member 46 slides back and forth in the elongate member 32 of the instrument 30. Although the retainer 70 may be made of other materials without departing from the scope of the present invention, in one embodiment the retainer is made of 400 series stainless steel.
  • As illustrated in FIG. 5, the shank 52 of the handle assembly 50 includes a connector portion, generally designated by 80. The connector portion 80 includes a bore 82. During assembly, the end 36 of the elongate member 32 is inserted in the bore 82. A ferrule 84 is crimped around the elongate member 32. The ferrule 84 includes barbs (not shown) that prevent the member from being withdrawn from the bore 82. Accordingly, the elongate member 32 is firmly connected to the handle assembly 50 so they form an inseparable assembly. Although the ferrule 84 may be made of other materials without departing from the scope of the present invention, in one embodiment the ferrule is made of brass. Further, although the ferrule 84 may have other dimensions without departing from the scope of the present invention, in one embodiment the ferrule has an overall length of between about 0.75 inch and about 1.25 inches, an undeformed inner diameter of between about 0.075 inch and about 0.095 inch, and an undeformed outer diameter of between about 0.100 inch and about 0.150 inch.
  • As shown in FIG. 6, the elongate member 32 comprises a coil 90 having an outer cover 92 and a inner lumen 94. Although the coil 90 may be made of other materials, in one embodiment the coil is made from 302 stainless steel. Although the coil may have other maximum outer diameters without departing from the scope of the present invention, in one embodiment the coil has a maximum outer diameter of between about 0.070 inch and about 0.080 inch. In one particular embodiment, the coil has a maximum outer diameter of about 0.074 inch. Although the coil 90 may have other configurations without departing from the scope of the present invention, in one embodiment the coil has a generally circular cross section and a generally uniform outer diameter. So the coil 90 has sufficient stiffness, the coil may be made so it has compressive preload. Although the coil 90 may have other compressive preloads without departing from the scope of the present invention, in one embodiment the coil has a compressive preload of between 0.75 pound and about 1.5 pounds. In other words, a tensile load of between about 0.75 pound and about 1.5 pounds is required to separate windings of the coil 90. In one particular embodiment, the coil 90 has a compressive preload of about 1.3 pounds.
  • Likewise, although the outer cover 92 may be made of other materials without departing from the scope of the present invention, in one embodiment the outer cover is made from polyolefin. Although the inner lumen 94 may be made of other materials without departing from the scope of the present invention, in one embodiment the inner lumen is made from high density polyethylene. Although the coil 90 may have other dimensions without departing from the scope of the present invention, in one embodiment the coil has an overall length of between about 220 centimeters and about 260 centimeters, an outer diameter of between about 0.070 inch and about 0.080 inch, and an inner diameter of between about 0.035 inch and about 0.040 inch. The coil 90 is made from wire stock having a diameter of between about 0.015 inch and about 0.020 inch. Further, although the outer cover 92 may have other outer diameters without departing from the scope of the present invention, in one embodiment the outer cover has an outer diameter of between about 0.085 inch and about 0.92 inch. Although the inner lumen 94 may have other inner diameters without departing from the scope of the present invention, in one embodiment the inner lumen has an inner diameter of between about 0.020 inch and about 0.035 inch. As the elongate member 32 is generally conventional, it will not be described in further detail.
  • As further illustrated in FIG. 6 as well as in FIG. 7, the jaw assembly 40 includes a clevis, generally designated by 100, mounted on the end 34 of the elongate member 32. As shown in FIG. 8, the clevis includes two arms 102 extending generally parallel to each other from a barrel 104. Each of the arms 102 includes a pivot hole for receiving an axle pin 106 therein so that the axle pin extends between the arms. The axle pin 106 pivotally connects the jaws 42 of the jaw assembly 40 to the clevis 100. In addition, the axle pin 106 may connect a central needle 110 to the clevis 100. The needle 110 includes a sharp point 112 for penetrating tissue (not shown). As shown in FIG. 6, the needle 110 also includes an opening 114 for receiving the axle pin 106. The needle 110 also includes a lobe 116 opposite the point 112 for engaging the jaws 42 to hold the needle in a centered position between the jaws as will be explained in further detail below. Although the clevis 100 may be made of other materials without departing from the scope of the present invention, in one embodiment the clevis is made from 17-7 PH stainless steel. Although the axle pin 106 may be made of other materials without departing from the scope of the present invention, in one embodiment the axle pin is made from 304 stainless steel. Although the needle 110 may be made of other materials without departing from the scope of the present invention, in one embodiment the needle is made from 302 stainless steel.
  • Using one assembly method, the clevis 100 is positioned in a fixture (not shown). The jaws 42 and the needle 110 are positioned between the arms 102 of the clevis 100 and the axle pin 106 is inserted through the holes in the clevis, jaws and needle. The axle pin 106 is biased toward one side of the holes in the clevis 100 and joined to the clevis using a conventional method such as welding, swaging or riveting.
  • As illustrated in FIG. 9, each of the jaws 42 includes a cup 120 having opposite side walls 122 extending longitudinally along the respective jaw and an end wall 124 extending across corresponding forward ends of the side walls. In one embodiment, the side walls 122 and end wall 124 extend generally perpendicular to a central land 126 of the cup 120. In addition, each jaw 42 includes a hinge extension 130 extending from one of the side walls 122. Although the jaw 42 may have other configurations without departing from the scope of the present invention, in one embodiment the other side wall 122 opposite that having the hinge extension 130 is substantially free of extensions. The hinge extension 130 extends to a pivot hole or opening 132 adapted for receiving the axle pin 106 extending between the arms 102 of the clevis 100. Although the jaws 42 may have differing configurations without departing from the scope of the present invention, in one embodiment both jaws 42 are identical to reduce manufacturing costs. In one embodiment, the hinge extension 130 includes an inner face 134 surrounding the opening 132. Further, in one embodiment with the central needle 110, the inner face 134 is offset from an imaginary median plane of the jaws 42 by a distance equal to half a thickness of the central needle. In an alternate embodiment (not shown) that does not include a central needle, the inner face is positioned on the imaginary median plane of the jaws.
  • The jaw 42 also includes an outer face 136 positioned to abut the clevis 100 when assembled in the biopsy forceps 30. The side walls 122 have a common tooth profile and the end 124 wall has a tooth profile different from the side wall tooth profile. Although the jaw 42 maybe formed in other ways, in one embodiment, each jaw is stamped from sheet metal and formed to shape. Although the jaws 42 may be made of other materials without departing from the scope of the present invention, in one embodiment the jaws are made from 17-7 PH stainless steel. In one particular embodiment, the hinge extension 130 includes a folded portion forming the inner face 134 extending along the median plane and the outer face 136 positioned to abut the clevis 100 when assembled in the biopsy forceps 30. Although hinge extension 130 may be folded in other ways without departing from the scope of the present invention, in one embodiment the extension is folded along a substantially straight fold extending parallel to a longitudinal axis of the jaw. Each jaw 42 also includes a control arm 140 for pivoting the respective jaw about the axle pin 106. Although the control arm 140 may have other configurations, in one embodiment the control arm is integrally formed as part of the hinge extension 130. The control arm 140 includes an actuation hole or opening 142 for receiving the actuator member 46. In one embodiment, each cup 120 includes an opening 144 allowing the respective cup to drain.
  • An alternative embodiment of the clevis is generally designated by the reference number 200 in FIG. 10. The clevis 200 is formed in two pieces 202. Each piece includes a barrel portion 204 for engaging the end 34 of the elongate member 32. Each clevis half 202 further includes an arm 206. Each arm 206 includes a hole 208 for receiving the axle pin 106 therein. To assemble the jaw assembly 40 using the alternate clevis embodiment shown in FIG. 10, one of the clevis halves 202 is joined to an axle pin 106 to form a master clevis piece. The master clevis piece is held in position against the end 34 of the elongate member 32 and the jaws 42 and needle 110 are mounted on the axle pin 106. The second half of the clevis 202 is placed over the first half and the axle pin 106 is laser welded to the corresponding hole 208 in the clevis arm 206. The barrels 204 of the clevis halves 202 are simultaneously welded (e.g., laser welded) to the end 32 of the elongate member 32. It is envisioned that this assembly method would simplify the assembly process even when additional components (not shown) such as spacers and spring washers are added to the assembly. Because the clevis 200 is split, component tolerances may be larger. As other features of the clevis 200 are identical to those described above, they will not be described in further detail.
  • FIG. 11 shows a second alternative embodiment of a clevis generally designated by the referenced number 210. This embodiment of the clevis 210 is identical to the first alternative embodiment of the clevis 200 described above except that one clevis half 212 includes protrusions such as rectangular tabs 214 extending from its barrel 216. The barrel 218 of the other half includes recesses such as rectangular notches 220 for accommodating the tabs 214. This second alternative embodiment allows for one clevis half to extend more than half way around the end 34 of the elongate member 32 to aid in holding the clevis half in place during assembly. The tabs 214 and notches 220 also constitute alignment features that aid in locating the second clevis half. In a variation on this alternative embodiment, a notch or other locating feature may be included on the barrel of the clevis 210 for aligning the clevis with the end 34 of the elongate member 32. Because other features of the clevis 210 are identical to those described above, they will not be described in further detail.
  • Both of the devises described above are assembled using a similar method. A first clevis half is positioned in a fixture (not shown). The jaws are positioned on the first clevis half and if a central needle is used it is positioned between the jaws. A second clevis half is positioned on the jaw assembly. The stacked components are squeezed together by the fixture and then the fixture is relaxed so that a total accumulated stack gap between the components is within a tolerance selected to assure proper operation of the jaws. Although other accumulated gaps may be used without departing from the scope of the present invention, in one embodiment the accumulated gap is between about 0.0005 inch and about 0.003 inch. After the stack gap is adjusted, a pivot member or pivot pin is inserted through the components and fastened in place. The actuator member may be connected to the jaws at a convenient time during the assembly.
  • A third alternative embodiment is generally designated by the reference number 230 in FIG. 12. This third alternative embodiment of the clevis 230 is identical to the first alternative embodiment 200 illustrated in FIG. 10 except that the clevis halves are joined on one side, leaving a slot 232 along one side. In one embodiment of the third alternative clevis 230, the jaw assembly 42 is assembled without assembling the clevis 230 to the end 34 of the elongate member 32. This jaw assembly 42 may be manufactured remote from the overall instrument. The slot 232 has an advantage of aiding in inserting the actuation member 46 during assembly. Other features of the clevis 230 are identical to those described above and will not be described in further detail.
  • FIG. 13 illustrates a fourth alternative embodiment generally designated by the reference number 234. The fourth alternative embodiment of the clevis 234 is identical to the third alternative embodiment 230 except that the clevis includes arms 236 having folded portion 238. Other features of the clevis 234 are identical to those described above and will not be described in further detail.
  • The devises described above having joined halves are assembled similarly to the previously described method except that the first and second clevis halves are simultaneously positioned on the fixture and the jaws and needle are inserted between the arms of the clevis during assembly rather than stacked in sequence. Other aspects of the assembly method are identical and will not be described in further detail.
  • FIG. 14 illustrates an alternative embodiment of a jaw 240. The jaw 240 is identical to the previously discussed jaw 42 except that the end wall 242 has a sinusoidal tooth profile and the drain hole 144 is omitted. The side walls 122 (FIG. 9) of this embodiment have a tooth profile that is generally uniform and repeating. For example, the side wall tooth profile has generally saw tooth shape. Further, as will be appreciated by examining FIG. 14, the spacing of tooth profile of the end wall 242 is longer than that of the tooth profile of the side walls 122. FIG. 15 discloses a second alternative embodiment of the jaws, generally designated 250. The second alternative embodiment of the jaw 250 is similar to the first embodiment of the jaw 42 described above except that the folded portion of the hinge extension 130 is replaced with an embossed portion 252. This embossed portion 252 is positioned longitudinally between two other portions 254, 256. The embossed portion 252 includes an inner face extending along the median plane. The other portions 254, 256 include the outer face positioned to abut the clevis 100 when assembled in the biopsy forceps 30. Because other features of the jaws are identical to those described above, they will not be described in further detail.
  • FIG. 16A illustrates a partial jaw assembly and an alternative embodiment of an actuator member 270. The actuator member 270 comprises an actuator wire having a helical portion 272 for connecting the actuator member to the control arm 140 of the jaw 42. The helical portion 272 of the actuation wire 270 permits the wire to be easily threaded into the opening 142 in the control arm 140 of the jaw 42 to save assembly time and eliminate other processes for connecting the wire to the control arm (e.g., heading). FIG. 16B illustrates a partial jaw assembly and a second alternative embodiment of an actuator member 270. The actuator member 270 comprises an actuator wire having a helical portion 274 similar to that of the previously described embodiment except that the helical portion of the second alternative embodiment is wound about a lateral axis rather than a longitudinal axis. In a third alternative embodiment illustrated in FIG. 17, the actuation wire 276 includes a bent end 278. A U-shaped tang 280 formed on the jaw 282 adjacent the control arm opening 142 retains the actuation wire 276 in position in the control arm opening. To assemble the actuation wire 276 of the second alternative embodiment, the bent end 278 of the wire 276 is inserted in the opening 142 and then the jaw 282 is rotated relative to the wire so the tang 280 engages the wire to prevent removal of the bent portion of the wire from the opening. As other features of the actuator members and jaws of these embodiments are identical to those described above, they will not be described in further detail.
  • FIG. 18 illustrates an alternative embodiment of a jaw, generally designated by 290. Rather than having an integral cup and hinge extension, the jaw 290 of this alternative embodiment is made from separate pieces. The jaw has a cup 292 with a pair of hinge connectors 294 extending from it for joining a hinge extension 296 to the cup. The hinge extension 296 maybe connected to the hinge connector 294 by any suitable means such as laser welding or adhesives. As will be apparent to those skilled in the art, the jaw cup 292 of the alternative embodiment has a different shape than those disclosed above. The primary difference between the jaw cup 292 shown in FIG. 18 and those previously disclosed is that the side walls are spaced farther from the median plane at a position between the front end and the back end than at the front end and at the back end. This configuration permits the end effector to travel through tighter radiuses without binding. The jaw cup of this embodiment permits a larger volume of tissue to be removed while maintaining the same minimal bend radius. Cups having other shapes are also envisioned as being within the scope of this embodiment. For example, rather than having an oval shape as shown, the cup may have an hourglass shape or a tapered shape.
  • FIG. 19 illustrates a second alternative embodiment of a jaw 300 that maximizes tissue volume removed. In this embodiment, the end wall 302 has a substantially plainer portion so the cup encompasses a generally rectilinear volume. FIG. 20 illustrates an alternate view of the jaw illustrated in FIG. 19. The jaw 300 maybe formed in two pieces, a cup 304 and a hinge extension 306. The cup 304 maybe formed from sheet metal and the hinge extension 306 maybe formed of a polymer such as glass filled nylon. One benefit of this design is that the hinge extension 306 may have molded features (e.g., bushing 308) rather than a substantially constant thickness. This provides additional material where stresses are higher or where wear is likely to occur. In addition, the two piece design permits the use of different materials in different parts of the jaw 300 to optimize the design. The cup 304 and hinge extension 306 may be joined by any conventional means. For example, the cup 304 and hinge extension 306 may be joined by heating the hinge extension so that it is molded into holes 310 formed in the cup to mechanically join the components.
  • The instrument described above may be wound in a conventional manner prior to packaging. One method of preparing the instrument for packaging is particularly advantageous because it reduces the likelihood of the instrument becoming tangled and/or springing apart so it is damaged to contaminated. The effector assembly is fastened to the to the fastener on the handle to form a first loop as illustrated in FIG. 21 a. The loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a figure-8 configuration as illustrated in FIG. 21 b. Opposite ends of the figure-8 configuration are moved together into an overlapped loop configuration shown in FIG. 21 c. The overlapping loop is grasped at opposite ends and one end is twisted relative to the other through an angle of about 180 degrees to move the loop into a double figure-8 configuration as illustrated in FIG. 21 d. In one embodiment, the ends of the overlapped loop are twisted in a direction opposite to that which the loop was previously twisted as shown by the arrows in FIGS. 21 b and 21 d. Lastly, opposite ends of the double figure-8 configuration are folded together to move the double figure-8 configuration into a quadruple overlapped loop configuration as illustrated in FIG. 21 e. The instrument in this final configuration may be packaged in a conventional sterile packaging.
  • When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
  • As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims (18)

1. A surgical instrument comprising:
an elongate member having opposite ends;
a clevis attached to one end of said opposite ends, said clevis having a pair of spaced arms;
a pin extending between the spaced arms of the clevis;
a pair of end effectors, each of said end effectors having a pivot hole adapted for receiving the pin extending between the spaced arms of the clevis for pivotal movement relative to the clevis, each of said end effectors having a control arm for pivoting the respective end effector about the pin, the control arm including an actuation hole and a tang adjacent the actuation hole; and
an actuator wire extending longitudinally to a laterally extending end received within the actuation hole, a portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole being engaged by the tang to maintain the wire in the actuation hole.
2. A surgical instrument as set forth in claim 1 further comprising a handle mounted on the end of the flexible member opposite the clevis, at least a portion of the handle being operatively connected to the actuator wire for moving the actuator wire with respect to the flexible member and thereby pivoting the end effector relative to the clevis.
3. A surgical instrument as set forth in claim 1 wherein the tang comprises a U-shaped member sized and positioned for partially encircling the actuator wire.
4. A surgical instrument as set forth in claim 3 wherein the U-shaped member extends laterally with respect to the actuator wire.
5. A surgical instrument as set forth in claim 4 wherein the U-shaped member extends perpendicular to the actuator wire.
6. A surgical instrument as set forth in claim 1 wherein the laterally extending end of the actuator wire extends perpendicular to a longitudinal axis of the actuator wire.
7. An endoscopic device comprising:
an elongate member having opposite ends;
a clevis attached to one end of said opposite ends, said clevis having a pair of spaced arms;
a pair of jaws mounted on the clevis for pivotal movement, each of said jaws having a control arm for moving the respective jaw, the control arm including an actuation hole and a tang adjacent the actuation hole; and
an actuator wire extending longitudinally to a laterally extending end received within the actuation hole, a portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole being engaged by the tang to maintain the wire in the actuation hole.
8. An endoscopic device as set forth in claim 7 further comprising a handle mounted on the end of the flexible member opposite the clevis, at least a portion of the handle being operatively connected to the actuator wire for moving the actuator wire with respect to the flexible member and thereby moving the jaw relative to the clevis.
9. An endoscopic device as set forth in claim 7 wherein the tang comprises a U-shaped member sized and positioned for partially encircling the actuator wire.
10. An endoscopic device as set forth in claim 9 wherein the U-shaped member extends laterally with respect to the actuator wire.
11. An endoscopic device as set forth in claim 10 wherein the U-shaped member extends perpendicular to the actuator wire.
12. An endoscopic device as set forth in claim 7 wherein the laterally extending end of the actuator wire extends perpendicular to a longitudinal axis of the actuator wire.
13. A surgical instrument comprising:
an elongate member having opposite ends;
a clevis attached to one end of said opposite ends, said clevis having a pair of spaced arms;
a pair of end effectors, each of said end effectors extending between the spaced arms of the clevis for movement relative to the clevis, each of said end effectors having a control arm for moving the respective end effector, the control arm including an actuation hole and a tang adjacent the actuation hole; and
an actuator wire extending longitudinally to a laterally extending end received within the actuation hole, a portion of the longitudinally extending wire adjacent the laterally extending end and actuation hole being engaged by the tang to maintain the wire in the actuation hole.
14. A surgical instrument as set forth in claim 13 further comprising a handle mounted on the end of the flexible member opposite the clevis, at least a portion of the handle being operatively connected to the actuator wire for moving the actuator wire with respect to the flexible member and thereby moving the end effector relative to the clevis.
15. A surgical instrument as set forth in claim 13 wherein the tang comprises a U-shaped member sized and positioned for partially encircling the actuator wire.
16. A surgical instrument as set forth in claim 15 wherein the U-shaped member extends laterally with respect to the actuator wire.
17. A surgical instrument as set forth in claim 16 wherein the U-shaped member extends perpendicular to the actuator wire.
18. A surgical instrument as set forth in claim 13 wherein the laterally extending end of the actuator wire extends perpendicular to a longitudinal axis of the actuator wire.
US11/404,969 2006-04-14 2006-04-14 Endoscopic device Active 2028-06-03 US7857827B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US11/404,217 US8740853B2 (en) 2006-04-14 2006-04-14 Endoscopic device and method of packaging
US11/404,737 US20070244510A1 (en) 2006-04-14 2006-04-14 Endoscopic device
US11/404,796 US20070244511A1 (en) 2006-04-14 2006-04-14 Endoscopic device and method of assembly
US11/404,307 US8313500B2 (en) 2006-04-14 2006-04-14 Endoscopic device
US11/404,969 US7857827B2 (en) 2006-04-14 2006-04-14 Endoscopic device
US11/404,736 US20070244509A1 (en) 2006-04-14 2006-04-14 Endoscopic device
PCT/US2007/009109 WO2007120813A2 (en) 2006-04-14 2007-04-13 Endoscopic device
JP2009505496A JP5165673B2 (en) 2006-04-14 2007-04-13 Endoscope device
BRPI0709979A BRPI0709979B8 (en) 2006-04-14 2007-04-13 method for wrapping a flexible executing end
EP07755393A EP2010064A2 (en) 2006-04-14 2007-04-13 Endoscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/404,969 US7857827B2 (en) 2006-04-14 2006-04-14 Endoscopic device

Publications (2)

Publication Number Publication Date
US20070244512A1 true US20070244512A1 (en) 2007-10-18
US7857827B2 US7857827B2 (en) 2010-12-28

Family

ID=38605798

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/404,969 Active 2028-06-03 US7857827B2 (en) 2006-04-14 2006-04-14 Endoscopic device

Country Status (1)

Country Link
US (1) US7857827B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043758A1 (en) * 2003-08-18 2005-02-24 Scimed Life Systems, Inc. Endoscopic medical instrument and related methods of use
US20110184458A1 (en) * 2008-06-11 2011-07-28 Ovesco Endoscopy Ag Medical Gripping Device
US8317726B2 (en) 2005-05-13 2012-11-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US8469993B2 (en) 2003-06-18 2013-06-25 Boston Scientific Scimed, Inc. Endoscopic instruments
US8876858B2 (en) * 2010-04-14 2014-11-04 Tuebingen Scientific Medical Gmbh Surgical instrument with elastically movable instrument head
US9681857B2 (en) 2003-06-18 2017-06-20 Boston Scientific Scimed, Inc. Endoscopic instruments and methods of manufacture
US20220133383A1 (en) * 2020-11-02 2022-05-05 Boston Scientific Scimed, Inc. Medical systems, devices, and related methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327880B2 (en) 2000-04-14 2019-06-25 Attenuex Technologies, Inc. Attenuation device for use in an anatomical structure
US8574146B2 (en) 2000-04-14 2013-11-05 Attenuex Technologies, Inc. Implant with high vapor pressure medium
US8012166B2 (en) * 2006-07-06 2011-09-06 Centum Research Llc Laparoscopic instrument tip and method of specimen collection
DE102012007647A1 (en) * 2012-04-18 2013-10-24 Karl Storz Gmbh & Co. Kg Tool for a medical instrument
US8894563B2 (en) 2012-08-10 2014-11-25 Attenuex Technologies, Inc. Methods and systems for performing a medical procedure
WO2020163625A1 (en) 2019-02-07 2020-08-13 Solace Therapeutics, Inc. Pressure attenuation device
US20220104874A1 (en) * 2020-10-07 2022-04-07 Baylis Medical Company Inc. Elongated medical assembly

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US534570A (en) * 1895-02-19 Chopping-knife
US2034785A (en) * 1935-07-12 1936-03-24 Wappler Frederick Charles Endoscopic forceps
US3521620A (en) * 1967-10-30 1970-07-28 William A Cook Vascular coil spring guide with bendable tip
US3739784A (en) * 1971-12-01 1973-06-19 Olympus Optical Co Surgical instrument
US3791387A (en) * 1970-12-05 1974-02-12 Olympus Optical Co Forceps
US3895636A (en) * 1973-09-24 1975-07-22 William Schmidt Flexible forceps
US3949747A (en) * 1974-10-03 1976-04-13 Hevesy William K Biopsy set
US4026128A (en) * 1975-12-12 1977-05-31 Universal Textile Machine Corporation Faulty needle sensing
US4080706A (en) * 1975-04-22 1978-03-28 Medrad, Inc. Method of manufacturing catheter guidewire
US4427014A (en) * 1981-05-06 1984-01-24 Metallisations Et Traitements Optiques M.T.O. Biopsy forceps
US4592341A (en) * 1984-05-23 1986-06-03 Olympus Optical Co., Ltd. Method and apparatus for guiding prosthesis
US4597385A (en) * 1983-04-29 1986-07-01 Watson Trevor F Biopsy instrument
US4633871A (en) * 1984-06-18 1987-01-06 Olympus Optical Company, Ltd. Basket forceps assembly
US4634042A (en) * 1984-04-10 1987-01-06 Cordis Corporation Method of joining refractory metals to lower melting dissimilar metals
US4646751A (en) * 1984-05-18 1987-03-03 Diener Verwaltungs-und Beteiligungsgesellschaft m.b.H. Biopsy forceps
US4653477A (en) * 1984-09-13 1987-03-31 Olympus Optical Co., Ltd. Endoscope forceps stopcock
US4669471A (en) * 1983-11-10 1987-06-02 Olympus Optical Co., Ltd. Forceps device for use in an endoscope
US4682599A (en) * 1984-04-25 1987-07-28 Olympus Optical Co., Ltd. Basket forceps assembly for endoscope
US4721116A (en) * 1985-06-04 1988-01-26 Schintgen Jean Marie Retractable needle biopsy forceps and improved control cable therefor
US4815476A (en) * 1988-03-28 1989-03-28 Cordis Corporation Biopsy forceps with locking handle
US4817630A (en) * 1985-06-04 1989-04-04 Schintgen Jean Marie Control cable for a biopsy forceps
US4909789A (en) * 1986-03-28 1990-03-20 Olympus Optical Co., Ltd. Observation assisting forceps
US4982727A (en) * 1989-04-13 1991-01-08 Olympus Optical Co., Ltd. Endoscopic treating instrument
US4994079A (en) * 1989-07-28 1991-02-19 C. R. Bard, Inc. Grasping forceps
US5084054A (en) * 1990-03-05 1992-01-28 C.R. Bard, Inc. Surgical gripping instrument
US5094247A (en) * 1990-08-31 1992-03-10 Cordis Corporation Biopsy forceps with handle having a flexible coupling
US5097728A (en) * 1990-09-21 1992-03-24 Dennis Cox Biopsy forceps jaw and method for making it
US5100430A (en) * 1990-08-31 1992-03-31 Cordis Corporation Biopsy forceps device having a ball and socket flexible coupling
US5133727A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
US5133735A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Thumb-activated actuating member for imparting reciprocal motion to push rod of a disposable laparoscopic surgical instrument
US5133736A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Investment cast end effectors for disposable laparoscopic surgical instrument
US5184625A (en) * 1992-04-16 1993-02-09 Cordis Corporation Biopsy forceps device having improved handle
US5203785A (en) * 1990-05-10 1993-04-20 Symbrosis Corporation Laparoscopic hook scissors
US5215101A (en) * 1990-05-10 1993-06-01 Symbiosis Corporation Sharply angled kelly (Jacobs's) clamp
US5228451A (en) * 1990-05-10 1993-07-20 Symbiosis Corporation Biopsy forceps device having stiff distal end
US5312332A (en) * 1992-10-09 1994-05-17 Symbiosis Corporation Endoscopic surgical methods utilizing a suction-irrigation instrument with a port for endoscopic manipulating instruments
US5324301A (en) * 1992-09-28 1994-06-28 Smith & Nephew Dyonics, Inc. Surgical cutting instrument with tin-nickle alloy coating as an elongate bearing surface
US5331971A (en) * 1990-05-10 1994-07-26 Symbiosis Corporation Endoscopic surgical instruments
US5383471A (en) * 1992-04-10 1995-01-24 Funnell; David M. Surgical biopsy instrument
US5395369A (en) * 1993-06-10 1995-03-07 Symbiosis Corporation Endoscopic bipolar electrocautery instruments
US5394885A (en) * 1994-01-05 1995-03-07 Symbiosis Corporation Endoscopic biopsy forceps jaws and instrument incorporating same
US5396900A (en) * 1991-04-04 1995-03-14 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5419339A (en) * 1992-04-09 1995-05-30 Symbiosis Corporation Flexible microsurgical instrument having ground distal coil portion
US5419220A (en) * 1993-05-28 1995-05-30 Cox; James E. Method for making a jaw for a biopsy forceps
US5431645A (en) * 1990-05-10 1995-07-11 Symbiosis Corporation Remotely activated endoscopic tools such as endoscopic biopsy forceps
US5482054A (en) * 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5490861A (en) * 1994-07-14 1996-02-13 Symbiosis Corporation Track guided end effector assembly for use with endoscopic instruments
US5491881A (en) * 1994-03-28 1996-02-20 Collins; Stuart Process for forming roller guide frames for a fishing line
US5507297A (en) * 1991-04-04 1996-04-16 Symbiosis Corporation Endoscopic instruments having detachable proximal handle and distal portions
US5591202A (en) * 1994-04-28 1997-01-07 Symbiosis Corporation Endoscopic instruments having low friction sheath
US5601585A (en) * 1994-02-08 1997-02-11 Boston Scientific Corporation Multi-motion side-cutting biopsy sampling device
US5613499A (en) * 1990-05-10 1997-03-25 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
US5636639A (en) * 1992-02-18 1997-06-10 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US5640874A (en) * 1995-06-02 1997-06-24 United States Surgical Corporation Progressive die/carrier apparatus and method of forming surgical needles and/or incision members
US5707392A (en) * 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5706824A (en) * 1996-05-20 1998-01-13 Symbiosis Corporation Endoscopic biopsy forceps instrument having a constant force spring biasing the jaws closed
US5715832A (en) * 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5716374A (en) * 1995-10-10 1998-02-10 Symbiosis Corporation Stamped clevis for endoscopic instruments and method of making the same
US5722421A (en) * 1995-09-15 1998-03-03 Symbiosis Corporation Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US5722422A (en) * 1997-02-12 1998-03-03 Symbiosis Corporation Endoscopic biopsy forceps handle with removable sample removal pick
US5741285A (en) * 1993-07-13 1998-04-21 Symbiosis Corporation Endoscopic instrument having non-bonded, non-welded rotating actuator handle and method for assembling the same
US5746740A (en) * 1992-09-23 1998-05-05 United States Surgical Corporation Surgical biopsy forceps apparatus
US5762070A (en) * 1995-04-28 1998-06-09 Olympus Optical Co., Ltd. Treatment tool for endoscope, having openable and closable treatment members and guide means therefore
US5766184A (en) * 1994-11-02 1998-06-16 Olympus Optical Co., Ltd. Endoscopic treatment tool
US5865724A (en) * 1996-01-11 1999-02-02 Symbiosis Corp. Flexible microsurgical instruments incorporating a sheath having tactile and visual position indicators
US5871453A (en) * 1994-02-08 1999-02-16 Boston Scientific Corporation Moveable sample tube multiple biopsy sampling device
US5893846A (en) * 1996-05-15 1999-04-13 Symbiosis Corp. Ceramic coated endoscopic scissor blades and a method of making the same
US5893876A (en) * 1994-12-13 1999-04-13 Symbiosis Corporation Colposcopic biopsy punch with removable multiple sample basket
US5895361A (en) * 1997-02-14 1999-04-20 Symbiosis Corporation Esophageal biopsy jaw assembly and endoscopic instrument incorporating the same
US5897507A (en) * 1996-11-25 1999-04-27 Symbiosis Corporation Biopsy forceps instrument having irrigation and aspiration capabilities
US5906630A (en) * 1998-06-30 1999-05-25 Boston Scientific Limited Eccentric surgical forceps
US6019758A (en) * 1996-01-11 2000-02-01 Symbiosis Corporation Endoscopic bipolar multiple sample bioptome
US6038150A (en) * 1997-07-23 2000-03-14 Yee; Hsian-Pei Transistorized rectifier for a multiple output converter
US6036656A (en) * 1996-07-03 2000-03-14 Symbiosis Corporation Jaw assembly having progressively larger teeth and endoscopic biopsy forceps instrument incorporating same
US6063103A (en) * 1998-07-24 2000-05-16 Olympus Optical Co., Ltd. Endoscope forceps
US6066102A (en) * 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6074408A (en) * 1998-10-13 2000-06-13 Freeman; Kenneth V. Modular medical instrument and method of using same
US6193718B1 (en) * 1998-06-10 2001-02-27 Scimed Life Systems, Inc. Endoscopic electrocautery instrument
US6375650B1 (en) * 1999-06-03 2002-04-23 Asahi Kogaku Kogyo Kabushiki Kaisha Treating instrument for endoscope
US6378351B1 (en) * 1999-09-30 2002-04-30 Asahi Kogaku Kogyo Kabushiki Kaisha Method for manufacturing endoscopic biopsy forceps cup
US6514269B2 (en) * 2000-06-13 2003-02-04 Olympus Optical Co., Ltd. Endoscopic treating instrument
US6514197B1 (en) * 1999-10-18 2003-02-04 Pentax Corporation Treatment tool support device for endoscope
US6544194B1 (en) * 1996-11-25 2003-04-08 Symbiosis Corporation Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
US6551315B2 (en) * 2000-12-06 2003-04-22 Syntheon, Llc Methods and apparatus for the treatment of gastric ulcers
US6554850B1 (en) * 1999-09-03 2003-04-29 Pentax Corporation Endoscopic biopsy forceps
US6689122B2 (en) * 2000-05-17 2004-02-10 Olympus Corporation Endoscopic instrument
US6743185B2 (en) * 2000-09-26 2004-06-01 Scimed Life Systems, Inc. Handle assembly for surgical instrument and method of making the assembly
US20050054946A1 (en) * 2003-09-04 2005-03-10 Jacek Krzyzanowski Variations of biopsy jaw and clevis and method of manufacture
US20050131312A1 (en) * 2003-12-10 2005-06-16 Scimed Life Systems, Inc. Clevis assemblies for medical instruments and methods of manufacture of same

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515000A (en) 1920-07-20 1924-11-11 William J Thompson Snuff dipper
US3461708A (en) 1967-11-02 1969-08-19 Arc Co Inc Method of forming conduit clamps
US3608539A (en) 1968-11-06 1971-09-28 Daniel G Miller Method for the biopsy of subcutaneous masses
US3687131A (en) 1970-10-28 1972-08-29 Mark Rayport Biopsy clamp
JPS552966Y2 (en) 1974-02-08 1980-01-24
JPS5176120A (en) 1974-12-27 1976-07-01 Showa Aluminium Co Ltd
US3973556A (en) 1975-06-20 1976-08-10 Lake Region Manufacturing Company, Inc. Smoothened coil spring wire guide
US4174715A (en) 1977-03-28 1979-11-20 Hasson Harrith M Multi-pronged laparoscopy forceps
US6264617B1 (en) 1977-09-12 2001-07-24 Symbiosis Corporation Radial jaw biopsy forceps
JPS637218Y2 (en) 1984-09-28 1988-03-01
US4763668A (en) 1985-10-28 1988-08-16 Mill Rose Laboratories Partible forceps instrument for endoscopy
US4763669A (en) 1986-01-09 1988-08-16 Jaeger John C Surgical instrument with adjustable angle of operation
US4945920A (en) 1988-03-28 1990-08-07 Cordis Corporation Torqueable and formable biopsy forceps
US4887612A (en) 1988-04-27 1989-12-19 Esco Precision, Inc. Endoscopic biopsy forceps
US4971067A (en) 1988-05-05 1990-11-20 Lee Bolduc Biopsy instrument with a disposable cutting blade
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US5172700A (en) 1989-01-31 1992-12-22 C. R. Bard, Inc. Disposable biopsy forceps
US5052402A (en) 1989-01-31 1991-10-01 C.R. Bard, Inc. Disposable biopsy forceps
US5439478A (en) 1990-05-10 1995-08-08 Symbiosis Corporation Steerable flexible microsurgical instrument with rotatable clevis
US5241968A (en) 1990-05-10 1993-09-07 Symbiosis Corporation Single acting endoscopic instruments
US5454378A (en) 1993-02-11 1995-10-03 Symbiosis Corporation Biopsy forceps having a detachable proximal handle and distal jaws
US5156633A (en) 1990-05-10 1992-10-20 Symbiosis Corporation Maryland dissector laparoscopic instrument
US5171256A (en) 1990-05-10 1992-12-15 Symbiosis Corporation Single acting disposable laparoscopic scissors
US5170800A (en) 1991-04-04 1992-12-15 Symbiosis Corporation Hermaphroditic endoscopic claw extractors
US5147380A (en) 1991-10-03 1992-09-15 Cordis Corporation Biopsy forceps device having improved locking means
US5542432A (en) 1992-02-18 1996-08-06 Symbiosis Corporation Endoscopic multiple sample bioptome
US5645075A (en) 1992-02-18 1997-07-08 Symbiosis Corporation Jaw assembly for an endoscopic instrument
US5251638A (en) 1992-04-16 1993-10-12 Cordis Corporation Biopsy forceps device having improved handle assembly
US5238002A (en) 1992-06-08 1993-08-24 C. R. Bard, Inc. Disposable biopsy forceps
US5250073A (en) 1992-06-10 1993-10-05 Cordis Corporation Torqueable and formable biopsy forceps
US5360432A (en) 1992-10-16 1994-11-01 Shturman Cardiology Systems, Inc. Abrasive drive shaft device for directional rotational atherectomy
US5553624A (en) 1993-02-11 1996-09-10 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
EP0702528B1 (en) 1993-05-17 2003-07-16 Boston Scientific Corporation Instrument for collecting multiple biopsy specimens
US5352223A (en) 1993-07-13 1994-10-04 Symbiosis Corporation Endoscopic instruments having distally extending lever mechanisms
JPH09503404A (en) 1993-09-20 1997-04-08 ボストン・サイエンティフィック・コーポレーション Multiple biopsy sample collection device
US5573008A (en) 1993-10-29 1996-11-12 Boston Scientific Corporation Multiple biopsy sampling coring device
US5840044A (en) 1993-09-30 1998-11-24 Boston Scientific Corporation Multiple biopsy sampling forceps
US5471992A (en) 1994-02-08 1995-12-05 Boston Scientific Corporation Multi-motion cutter multiple biopsy sampling device
US5535754A (en) 1994-03-04 1996-07-16 Doherty; Thomas E. Endoscopic biopsy forceps - disposable
US5782749A (en) 1994-05-10 1998-07-21 Riza; Erol D. Laparoscopic surgical instrument with adjustable grip
DE69523680T2 (en) 1994-08-02 2002-08-14 Olympus Optical Co Endoscopic grasping device
US5571136A (en) 1994-08-15 1996-11-05 Medical Innovations Corporation Forceps with guide wire
JPH0856951A (en) 1994-08-25 1996-03-05 Olympus Optical Co Ltd Clamping forceps for endoscope
US5476099A (en) 1994-08-31 1995-12-19 Boston Scientific Corporation High velocity tissue sample cutter
US6447511B1 (en) 1994-12-13 2002-09-10 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
US5976130A (en) 1994-12-13 1999-11-02 Symbiosis Corporation Bipolar push rod assembly for a bipolar endoscopic surgical instrument and instruments incorporating the same
US5846240A (en) 1994-12-13 1998-12-08 Symbiosis Corporation Ceramic insulator for a bipolar push rod assembly for a bipolar endoscopic surgical instrument
US5558100A (en) 1994-12-19 1996-09-24 Ballard Medical Products Biopsy forceps for obtaining tissue specimen and optionally for coagulation
US5578056A (en) 1994-12-21 1996-11-26 Ballard Medical Products Separable economically partially disposable flexible biopsy forceps
US5683412A (en) 1994-12-23 1997-11-04 Symbiosis Corporation Force-limiting control member for endoscopic instruments and endoscopic instruments incorporating same
US5702080A (en) 1995-01-18 1997-12-30 Symbiosis Corporation Combination end cap and clip for biopsy forceps instrument
US5569299A (en) 1995-03-01 1996-10-29 Symbiosis Corporation Endoscopic urological biopsy forceps
ATE270854T1 (en) 1995-03-31 2004-07-15 Boston Scient Ltd BIOPSY SAMPLER
US6090108A (en) 1995-04-27 2000-07-18 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
US5779701A (en) 1995-04-27 1998-07-14 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
US5586990A (en) 1995-05-08 1996-12-24 Symbiosis Corporation Endosurgical instrument with a radially movable end effector
US5571129A (en) 1995-05-15 1996-11-05 Portlyn Corporation Surgical cutting instrument with improved cleaning capability and ease of use
US5697949A (en) 1995-05-18 1997-12-16 Symbiosis Corporation Small diameter endoscopic instruments
DE19521257C2 (en) 1995-06-10 1999-01-28 Winter & Ibe Olympus Surgical forceps
US5683385A (en) 1995-09-19 1997-11-04 Symbiosis Corporation Electrocautery connector for a bipolar push rod assembly
US5810876A (en) 1995-10-03 1998-09-22 Akos Biomedical, Inc. Flexible forceps device
US5797957A (en) 1996-05-02 1998-08-25 Symbiosis Corporation Endoscopic bioptome with a hard stop to control biting force
US5762613A (en) 1996-05-07 1998-06-09 Spectrascience, Inc. Optical biopsy forceps
US5782748A (en) 1996-07-10 1998-07-21 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
US5776075A (en) 1996-08-09 1998-07-07 Symbiosis Corporation Endoscopic bioptome jaw assembly having three or more jaws and an endoscopic instrument incorporating same
US6331165B1 (en) 1996-11-25 2001-12-18 Scimed Life Systems, Inc. Biopsy instrument having irrigation and aspiration capabilities
US5964717A (en) 1997-01-06 1999-10-12 Symbiosis Corporation Biopsy forceps having detachable handle and distal jaws
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US6494881B1 (en) 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
US5971940A (en) 1998-02-20 1999-10-26 Scimed Life Systems, Inc. Surgical instrument with locking feature, split distal housing, and sharpened jaws
US5967997A (en) 1998-04-30 1999-10-19 Symbiosis Corporation Endoscopic surgical instrument with deflectable and rotatable distal end
US6159162A (en) 1998-05-04 2000-12-12 Lsvp International, Inc. Biopsy apparatus
US6106543A (en) 1998-05-15 2000-08-22 Esser; Theodor Medical instrument driving member and end effector connection
US6149607A (en) 1998-08-04 2000-11-21 Endonetics, Inc. Multiple sample biopsy device
US6139508A (en) 1998-08-04 2000-10-31 Endonetics, Inc. Articulated medical device
JP2000175928A (en) 1998-10-08 2000-06-27 Olympus Optical Co Ltd Treating implement for endoscope
JP2000210294A (en) 1998-11-20 2000-08-02 Asahi Optical Co Ltd Biopsy forceps for endoscope
US6083150A (en) 1999-03-12 2000-07-04 C. R. Bard, Inc. Endoscopic multiple sample biopsy forceps
JP3694202B2 (en) 1999-11-18 2005-09-14 ペンタックス株式会社 Method for manufacturing tip support member of endoscope treatment instrument
US6613068B2 (en) 2000-03-07 2003-09-02 Pentax Corporation Endoscopic treatment instrument
US6428539B1 (en) 2000-03-09 2002-08-06 Origin Medsystems, Inc. Apparatus and method for minimally invasive surgery using rotational cutting tool
US7341564B2 (en) 2001-05-03 2008-03-11 Boston Scientific Scimed, Inc. Biopsy forceps device with transparent outer sheath
US6440085B1 (en) 2001-06-12 2002-08-27 Jacek Krzyzanowski Method of assembling a non-metallic biopsy forceps jaw and a non-metallic biopsy forceps jaw
JP4131011B2 (en) 2002-04-09 2008-08-13 Hoya株式会社 Endoscopic sputum treatment device
US7837631B2 (en) 2003-03-14 2010-11-23 Boston Scientific Scimed Inc. Biopsy forceps with removable jaw segments
WO2004103190A1 (en) 2003-05-16 2004-12-02 Wilson-Cook Medical, Inc. Medical instrument handle
US20040260337A1 (en) 2003-06-18 2004-12-23 Scimed Life Systems, Inc. Endoscopic instruments and methods of manufacture
US8469993B2 (en) 2003-06-18 2013-06-25 Boston Scientific Scimed, Inc. Endoscopic instruments
US7171839B2 (en) 2004-04-27 2007-02-06 Jacek Krzyzanowski Method of manufacturing a stamped biopsy forceps jaw

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US534570A (en) * 1895-02-19 Chopping-knife
US2034785A (en) * 1935-07-12 1936-03-24 Wappler Frederick Charles Endoscopic forceps
US3521620A (en) * 1967-10-30 1970-07-28 William A Cook Vascular coil spring guide with bendable tip
US3791387A (en) * 1970-12-05 1974-02-12 Olympus Optical Co Forceps
US3739784A (en) * 1971-12-01 1973-06-19 Olympus Optical Co Surgical instrument
US3895636A (en) * 1973-09-24 1975-07-22 William Schmidt Flexible forceps
US3949747A (en) * 1974-10-03 1976-04-13 Hevesy William K Biopsy set
US4080706A (en) * 1975-04-22 1978-03-28 Medrad, Inc. Method of manufacturing catheter guidewire
US4026128A (en) * 1975-12-12 1977-05-31 Universal Textile Machine Corporation Faulty needle sensing
US4427014A (en) * 1981-05-06 1984-01-24 Metallisations Et Traitements Optiques M.T.O. Biopsy forceps
US4597385A (en) * 1983-04-29 1986-07-01 Watson Trevor F Biopsy instrument
US4669471A (en) * 1983-11-10 1987-06-02 Olympus Optical Co., Ltd. Forceps device for use in an endoscope
US4634042A (en) * 1984-04-10 1987-01-06 Cordis Corporation Method of joining refractory metals to lower melting dissimilar metals
US4682599A (en) * 1984-04-25 1987-07-28 Olympus Optical Co., Ltd. Basket forceps assembly for endoscope
US4646751A (en) * 1984-05-18 1987-03-03 Diener Verwaltungs-und Beteiligungsgesellschaft m.b.H. Biopsy forceps
US4592341A (en) * 1984-05-23 1986-06-03 Olympus Optical Co., Ltd. Method and apparatus for guiding prosthesis
US4633871A (en) * 1984-06-18 1987-01-06 Olympus Optical Company, Ltd. Basket forceps assembly
US4653477A (en) * 1984-09-13 1987-03-31 Olympus Optical Co., Ltd. Endoscope forceps stopcock
US4721116A (en) * 1985-06-04 1988-01-26 Schintgen Jean Marie Retractable needle biopsy forceps and improved control cable therefor
US4817630A (en) * 1985-06-04 1989-04-04 Schintgen Jean Marie Control cable for a biopsy forceps
US4909789A (en) * 1986-03-28 1990-03-20 Olympus Optical Co., Ltd. Observation assisting forceps
US4815476A (en) * 1988-03-28 1989-03-28 Cordis Corporation Biopsy forceps with locking handle
US4982727A (en) * 1989-04-13 1991-01-08 Olympus Optical Co., Ltd. Endoscopic treating instrument
US4994079A (en) * 1989-07-28 1991-02-19 C. R. Bard, Inc. Grasping forceps
US5084054A (en) * 1990-03-05 1992-01-28 C.R. Bard, Inc. Surgical gripping instrument
US5133736A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Investment cast end effectors for disposable laparoscopic surgical instrument
US5192298A (en) * 1990-05-10 1993-03-09 Symbiosis Corporation Disposable laparoscopic surgical instruments
US5431645A (en) * 1990-05-10 1995-07-11 Symbiosis Corporation Remotely activated endoscopic tools such as endoscopic biopsy forceps
US5133727A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
US5133735A (en) * 1990-05-10 1992-07-28 Symbiosis Corporation Thumb-activated actuating member for imparting reciprocal motion to push rod of a disposable laparoscopic surgical instrument
US6024708A (en) * 1990-05-10 2000-02-15 Symbiosis Corporation Radial jaw biopsy forceps
US5613499A (en) * 1990-05-10 1997-03-25 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
US5482054A (en) * 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5203785A (en) * 1990-05-10 1993-04-20 Symbrosis Corporation Laparoscopic hook scissors
US5215101A (en) * 1990-05-10 1993-06-01 Symbiosis Corporation Sharply angled kelly (Jacobs's) clamp
US5228451A (en) * 1990-05-10 1993-07-20 Symbiosis Corporation Biopsy forceps device having stiff distal end
US5507296A (en) * 1990-05-10 1996-04-16 Symbiosis Corporation Radial jaw biopsy forceps
US5331971A (en) * 1990-05-10 1994-07-26 Symbiosis Corporation Endoscopic surgical instruments
US5094247A (en) * 1990-08-31 1992-03-10 Cordis Corporation Biopsy forceps with handle having a flexible coupling
US5100430A (en) * 1990-08-31 1992-03-31 Cordis Corporation Biopsy forceps device having a ball and socket flexible coupling
US5097728A (en) * 1990-09-21 1992-03-24 Dennis Cox Biopsy forceps jaw and method for making it
US5396900A (en) * 1991-04-04 1995-03-14 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5507297A (en) * 1991-04-04 1996-04-16 Symbiosis Corporation Endoscopic instruments having detachable proximal handle and distal portions
US6041679A (en) * 1991-04-04 2000-03-28 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5636639A (en) * 1992-02-18 1997-06-10 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5419339A (en) * 1992-04-09 1995-05-30 Symbiosis Corporation Flexible microsurgical instrument having ground distal coil portion
US5383471A (en) * 1992-04-10 1995-01-24 Funnell; David M. Surgical biopsy instrument
US5184625A (en) * 1992-04-16 1993-02-09 Cordis Corporation Biopsy forceps device having improved handle
US5746740A (en) * 1992-09-23 1998-05-05 United States Surgical Corporation Surgical biopsy forceps apparatus
US5324301A (en) * 1992-09-28 1994-06-28 Smith & Nephew Dyonics, Inc. Surgical cutting instrument with tin-nickle alloy coating as an elongate bearing surface
US5312332A (en) * 1992-10-09 1994-05-17 Symbiosis Corporation Endoscopic surgical methods utilizing a suction-irrigation instrument with a port for endoscopic manipulating instruments
US5419220A (en) * 1993-05-28 1995-05-30 Cox; James E. Method for making a jaw for a biopsy forceps
US5395369A (en) * 1993-06-10 1995-03-07 Symbiosis Corporation Endoscopic bipolar electrocautery instruments
US5741285A (en) * 1993-07-13 1998-04-21 Symbiosis Corporation Endoscopic instrument having non-bonded, non-welded rotating actuator handle and method for assembling the same
US5394885A (en) * 1994-01-05 1995-03-07 Symbiosis Corporation Endoscopic biopsy forceps jaws and instrument incorporating same
US6193671B1 (en) * 1994-02-01 2001-02-27 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US6561988B1 (en) * 1994-02-01 2003-05-13 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5746216A (en) * 1994-02-01 1998-05-05 Symbiosis Corporation Endoscopic multiple sample bioptome with enhanced biting action
US5601585A (en) * 1994-02-08 1997-02-11 Boston Scientific Corporation Multi-motion side-cutting biopsy sampling device
US5871453A (en) * 1994-02-08 1999-02-16 Boston Scientific Corporation Moveable sample tube multiple biopsy sampling device
US5491881A (en) * 1994-03-28 1996-02-20 Collins; Stuart Process for forming roller guide frames for a fishing line
US5591202A (en) * 1994-04-28 1997-01-07 Symbiosis Corporation Endoscopic instruments having low friction sheath
US5490861A (en) * 1994-07-14 1996-02-13 Symbiosis Corporation Track guided end effector assembly for use with endoscopic instruments
US5766184A (en) * 1994-11-02 1998-06-16 Olympus Optical Co., Ltd. Endoscopic treatment tool
US5893876A (en) * 1994-12-13 1999-04-13 Symbiosis Corporation Colposcopic biopsy punch with removable multiple sample basket
US5715832A (en) * 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5762070A (en) * 1995-04-28 1998-06-09 Olympus Optical Co., Ltd. Treatment tool for endoscope, having openable and closable treatment members and guide means therefore
US6190399B1 (en) * 1995-05-12 2001-02-20 Scimed Life Systems, Inc. Super-elastic flexible jaw assembly
US5640874A (en) * 1995-06-02 1997-06-24 United States Surgical Corporation Progressive die/carrier apparatus and method of forming surgical needles and/or incision members
US5722421A (en) * 1995-09-15 1998-03-03 Symbiosis Corporation Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US5707392A (en) * 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5716374A (en) * 1995-10-10 1998-02-10 Symbiosis Corporation Stamped clevis for endoscopic instruments and method of making the same
US5865724A (en) * 1996-01-11 1999-02-02 Symbiosis Corp. Flexible microsurgical instruments incorporating a sheath having tactile and visual position indicators
US6019758A (en) * 1996-01-11 2000-02-01 Symbiosis Corporation Endoscopic bipolar multiple sample bioptome
US5893846A (en) * 1996-05-15 1999-04-13 Symbiosis Corp. Ceramic coated endoscopic scissor blades and a method of making the same
US5706824A (en) * 1996-05-20 1998-01-13 Symbiosis Corporation Endoscopic biopsy forceps instrument having a constant force spring biasing the jaws closed
US6036656A (en) * 1996-07-03 2000-03-14 Symbiosis Corporation Jaw assembly having progressively larger teeth and endoscopic biopsy forceps instrument incorporating same
US5897507A (en) * 1996-11-25 1999-04-27 Symbiosis Corporation Biopsy forceps instrument having irrigation and aspiration capabilities
US6174292B1 (en) * 1996-11-25 2001-01-16 Symbiosis Corporation Biopsy forceps instrument having irrigation and aspiration capabilities
US6544194B1 (en) * 1996-11-25 2003-04-08 Symbiosis Corporation Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
US5722422A (en) * 1997-02-12 1998-03-03 Symbiosis Corporation Endoscopic biopsy forceps handle with removable sample removal pick
US5895361A (en) * 1997-02-14 1999-04-20 Symbiosis Corporation Esophageal biopsy jaw assembly and endoscopic instrument incorporating the same
US6038150A (en) * 1997-07-23 2000-03-14 Yee; Hsian-Pei Transistorized rectifier for a multiple output converter
US6066102A (en) * 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6193718B1 (en) * 1998-06-10 2001-02-27 Scimed Life Systems, Inc. Endoscopic electrocautery instrument
US5906630A (en) * 1998-06-30 1999-05-25 Boston Scientific Limited Eccentric surgical forceps
US6063103A (en) * 1998-07-24 2000-05-16 Olympus Optical Co., Ltd. Endoscope forceps
US6074408A (en) * 1998-10-13 2000-06-13 Freeman; Kenneth V. Modular medical instrument and method of using same
US6375650B1 (en) * 1999-06-03 2002-04-23 Asahi Kogaku Kogyo Kabushiki Kaisha Treating instrument for endoscope
US6554850B1 (en) * 1999-09-03 2003-04-29 Pentax Corporation Endoscopic biopsy forceps
US6378351B1 (en) * 1999-09-30 2002-04-30 Asahi Kogaku Kogyo Kabushiki Kaisha Method for manufacturing endoscopic biopsy forceps cup
US6514197B1 (en) * 1999-10-18 2003-02-04 Pentax Corporation Treatment tool support device for endoscope
US6689122B2 (en) * 2000-05-17 2004-02-10 Olympus Corporation Endoscopic instrument
US6514269B2 (en) * 2000-06-13 2003-02-04 Olympus Optical Co., Ltd. Endoscopic treating instrument
US6743185B2 (en) * 2000-09-26 2004-06-01 Scimed Life Systems, Inc. Handle assembly for surgical instrument and method of making the assembly
US6551315B2 (en) * 2000-12-06 2003-04-22 Syntheon, Llc Methods and apparatus for the treatment of gastric ulcers
US20050054946A1 (en) * 2003-09-04 2005-03-10 Jacek Krzyzanowski Variations of biopsy jaw and clevis and method of manufacture
US20050131312A1 (en) * 2003-12-10 2005-06-16 Scimed Life Systems, Inc. Clevis assemblies for medical instruments and methods of manufacture of same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469993B2 (en) 2003-06-18 2013-06-25 Boston Scientific Scimed, Inc. Endoscopic instruments
US9681857B2 (en) 2003-06-18 2017-06-20 Boston Scientific Scimed, Inc. Endoscopic instruments and methods of manufacture
US20050043758A1 (en) * 2003-08-18 2005-02-24 Scimed Life Systems, Inc. Endoscopic medical instrument and related methods of use
US7951165B2 (en) 2003-08-18 2011-05-31 Boston Scientific Scimed, Inc. Endoscopic medical instrument and related methods of use
US8317726B2 (en) 2005-05-13 2012-11-27 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US8672859B2 (en) 2005-05-13 2014-03-18 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
US20110184458A1 (en) * 2008-06-11 2011-07-28 Ovesco Endoscopy Ag Medical Gripping Device
US9603614B2 (en) * 2008-06-11 2017-03-28 Ovesco Endoscopy Ag Medical gripping device
US8876858B2 (en) * 2010-04-14 2014-11-04 Tuebingen Scientific Medical Gmbh Surgical instrument with elastically movable instrument head
US20220133383A1 (en) * 2020-11-02 2022-05-05 Boston Scientific Scimed, Inc. Medical systems, devices, and related methods

Also Published As

Publication number Publication date
US7857827B2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
US8313500B2 (en) Endoscopic device
US7857827B2 (en) Endoscopic device
US7998167B2 (en) End effector and method of manufacture
US20070244513A1 (en) Endoscopic device
US10675112B2 (en) Endoscopic surgical clip applier including counter assembly
US10357250B2 (en) Locking cam driver and jaw assembly for clip applier
US5746216A (en) Endoscopic multiple sample bioptome with enhanced biting action
US20090264918A1 (en) Clevis assemblies for medical instruments and methods of manufacture of same
JP2012096008A (en) Self-centering clip and jaw
EP2432406B1 (en) Endoscopic instrument
US9566082B2 (en) Endoscopic instrument
WO2006083728A2 (en) End effector for surgical instrument, surgical instrument, and method for forming the end effector
WO2018235402A1 (en) Clipping tool
CN110769764B (en) Clamp treatment tool
JP6776581B2 (en) Clip removal device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETHICON ENDO-SURGERY, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEASAMER, JOHN P.;REEL/FRAME:017909/0137

Effective date: 20060607

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12